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FOREWORD

This document supersedes the previous AFQSR Scientific Report cited
; : below. The present report contains a number of improvements in the numerical

methods used, and is applicable to a wider range of blade geometries. In addi-

tion, a number of errors in Ref. 1 have been corrected, and more complete
descriptions are given for certain features of the method.

The author is very indebted to Joseph P. Nenni, John R. Moselle, and

Marcia J. Williams for their assistance in the development of this program.
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P ABSTRACT

This report contains the description of a computer program for evalu-
ating the Ives transformation, which maps a cascade of turbine or compressor

blades conformally into a rectangle.

iii

«

F.
4 Y
|
i .
| .
i oA




’

— gy gy

.
|
TABLE OF CONTENTS
1 Section Page
i FOREWORD ......ovvnnvennenn ettt et e ii
! ABSTRACT ...ivvvnnnnnnnnonnsnns ceeeaans Ceteerrenertaretanenas iii
A i 1 INTRODUCTION ..ovvvvennnnnnnnnn Cereeeeas Ceeeees e e 1
! 2 CONFORMAL TRANSFORMATION METHOD .. .........c0vueeuen. e, 3
l 3 METRIC EVALUATIONS ..... R, e ceenn P . 33
|
b [ 4 COMPUTER PROGRAM ........cc.cvennee. e 34
i 5 CONCLUDING REMARKS ©...oevvuvonnnennnnns et te e, 39
C APPENDIX A - DETAILS OF THE FAST FOURIER TRANSFORM
‘ PROCEDURES ..o vvveneenoesionnesennnssannneeanns A-1
, APPENDIX B - COMPUTER PROGRAM LISTING ... ......... e B-1
j r APPENDIX C - DICTIONARY OF VARIABLES .........vnneeenns e c-1
[ i APPENDIX D - LISTING OF METRIC GENERATOR PROGRAM ............ D-1
r 4
N REFERENCES .......ceuevnenn. e e e R-1

iv




. o,

_ldlm

-

— A

~—————
'

Section 1
INTRODUCTION

Some of the most important recent advances in computational fluid

dynamics have heen made possible by the use of algorithms which solve the
equations of motion in boundary-conforming coordinates. Thus the development
of methods for carrying out these coordinate transformations has received
considerable attention (see, for example, Reference 2). The methods in current
use can be divided into three categories: those which apply algebraic shearing
or stretching of the coordinates, those which are generated numerically by

solving a Poisson equation, and those which are based on a conformal transforma-
tion.

This report is concerned with one example from the third category,
namely the transformation introduced by Ives and Liutermoza.3 It is capable
of transforming a cascade of airfoils into a rectangle, thus facilitating the
application of the solution algorithms mentioned above. The content of this
report is a review of the transformation itself, together with a practical
numerical procedure for applying it to a given cascade. This procedure in-
volves a number of choices, involving branch-point locations, tolerances for

various iteration sequences, and formulas for the evaluation of certain special
functions.

Section 2 below contains a description of the transformation itself,
including modifications that enable the mapping of blades having a rounded
trailing edge, and the calculation of grids in which one of the coordinate lines
joins the trailing edge to the point at downstream infinity.4

2. Thompson, J.F., ed., Numerical Grid Generation, Elsevier Science
Publishing Co., New York (1982).

3. Ives, D.C. and Liutermoza, J.F., 'Analysis of Transonic Cascade Flow

Using Conformal Mapping and Relaxation Techniques", AIAA Journal 15
(1977), pp. 647-652. "‘

4. Rae, W.J., "Modifications of the Ives-Liutermoza Conformal-Mapping
Procedure for Turbomachinery Cascades', ASME Paper 83-GT-116 (March 1983).
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Section 2
CONFORMAL TRANSFORMATION METHOD

The method of Ives & Liutermoza consists of a sequence of transforma-
tions, which map a two-dimensional cascade into a rectangle. The notation and
coordinate system used to define the cascade are shown in Fig. 1. The X -co-

ordinate is measured in the axial direction, and %,is perpendicular to X .
4

n 4

ZLE

Figure 1. Coordinate System

The quantities 5 , A and the angle ¥ denote the "streamwise, normal' coordinates,
in terms of which the blade proflles are sometimes defined. These reduce to

the X » Y set if H is taken as zero. The origins- of both of these coordinate
systems are arbitrary.

These coordinates define a complex variable & :
Z = S+in (2-1)

The points ZN and ZT are taken anywhere near the centers of curvature of the
leading and trailing edges, while ZLE and ZTE are points which divide the
"pressure" side of the blade (i.e., its concave surface) from the ''suction"
side (its convex surface). These points can be chosen anywhere on the

*
Actually, H must not be set identically equal to zero, but to the value 4 10'9
where the t signs apply to compressors or turbines, respectively.

’




leading- and trailing-edge contours; ZTE is the point that will be connected

to the "point" at downstream infinity by one of the grid lines, if that option

is chosen (i.e., ISHEAR=1).

For the case of a sharp trailing edge (ITE=0), ZT must equal ZTE,

and for a sharp leading edge (ILE=0), ZN must equal ZLE. The included angle

at a sharp trailing edge, T , must be specified. This is illustrated in

Fig. 2, for the cascade used by Rae and Homicz.

Figure 2. Blade Geometry of Ref. 5

This blade row has a slant-gap/axial chord ratio SG /C‘= 1 , where SG is the

slant gap:

S. Rae, W.J., and Homicz, G.F., "A Rectangular-Coordinate Method for
Calculating Nonlinear Transonic Potential Flowfields in Compressor
Cascades', AIAA Paper 78-248 (January 1978).
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SG = AH%+6G (2-2)

and a stagger angle ¥ of 32.91°. This geometry is used, below, to illustrate
the steps in the Ives transformation. A comparable set of illustrations, for

a cascade of turbine blades with rounded trailing edges, is given in Ref. 4.

Figure 2 shows the relation between the trailing-edge angle T and an
exponent £X (which 1is used in one of the transformation steps described below).
This relation applies only for a sharp trailing edge. For a rounded trailing
edge, £X is not related to the 180-degree trailing-edge angle, but is chosen
as a number in the range 0.2 to 0.4, as described below.

The blade shape is input as two tables of coordinate pairs, one for
the pressure surface, and one for the suction surface. These coordinates, plus

the leading- and trailing-edge points ZLE and ZTE are then arranged in an array
indexed by KJ, where KJ=1 at the trailing edge, and where the numbering pro-

ceeds around the pressure side to the leading edge (KJLE), and then along the
suction side to the trailing edge, where the point denoted by KIJMX is a repeat

of that dgnoted by KJ=1. This notation is shown in Fig. 3.

i{gcﬁv
ko ? Ar*:
= s A—J
. Aﬁ’(e- s
ZLE ——5 *i
(KJ = KJLE)
;; ZTE
(KT = 1 kIMx)
I g 'K, *r, p 7
JLE_K) J e

Figure 3. Notation for Blade-Surface Coordinates

The quantities KJS and KJP need not be equal; they are limited to a maximum

value of 80 by a dimension statement in the current version of the program.

The first step in the Ives transformation is
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Lem {n___z-z,.} .
2 - H+iG _ Aamb& g, (2-3)
? Z-Zu - A"’";:; T G

aem { H+LG’}

The fact that only differences of # -values are used is what account- . or the
arbitrariness of the origin in Fig. 1. On the suction ( S ) and pre = (P)

sides, the function glz) has the Fortran equivalents::

R2DS (K) e { THS (K)

(2) = !
i RDP(K)CLTHP(K)

(2-4)

The arguments of the sine functions can be written in a simpler form,

as follows: AZ (H-i¢)
£, 5 = -
H + 6
837: {&AZ-MY+J~.Azoc«z’
+4e [JmAf-A;na’-RAAE-MDJJ} (2-5)

where Az stands for Z-Z_or Z-Z, in the expressions for Z,
By noting that (see Rig. 4)

?lr o By
"\ ( e X-% = Sced -nany
Y Y-y, = Sam? +ncoy
%, 4o 1~
- X

Figure 4. Coordinate Relations
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and Z; , respectively.
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it follows that

z,

Similarly,

map the strip - mw/2 € Re [5, 3] £ +T/2 into the entire G, Cor5.)
plane, with cuts along the real axis from - to -1 and from +1 to+oo: !

= %{(S'S.’)Mj-ﬁ(n-n’_) cooy+c'[(n—n.1.)/u.«nb’—($—sr) ma':,}
Tz' .

= E{g—«hw(x-z,)}» (2-6)
;3 = % { LI-(#N —Ll (X‘IN)} (2-7)

The sine transformations:
42 = Aem z.,

Im[z,]
a
£
/
b 9 £ P m§
/ .
/ %
/C 4 / Re [Z,]
/] /
-1, /n/z
/
d n /
. ) ‘P/
1, 1 /
Figure S. The Mapping z, = oum z,
7 |
|
-]
X —_—

Z4=A4'mz3 S




In order to enforce this single-valuedness, the argument of the sine function
should be displaced by the appropriate multiple of H + i & , whenever the
real part of its argument falls outside the strip noted above, i.e., if

IRe g1 > -ZE- , then set & = (Z +nTT)-nT, where n is chosen so as to make

|Re (g+n1T)l < %}. It turns out, however, that this displacement of the
argument need not be made explicitly, when evaluating the complex sine. This
can be seen by noting that

(e

bem (Re ) = sum (Rcos@) cooh (RpumB) + ([ Coo (R co0B) pumb ( R asm()

and that

. . . :
M[(ﬁ’e‘ +NT) -NnTt] = CoonTT » Aam (RcoeB +NnT +LR o 8)

= pum (RcooB) cosk (RawmB) + 0 cos(Rcao8) pumb(R aim)

Thus, no special treatment is required for the argument of the complex sine.
The result of this transformation is shown in Fig. 6, where S and P denote
the suction and pressure sides. The quantity q(Z) is then formed from the
ratio of the sines; this curve is shown in Fig. 7. The interior of the blade
lies outside the closed curve in this plane. Because this function is to be
raised to a power, its argument must be defined on the suction and pressure
sides in such a way that the exponentiation will map the trailing-edge region
into a straight segment. In the computer program, these arguments are first
found from the Fortran DATAN2 function, which returns angles in the range from
-7 to+7 . These arguments are then adjusted, by defining the argument for
KJ=2, and by then examining the points KJ=3 to KJMX, adding or subtracting

21 to the argument whenever the cut (along the negative real axis) in the
DATANZ function is traversed counterclockwise or clockwise, respectively. The
arguments defined for KJ=2 use the following convention: for H>0 (i.e., a
stagger corresponding to a compressor blade row) the argument at KJ=2 is taken
to be negative. For all other cases, the argument at KJ=1 is accepted as
returned by the DATAN2 function.
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The next step is the exponentiation, defined as:

1,
No R [3(2)]/'( ; K = 2 - - ExIiny = L (2-8)
T EX
The result of this step is shown in Fig. 8. As noted above, the value of £x
for a sharp-trailing-edge blade is fixed by the angle 7, whereas for a round
trailing edge a range of values of £X , in the neighborhood of 0.3, will produce
a curve in the £ -plane that is '"star-shaped", i.e., its polar coordinates will

have a radius that is a single-valued function of the angular coordinate.

The next transformation is a bilinear one, whose purpose is to produce
a curve in the W -plane that can be mapped into a unit circle in a subsequent

step:

w-a a-b '{'lc—
C— = 0N ; W= — (2-9)
w-b - 5T :
c

where @, b , and ¢ are complex constants. Three conditions must be assigned,
in order to evaluate these constants: Ives suggests, for two of them, that

the images of upstream and downstream infinity be mapped into w=*1 . As

the third condition, he recommends that the centroid of the blade-surface image
in the W -plane be forced to be close to the origin. This condition was applied
in Ref. 1; however, it has been found simpler to impose a condition on the

ratio between the maximum and minimum radii in the w -plane, as outlined below.
The calculation of the centroidal location has been retained in the present
code, for informational purposes. (Details on how this is calculated can be
found in Ref. 1).

The locations of the images of upstream and downstream infinity in

the 7 - and {2 -planes can be expressed as follows: in general,

nd, | aon (R Z,) cosh(dm 3,) + i ot (Ragy) pimh(sdm 5,)
@..;, o (R Z) cosh(ImB )+ icas (RaZ) simh (ImZ;)

7(?.) =

11

. S
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Figure 8. The Mapping [L(Z)
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As 2=+ -9 along line @ of Fig. 9,
&;,’F{nite, Jm;,—’*@’ &z.”o’ sz’—O-rﬂ

Using the large-argument approximations for the hyperbolic functions then
gives

Im(5,-5,) -kl XK kg K
T e O e
7(—&) = & = (2-10)

where a little algebra reveals that

x.K = J,,,(z;'-z;’). .S%{&(ZT-IN)MX-Jm(zr—EN)A;ni}

A

X, K =2 Ral(Z) = - E’%{&(zr-zﬂ)mw Jvn(z.,—Z")wX}

Ag Z~—~> +® along line @ of Fig. 9,

CZ =0, dm --», Ke Z = finite, Jm Z, — =
and these lead to

gre) = C-J—»Lé’, -;’)e BB,

where &(5,) =~ f(Z,) . Thus

?Gw) = e’x'Ke—‘x"‘K (2-11)
and
_ VK  x ¢z + 1/ -x X
2 = [7<-~>] =e¢’e ™ = [qua] - e e ?
(2-12)
Note that

R
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The constants @ and b can be expressed in terms of C by the two equations:

-1-a -

s N
-1-b
1-4 = 11*
. 1-b
The solution is: .
2c+ o+t ant
b = ; a =1-(1-b) —
ot a° ¢
E -
= -Ec+F s = = -F (2-13)

where E and F are known quantities:

2 _ﬂ.*+-a.-

Ei‘_*'—' ,F
Q-0

In terms of the parameters £ , F , and ¢, the transformation can be written

as

E-Fc +(Ec-F)

c-a

(w+F)e -E
w-F + Ec

The latter relations can be used in an iteration procedure to find a value of

(2-14) i

(2-15)

(2-16)

€ that will minimize the ratio RMAX/RMIN, where RMAX and RMIN are the maximum
and minimum values of |wW! over the set defined by KJ=1 to KIJMX. The iteration

process is as follows:

on alternate iterations, values of ¢ are chosen that

will either reduce RMAX or increase RMIN. This is done by solving Equation 2-16

for ¢ :
nDw +E-Fa

Ww+F - Eq

On the first iteration, C = 1 +L is used; the values of RMIN and the index

KJ=KJMN at which it occurs are then found.

15

|

| .

!

z
(2-17) l{

|

i

Next, a new value of C is calculated,




PETT

using Eq. 2-17, such that the new value of W (KJMN) will equal 1.1 times the
For this new mapping into the w-plane, the value of RMAX

value just found.
For the third iteration,

and the index KJ=KJMXX at which it occurs are found.
a value of € is used such as to generate a new value of w (KJMXX) equal to
This alternating cycle is then continued until

0.9 times the previous one.
This tolerance 1is assigned

the ratio RMAX/RMIN is less than the tolerance RTOL.
a default value of 3.0; values up to 6.0 have been handled successfully by the

subsequent steps in the transformation.

The iteration on C can be bypassed, if C is already known, by setting

IGOT=1 and reading in the value of € . Figure 10, reproduced from Ref. 1, was

generated this way.

Next, the blade-surface image in the w-plane is mapped into the unit
circle in the & - plane with the trailing edge at g = 1 by a variant of the
Theodorsen-Garrick transformation:

5 ~ $
W= CMP‘{Z(Ri“Bi)Z; (2-18)
°
To determine the coefficients, the values of ¢« and £ on the blade surface
are written as
. ; @ i
w = reare’ , § =1e (2-19)

Then the real and imaginary parts of the transformation are

N . , . .
er=n,+jzﬁ[nim;¢-3,¢m3¢] (2-20)
N R , .
1:1
16
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The coefficients are then determined by the following iteration procedure:

an equally-spaced array of values of ¢ is set up, and all the coefficients

are initially set equal to zero. Then the second equation gives & = ¢ as
the first approximation for & . For each of these values of § , a corres-
ponding value of Anr can be found, from a spline fit to the coordinates of
the blade-surface image in the w-plane. These known values of Amr are then
used in the first of the equations above, to find the next approximation to
the Qi and B‘ coefficients. These coefficients can then be used to give the
next approximation to &( ®), and the process is continued until convergence
is reached, to some preassigned tolerance. Fast Fourier transform tech-
techniques6 can be used in the processes of evaluating the second equation, for
known values of the coefficients, and of determining the coefficients from

the first equation with known values of Anr . These techniques were applied

in the present calculations. The details are given in Appendix A.

Sufficient conditions for convergence of this iteration process
have been discussed by Warschawski.7 For the present case, these conditions
are not met; in particular, it is required that the maximum and minimum values
of r (8) obey the relation:

RMAxX RMAX
-1 < 0.295 or < 1.78
RMIN RMIN

This condition is not met in the present case, where RMAX/RMIN is approxi-

mately 2.5. It was found, however, that the iteration process would converge

!

‘ 6. Cooley, J.W., Lewis, P.A.W., and Welch, P.D., '"The Fast Fourier Transform
Algorithm: Programming Considerations in the Calculations of Sine,

| Cosine and Laplace Transforms', Journal of Sound and Vibration 12,

' (1970) pp. 315-337.

7. Warschawski, S.E., '"On Theodorsen's Method of Conformal Mapping of
Nearly Circular Regions'", Quarterly of Applied Mathematics 3, (1945)
pp. 12-28,
18
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if a relaxation parameter was used, i.e., the values of @ called for by the
second equation [ called B*1 were not used in the first equation, but were
replaced by Bnew =0.16" + 0.9 0 old’ With this relaxation factor, the
iterations were convergent: after 68 iterations, the maximum change in any
of the values of 8 was less than 10 > radians. The variation of O with ¢ is
shown in Fig. 11. Calculations for other cases, not shown here, have required
relaxation factors as low as 0.02 for convergnece. A recent review paper by
Henrici (Reference 8) calls attention to the applicability of under-relaxation
in this problem.

The next transformation is

n o= ¥ .g_:% (2-22)
where ¢, 3,and ¥ are chosen so as to place the images of Z = * @ at n

= t .5, while the blade surface continues to be the unit circle. These images
are located, respectively, at w=+1, and g = zn,ga. Explicit formulas

for a, 3,and ¥ in terms of Z, and 4, are given by Ives> as

2
2 - |Za+ 8" + 213,53l

l‘n' zaf

S = w;n{’\hm vzl , Az - 4/7?‘—-7?}

2808p +[ S (4n-55) - (4a+ 4501/ 3,
S (g,-45) +(4a+ 84g) -2/,

8. Henrici, P., 'Fast Fourier Methods in Computational Complex Analysis'.

SIAM Review 21, (1979) pp. 481-527.

19
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Figure 11. Variation of @vs. ¢ on the Blade Surface
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25,585 -~ x(54+ 8g)

/5:
ot 4g " 2
4@‘,5
d = 5 —=— -
4o (2-23)

Mokry (Reference 9) has pointed out that the formula for < can be simplified,
as follows: define

4923’1
C = LA s B S
%a-48
Then
c-Sict Z
S = Jel -Hlci?-q , Y = — %
icl G, =SC
- Sic! ict -Sc
@ = 8gC - 3 ] . B o= > 2o (2-24)
¢ -Sici g, Icl 4g = SC

The computer program described below does not use these simplificationms.

Next, it is necessary to find gn and ;6 , given (= 2 1. This
was done by Newton-Raphson iteration:

(n+1) {m & (g)
7 =% - o=
dG
odg
9. Mokry, M., '"Comment on Analysis of Transonic Cascade Flow Using Con-

formal Mapping and Relaxation Techniques'", AIAA Journal 16, No. 1,
(January 1978) p. 96.
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where ~ 4
G<B) = Z 2p {Z (Hj+i31')4 -—w
,s-o
déG w N . 3
d'_é = -:4— [7 +1:Z:, j(ﬁt.'.LBi) g ]

In order to find an initial guess for Z , a preliminary calculation was made,
for
11 = 0.49 (.1) 0.99, arg§ = -60° (10°) + 60°

From this set, the value of Z which gave wnearest to +1 was chosen as the
initial guess. This set was then repeated with Z replaced by - Z , to obtain
b the value of z that gave w nearest to -1. The locations of key points in the

& and /] planes are shown in Fig. 12.

When the values of 74 and ;8 are known, the blade-surface-image points
can be mapped from the & -plane to the # -plane. In both planes, these points
are located on unit circles, so it is only necessary to interpolate in Fig. 12
to find the § -values for the points defining the blade surface. This is done
with a call to the spline-fit subroutine, and the values returned by it are
replaced by linear interpolation in regions where the &, ¢ curve is so steep

that the spline fit returns non-monotonic values.

The final transformation now uses an elliptic function to map the

unit circle in the r -plane (with cuts along the real axis from * S to the
circle) into a rectangle:

! N =S55n(E,#) (2-25)
. where the parameter k is given by
£ =5 (2-26)
22




13 = - \____‘_
|
[
” g - PLANE N - PLANE
| |
1 P '
| P .
; ¢ LE
| S Al
TE
i TE
| e
g S s
[ |
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The inverse of this transformation is ‘

s
é:' _ f dt
o Vi-tt Vi-4&%t% . (2-27) |

This latter transformation is usedto find the images, in the £ -plane, of
the blade-surface points. This requires an expression for the real and imag-
inary parts of the incomplete elliptic integral of the first kind; convenient
formulae for this purpose are given by Nielsen and Perkins10 who show that,
if

ST +i6) (2-28)

1

then ,
FUWXN,#)+iF(NT , &) (2-29)

where ,
: £ Vi-#% = v1-8° (2-30)

S
]

10. Nielsen, J.N. and Perkins, E.W., "Charts for the Conical Part of the
Downwash Field of Swept Wings at Supersonic Speeds', NACA Technical
Note 1780, (December 1948), Appendix C.
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and where F ( - - - ) denotes the incomplete elliptic integral of the first

kind, with real arguments A and g~ given as functions of 7,4 and £

A = [7+z’2+6‘2-1/(1—tz)a+6‘sz“+2+2’t"71 [1+£z(7:2+6‘a)

- ﬁ_éat_z)z+izd.z(2+2_&ez,z+*262)']/4*22_2

o = [Tz+5a_,\]/[r=+aa—>\+1-Ak‘(r‘+dz)] (2-31)

These formulae are equivalent to those following Eqn. 115.01 of Byrd and
Friedman;11 the formula for A has been rearranged slightly from the form
given by Nielsen and Perkins, to avoid the occurence of negative values

under the square root sign, which can sometimes happen in the numerical evalu-
These formulas are correct along the branch cuts,

ations when & = 0.
where & =0 and |q|/<S' >1.
) I

12

Numerical evaluations of these elliptic integrals were done using ,
twelve terms in the formulae of Luke: ‘

-1 |

4 P = amy .

F('é,&) z/ 'dt — = d¥ |
b V1 -t% V1i-&*t? i V-8 iy |

i

12 -1 g'

» F,(¢,%) = é [¢+22 Zam (;‘mw ¢)] (2-32) |

ma=1 rm ;

11. Byrd, P.F., and Friedman, M.D., Handbook of Elliptic Integrals for .
s . . : - A P

Engineers and Physicists. Springer Verlag, Berlin (1954) j/

v

12. Luke, Y.L., "Approximations for Elliptic Integrals", Mathematics of

Computation, 22 (1968) 627-634.
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where

b < /2 , 0‘M=‘\ﬁ~*z.@>m29m y O, = mm/2s

For the case where ¢ =7t/2 (the complete integral) the approximate formula is

T _ ae 12 .
Felz  #) = - [1+2§=’ 7‘1:] (2-33) :

The signs in the formulas above pertain to the first quadrant in
the n -plane (Z 20 ,d 2 0), which maps into a rectangle in the first quad-

rant of the & -plane, with sides located on the lines

1
Re(E) = K(#) -f dt
b V1~t* Ah_5%.7
Im(®) = LK'h) =~ dt ’
2 2 Vi-e? ¥1-(1-3%) ¢2 (239

o

The remaining three quadrants in the r -plane map into the remain-
ing three quadrants in the £ -plane, as described in Reference (13), p.- 377; the |
cuts from ¥JS to the unit circle along the real axis become the left and ;

~ '

right sides of the rectangle in the & -plane:
t

13. Erdelyi, A., et al. Higher Transcendental Functions, Volume 2, p. 377,

McGraw-Hill Book Company, New York (1953}.
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Finally, the E - plane is re-normalized, so as to lie between -1 and +1 on

both axes:

Re(E) . (5
= L —_—
rarees T iy T I K

(2-35)

A grid is now to be set up in the § plane, and mapped back to
the Z - plane. This process is facilitated by first rearranging the

quadrants in the £ - plane, by using the periodicity of the elliptic functions
as follows: in the first and second quadrants, let & = % , and in the third
and fourth let & = -(E + 2K(A) ) and use the relations (see for

example, Eqs. 122.00 and 122.04 of Reference 11:)

26
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_, Sn(E)n-sa(£+2K) = 5o [-(F+2K)] = sn[-K-(&+ )] 236

The £ plane then has the form:

T YT Y £ S d ¢
Lo £ L ( £ X [ L L L L L L L L LY L 2L L L,
T6
— K (h) —= LK)
a ¢ o) 4 a
-3Kk) -2Kk) - K(k) o (R

-~
i Figure 14. The& Plane

Two types of grid can be selected in the & plane: a rectangular one

(if ISHEAR=0) or a sheared one (if ISHEAR=1). The latter is the default.

For the rectangular grid, equally spaced points are assigned, ac-

cording to
ER = &(é-) = (K-1) a grcd ’ K = 7)23 ) KMx (2-37)
A - ] , T A
£, = dm(E) = 5 K'k)- (L-t)A;“-m’, L=1,2,..,LMX
where ?
A LK A) ~ T K@ ?
4% et = "Mx -1 45.'.-";3 S I Mx-1 (2-38)

Becuase the mapping is conformal, the images of these grid lines will intersect

at right angles when mapped back to the physical plane. ‘
The rectangular grid has the property that in general the trailing v

edge is not connected, by a grid line, to the point at downstream infinity.

However, such a connection is a desirable feature in certain flowfield codes
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(see Ref. 14, for example). To allow this feature, thg ISHEAR=1 option

establishes a sheared grid, consisting of the same ~An(§)1ines as above, but
replacing the fLCE) lines by a set of parabolas which intersect the blade
surface at 90 degrees, and are displaced from a base parabola that connects

the trailing edge to the image of downstream infinity:

TE TE

+ o - o’ & oo

This grid is given by

51 = é’-K'(ﬁ)-(L—r)Aé:

ima.g )

2R - f. (TE) + (K-1) A;‘-m,

PN , 2
. [£,- 3 K'&)] K= 1,2 ..., KMX (2-39)
const L= 1,2,..., LMX
where
-]
- [k # - .
const = [« )] ; E(TE) = fe {{[KJ-1]}

4 [ak () + &4 (TE)] (2-40)

Some points on these parabolas will lie outside the range
3K (R) £ &, & +KA)

When this occurs, equivalent points are found by adding or subtracting 4 K(#),
the period of the elliptic sine. In addition, the base parabola is always
joined to the lower-left corner of Fig. 15, by subtracting 4K(#) from the
real part of E}E , if the latter is greater than -K(#).

A
This completes the definition of the grid in the E'-plane. Each

of these grid points must now be mapped back to the physical plane. The first

14. Nenni, J.P. and Rae, W.J., '"Experience with the Development of an Euler
Code for Rotor Rows', ASME Paper 83-GT-36 (March 1983).
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transformation is: M = 3’5,.(5: ; ) = Ssn(§; &) (2-41)

The elliptic sine of a complex argument is expressed as (Ref. 11, Eq. 125.01)
Ssn(u+iv, #)
Sn(u,®)dn(v,2) +icenu,&)dnlu,®)sn(v, R enlr, #)
1-Sn (v, &) dnii, #)

The functions in this expression are evaluated by the Arithmetic-Geometric

(2-42)

Mean method (see Ref. 15, p. 571):

Set

and then calculate

7 ‘/' —
&, = —(a'n-v +bn-1) y b, = a,., bn-t

¢h = +(an,-b,,) (2-43)

until €, = 0 to a prescribed tolerance (10'7 was used in the present case.)

Then form
N
Py = 2 A,
and calculate @, _, , Py_5 ,---y P from
7 . C .
4n-1 = 5 <49, +W('_n" A CP,,) (2-44)
2 an

Then the desired results are given by

Handbook of Mathematical Functions,

15. Abramowitz, M. and Stegun, I.A.,
Series 55 (1964).

National Bureau of Standards, Applied Mathematics
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sn (u, #) Ad'm(ﬂo s cenlu,#) = cos g,

on (u,#) e 9o
c“(q’q = 0.,)

i}

These values of 7 are then mapped back to the & - plane

by
_ fBn-ay
4— n_x

and thence to the w- plane by
N ) i
w = g 2xp {:Zl (A;+18:) 7 }
g=o
Lastly, the value ‘of Z must be found by inverting:

S Zz2-2 /K
L
w-a H+iG

o)
i
o

w-b . 2-Z,
H+iG

This is written as

F(z) = g(ﬁ)-llK

and is solved by a Newton-Raphson procedure

(n+1) n) F (ch))
z = Z - 7, _m
Ficz")
where
‘rt{z-r - ZN)
At ————
’ T H"LG'
F(z) = . =2
H+'G n? 7T N
H+lG&
30

- = [3(2}] 7

(2-45)

(2-46)

(2-47)

(2-48)

(2-49)

(2-50)

(2-51)
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The final result of this process is shown in Fig. 15, for a rectangular grid
(examples of sheared grids can be found in Refs. 4 and 15). Note that the
grid line in Fig. 15 which goes to downstream infinity does not originate

at the trailing edge.
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Section 3
METRIC EVALUATIONS

The coordinate transformation enters the flowfield solution algorithm
only in the metric derivatives. These can be evaluated by differencing the
coordinates themselves, or in the case of a conformal transformation, by evalu-
ating the analytic expressions for them. These analytic expressions are derived
in Ref. L and the code listed in that report contains the Fortran statements
required to evaluate these expressions. However, as pointed out in Ref. 14,
the truncation error resulting from the use of analytic metrics in the finite-
difference flowfield code is large enough to cause major instabilities in the
solution algorithm. It is highly preferable to use metrics that are found by
differencing the coordinates in the same manner as the flowfield variables are
differenced. A program to achieve this, for the grid conventions used in

Ref. 14, is given in Appendix D.
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Section 4
COMPUTER PROGRAM

A listing of the computer program is given in Appendix B, and a
dictionary of variables is given in Appendix C. This section contains a

general description of the program, plus some specific details.

In order to handle complex arithmetric, all variables beginning
with the letter Z are declared to be complex by an implicit type specification

at the beginning of the program.

The input is generally described by comment cards in the deck. Cer-
tain blade-shape parameters must be read in: EX, G, H, ZLE, ZTE, ZN, ZT. Also,
if IGOT=1, ZC must be read in. The blade shape itself is defined by pairs of

coordinates in the S , n plane - KJS on the suction side and KJP on the pressure

side. In the version shown here, these were read in as a table in subroutine
SHAPE.

The blade surface coordinates are numbered from 1 to KJMX; point number

1 is the trailing edge, 2 through KJIM are on the pressure side from trailing
edge to leading edge, point KJLE is the leading-edge point (ZLE), KJLP through
KJMXM are on the s :tion side from leading edge to trailing edge, and point
KIJMX repeats the trailing edge.

The complex sine functions are calculated next; then the iterations
to determine the parameter C are done. The initial guess provided for C is
Fc = 1+ . It may happen in som» cases that a better guess is required:
in particular, it is necessary that the value of € must lie outside the blade-
surface curve in the{l -plane. If it does not, then the interior of this
curve in thefl -plane is mapped to the exterior of the blade-surface image in
the & -plane. This fact can be seen from the discussion by Kober (Ref. 16)

of the bilinear transformation applied to circles.

16. Kober, H., Dictionary of Conformal Transformations, Dover Publicationms,
New York (1957).
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After the parameter C has been found, the transformation to the &
plane is carried out, using the fast Fourier transfrorm procedure (see
Appendix A). The actual calculations of the Fourier coefficients are done

in subroutine FFT2, a proprietary program of International Mathematical and

Statistical Libraries, Inc. (IMSL). This routine computes the fast Fourier
transform of a complex vector of length equal to a power of two (here 26).
The coefficients of the input vector are given in normal order by the

array named as the first argument of the call; the coefficients of the
output vector are overstored in this array, in reverse binary order.

The subroutine SHUFL is then used to restore this output to the normal order.
The coefficients in the series expression for Z are determined iteratively
in a relaxation process that is terminated when the maximum change in & falls
below the tolerance ANGERR, or when IMX iterations are done.

In doing these iterations, it is necessary to know values of

Lar at given values of @; these are found by a spline fit in subroutine

CISPLN, which is a straightforward implementation of the formulas given by |
Ahlberg, et a1.17

In certain cases (typically when RMAX/RMIN is large) the calculated

variation of @ with ¢ may be non-monotonic; if this occurs, the calculation ‘

should be repeated, with a smaller relaxation factor. The progress of the
+/’ iterations is printed, showing at each iteration the largest change in
© and the number of reversals (i.e., the number of occurrences of non-monotonic “
variation). '

Next, the parameters J, and {g are found, starting with "best-guess"

values calculated in the sectors described in Section 2. Once these are

found, the mapping to the r] -plane follows. The calculations that link the
L -plane and the & -plane are done in subroutine OMETA, which sums the
Theodorsen-Garrick series, using complex arithmetric. This subroutine has /4{
been modified slightly from that appearing in Ref. 1, as follows: the previous
code evaluated sums of the form

17.  Ahlberg, J.H., Nilson, E.N., and Walsh, J.L., The Theory of Splines f
and Their Applications Academic Press, New York (1967). o

-

35 ; b

4$L__ 4_________........----l-l-lllll




o5 JP-1
ZSUM = ) 2cc(JP) Z (4-1)
TJP=1

by a sequence of multiplications and additions:
\ _ bs 3
‘ ZsumMm = Zcc (65) g + Zcc (¥ g + ...+ Zcc(1) (4-2)

The current version uses {(Ref. 18, p. 28)

ESuM = < {[ch (5)F + Zcc (64)] 2;+zcc(63)};+...
(4-3)

Finally, the blade-surface image is mapped into the f plane, using
the elliptic-function formulas of Nielsen and Perkins10 and of Luke,12 as

outlined in Section 2. This completes the mapping of the blade surface.

It is now possible to set up a grid in the § - plane, and map it
back into the physical plane. This involves straightforward evaluations of
the transformation functions. The only new complications are the need to
evaulate the Jacobian elliptic sine (done in subroutine JCELFN) and to provide

a good initial guess for the Newton-Raphson iteration used in finding Z({1) .

This guess is provided by starting each series of calculations on the image
of the blade surface in the & plane, and interpolating to find the corresponding
point inthe S, n plane. The interpolation is done as follows: the blade-

W1V

surface image values of 5 are stored in the array ZAl1(I), where I ranges from

1 to KIMX. Each of these maps into a point in the S, n plane, which is stored
~

9 in the array ZA2 (KJ), where KJ also ranges from 1 to KJMX. Thus the f’plane

has the appearance:

I = KEDGE -1
——/f - - ? - >— L=1
1=2 f I =KIMx ///
g?xxn

I = Kk&EDGE

I=z1a KIMX

e DXIM I

Kz1 KMx

L= LMX

18. Hartree, D.R., Numerical Analysis, 2nd Edition, Oxford, Clarendon
Press (1958).
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' Points in the uniform grid are denoted by K, L, where

Re (&)

-~ 3K (&) +(K-1) DXIR K=1 KMX
(4-4)
K (%)

[}

A (E) S (L-1) DXIM  L=1, LMX

The value of 1 for which the real part of ZAl(I) is largest is denoted as
KEDGE. Then, for a chosen value of K (with L = 1) the array ZAl(I) is
searched (first for I = KEDGE to KJMX, then for I = 2 to KEDGE-1) until a
value, called I*, is found such that @z[zﬂ”l') < &(2)] . If none is found,
it is concluded that I* = KEDGE. Linear interpolation is then used,* between
the points I* and I* - 1, to provide the initial guess. Fifty iterations

are allowed for this step, at each value of K and L. If no solution is found,
the value (0,0) is printed.

The calculation of the images of the grid points in the various

’ planes is bypassed for the points at upstream and downstream infinity, and at i
# the trailing edge. (The trailing-edge point will be a grid point if ISHEAR=1). j
The £ -plane locations of upstream and downstream infinity are arbitrarily

assigned to finite locations given by linear extrapolation from the two adjacent
L -values.

The point at upstream infinity will be a grid point only if KMX is

{- odd; in this case IQE=1, and the image calculations are bypassed.

i
, Adjustments to the grid-point image locations in the Z -plane are i
(} sometimes required for points on the periodic ouundary (L=LMX) for values of K f

near 1, KMX/2, and KMX, At these points, the Newton-Raphson iterations used

l in going from the {2 - plane to the Z -plane sometimes cannot distinguish between ! .
points that are separated by H+(G . The problem can be seen best in the oy J
' W -plane. (The sketch below is for an even value of KMX; the same picture 8 2
applies for an odd value): '»3
1 - |

In Ref. 1, a quadratic interpolation was used. This introduced many complica-
tions, in order to avoid conditions where the interpolation base points
straddle a sharp leadxng or trailing edge, and where 1" is near KEDGE or
KEDGE-1. The logic in Ref. 1 was not adequate to handle all such cases.
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ALY, Y

KMX

Note that the same point in the w -plane (and thus also in the L1 -plane) can
map into either of two points in the Z -plane, which differ by H+ (& .

PERIOPIC BOUNDARY
(L =LMx)

POINT OoN THE PERIODIC BOUNDARY

selection is guided toward the correct value by starting on the blade (L=1)

and working toward the periodic boundary (L=LMX), but it can happen that the

wrong branch is chosen during the iterations.

To avoid this, the imaginary

parts of Z and ZN are compared, for K values near the leading edge, and the
imaginary parts of Z and 27 are compared near the trailing edge, and the
quantity (-SG is added or subtracted (depending on the value of K ) where

necessary.

Finally, the real and imaginary parts of ¥ are punched on cards

(if PNCHZA=TRUE).

These values can be used, in a separate program, to calculate

the metrics of the transformation (see Appendix D).
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Section 5
CONCLUDING REMARKS

The program described above has been applied to very few cases -
the thick blades used for illustrative purposes in this report, and the cases
shown in Refs. 4 and 15. Because of this limited experience, the range of
applicability of the program is largely unknown. On the basis of current
experience, it appears that the Theodorsen-Garrick step may not converge for
gap/chord ratios less than around 0.8. The set of numerical tolerances,
maximum iteration counts, and relaxation factors used may need to be adjusted
for certain shapes. In addition, new approximations may be required as initial
guesses in various places, in order to handle such features as leading edges

with very small radii of curvature.
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Appendix A
DETAILS OF THE FAST FOURIER TRANSFORM PROCEDURES

Equations 2-20 and 2-21 contain 2N+2 constants, which are evaluated

as follows: first, they are satisfied at a discrete number of points, denoted

by‘f’,< :
_2nK-D e 2, 2N (A-1)
K 2N )
where N was chosen to be 64, in the present case. Thus:
N-1 . . K
An v = H,+3_Z=1(R;-w4¢>,<-sim4¢,<) +(-1) An  (A-2)
N-1 , . . X
OK-¢K=B°+Z1(ij4 ¢K+H1'M1¢K)+(—1) Bn a3
1‘

Each right-hand side now contains 2N coefficients. The correspondence between

either of these and the Fast Fourier Transform (FFT) as presented in Ref. 6

is given by the next two equations: consider the expression

2N-1? "_" ) ‘-_ZL:.
Y@ = cwn W . 2 01.2.....,.2N-1: W =¢€ °
1 é-‘-.o an )} 122,052 3 Won (-t

where values Y (*) are real, and the 2N values of C(‘) are in general complex,

but must satisfy the following redundancy condition, in order that the‘f(‘\

values be real:
cn) = C(aN-n) , n=1,2,..., N-1 (A-5)

C (0) and C(N)pure real

where the tilde denotes the complex conjugate. When these conditions are

met, Eq. A-4 can be written as
2 N-1 ndr © niT
Y(L) = Coto) +(=1)" Co(N) + 2;,” Crm) Cos —g— = Cp(n) aém ——
£xo,1,...,2N-1 (A-6)

This form can now be used, in conjunction with Eq. 2-20 or 2-21, to facilitate

application of the FFT to the complex form given in Eq. A-4.

A-1

: N




In the case of Eq. A-2, values of the coefficients A, through Ay
and B, through BM_' are found, from given values of n . This is procedure
4 of Ref. 6, which takes the following steps:

1. set X (&) = Y(2%k) = (,tnr')ak

Jc: 011:"') N-1
Xz(‘&) = Y(Z*f'7) - (Lr)z‘k'bi (A-7)
2. Set X = X, +iXy(p) , 420,17, ,N-t (A-8)

3. Calculate the N _-point Discrete Fourier Transform of

2

-1

. N -n.
Aty = A n)+ LA, n) = T:I- Z X4 W~45 n=0,1,..., N-1
t°°
| em (A-9)
W, = e "

4. By periodicity, set A(N) = A (o)

5. Apply Eq. 34 of Ref. 6, in order to extract /ﬂ,(n) and ﬂe(n-) from A(n):

A = % {ﬁ(N-n) +ﬂ(n)}

s 0,1, 5 (A-10)

D[~
A,n) = ?{ﬁ (N-1) -ﬂ(n)}

Note that these expressions use An)for n <0,1,..,N to give ,ﬂ,(n) and ﬂz(n)
for n=o0,1,..., N/2

6. These values of ﬁ,(n.) and Az(n) then give C(n) for the same range:
1 -n
C(n) = > [ﬁ,(m + WaN ,ﬂz(m] , n 0,1, ..., N/2 (A-11)

For the range of n from N +1 to N-1, use Eq. 36 of Ref. 6, withn replaced

Fl
-N
by N-n (and noting that Wz - -7 ):

N
C(n) = ¢ (2N-n)

1 n N N
x ?{ﬁ'(N—n) + waNHZ(N-n)} n= —+1, —+2

A-2




e
. e

N
This equation, applied for n = 3-+1 ,%1'2 yo+rsN-1Tuses A, and A, with index
-gl-—1, -’21-2,.--,1 to get c(n) for n= —QLH, —2.’-'*2, ..., N-1. The process is completed
by setting
C(N) = —;{ﬂ'(O) ~ ﬂz(o)} (A~13)

7. The RJ' and B}' coefficients are retrieved from:
A, = R [c (o)] , By = R [c(ﬂ)]

Ri = ZRJ.[C({:)] ’ B‘ = Zuc'm [C(")] P d'= ]'2,,,,,/\1_,

At this point, B, and B, are undetermined. Following Ives, By is set equal

(A-14)

to zero, and 5. is chosen so as to place the trailing edge at ¢=0 (this latter

selection of B, is actually carried out in a subsequent step, noted below).

In the case of Eq. A-3, the A's and B 's are considered known, and

are used to evaluate Oﬁ . The coefficient B, can be found from

N-1
O = B *Z B (Bn = ©2) (A-15)
i
Actually, it is simpler to evaluate the right-hand side of
N-1 ‘ .
O~ %48 * 1_Z=’(Bi cws j byt Ajam (L), £ /\2;716)

and then find B, from

B, = O - RHS) (A-17)
=0

e

The actual r~valuation of the right-hand side takes the following steps (Pro-
cedure 5 of Ref. 6): by comparison of Eqs. A-3 and A-6:

1. Set C(o) =0, C(N) =p
1 . (A-18)

cin) = < [Bn -t Fln] , n=1,2,...,N-1
Note that the C 's determined here are different from those used in Procedure 4;

the A; and B, values are the same, but their relation to Cj is different.

§ ]

2. Values of C}' are then used to find ﬂ,(m and ﬁz(n) : Equations 40 and 41

nf Ref. 6 are rewritten, using

=g -



c(n) = F(2N-n)

Replace nt by N+n:

C(N+n) = E(2N-N-n) = ¢ (N-n)

Thus Eqs. 40 and 41 of Ref. 6 are
A, n) = Cc(r) + C(N-n)

. nop %N, N2y )
I-'I?_(n.) = [C(n) -c(N-n )] WzN
These are all the values needed for A, and A, .
3. Find A(n) ,n=0,1,...,N-1 from Eqs. 42 and 43 of Ref. 6:
Awn) = A + LA, (N
n=0,1,..., N/e (A-20)

~r

A(N-n) = A (n) +. ﬁa(’”

This gives, on the left-hand side, all values from n=o to n:N.

4. Calculate

N -1 nz’

X(d') = Z Ay W, , ,} =0,1,..., N-1 (A-21)
n =o .
5. Finally:
Ooa =~ Pon-8. = R [X(H)]
£=01.., N-1
02*4'1 - ¢z*+1 - Bo = J'"' [X(‘k)] (A-22)

The first of these equations, with # <0, is used to find B, .

In order to apply these formulas, it is necessary to have a relation
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between r and G.

e = rG) , K=1,2,...,2N (A-23)

which is found from a spline fit to the blade-surface image in the w- plane.

The discrete Fourier transform and its inverse are given by

N-1
1 -n
An) = N Z Xpp W, ", n=o,1,2,... N-1 (A-24)
»}‘0
N -1 n%
Xty = Am w, *, 4=0,1,2,...5 N=1 (A-25)
Nn=0

The IMSL routine FFT2 evaluates the second of these, i.e., it returns
X(,j') , given the~values An) . To evaluate the first of these~, FFT2 is
used with input X(,}) /N , and with output interpreted to be A(n);
this is Procedure 1 of Reference 6:

.

~ N -
NAWm) = 7
4:

~ e

ng
X (4 Wy (A-26)

1
[

In the FORTRAN version of these and other procedures, it is conve-

. . . P . . o/
nient to use indices that begin at one, rather than zero, by setting 4+1 = ﬂ

(FORTRAN symbol JP). The corresponding table, for example of the coefficient
B., is
]

A-5
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j JP B, B(JP)
0 1 B, B(1)
1 2 B, B(2)
2 3 B, B(3)
N-1 N By_1 B(N)
N N+1 BN B(N+1)

In addition, care must be taken with the argument N-n; for example, Egs.

are written as

: EZA1(NP) = Zcc(NP) + ECC(N+2 - NP)

NP =12,

2oy

2

+1

—_— n

It can be verified that the quantity N + 2 - NP in the arguments above pre-

serves the correct ordering - for example when N = 64, and n = 0, E(N—n) = & (L9)

This would be stored in ZCC(64 + 2 - 1) = ZCC(6S5).

A-6
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Appendix B
COMPUTER PROGRAM LISTING

LEVEL 21.7 ( DEC 72 ) 0S/360 FORTRAN H

ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
1SN
ISN

IsH
ISN
1SN
ISHN

ISN

ISN
ISNH
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN

0002
0003
0004
0005
0006
0007
0003
0009
0010
001

0012
0013
0014
0015

0016

0017
0013
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
00239
0030
0031
0032

COMPILER OPTIONS - NAME= MAIN,OPT=02,LINECNT=60,SI1ZE=0000K,

c

[z XzXg]

SOURCE ,EBCDIC,NOLIST,NODECK,LOAD,MAP ,NOEDIT, ID,XREF

PROGRAM IVLTMP - THE IVES - LIUTERMOZA CONFORMAL TRANSFORMATION FOR
TURBOMACHINERY CASCADES (AIAA JOURNAL,VOL. 5,1977, PP 647 - 652)
DOCUMENTATION IS GIVEN IN:
W. J. RAE, A COMPUTER PROGRAM FOR THE IVES TRANSFORMATION
IN TURBOMACHINERY CASCADES, CALSPAN CORPORATION REPORT 6275-A-3,
NOVEMBER 1980
W.J. RAE, MODIFICATIONS OF THE IVES - LIUTERMOZA CONFORMAL-
MAPPING PROCEDURE FOR TURBUMACHINERY CASCADES, ASME PAPER
83-GT-116, MARCH 1983
W.J. RAE, REVISED COMPUTER PROGRAM FOR EVALUATING THE IVES
TRANSFORMATION IN  TURBOMACHINERY CASCADES, CALSPAN CORPORATION
REPORT 7177-A-1, JULY 1983

IMPLICIT REAL*8(A-H,0-Y),COMPLEX*16(Z)

LOGICAL PNCHZA
COMMON/TGINTG/N,NP1,NP2,N2,NB2,NB2P1,IP,IPM},ITP, IWK, IMX, KIMX
COMMON/TGCMPX/Z1,2ZW2N,Z1,2NN,2A,ZCC,2ZA1,ZA2
COMMON/TGDBLE/PBN,OM,OMM,ANGERR,A,B,E,F,THT,PHI, X,V
DIMENSION ZS(80),ZP(8Q),20MS(80),Z0MP(89)

DIMENSION RDS(B0),RDP(80),THS(80),THP(80)

DIMENSION RDSX(80),RDPX(80),THSX(80),THPX(80)
DIMENSION X(160),Y(160),E(150),F(150),THT(160)
DIMENSION PHI(130),A(65),B(65),2CC(65),
* ZA(165),2A1(165),ZA2(165),
* IWK(7)

DIMENSION ITP(100),1D(36)

DIMENSION XX(50,20),YY(50,20)

DO 101 = 1,7

10 IWK{I) = ¢

NAMELIST/INPUTS/ ANGERR,EX,G,H,IGOT,ILE,ITE,KMX,
IMX, LMX, OM, PNCHZA RTOL. ZC, 2LE, 2N, 27, ZTE,
hd IPMX, ISHEAR, INR KJs, KJP KNR

--- SET NAMELIST DEFAULT VALUES

ANGERR=0.0100
1GOT=0

ILE = 1

ITE=0Q

KMX = 40

LMX = 10

KJ§ = 20

KJP = 20

IMX = 400
ISHEAR = 1|
IPMX = ]

KNR = 0

INR = 0
OM=0.100
PNCHZA= ,FALSE.
RTOL=3.000

NOTE: EX, G, H, 2C, ZLE, ZN, ZT, ZTE HAVE NO DEFAULT VALUES
(ZC IS NOT NEEDED IF 1GOT=0)
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ISN
ISN

ISN
ISN
ISN
ISN
ISN
ISN
ISN

ISN
ISN
ISN
1SN
ISN

ISN
ISN
ISN
ISN
I18¥
ISN
ISN
ISN

0033
0034

0035
0036
0037
0038
0039
0040
0041

0042
0043
0044
0046
0047

0048
0043
0080
0082
0083
0054
0055
0086

OOOOOOOOOO0OOONO0OO0OO0O0O0O000O0O000

READ(5,103)(ID(I),I=1,36)
103 FORMAT{18A4)

PI = 4.0DO*DATAN(1.0D0)
TPI = 2.0D0*P1
ZPI = DCMPLX(PI,0.0D0)
Z1 = DCMPLX(1.000,0.000)
ZERO = DCMPLX{0.0D0,0.0D0) ‘
ZMGA = DCMPLX(+1.000,0.000)
ZMG5S = DCMPLX{-1.0D0,0.0D0)
*w» READ PNCHZA=T IF (ZA{(L),L=1,LMX) IS TO BE PUNCHED FOR ALL VALUES
»** OF X, OTHERWISE READ PNCHZA=F
1GOT = 1 IF THE VALUE OF 2C IS KNOWN. OTHERWISE, I1GOT = 0.
KMX AND LMX ARE THE GRID SIZES IN THE FINAL TRANSFORMED PLANE.
KJS AND KJP ARE THE NUMBERS OF POINTS ON THE SUCTION AND PRESSURE
SIDES AT WHICH PAIRS OF BLADE COORDINATES WILL BE INPUT.
ILE = 0 OR 1 FOR A SHARP OR ROUNDED LEADING EDGE, RESPECTIVELY
ITE = 0 OR 1 FOR A SHARP OR ROUNDED TRAILING EDGE, RESPECTIVELY.
IMX IS THE MAXIMUM NUMBER OF ITERATIONS ALLOWED FOR THE PHI/THETA
ITERATIONS
INR AND KNR.NE.O WILL CAUSE A DIAGNOSTIC OUTPUT FOR THE FIRST INR
NEWTON-RAPHSON ITERATIONS (TO FIND Z, GIVEN ZBOMK), AT THE STATION
K = KNR. THE PROGRAM WILL THEN STOP.
IPMX.NE.1 CAN BE USED TO DISPLAY THE VALUES OF THETA DURING THE
PHI/THETA ITERATIONS, AT THE ITERATION NUMBERS READ INTO THE
ITP ARRAY BELOW. |
ISHEAR = 0 GIVES AN ORTHOGONAL GRID. THE LINES K=1 AND K=KMX, WHICH
START AT THE TRAILING EDGE, DO NOT GO TO DOWNSTREAM INFINITY,
ISHEAR = 1| SHEARS THE GRID UNIFORMLY: IN THIS CASE, THE K=1 AND KMX
LINES DO GO TO DOWNSTREAM INFINITY,
OM IS A RELAXATION FACTOR USED IN THE PHI/THETA MAPPING. USE 0.1,
OR A SMALLER VALUE IF THE A AND B ITERATIONS FAIL TO CONVERGE.
ANGERR 1S THE ANGULAR TOLERANCE (IN RADIANS) FOR THE PHI/THETA
TRANSFORMATION. A REASONABLE VALUE 1S 0.01
RTOL IS THE TOLERANCE FOR THE MAX/MIN RADIUS RATIO IN THE
OMEGA PLANE

--- FOR A SHARP LEADING EDGE (ILE=0) ZN MUST EQUAL ZLE '
--- FOR A SHARP TRAILING EDGE (1ITE=0) ZT MUST EQUAL ZTE !

-~~ READ NAMELIST INPUT DATA

READ(S, INPUTS) l
ITP(1) = 999
IFCIPMX.NE.1) READ(S5,102)CITP(IP),IP=1,IPMX)

102 FORMAT(2014)
IP = 1

KMXH=(KMX+1}/2

KMXL =KMXH

IF(MOD(KMX,2).NE.O0) KMXL=KMXH~-1
10E = MOD(KMX,2)

KAA = KMXH - 2 - IOE

KBB = KMXH + 3

KMXM4 = KMX -~ 4

KOUNT = 0
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ISN
ISN
ISN
1sn
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN

ISN
1SN
ISN
ISN
ISN

ISN
ISN
ISN
ISN
ISN
st
ISN
ISN
ISN
ISN
ISN
ISN

ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN

ISN
1SN
ISA

005~
0058
0059
0060
0061
0062
0063
0064
0065
0065
0067
0063

0069
0070
0071
0072
0073

0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085

0086
0087
0088
0089
0090
0091
0092
0093
0094
0095

0096
0097
009s%

OO0O000O0O0O0

if

INPUT VARIABLES EX, G, H, ZLE, ZN, 2T, 2TE,

THE FORTRAN STATEMENTS IN SUBROUTINE SHAPE,

AND THE VARIABLES LISTED IN COMMON BLOCK GEOM (IF ONE IS BEING USED)
ARE ALL SPECIFIC TO THE BLADE SHAPE BEING USED.

CALCULATION OF THE BLADE SHAPE

D = CDABS(ZTE-ZLE)
CALL SHAPE(D,Hd,G,EX,2P,25,KJS,KJIP)
SG = DSQRT(H*H+G*G)
SIZE = 5.000*SG
ZDA = DCMPLX(G/SG,-H/SG)
ZGAMMA=DCONJG(ZDA)
WRITE(6,207)
207 FORMAT(1H1)
WRITE(6,206)(ID(I),I=1,36)
206 FORMAT(30X,18A4)
WRITE(6,240) D,H,G,EX,SG
240 FORMAT(//10X,'BLADE-GEOMETRY PARAMETERS ARE:',
» //5X, 'ABS(ZTE-ZLE) ="',
* F10.5,' H = ',F10.5,' G = ', F10.5,' EX = ',
hd F10.5,' SLANT GAP =',fF10.5,//)
WRITE(6, INPUTS)
KJLE = KJP + 2
KIMX = KJLE + KIS + 1
WRITE(6,209)
209 FORMAT( 8X,’'BLADE COORDINATES:',
» /779X, 'SUCTION SIDE',/3X,'KJ"',7X,'S",13X,'N",13X,'X"',13X,'Y',/)
ZXY = ZGAMMA*ZLE
WRITE(6,270) KJLE,ZLE,bZXY
270 FORMAT(15,1P4E14.5)
DO 64 K = 1,KJS
KJ = KJLE + K
ZXY = ZGAMMA*ZS(K)
WRITE(6,270) XJ,ZS(K),ZXY
64 CONTINUE
ZXY = ZGAMMA=*ZTE
WRITE(6,270) KJIMX,ZTE ,ZXY
WRITE(6,271)
271 FORMAT(//8X,'PRESSURE SIDE',/3X,'KJ',7X,'S',13X,'N"’,
» 13X, 'X*,13X,'Y',7)
ZXY = ZGAMMA*ZLE
WRITE(6,270) KJLE,ZLE,ZXY
DO 61 K = 1,KJP
KJ = KJLE - K
ZXY = ZGAMMA*ZP(K)
WRITE(6,270) KJ,ZP{(K),ZXY
61 CONTINUE
KJ = 1
ZXY = ZGAMMA*ZTE
WRITE(6,270) KJ,2TE,ZXY

ZDN = DCMPLX(H,G)

ZZ = (2T-ZN)/ZDN
ZTN = ZPI*22

B-3




ISN 0099 CHI = PI*EX*(G*DREAL(ZT-ZN)-H*DIMAG(ZT-ZN))}/(SG*SG)
ISN 0100 XA = PI*EX*{H*DREAL(ZT-ZN)+G*DIMAG(ZT-ZN))/{(SG*SG)
ISN 0101 R = DEXP(-CHI)

ISN 0102 ZPLUS = DCMPLX(R*DCOS(XA),-R*DSIN(XA))
ISN 0103 R = 1.0D00/R

ISH 0104 ZMINUS= DCMPLX(R*DCOS(XA),R*DSIN(XA})
ISN 0105 DO 20 K = 1,KJS

ISN 0106 ZZT = (2S(K)-2T)/ZDN

ISN 0107 ZETA1S = ZPI*2ZT

1sH o108 ZETA2S = CDSIN(ZETALS)

ISN 0109 ZZN = (ZS(K)-ZN)/ZDN

ISN 0119 ZETA3S = ZPI*ZZN

ISN 0111 ZETA4S = CDSIN(ZETA3S)

ISN 0112 ZFS = 2ETA2S/ZETA4S

ISN 0113 RDS(K) = CDABS(ZFS)

ISN 0114 THS(K)= DATAN2(DIMAG(ZFS),DREAL(ZFS))
ISN 01158 20 CONTINUE

ISN 0116 DO 24 K = 1,KJP

ISN 0117 22T = (ZP(K)-ZT)/ZDN

ISN 0118 ZETALP = ZPI*ZZT

ISN 0119 ZETA2P = CDSIN(ZETAIP)

ISN 0120 2ZZN = (ZP(K)-ZN)/ZDN

ISN 0121 ZETA3P = ZPI*2ZZN

ISN 0122 ZETA4P = CDSIN(ZETA3P)

ISN 0123 ZFP = ZETAZP/ZETAAP

ISN 0124 RDP(K) = CDABS(ZFP)

ISN 0125 THP(K)= DATAN2(DIMAG(ZFP),DREAL(ZFP))
ISN 0126 24 CONTINUE

C NOW ADD THE LEADING- AND TRAILING-EDGE POINTS, AND STORE THE G(Z)
C ARRAY AS E(KJ)*ENP(I*THT(KJ)),WHERE KJ=1,KJMX AS YOU GO FROM TE AROUND
, C THE PRESSURE SIDE TO THE LE (KJ=KJLE) AND THEN ALONG THE SUCTION SIDE
i C BACK TO THE TE AGAIN (KJaKJIMX).
1SH 0127 IF(ITE.EQ.1) GO TO 13
ISN 0129 E(1)=0.020
ISN 0130 THT(1)=0.0D0
ISN 0131 GO TO 14
ISN 0132 13 ZETA2=CDSIN(ZPI*(ZTE-ZT)/ZDN)
ISN 0133 ZETA4=CDSIN(2ZPI*{ZTE-ZN)/ZDN)
ISN 0134 ZFP=ZETA2/ZETA4
ISN 0135 E(1)aCDAZS(ZFP)
ISN 0136 THT(1)=DATAN2!DIMAG(ZFP),DREAL(ZFP))
1Sit 0137 14 IF(ILE.EQ.1) GO TO 15
ISN 0139 E(KJLE) = 0.0D0
1 ISN 0140 THT(KJLE) = 0.0D0
| ISN 0141 GO TO 16
ISN 0142 15 ZETA2=CDSIN(ZPI*(ZLE-ZT)/ZDN)
ISH 0143 ZETA4=CDSIN(ZPI*(ZLE-ZN)/ZDN)
ISN 0144 2FP=ZETA2/ZETA4
- ISN 0145 E(KJLE) = CDABS(ZFP)
‘ ISN 0146 THT(KJLE) = DATAN2(DIMAG(ZFP),DREAL{ZFP}))
1 1SN 0147 16 00 17 K = 1,KJP
ISN 0148 KJ = KJLE - K
4 1SN 0149 E(KJ)=RDP(K)
: ISN 0150 THT(KJ )=THP(K)
ISN 0151 17 CONTINUE
ISN 0152 DO 18 K = 1,KJS
ISN 0153 KJ = KJLE + K
l ISM 0154 E(KJ)=RDS(K)

C\
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ISN
ISN
ISN

ISN
ISN

IsH
ISN
ISN
ISN
ISN
Isu
ISH

ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
IS
ISN
ISH
ISN
ISN
IS4
ISN
ISN
IsN

ISN
ISN
ISN
ISN
ISN
ISH
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN

0185
0155
0157

0158
0160

0162
0163
0164
0165
0167
0168
0169

0179
0171
0172
0174
0175
0175
0177
o178
0180
0182
0184
0185
0185
0187
0188
0i8s
0190

0191
0192
0192
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204

(s g XnXe]

o000

o
c

13 THT(KJ)=THS(K)
E(KJIMX) = E(1)
THT(KIMX . = THT(1)

NOW ADJUST THE BRANCHES OF G(Z) SO AS TO BE CONTINUOUS ACROSS
THE CUT (ALONG THE NEGATIVE REAL AXIS) OF THE DATAN2 FUNCTION.

IF(H.LT.0.0D0) GO TO 251
IFCITE.EQ.1) G0 TO 251

FOR COMPRESSORS WITH A SHARP T. E. , THE CONVENTION IS TO FORCE
ARG(THT(KJ=2)) TO BE NEGATIVE:

BR = 0.000

KA = 3

PO = THT(2)
IF(PO.LT.0.0D9) GO TO 252
BR = ~-1.3D0

THT(2) = THT(2) - TPI

GO TO 282

CONVENTION FOR ALL TURBINES, AND FOR COMPRESSORS
WITH A ROUND T. E., IS:

251 BR=9.0D0
KA=3
IF(ITE.EQ.1) KA=2
PO=THT(KA-1)
252 DO 321 KJ=KA,KJIMX
CHG=THT(KJ)=-PD
PO=THT(KJ)
IF(DABS(CHG).LE.PI) GO TO 321
IF(CHG.GT.PI) BR=BR-1.0D0
IF(CHG.LT.-P1) BR=BR+1.0D0
321 THT(KI)=THT(KJ)+BR*TP1
DO 323 K=1,KJP
THP(K) = THT(KJLE-K)
323 CONTINUE
‘DO 322 K = 1,KJS
THS(K) = THT(KJLE+K)
322 CONTINUE

DO 25 K = 1,KJS
ARS = EX*THS(K)
RS = RDS(K)**EX
RDSX(K) = RS
THSX(K) = ARS
25 CONTINUE
D0 26 K = 1,KJP
ARP = EX*THP(K)
RP = RDP(K)**EX
RDPX(K) = RP
THPX(K) = ARP
26 CONTINUE
WRITE(6,241)
241 FORMAT(//10X,'BLADE-SURFACE IMAGES IN THE G - PLANE (RATIO OF',
» * SINES) AND CAP OMEGA PLANE(G**1/KAPPA) ,AND',
* // 9X,' RADII AND ANGLES USED IN SELECTING THE PROPER',

B-5




ISN
ISA
ISN
ISN
ISN
ISN
ISM
ISN
ISN
ISH
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
1SN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
IS
ISN

1SN

ISN
ISN
ISN

0203
0206
0207
0208
0209
0219
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0240
0247
0248
0249

0250
0251
0252
02863

0O00O0

* ' BRANCHES OF THE RATIO OF SINE FUNCTIONS ARE:"
hd //3%,'KJ',15X,'G"',25X, 'CAP OMEGA',13X,'R',11X, 'THETA",
* 9X, 'R**EX',7X, ' THETA*EX' )
XS=£{ 1)*DCOS(THT( 1))
¥YS=£{ I1)*DSIN(THT( 1))
RDTX = E(1)**EX
THTYX = EX*THT(1)
US = RDTX*DCOS(THTX)
VS = RDTX*DSIN(THTX)
WRITE(6,325) XS,YS,US,VS,E(1),THT(1),RDTX,THTX
232 FORMAT(15,1PBE14.5)
324 FORMAT(' LE ',1PBE14.5)
325 FORMAT(' TE ',1PBEL14.5)
KJLM = KJLE - 1
DO 65 KJ = 2,KJLM
K = KJLE - KJ
XP = RDP(K)*DZOS(THP(K))
YP = RDP(K)*DSIN(THP(K)})
UP = RDPX(K)*DCOS(THPX(K))
VP = ROPX{(K)*DSIN(THPX(K))
WRITE(6,232)KJ,XP,YP,UP,VP ,RDP(K),THP(K),RDPX(K),THPX(K)
65 CONTINUE
XS = E(KJILE)*DCOS(THT(KJLE))
¥YS = E(KJLE)I*DSIN(THT(KJLE})
RDLX = E(KJLE)**EX
THLX = EX*THT(KJLE)
US = ROLX*DCOS(THLX)
VS = RDLX*DSIN(THLX)
WRITE(6,324)XS,YS,US,VS ,E(KJILE), THT(KJLE),RDLX, THLX
KIMAM = KIMX - 1
KJLP = KJLE + 1
00 31 KJ = KJLP,KJIMXM
K = KJ - KJLE
XS = RDS(K)*DCOS(THS(K))
¥S = RDS(K)*DSIN(THS(K))
US = RDSX(K)*DCOS({THSX(K))
VS = RDSX(K)*DSIN(THSX(K))
WRITE(6,232) KJ,XS,YS,US,VS,RDS(K),THS(K),RDSX(K),THSX(K)
31 CONTINUE
XP = E(KIMX)*DCOS{THT(KJIMX))
YP = E(KIMX)*DSIN(THT(KJIMX))
RDTX = E(KIMX)**EX
THTAX = EX*THT(KJIMX )
UP = RDTX*DCOS(THTX)
VP = ROTX*DSIN(THTX)
WRITE(6,325)XP,YP,UP,VP,E(KIMX), THT(KIMX),RDTX, THTX
WRITE(6,242)ZPLUS,ZMINUS
242 FORMAT{(//10X, 'POINTS AT INFINITY ARE LOCATED IN THE CAP OMEGA',
bl ' PLANE AT:',
hd //18%, 'PLUS:"',1P2E15.4," MINUS:' ,2E15.4,//)

DETERMINATION OF ZC SUCH AS TO MINIMIZE THE RATIO RMAX/RMIN IN THE
L.C. OMEGA PLANE

M=1

ZE = (ZMGA-ZMGB )/(ZPLUS-ZMINUS)

ZF = (ZMGA*ZMINUS-ZMGB*ZPLUS)/(ZPLUS-ZMINUS)
2G = (ZMGA*ZPLUS-ZMGB*ZMINUS)/(ZPLUS-ZMINUS)

B-6
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, ISN
H ISN

ISN
ISN
IsN

ISN

ISN

ISy

ISN

ISN

ISN

ISy

ISN

: ISN

A ISy
ISy

1SN

' 1SN
ISy

ISH

ISN

' Isy
1SN

ISy

ISN

ISy

' 1SN
ISN

184

. ISN

i 1sy

i Isn

’ 1SN
ISN

. IsH

; 1SN
ISN

fj 1SN
> ISH
ISN
ISH
ISN
ISN
1SN
1SN
IsM
189
ISN
Isn
1SN
1SN
] ISN
', ISN

IR ¥
] p—— [

S

0254
0255

0256
0257
0258

0260

0261
0262
0263
0264
0265
0266
0267
0268
0263
0270
0271
0272
0273
0274
0273
0276
027%
0279
02890
0281
0282
0283
0284
0285
0286
0283
0283
0290
029!
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309

O 000

601 FORMAT{('1ITER',11X,'2D',22X,‘'2ZB',22X, '2C',18X, 'ZOMSTR"',19X, 'ZNTRD"
1/13X,'RMIN',8X, 'RMAX"',7X, 'RATIO' /' (ZA(KJ),KJI=1,KIMX)')

250

WRITE(6,601)

ITER=1
RATI10=0.000
IF(IGOT.EQ.1) GO TO 60

FOR A FIRST GUESS, USE 2C=(-1.0,+1.0)

60
68

75

85

11

12

32

33
76

77

ZC=pCMPLX(~1.000,1.000)

ZB = (ZMGA*ZPLUS-ZMGB*ZMINUS-ZC*(ZMGA-ZMGB))/(ZPLUS-ZMINUS)
ZD = (ZMGB*ZPLUS-ZMGA*ZMINUS+(ZMGA-ZMGB)/2ZC)/(ZPLUS-ZMINUS)

CONTINUE

DO 75 K = 1,KJS

RS = RDSX(K)

ARS = THSX(K)

ZOMS(K) = DCMPLX(RS*DCOS(ARS),RS*DSIN(ARS))
ZOMS(K) = (ZD-ZB*ZOMS(K)/ZC)/(Z1-20MS(K)/2ZC)
CONTINUE

DO 85 K = 1,KJP

RP = RDPX(K)

ARP = THPX(K)

ZOMP(K) = DCMPLX(RP*DCOS(ARP),RP*DSIN(ARP))
ZOMP(K) = (ZD-ZB*ZOMP(K)/ZC)/(Z1-Z0MP(K)/ZC)
CONTINUE

IF(ILE.EQ.1) GO TO 11

ZOMLE = ZB

GO TO 12

RD = E(KJLE)

TH = THT(KJLE)

RS = RD*™EX

TH = EX*TH

ZOMLE = DCMPLX(RS*DCOS(TH),RS*DSIN(TH))
ZOMLE = (2D-ZB*ZOMLE/ZC)/(Z1-20MLE/ZC)
IF(ITE.EQ.1) GO TO 32

ZOMTE = ZD

ZA(1) = ZOMTE

GO TO 33

RD=E(1)

TH=sTHT(1)

RS=RD**EX

TH=EX*TH
ZOMTE=DCMPLX(RS*DCOS{(TH),RS*DSIN(TH))
ZOMTE=(ZD-ZB*ZOMTE/2ZC)/(Z1-ZOMTE/2ZC)
ZA(1)=ZOMTE

DO 76 KJ = 2,KJLM

K = KJLE - KJ

ZA(KJ) = ZOMP(K)

ZA(KJLE) = ZOMLE

DO 77 K = 1,KJS

KJ = KJLE + K

ZA(KJ) = ZOMS(K)

ZA{KIMX) = ZA(1)

ZNTRD = DCMPLX(0.0D00,0.000)

AREA = 0.000

RMIN=CDABS(ZA(1})

RMAX=RMIN
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0310
0311
0312
0313
0314
0315

0316
0317
0318
0319
0321
0322
0323
0324
0325
0327
0328
0329
0330
0331
0332
0333
0334

0335
0336
0338
0340
0341
0343
0344

0345
0346
0347
0349
0350
0351
0382
0353
0354
0358
0356
0357
0358
0359
0360
0361
0362

0363
0364

ZMAX=ZA(1)
ZMIN=ZA(1)

KIMXX = 1

KJMN=1

DO 78 KJ = 2,KIMX

DAREA = DABS(OREAL(ZA(KJ-1))*DIMAG(ZA(KJ))~DREAL(ZA(KJ))*

hd DIMAG(ZA(KJ-1)))/2.0D0
ZBR = (ZA(KJ-1)+ZA(KJ))/3.0D0
ZNTRD = ZNTRD + ZBR*DAREA
RABS=CDABS(ZA{KJ})
IF(RABS.GE.RMIN) GO TO 79
RMIN=RABS
ZMIN=ZA(KJ)
KIMN=KJ
GO TO 78
79 IF(RABS.LE.RMAX) GO TO 78
RMAX=RABS
ZMAX=ZA(KJ)
KJIMXX = KJ
75 AREA = AREA + DAREA
RATIO=RMAX/RMIN
ZNTRD = ZNTRD/AREA
ZOMSTR= ZC*(ZNTRD-ZD)/(ZNTRD-2ZB)

WRITE(6,602) ITER,2D,ZB,2C,ZOMSTR,ZNTRD,RMIN,RMAX,RATIO,

1 (ZA(KJ) ,KI=1,KJIMX)
602 FORMAT(/15,1P10E12.4/E17.4,2E12.4/(10E13.5))
IF(RATIO.LT.RTOL) GO TO 63
IF(IGOT.EQ.1) GO TO 63
ITER = ITER + 1 .
IF(ITER.LE.30) GO TO 62
WRITE(6,204)

204 FORMAT(///10X, 'TOLERANCE SPECIFIED FOR RMAX/RMIN NOT MET IN‘',

hod ' 30 ITERATIONS')
STOP
62 CONTINUE
IF(M.EQ.2) GO TO 66
ZDS=1.1D0*ZMIN
KJ=KIMN
67 RD=E(KJ)**EX
TH=EX*THT(KJ)
ZOM=DCMPLX(RD*DCOS(TH) ,RD*DSIN(TH))
ZC=(20M*(ZDS-ZG)+2ZE )/ (ZDS+ZF-ZE*2ZOM)
GO TO 60
66 M=1]
ZDS=0.9D0*ZMAX
KJsKIMXX
GO TO 67
63 IGOT = 1
WRITE(6,208) ZD,ZB,ZC,ZNTRD,ZOMSTR
208 FORMAT(//10X, 'CONSTANTS FOR MAPPING FROM ',
* ‘2 - PLANE TO OMEGA - PLANE ARE',

» //20X,'A = ',1P2E20.5,/20X,'B = ',1P2E20.5,/20X,'C = ',

» 1P2E20.5,//20X,'ZNTRD + ',1P2E20.5,/20X,'ZOMSTR =
c
C SET UP THE ARRAYS OF THETA AND LN{(R)
c

DO 41 KJ = 1,KIMXM
X(KJ) = DATAN2(DIMAG(ZA(KJ)),DREAL(ZA(KJ)}))
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ISN 0365 41 Y(KJ) = CDABS(ZA(KJ))
ISN 0366 X(KJIMX) = X(1) + TPI
ISN 0367 Y(KIMX) = ¥{1)
c
C NOW ADJUST THE ARGUMENTS OF THE THETA ARRAY, SO AS TO BE CONTINUOUS
C ACROSS THE BRANCH CUT (ALONG THE NEGATIVE REAL AXIS) OF THE
C DATAN2 FUNCTION. THIS ADJUSTMENT ASSUMES THAT THE CONTOUR IS
C TRAVERSED IN A COUNTERCLOCKWISE DIRECTION.
c
ISN 03638 BR = 0.000
ISN 0369 PO = X(1)
ISH 0370 DO 410 KJ = 2,KJIMXM
ISN 0371 IF(DABS(X(KJ)-PO).GT.PI) BR = 1.0D0
IsM 0373 PO = X(KJ)
ISN 0374 X(KJ) = X{KJ) + BR*TPI
ISN 0375 410 CONTINUE
c
ISN 0376 RMIN = 10.000
ISN 0377 RMAX = 0.000
ISN 0378 DO 49 K = 1,KJIMX
1SN 0379 IF(Y(K).LT.RMIN) RMIN = Y(K)
ISN 0381 49 IF(Y(K).GT.RMAX) RMAX = Y(K)
ISN 0383 WARSCH = DSQRT(RMAX/RMIN) - 1.0D0
ISN 0384 IF(WARSCH.LT.0.3D0) OM = 1.0D0
ISN 0386 WRITE(6,202)
ISN 0387 WRITE(6,243)
ISN 0388 243 FORMAT(3X, 'BLADE-SURFACE IMAGE IN THE OMEGA PLANE:',
» /3X,'KJd',6X, 'REAL',10X, 'IMAG',12X,'R"',9X, 'THETA',/)
IS 0389 DO 51 KJ = [,KJIMX
ISN 0390 WRITE(6,270) KJ,ZA(KJI),Y(KJI),X(KJ)
ISN 0391 51 CONTINUE
ISN 0392 00 43 KJ = 1,KJIMX
ISN 0393 43 Y(KJ) = DLOG(Y(KJ))
C
C USE FFT TO FIND A(N) AND B(N)
c
C FIRST SET UP THE CONSTANTS FOR THE LN(R), THETA SPLINE FIT
c
ISN 0394 CALL CISPLN(Y,X,E,F,KIMX,1,128,1)
~
ISN 039§ Z1l = DCMPLX(0.0D0,1.000)
fSN 0396 N = &4
ISN 0397 N2 = 128
ISN 0398 NP1 = N + 1|
ISN 0399 NP2 = N + 2
ISN 0400 PEN = P1/64.0D0
ISN 0401 NB2 = N/2
ISN 0402 NB2P1 = NB2 + 1
ISN 0403 ZNN = DCMPLX(DFLOAT(N),0.000)
ISN 0404 ZW2N = DCMPLX(DCOS(PBN),DSIN(PBN))
ISN 0405 OMM = 1.000 - OM
c
ISN 0406 CALL THDGRK
c
C FIND ZETAA AND ZETAB
c
ISN 0407 ZABST = ZMGA
ISN 0408 ZBBST = ZMGB
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0409
0410
0411
0412
0413
0414
0415
0416
0417
0413
0419
0420
0421
0423
0424
0425
0426
0427
0423
0430
0431
0432
0433
0434
0435
0436
0437
0439
0440

0441
0442
0443
0444
0445
0445
0447
0449
0450

0451
0482
0453

0454
0485
0486
0487
0488
0459
0460
0461
0462

0463

RABST = 1.0DO
RBBST = 1.0D0
DR = 0.1D0
DTH = 10.0D0*P1/180.0D0
THA = -6.0D0*DTH
Do 21 [ = 1,6
R = .49D0 + DR*DFLOAT(I-1)
DO 22 9 = 1,13
TH = DTH*DFLOAT(J-1) + THA
ZTAGS = DCMPLX(R*DCOS{(TH),R*DSIN(TH))
CALL OMETA(A,B,ZMG ,ZTAGS,ZTANSR,65,1.00-00,1)
RA = CDABS(ZMG-ZMGA)
IF(RA.GT.RABST) GO TO 23
RABST = RA
ZABST = ZTAGS
23 ZTAGS = -ZTAGS
CALL OMETA(A,B,ZMG ,ZTAGS,ZTANSR,65,1.00-00,1)
RB = CDABS(ZMG-~ZMGB)
IF(RB.GT.RBBST) GO TO 22
RBBST = RB
ZBBST = ZTAGS
22 CONTINUE
21 CONTINUE
ZTAGS = ZABST
M=0
CALL OMETA(A,B,ZMGA,ZTAGS,ZTANSR,65,1.00-05,M)
IF(M.EQ.0) GO TO 260
WRITE(6,261) ZTAGS,RABST
261 FORMAT(//5X, 'OMETA FAILED TO CONVERGE FOR ZETA A:',
* /10X, ZTAGS = ',1P2E13.5,' RABST =', E13.5)
sTOP
260 CONTINUE
ZETAA = ZTANSR
ZTAGS = ZBBST
M =0
CALL OMETA(A,B,2ZMGB,2TAGS,ZTANSR,65,1.0D0-05,M)
IF(M.EQ.0) GO TO 262
WRITE(6,263) ZTAGS,RBBST
263 FORMAT(//5%, 'OMETA FAILED TO CONVERGE FOR ZETA B:',
" /10X, 'ZTAGS = ',1P2E13.5,' RBBST =',E13.5)
STOP
262 CONTINUE
ZETAB = ZTANSR

c
C FIND GAMMA, ALPHA, BETA, AND S FOR MAPPING TO ETA - PLANE
c

AP = CDABS(ZETAA + ZETAB)

AM = CDABS(ZETAA - ZETAB)

AB = CDABS(ZETAA*ZETAB)

CHY = (2.0D0-AP*AP+2.0D0*AB*AB)/AM/AM

RT = DSQRT(CHY*CHY-~1.0D0)

CA = DSQRT(DABS(CHY+RT))

CB = DSQRT(DABS(CHY-RT))

SS = DMINI(CA,CB)

ZAL = (2.0DO“ZETAA*ZETAB+(SS*SS*(ZETAA-ZETAB)-ZETAA~ZETAB)
* /DCONJG(ZETAA))/(SS*SS*(ZETAA-ZETAB)+ZETAA+ZETAB~-2.000/
* DCONJG{ZETAA))

ZBT = (2.0DOZETAA*ZETAB-ZAL*(ZETAA+ZETAB ) )/(ZETAA+ZETAB-2.000
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ISN 0464 ZGM = SS*(ZETAA-ZBT)/(ZETAA-ZAL)
¢
ISH 0465 415 WRITE(6,245) ZABST
ISN 0466 245 FORMAT(//10X, 'BEST GUESS FOR ZETA A IS ZABST = ',1P2E12.3)
ISN 0467 WRITE(6,246) ZBBST
ISN 0468 246 FORMAT(//10X, 'BEST GUESS FOR ZETA B IS ZBBST = *',1P2E12.3)
ISH 0469 WRITE(6,215) ZETAA,ZETAB
ISN 0470 215 FORMAT(// SX,'ZETAA = ',1P2E13.5,' ZETAB = ',2E13.5) '
1SN 0471 WRITE(6,216) ZAL,ZBT,ZGM,SS
ISN 0472 216 FORMAT(// 5X,'ALPHA = ',1P2E11.3,' BETA = ',2E11.3,
* © GAMMA = ',2E11.3,' S = ',2E11.3)
¢
C FINDING THE LOCATION OF BLADE-SURFACE POINTS IN THE ZETA PLANE ONLY
C INVOLVES PHI(THETA), SINCE R = 1. USE SPLINE INTERPOLATION
c
ISN 0473 PHI(129) = PHI(1) + TPI
ISN 0474 EC(129) = E(1) + TPI
i ISN 0475 CALL CISPLN(PHI,E,THT,F,129,1,1,2)
ISN 0476 CALL CISPLN(PHI,E,X,F,129,2,KIMX,2)
€
C WHEN THE THETA VS. PHI CURVE 1S VERY STEEP, IT MAY HAPPEN THAT THE
C SPLINE-FITTED PHI VS. THETA CURVE IS NOT MONOTONIC: CHECK NOW WHETHER
C THIS HAS HAPPENED, AND REPLACE THE SPLINE-FITTED DATA WITH LINEAR
C INTERPOLATES WHEREVER IT HAS.
c
ISN 0477 DO 810 K = 2,KIMX
' ISN 0478 IF(F{K).GE.F(K-1)) GO TO 810
p 1SN 0480 DO 811 I = 2,129
; ISN 0481 IF(ECI).GT.X(K)) GO TO 812
i ISN 0483 811 CONTINUE
ISN 0484 1 = 129
: ISN 0485 812 IP = I
' ISN 0486 IM = I-1
' ISN 0487 CON =(PHI(IP)-PHICIM))/(E{IP)}-E(IM))
ISN 0488 J =K
l ISN 0489 DO 815 JJ = 1,20
ISN 0490 IF(X(J+JJ).GT.ECIP)) GO TO 816
ISH 0492 815 CONTINUE
ISN 0493 816 KP = J + JJ - 1
ISN 0494 DO 817 JJ = 1,20
ISN 0495 IF(X(J-3J).LT.E(IM)) GO TO 818
: ISN 0497 817 CONTINUE
- ISN 0498 818 KM = J - JJ+ 1
ISN 0499 DO 319 JJ = KM,KP
| l ISN 0500 TMP = F(JJ)
J ISH 0501 F(JJ) = PHICIM) + CON*(X(JJ)I-E(IM))
ISN 0502 WRITE(6,813) JJ,F(JJ),TMP
2 ISN 0503 813 FORMAT(S5X,'NOTE: SPLINE FIT REPLACED BY LINEAR INTERPOLATION IN',
%« ' FINDING PHI(',13,') =',F10.5,' OLD PHI =',F10.5)
ISN 0504 819 CONTINUE
F 4 . ISN 0505 K = KP
: ISN 0506 810 CONTINUE
J ¢
f l ISN 0507 WRITE(6,217) :
ISN 0508 217 FORMAT(//10X, 'MAPPING FROM OMEGA - PLANE TO ZETA - PLANE:',
{ » 7/ AX,'K',14X, 'OMEGA',26X, 'ZETA',//)
’ ISN 0509 DO 54 K = 1,KIMX

B-11
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c

R = DEXP{Y(K))

ZX = DCMPLX(R*DCOS{X(K)),R*DSIN(X(K)}))
ZYG = DCMPLX{(DCOS(F(K)),DSIN(F(K)))
IF(K.EQ.1.0R.K.EQ.KJMX) ZYG = Z]
ZCC(K) = ZVG

54 WRITE(6,218) K,ZX,ZYG
218 FORMAT(I5,1P4E15.5)

ZCC NOW CONTAINS ZETA ON THE BLADE SURFACES

WRITE(6,202)

NOW DO THE MAPPING FRCM THE ETA - PLANE TO THE KSI TILDE - PLANE,

222

WHERE ETA/S = SN(KSI TILDE)

AK = SS*SS

AKQ = AK*AK

AKP = DSQRT(1.0D0-AKQ)

AKM = AKP*AKP

CALL ELLPT(PI,AK,RL,1)

TBK = 2.0DO*RL

CTR = =RL

CAPK = RL

CALL ELLPT(PI,AKP,RL,1)

CAPKPM = RL

WRITE(6,222) AK,CAPK,AKP,CAPKPM

FORMAT(//10X, 'COMPLETE ELLIPTIC INTEGRALS OF K AND K PRIME",
- * ARE AS FOLLOWS:',
* //10X,'K(',F10.6,') = ',F10.6,5X,'K(',F10.6,') = ',F10.6)
IFIND=O

DO 6§65 I = 1,KJIMX

ZA(1) = ZGM*(ZCC(I)-ZAL)/(ZCC(11-2BT)

C ZA(I) NOW HOLDS ETA

c

403
404

ZTD = ZA(1)/SS
TAU = DREAL(ZTD)

DLT = DIMAG(ZTD)
TSQ = TAU*TAU
DSQ = DLT*DLT
ART = 1.000 + AKQ*(TSQ + DSQ)

RT = DSQRT((1.000-AKQ*TSQ)*(1.000~-AKQ*TSQ) + AKQ*DSQ*(2.0DO*
* (1.0D0+AKQ*TSQ)
* +AKQ*DSQ))

BRQ = 1.0D0 + TSQ + DSQ

BRT = DSQRT((1.0D0-TSQ)*(1.000-TSQ) + DSQ*(DSQ+2.0D0+2.0D0*TSQ))
ALM = (BRQ-BRT)*(ART-RT)/4.000/AKQ/TSQ
SGA = (TSQ + DSQ -ALM)

SGA = SGA/{(SGA+1.0D0~-ALM*AKQ*(TSQ+DSQ))
IF(TAU.EQ.0.000) GO TO 403

RTALM = DSQRT(ALM)*TAU/DABS(TAU)

GO TO 404

RTALM = 0.0D0

SGN = 1.000

IF(OLT.LT.0.0D0) SGN = -1.0DO

RTSGA = SGN*DSQRT(SGA)

RTALM = DARSIN(RTALM)

RTSGA = DARSIN(RTSGA)
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CALL ELLPT(RTALM,AK,RL,0)
CALL ELLPT(RTSGA,AKP,AG,0?
IF(AG.GE.0.0D0) GO TO §7
AG = -AG
RL =-RL - TBK

§7 ZAl1(1) = DCMPLX(RL,AG)
IF(IFIND.EQ.1) GO TO SS
IF(I.EQ.1) GO TO S5
IF((RL-DREAL(ZA1(I-1))).LT.0.0D0) GO TO 55
KEDGE = 1
KGM = [ -
IFIND = 1

55 CONTINUE

ZAL1(1) NOW HOLDS KSI HAT
WRITE(6,219)

219 FORMAT(////10X,'MAPPING FROM THE ETA - PLANE TO THE KSI HAT - ‘',

*' PLANE',
* /// 4X,'K',158X,'ETA',25X,'KSI HAT',//)
DO 56 K = 1,KJIMX
WRITE(6,218) K,ZA(K),ZAl(K)
58 CONTINUE

NOW SET UP A GRID IN THE KSI-HAT PLANE, AND MAP IT BACK
TO THE Z - PLANE:

WRITE(6,202)
WRITE(6,2056)

205 FORMAT(/3X,'MAPPING OF A GRID IN THE KSI-HAT PLANE',
o //3%,'K L', BX,'KSI HAT',

» 15X, 'ETA',16X, 'ZETA',16X, 'OMEGA"',

*  13X,'Z MAPPED',14X,'2ZXY',//)
ZA2(1) = 2TE
ZA2(KJIMX) = ZTE
ZA2(KJLE) = ZLE
DO 91 KJ = 2,KJLM
K = KILE - KJ
91 ZA2(KJ) = ZP(K)
DO 92 K = 1,KJS
K) = KJLE + K
92 ZA2(KJ) = 2S(K)

THE ZA2 ARRAY NOW HOLDS THE BLADE-SURFACE COORDINATES,
KJ = 1: TE
KJ = 2,KJLM: PRESSURE SIDE, FROM TE TO LE
KJ = KJLE: LE
KJ = KJLP,KIJMXM: SUCTION SIDE, FROM LE TO TE
KJ = KJMX: TE AGAIN

KMXM1 = KMX - 1

LMXML = LMX - 1
HCPKPM = CAPKPM/2.0D0
TWOCPK = 2.0D9*CAPK
THCPK = 3.0D0*CAPK
FCPK = 4.000*CAPK

ZAG = ZAL*ZGM

EXINV = 1.0D0/EX
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0640
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OO0 000

(e Xe X el

[¢XeXoNp]

DXIR = FCPK/DFLOAT(KMXM1)
SHXTE = DREAL(ZALI(1))

IF(SHXTE.GT.CTR) SHXTE = SHXTE-FCPK

SHK = -CAPKPM*CAPKPM/4.000/¢
SHKINV = 1.0D0/SHK

THCPK

IF(ISHEAR.EQ.0) SHXINV = 0.0D0

DSHX = 2.000/DFLOAT(KMXM1)
DSHY = 1.0D0/0FLOAT(LMXML)
ZEETE = ZA(1l)

I0 = 0

K =1

L =1

K - LOOP STARTS HERE
760 CONTINUE

USE LINEAR
BLADE SURFACE

XIR = SHXTE+DFLOAT(K-1)*DXIR
IF(XIR.LT,.-THCPK) XIR = XIR
IF(XIR.GT.CAPK) XIR = XIR -
DO 371 I = KEDGE,KJIMX
IF(DREAL(ZA1(1)).LT.XIR) GO
371 CONTINUE
DO 373 I = 2,KGM
IF(DREAL(2ZA1{(1)).LT.XIR) GO
373 CONTINUE
1 = KEDGE
372 KA = |
KB = 1 -1
XIA = DREAL(ZAI(KA))
XIB8 = DREAL(ZAL1(KB))
IF(KA NE.KEDGE) GO TO 380
IF(XIA.LT.0.0D0)XIA = XIA +
IF(XIB.LT.0.0D0)XIB = XIB +
IF(AIR.LT.0.0D0)XIR = XIR +

380 ZGSA = ((XIR-XIAI*ZA2(KB)}+(XIB-XIR)*ZA2(KA))}/(XIB=-X1A)

381 ZGS=2GSA
SHX = ~1.000+DSHX*DFLOAT(K-1

L - LOOP STARTS HERE

770 CONTINUE
SHY=DSHY*DFLOAT(L-1)
XIMaHCPKPM*{1.0D0-SHY)
XIR = (XIM-HCPKPM)**2
XIR = SHXTE+
ZX1 = DCMPLX(XIR,XIM)

BYPASS IMAGE CALCULATIONS FOR POINTS THAT FALL ON THE IMAGES OF

PLUS OR MINUS INFINITY OR THE T

IF(ISHEAR.EQ.0) GO TO 84
1F(L.EQ.1.AND.X.EQ.1) GO TO

+ FCPK
FCPK
TOo 372

TO 372

FCPK
FCPK
FCPK

)

73

IF(L.EQ.1.AND.K.EQ.KMX) GO TO 73
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ISN
ISN
1SN
ISN
ISN
ISN

ISN
ISN
ISN
ISN
ISN
ISN
ISN
1SN
1SN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN

ISN
ISN
ISN
ISN
ISN

ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
1SN
ISN
1SN
ISN

0655
0655
0658
0660
0662
0664

0665
0666
0667
0668
0669
0670
0671
0672
0673
0674
0675
0676
0677
0678
0679
0680
0681
0682

0683
0684
0685
0686
0687

0688
0689
0690
0691
0692
0693
0694
0695
0696
0697
0698
0699
0700
0701
0702
0703
0704
0708
0707
0709

[sX2Xs]

aonon

[e X2 Xg}

S —_—

84 CONTINUE
IF(L.EQ.LMX.AND.K.EQ.1) GO TO 74 i
IF(L.EQ.LMX ,AND.K.EQ.KMX) GO TO 74 '
IF(IOE.EQ.Q0) GO TO 80 i
IF(L.EQ..MX.AND.K.EQ.KMXH) GO TO 81
GO TO 8¢

73 ZEETA = ZEETE
ZETA = (ZBT*ZEETA-ZAG)/(ZEETA-ZGM)
ZOMA = ZOMTE
ZFNL = DCMPLX{SHX,SHY)
ZXY = ZTE%ZGAMMA
GO TO 710

74 ZEETA = DCMPLX(SS,0.0D0)
ZETA = ZETAA ’
ZOMA = ZMGA
ZFNL = DCMPLX(SHX,SHY) ;
ZXY = 2.0D0*ZA(LMX-1)=-ZA({LMX-2)
GO TO 710

81 ZEETA = DCMPLX(-$S,0.0D0)
ZETA = ZETAB
ZOMA = ZMGB
ZXY = 2.0D0*ZA(LMX-1)-ZA(LMX-2)
ZFNL = DCMPLX({SHX,SHY)
GO TO 710

80 CONTINUE
CALL JCELFN(XIR,XIM AKQ,AKM,RLS,AGS,1)
ZEETA = SS*DCMPLX(RLS,AGS)
ZETA = (ZBT*ZEETA-ZAG)/(ZEETA-ZGM)
CALL OMETA(A,B,ZOMA,ZETA,2TANSR,65,1.00-00,1)

NOW DO THE NEWTON-RAPHSON ITERATION TO FIND Z, GIVEN ZBOMK

ZBOM=ZC*(ZOMA-ZD)/(ZOMA-28B)
RAD = CDABS(ZBOM)
ARG = DATAN2(DIMAG(ZBOM) ,DREAL(ZBOM))
RADO = RAD**EXINV
ARGO = EXINV*ARG
ZBOMK = DCMPLX(RADO*DCOS(ARGO),RADO*DSIN(ARGO)) J
[T=1
90 Z = ZGS
2ZT = (2-27)/2DN
271 = ZP1*227
ZT2 = CDSIN(ZTI)
ZZN = (Z-ZN)/ZDN
273 = ZPI*Z2ZN
ZT4 = CDSIN(ZTI)
2ZF=2T2/2T4-2BOMK
87 ZFPM = ZPI*COSIN(ZTN)/ZDN/ZT4A/ZT4
ZNEW = Z - ZF/ZFPM
1F(KNR.EQ.0) GO TO 83
IF(KOUNT.€Q.0) WRITE(6,211)
211 FORMAT(//5X, 'DIAGNOSTIC OUTPUT OF THE NEWTON-RAPHSON ITERATIONS:',

-
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ISN
ISN
ISN
ISN
ISN
ISit
ISN
ISN
ISN
ISN
ISN
ISN
1SN
ISN

ISN
ISN

ISN
ISN
ISN
ISN
1SN
ISN
ISN
ISN
1SN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISd
Isn
ISN
ISN
ISN
ISN
1SN
Ish
1SN
ISN
ISN
ISN
1SN

0710
0711
0712
0713
0715
0716
0717
0718
0720
0722
0724
0725
0726
0728

0729
0730

0731
0733
073S
0737
0739
0740
0742
0743
0744
0746
0747
0748
0750
0751
0753
0755
0756
0783
07%9
0760
0762
0763
0764
0766
0767
0769
0770
0771
0773
0774
0775
0777
0778
078)
0781
0782
0784

c
c

212

83

82

72

CHECK POINTS ON THE PERIODIC BOUNDARY, NEAR K=1, K=KMX, AND K=KMX/2

714

717

711

712

718

718

713
720

721

718

722

723

/SX,'VARIABLES PRINTED ARE 1T,ZBOMK,Z,ZNZW,ZF,ZFPM',//)

WRITE(6,212) IT,ZBOMK,Z,ZNEW,ZF,ZFPM
FORMAT(1S5,1P10E12.3)

KOUNT = KOUNT + 1

IF(KOUNT.GT.INR) STOP

CONTINUE

IT = IT + 1

ZGS = ZNEW
IF(CDABS(ZNEW-2).LT.1,0D-06) GO TO 72
IF(CDABS(ZGS).GT.SIZE ) ZGS = ZGSA
IF(IT.LE.50) GO TO 90

2GS = ZGSA

ZNEW = ZERO

IF(L.EQ.1) ZNEW=ZGSA

CONTINUE

ZFNL. = DCMPLX(SHX,SHY)
ZXY=ZGAMMA®ZNEW

IF(ISHEAR.EQ.9) GO TO 710
IF(L.NE.LMX) GO TO 710
IF(K.EQ.1.0R.X.EQ.KMX) GO TO 710
IF(K.GT.4) GO TO 711

DY = DIMAG(ZXY~ZT)
IF(DY.GE.0.000) GO TO 717
ZXY = ZXY ¢ ZI*SG

GO TO 714

IF(DY.LE.SG) GO TO 710
ZXY = ZXY - ZI*SG

GG TO 714

IF(K.GE.KAA) GO TO 712

GO TO 710

IF(K.GT.KMXH) GO TG 713
IF(K.EQ.KMXH.AND.IOE.EQ.1) GO TO 710
DY = DIMAG(ZXY-ZN)
IF(DY.GE.0.0D0) GO TO 719
ZXY = ZXY + Z1*SG

GO TO 718

IF(DY.LE.SG) GO TO 710
ZXY = ZXY - ZI*SG

GO TO 718

IF(K.GT.KBB) GO TO 718

DY = DIMAG(ZN-ZXY)
IF(DY.GE.0.0D0) GO TO 721
ZXY = ZXY - ZI*SG

GO TO 720

IF(DY.LE.SG) GO TO 710
ZXY = ZXY + ZI*SG

G0 TO 720

IF(K.LT.KMXM4) GO TO 710
DY = DIMAG(ZT-ZXY)
IF(DY.GE.0.000) GO TO 723
ZXY = ZXY - ZI*SG

G0 TO 722

IF(DY.LE.SG) GO TO 710
ZXY = ZNY - ZI*SG
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ISN

ISN
ISy
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISH
ISN
ISN
ISN
1SN

ISN
ISN
ISN
ISN
IS
1SN
ISN
ISN
ISH
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
18y
1SN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
18
ISN
ISH
1SN
1SN

SN

ISN
1SN
ISN
1SN
1 Eh
I8N

0785

0786
Q787
0783
0789
0790
0792
0793
0794
0795
0797
0799
0800
0801
0803

0804
0805
0806
0807
0808
0809
0811
0813
0814
0815
0816
0817
0818
0820
0822
0823
0824
0825
0826
0827
0828
0829
0831
0832
0833
0834
0832
0835
0837
0838
0839
0840
0841
0842
0843
0844
0845
0846

o000

719

71

70

(e XeXaXg]

214

786

790
75%
750

100
202
210
224

GO0 TO 722

WRITE(6,224) K,L,ZXI,ZEETA,ZETA,ZOMA,ZFNL,ZXY
ZA(L Y = ZXY

XX¢L,L) = DREAL(ZXY)

YY(K,L) = DIMAG(ZXY)

CONTINUE

IF{10.EQ.1) GO TOQ 790

L =L +1

IF(L.LE.LMX) GO TO 770

WRITE(6,202)

IF(PNCHZA) WRITE(7,210) (ZA(L),L=1,LMX)
K=K + 1

L =1

IF(K.LE.KMX) GO TO 760

CONTINUE

NOW LOOK FOR CASES WHERE ZXY = ZERGO, AND TRY AGAIN, USING
INTERPOLATION FROM ALL NEIGHBORING POINTS

WRITE(6,214)

FORMAT(//S5X,'SECOND ATTEMPT TO FIND NON-CONVERGENT CASES',//)

WRITE(6,205)

DO 750 K = 1 ,KMX

DO 785 L = 2,LMX

IF(AX(K,L).NE.0O.0DO) GO TO 755

IF(YY(K,L).NE.0.0D0) GO TO 755

10 =

L1

K1

KM -1

KP = + 1

IF(K1.EQ.1) KM = KMX = 1

IF(K1.EQ.KMX) KP = 2

LM =L -1

LP =L + 1

Z11 = DCMPLX(MX(KM,LM),YY(KM,LM))

222 = DCMPLX(XX(K1,LM),YY(K]1,LM))

Z33 = DCOMPLX(XX{(KP ,LM},YY(KP,LM))
)
)

[ I |
KRR =

Z44 = DCMPLX(XX(KM,L1),YY(KM,L1)
Z55 = DCMPLX(XX(KP,L1),YY(KP,L1)
IF(L1.EQ.LMX) GO TO 756

Z66 = DCMPLX{XX(KM,LP),YY(KM,LP))
Z77 = DCMPLX{XX{(KI,LP),YY(K1,LP))
Z88 = DCMPLX(MX(KP,LP),YV(KP,LP))
ZGSA = (Z211+Z22+233+Z44+255+266+277+288)/8.000
GO TO 381

ZGSA = (Z11+222+233+244+255)/5.000
GO TO 381

CONTINUE

CONTINUE

CONTINUE

sTOP

FORMAT(8F10.4)

FORMAT(///)

FORMAT(1P4E20.13)
FORMAT(214,12F10.5)

END
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LEVEL 21.7

18! 0002

ISN 0003
ISN 0004
ISN 0005
1SN 0006

1SN 0007
ISN 0003
ISN 0010
ISN 0011
ISN 0012
ISN 0013
ISN 0014
ISN 0015
ISN 0016
ISN 0017
ISN 0018
ISH 0019
ISN 0020
ISN 0021
ISN 0022

ISN 0023
ISN 0024
ISN 0025
IS8 0026
ISN 0028

ISN 0029
ISN 0030
ISN 0031
1SN 0032
ISN 0033
ISN 0034

¢ DEC 72 ) 0S/360 FORTRAN H

COMPILER OPTIONS =~ NAME= MAIN,OPT=02,LINECNT=60,S1ZE=0000K,

OO0 OO00O00O00

OO0O0OO0O0O0

SOURCE ,EBCDIC,NOLIST,NODECK,LOAD ,MAP ,NOEDIT,ID,XREF
SUBROUTINE CISPLN(Y,X,E,F,NP,IRTN,NRTN.NPD)

THIS SUBROUTINE FITS A CUBIC SPLINE TO A FUNCTION Y(X), DEFINED BY
NP PAIRS OF POINTS. THE SECOND DERIVATIVE OF THE FUNCTION

1S PERIODIC, WITH PERIOD 2*PI. IF NPD = 1, THE FUNCTION

ITSELF IS ALSO PERIODIC, WHILE IF NPD = 2, THE FUNCTION INCREASES
BY 2.*P1 EVERY PERIOD: Y(X+2.%*PI) w ¥(X) ¢ 2.*PI. SOLUTiONS FOLLOW
PAGES 9 - 15 OF

THE THEORY OF SPLINES AND THEIR APPLICATIONS, BY J. H. AHLBERG,

E. N. NILSON, AND J. L. WALSH, ACADEMIC PRESS, 1967

NOTE THAT Y,X,E,AND F ARE, RESPECTIVELY, ORDINATE, ABSCISSA,ABSCISSA,
AND ORDINATE.

IMPLICIT REAL*8(A-H,0-Y),COMPLEX*16(2Z)

DIMENSION Y(160),X(160),E(160),F(160),BDA(160),EM(160),H(160)
DIMENSION S$(150),T(160),V(160),D(160)

DATA TP1/6.283185307179586/

THIS SECTION (ENTERED WHEN IRTN = 1) USES THE NP PAIRS OF INPUT
COORDINATES X AND Y TO FIND THE COEFFICIENTS OF THE SPLINE FIT.

THESE COEFFICIENTS - HERE CALLED EM(KJ) - ARE THE SECOND DERIVATIVES
OF THE FUNCTION.

IF(IRTN.EQ.2) GO TO 20

NPM = NP - 1

N = NP + 1

DO 1 KJ = 2,NP
1 H(KJI) = X{(KJ) - X{(KJ-1)

H{N) = H(2)

DO 2 KJ = 2,NP
2 BDA(KJI) = H(KJ+1)/{(H(KJI)+H(KJI+1))

E(1) = 0.0DO

F(1) = 0.0D0

S(1) = 1,000

DO 3 KJ = 2,NPM

DN = 2.0D0 + (1.0D0 - BDA(KJ))*E(KJ-1)

E(KJ) = -BDA(KJ)/DN

D(KJ) =

* 6.000%((Y(KJI+1)=Y(KJI})I/H{KJI+1)}

* ~(Y(KJI)=Y(KI=1)I/H{(KI))I/(H{KI)I+H(KJI+1}))

S(KJ) = =(1.0D00-BDA(KJ))*S(KJ-1)/DN
3 F(KJ) = (D(KJ)-(1.000-BDA(KJI))I*F(KJ~-1))/DN

Y(N) = ¥{(2)

IF(MPD.EQ.2) Y(N) = Y(N) + TPI

DI(NP) = 6.0DO*((Y(N)-Y(NP))/H(2)

bl =(Y(NP)=-Y(NPM))/H(NP))/(H(NP)+H(2))

NPMM = NP - 2

T(NP) = 1.0D0

V(NP) = 1,0D0

DO § I = 1 ,NPMM

KJ = NP - 1

T(KI) = E(KJII*T(KI+]1) + S(KJ)
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1SN
ISN
ISN

ISn
ISN
ISN
ISN
ISN

ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN

ISN
ISN
ISN

ISN
ISN
1SN
TuM
ISN
ISN

1SN
ISN
ISN

0035
0035
0037

0038
0039
0040
0041
0042

0043
0044
0045
0046
0048
0049
0051
0052
0054

0055
0056
0058

0053
0060
006
0062
0063
0064

0065
0065
0067

VIKJI) = E(KJI)I*V(KJI+]1) + F(KJ)
6 CONTINUE
EM(NP) = (D(NP)-BDA(NP)*V(2)-(1.0D0~-BDA(NP))I*V(NPM)}/
» (BODA(NP)*T(2)+(1.0D0O-BDA(NP))*T(NPM) + 2.0D0)
DO 4 I = 1,NPM
KJ = NP -1
4 EM{KJ) = E(KJI)*EM(KJ+1) + F(KJ) + S(KJ)I®EM(NP)
SIZE = DABS(X(NP)-X(1)1)/10.000
RETURN

THIS SECTION (ENTERED WHEN IRTN = 2) RETURNS NRTN INTERPOLATED
VALUES OF THE ORDINATE F AT ASSIGNED VALUES OF THE ABSCISSA E.

o000

206 KJ = 2
DO 21 J = 1,NRTN
A= E(J)
24 IF(A.LE.X(KJ)) GO TO 23
KJ = KJ + 1
IF(KJ.LE.NP ) GO TO 24
DF = A - X(NP)
IF(DF.GT.SIZE) WRITE(6,200) J,E(J)},NP,X(NP)
200 FORMAT(//10X, 'WARMING - ENTRY IN CISPLN EXCEEDS END OF BASE
* *ARRAY',/5X,'E(*',13,') = ' ,IPEL16.8,' EXCEEDS X(',13,') =
* £16.8)
DF = A ~ X(1)
IF(DF.LT.{(-SIZE)) WRITE(6,201)J,E(J),X(1)

201 FORMAT(//10X, 'WARNING - ENTRY IN CISPLN IS LESS THAN THE FIRST',

* ' BASE POINT',

» /5X,'E(',I13,') = ' 1PE16.8,' IS LESS THAN X(1) = ',E16.8)

KJ = NP
23 DXA = X(KJ) - A

DXB = A - X(KJ-1)

CBA = DXA*DXA*DXA

CBB = DXB*DXB*DXB

F(J) = (EM(KJ-1)*CBA+EM(KJ)*CBB)/6.0D00/H(KJ)

* + DHAX(Y(KI-1)-EM(KI-1)*H(KJI)I*H(KJI)/6.0DO)/H(KJ)

* + DXB*(Y(KJ)-EM(KJI)I*H(KJI)I*H(KJI}I/6.0D0)/H(KJ)
21 CONTINUE

RETURN

END
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LEVEL

ISN
ISN
ISN
ISN
ISN

ISN
ISN
ISH
ISN
ISM
ISH
ISN
ISN
ISy
IS
ISN
ISH
ISN
ISN
ISN
ISy
ISN
ISN
ISN
ISN
IS
ISy
ISH

21.7 ( DEC 72 ) 0S/360 FORTRAN H
COMPILER OPTIONS -~ NAME= MAIN,OPT=02,LINECNT=60,SIZE=0000K,
SOURCE ,EBCDIC,NOLIST,NODECK,LOAD,MAP,NOEDIT, ID, XREF

0002 SUBROUTINE ELLPT(AR,AK,ANS, KOMP)

0003 IMPLICIT REAL*8(A-H,0-Y),COMPLEX*16(2)

0004 DIMENSION SsQ(12)

00035 DATA K/1/

0006 DATA P1/3.141592653589793/
c
C THIS SUBROUTINE EVALUATES THE ELLIPTIC INTEGRAL OF THE FIRST KIND,
g Vé;:EQRGUMENT AR (AN ANGLE IN RADIANS), AND PARAMETER AK (A REAL

N ).

C THIS EVALUATION USES EQ.(14) OF: Y, L. LUKE, 'APPROXIMATIONS
C FOR ELLIPTIC INTEGRALS', MATH. COMP., VOL. 22 (JULY 1968), PP 627~
C 634, WITH N = 12.
C KOMP = 0,1 FOR THE INCOMPLETE, COMPLETE INTEGRAL, RESPECTIVELY.
c

0007 IF(K.GT.1) GO TO 11

0009 K =2

0010 TNP = 25.000

0011 DO 10 M = 1,12

0012 THM = PI*FLOAT(M)/TNP

0013 S = DSIN(THM)

0014 10 SQ(HM4) = S*S

0015 11 AKK = AK*AK

0016 SM = 0.0D0

0017 IF(KOMP.EQ.1) GO TO 40

0019 TN = DTAN(AR)

0020 DO 20 M = 1,12

goz2! SG = DSQRT(1.0DO-AKK*SQ{(M))

0c22 T = DATAN(SG*TN)

0023 20 SM = SM + T/SG

4024 ANS = (AR + 2.0DO*SM)/TNP

0025 RETURN

0026 40 DO 41 M = 1,12

0027 SG = DSQRT(1.0DO-AKK*SQ(M))

0028 41 SM = SM + 1.000/SG

0029 ANS = PI*(1.000+2.0D0*SM)/72.0D0/TNP

0030 RETURN

0031 END
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LEVEL 21.7 ( DEC 72 ) ' 08/360 FORTRAN H

ISN

1SN
ISN
1SN
ISN
ISN
ISN
ISN
Ish
1SN
ISy
ISN
ISN
ISN
ISN
1SN
ISN
1SN
ISH
ISN
1Sh
ISN
ISN
IS
ISN
ISN
ISN
Is\\'
ISN
ISN
ISN
ISN
1SN
ISN
IS
ISN
ISN
IS
183
ISN

0002

0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0015
0016
0017
o018
0019
0020
0021
0023
0024
0025
0026
0027
0029
0030
0031
0032
0033
0034
0035
0036
0037
0033
0039
0040
0041
0042
0043
0045

COMPILER OPTIONS - NAME= MAIN,OPT=02,LINECNT=60,SIZE=0000K,

OO0 OOOOOO0OOOND

SOURCE ,EBCDIC,NOLIST,NODECK,LOAD,MAP ,NOEDIT,ID,XREF
SUBROUTINE JCELFN(RL,AG,AKQ,AKM,RLS,AGS,M)

WHEN M.EG.1,
THIS SUBROUTINE RETURNS THE JACOBIAN ELLIPTIC SINE
OF A COMPLEX ARGUMENT:

RLS + I®AGS = SN(RL + I*AG,K)
USING THE ARITHMETIC - GEOMETRIC MEAN FORMULA (SEE P.571, HANDBOOK
OF MATHEMATICAL FUNCTIONS, ED. BY M. ABRAMOWITZ AND I. A. STEGUN,
U.S. NATIONAL BUREAU OF STANDARDS, APPLIED MATHEMATICS SEIRIES, 55,
JUNE 1964) AND THE ADDITION FORMULA FOR THE SN (SEE EQUATION 125.01
P, 24, OF HANDBOOK OF ELLIPTIC INTEGRALS FOR ENGINEERS AND
PHYSICISTS, BY P. F. BYRD AND M. D. FRIEDMAN, SPRINGER VERLAG, 1954},
AKQ = K**2, AKM = ], - K**2

WHEN M.EQ.2, THE QUANTITIES RETURNED ARE THE REAL AND IMAGINARY PARTS
OF THE PRODUCT CN{..)*DN(..), WHICH IS THE DERIVATIVE OF THE SN(..)

IMPLICIT REAL*8(A-H,0-Y),COMPLEX*16(2)
DIMENSION A(20),B(20),C(20),PH(20)

K =1
A(l) = 1.0D0
B(1) = DSQRT(AKM)
C(1) = DSQRT(AKQ)
5D0611 = 2,20
A(I) = (A(CI-1)+B(1I-1))/2.000

B(I1) =DSQRT(A(I-1)*B{(I-1))
Cil1) = (A(I-1)-B(I-1))/2.0D0
IF(DABS(C(I1)).LT.1.0D-09) GO TO 7
6 CONTINUE
WRITE(6,200) RL,AG
200 FORMAT(///10X,'JCELFN FAILED TO CONVERGE FOR Z = ',1P2E15.4)
STOP
7 NM = [-]
N =1
IF(K.EQ.2) GO TO 20
PH(N) = A(N)*RLW"2**NM
15 DO 11 L ~ 1,NM
J=N-~L
11 PH(JI) = (PH(JI+1)+DARSINCC(I+1)*DSIN(PH(JI+1))/A(J+1)))/2.0D0
IF(K.EQ.2) GO TO 40
SNK = DSIN(PH(1))
CNK = DCOS(PH(1})
DNK = CNK/DCOS(PH(2)-PH(1))
K= 2
T™MP = B(1)
8(1) = C(1)
C(l) = THUP
GO TO 5
20 PH(N) = A(N)*AG*2**NM
GO TO 15
40 SNP = OSIN(PH(1))
CNP = DCOS(PH(1))
DNP = CNP/DCOS(PH(2)-PH(1))
DNM = 1.9D0 - SNP*SNP*DNK*DNK
IF(M.EQ.2) GO TO 50
RLS = SNK*DNP/DNM
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ISN
ISN
ISN
ISN
ISN
IS
ISN
ISN
ISN
ISN

0046
0047
0043
0049
0050
0051
0052
0053
0054
0085

50

AGS = CNK*DNK*SNP*CNP/DNM

RETURN

RLA = CNK*CNP

AGA SNK*DNK*SNP*DNP

RLB DNKX*CNP *DNP

AGB AKQ*SNK*CNK*SNP

RLS (RLA*RLB-AGA*AGB)/DNM/DNM
AGS = (-RLA*AGB-RLB*AGA)/DNM/DNM

RETURN
END
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. A

LEVEL

ISN
ISN
ISN

ISN
ISN
ISN
ISN
ISy
l ISN
ISN
ISN
. ISN
; ISN

1SN
ISN
1SN
ISN
ISN
ISN
ISNM
ISN
ISN
ISN
ISN
ISN
ISN
ISH
ISN
ISN
ISN
ISN
IS
1SN
ISH
ISN
ISN
ISN
ISN
ISN

+

e dentaes SEIE R
Ve ey ) M T T

———— oy
.

21.7 ¢

0002
0003
0004

0005
0006
0007
0003
0009
0010
0011
0013
0014
0015
0017
0018
0019
0020
0021
0022
0023
0024
0025
0027
0028
0030
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046

DEC 72 )
COMPILER OPTIONS - NAME=

QOO0 OO0O0O0

0S/360 FORTRAN H
MAIN,OPT=02,LINECNT=60,SIZE=0000K,

SOURCE ,EBCDIC,NOLIST,NODECK,LOAD ,MAP ,NOEDIT, ID,XREF
SUBROUTINE OMETA(A,B,ZMGA,ZTAGS,ZTANSR,N,EPS,M)
IMPLICIT REAL*8(A-H,0-Y),COMPLEX*16(2Z)
DIMENSION A(65),B(65),2C(65)

If M.EQ.O,
THIS SUBROUTINE USES NEWTON - RAPHSON TO FIND ZETA(OMEGA): ZMGA IS A ,
KNOWN VALUE OF OMEGA, ZTAGS IS THE INITIAL GUESS AT ZETA, ZTANSR IS

THE SOLUTION, AND EPS IS THE TOLERANCE ON THE ANSWER.

IF M.EQ.1., THIS SUBROUTINE RETURNS THE VALUE OF OMEGA (IN ZMGA)
FOR A GIVEN VALUE OF ZETA (IN ZTAGS).

IF M.EQ.2, THE QUANTITY RETURNED (IN ZTANSR) IS D OMEGA/D ZETA, FOR '
GIVEN VALUES OF OMEGA (IN ZMGA) AND ZETA (IN ZTAGS) :
Z1 = DCMPLX(1.000,0.0D0)
ZETA = ZTAGS ’
NM = N - 1 ‘
IT = 1
5 CONTINUE
ZSMA = DCMPLX(A(N),B(N))
IF(M.EQ.1) GO TO 22
ZSMB = ZSMA*DFLOAT(NM) !
IF(M.EQ.2) GO TO 40
DO 10 J = 1,NM
ZSMA = ZETA®*ZSMA + OCMPLX(A(N-J),B(N-J))}
ZSMB = ZETA*ZSMB + DCMPLX(A(N-J),B{(N=J))*DFLOAT(NM-J)
10 CONTINUE
ZEXP = CDEXP(ZSMA)
2G = ZETA*ZEXP - ZMGA
ZDG = ZEXP*(Z1 + ZSMB)
ZETOLD = ZETA
ZETA = ZETOLD - 2ZG/ZDG
IF(CDABS(ZETA~ZETOLD).LT.EPS) GO TO 20
IT = IT + 1
IF(CDABS(ZETA).GT.1.000) ZETA = 0.9D0%ZETA/CDABS(ZETA)
IF(IT.LE.S50) GO TO S
M =5
RETURN
20 ZTANSR = ZETA
RETURN
22 DO 21 J = 1,NM
2ZSMA = ZETA*ZSMA + DCMPLX(A(N-J),B(N-0))
21 CONTINUE
ZEXP = CDEXP(ZSMA)
ZMGA = ZETA*ZEXP
RETURN
40 DO 41 J = 1,NM
41 ZSMB = ZETA®ZSMB + DCMPLX(A(N=J),B{N=J))*DFLOAT(NM-J)
ZTANSR = ZMGA*(Z1+ZSMB)/ZTAGS
RETURN
END
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LEVEL 21.7 ( DEC 72 ) 08/360 FORTRAN H

COMPILER OPTIONS - NAME= MAIN,OPT=02,LINECNT=60,SIZE=0000K,
SOURCE ,EBCDIC,NOLIST,NODECK,LOAD,MAP ,NOEDIT, ID,XREF

ISN 0002 SUBROUTINE SHAPE(C,H,G,EX,2P,25,KJS,KJP)
- ISN 0003 IMPLICIT REAL*8(A-H,0-Y),COMPLEX*16(2Z) '
: ISN 0004 DIMENSION Z25(80),2P(80) :
ISN 0005 DO 10 K = 1,KJS
ISN 0006 10 READ(S,100) ZS(X)
ISN 0007 DO 20 K = 1,KJP
ISN 0008 20 READ(5,100) ZP(K)
ISN 0009 100 FORMAT(8F10.0)
ISN 0010 RETURN
ISN 0011 END ,
- t
*LEVEL 21T7°t(TDEC /2 - ST TT0S/360""FURTRAN H . -
COMPILER OPTIONS - NAME= MAIN,OPT=02,L INECNT=60,SIZE=0000K,
SOURCEZ ,EBCDIC,NOLIST,NODECK,LOAD ,MAP ,NOEDIT,ID,XREF
ISN 00602 SUBROUTINE SHUFL{N,ZA,ZCC)
c
C THIS SUBROUTINE TAKES THE N COMPLEX VALUES IN ARRAY ZA, WHICH WERE
C COMPUTED AND STORED IN REVERSE BINARY ORDER BY FFT2 AND "SHUFFLES® ‘
C THEM INTO PROPER ORDER USING ARRAY 2CC FOR INTERMEDIATE STORAGE. ‘
C N IS ASSUMED TO HAVE THE FORM 2**M.
c
ISN 0003 IMPLICIT REAL*B(A-H,0~Y),COMPLEX*16(2)
ISN 0004 DIMENSION ZA(65),ZCC(65),IAL(6),KR(64)
ISN 0005 DATA KALL/0/
ISN 0006 DATA IAL/6%0/ !
ISN 0007 IF (KALL.EQ.1) 60 TO 10
1Sy 0003 KALL = 1
IS 0010 DO 341 JP = 1,N
ISN 0011 J = JP - 1
ISN 0012 IAL(6) = J/32
ISN 0013 J s J - 32*IAL(6)
ISN 0014 IAL(S) = J/16
ISN 0015 J = J - 16"1AL(S)
ISN 001§ 1AL{4) = 3/8 l
ISN 0017 J »J - 8WIAL(4)
ISN 0018 IAL(3) = J/4 !
ISN 0019 J = J - &*IAL(D) , |
1SN 0020 IAL(2) = 3/2 ’
ISR 0021 J = J - 2%1AL(2) f
ISN 0022 CIAL(1) = 3
ISN 0023 341 KR(JP) = |
* 32%IAL(1)+16%1AL(2)+8*IAL(3)+4*IAL(4)+2*AL(5)+1AL(6) i ’
ISN 0024 10 DO 342 J = 1,N 1
ISV 0025 342 ZCC(J) = ZA(KR(J)+1) = {
ISN 0026 DO 360 JP = 1,N !
1SN 0027 360 ZA(JP) = ZCC(JIP) {
ISN 0028 RETURN »
TSN 0029 END 'l{
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LEVEL

ISN

ISN
ISN
ISN
ISN
ISN
ISN

ISN

ISN
ISN

ISN
ISN
ISN
IsH

ISN
ISN

184

IsN
ISN
ISN
ISN

IsH
ISN
ISN
ISN
ISN
1SN
ISN
ISN
ISN
ISN
1SN
ISN
ISN

21.7 ( DEC 72 )
COMPILER OPTIONS - NAME=

0002

0003
0004
0005
0006
0007
0003

0009

0010
001t

0012
0012
0014
0018

0016
0017

0013

0019
0020
0021
0022

0023
0024
0025
0026
0027
0028
0023
0030
0031
0032
0033
0034
0035

[sXsXeNgXg]

o000 O

o000

0S/360 FORTRAN H
MAIN,OPT=02,LINECNT=60,SIZE=0000K,

SOQOURCE ,EBCDIC,NOLIST,NODECK,LOAD ,MAP ,NOEDIT, ID,XREF
SUBROUTINE THDGRK

THIS SUBROUTINE MAPS AN OVAL TO A UNIT CIRCLE, USING A VARIANT OF |
THE THEGDORSEN-GARRICK TRANSFORMATION AND FAST FOURIER TRANSFORM
TECHNIQUES. (SEE REFERENCES AT BEGINNING OF MAIN PROGRAM).

IMPLICIT REAL*8(A-H,0-Y),COMPLEX*16(Z)
COMMON/TGINTG/N,NP1,NP2,N2,NB2,NB2P1,IP,IPMX,ITP, IWK, IMX,KJIMX
COMMON/TGCMPX/Z1,2ZW2N,Z1,2ZNN,ZA,ZCC,ZAL,ZA2
COMMON/TGDBLE/PBN,OM,OMM,ANGERR,A,B,E,F,THT,PHI ,X,Y

DIMENSION X(160),Y(160),E(150),F(150),THT(160)

DIMENSION PHI(130),A(65),B(65),ZCC(65),
hd 2A(165),2A1(165),ZA2(165),

w IWK(7)

DIMENSION ITP(100) \

301 DO 300 I = {,N2 :
300 PHI(I)=PBN*DFLOAT(I~1)

THE FOLLOWING CALSPAN LIBRARY ROUTINE PLACES A ZERO IN THE LOCATIONS
FROM THE FIRST TO THE LAST ARGUMENT OF THE CALL. THE THIRD ARGUMENT
GIVES THE LENGTH SPECIFICATION OF EACH ENTRY. |

8
8

CALL CLEAR(A(1),A(65),8)
CALL CLEAR(B(1),B(65),8)
CALL CLEAR(E(1),E(150),8) ‘
CALL CLEAR(2CC(1),2CC(65),16) !
WRITE(6,401)
401 FORMAT(//10X,'PROGRESS OF PHI / THETA ITERATIONS IS AS FOLLOWS:'//
1 3X,'IT',4X,'DEMX',4X,*'NO. OF THETA REVERSALS')

IT = 1
FIRST GUESS IS THETA - THETA(TRAILING EDGE) = PHI

DO 315 K = 1,N2
315 E(K) = X(1) + PHI(K)
305 DEMX = 0.000

B(1) = 0.0D0

USE AJ AND BJ TO GET NEXT APPROXIMATION TO THETA

ZCC(1) = DCMPLX(B(1),0.0D0) ;
DO 202 JP = 2,N

302 ZCC(JIP) = DCMPLX(B(JP)/2.0D0,-A(JP)/2.0D0) |
ZCC(NP1) = DCMPLX(0.0D0,0.000) !
ZW = Z1/2W2N |
DO 303 NP = | ,NB2P1 ,
ZA1(NP) = ZCC(NP) + DCONJG(ZCC(NP2-NP)) i

303
304
309

ZW = ZW*IW2N

ZA2(NP) = ZW*({ZCC(NP)-DCONJG(ZCC(NP2-NP}))
DO 304 NP = 1,NB2P1

ZA(NP) = ZAL(NP) + ZI®ZA2(NP)

DO 309 NP = 2,NB2

ZA(NP2-NP) =

B-2§




* DCOMNJIG(ZAL(NP)) + ZI*DCONJIG(ZA2(NP))

ISN 0036 CALL FFT2(ZA,6,IWK)
ISN 0037 CALL SHUFL(N,ZA,ZCC)
ISN 0038 B(1) = X(1) - PHI(1) - DREAL(ZA(1)) [
ISN 0039 DO 306 K = 1,64 n
ISN 0040 TMP = E(2%K-1)
ISN 0041 E(2*K~1) = DREAL(ZA(K)) + PHI(2*K-1) + B(1) :
ISN 0042 THT(2%K~1) = E(2*K-1) :
ISN 0043 DEM = DABS(TMP-E(2*K-1))
ISN 0044 IF(DEM.GT.DEMX) DEMX = DEM
ISN 0046 E(2%K=1) = OM"E(2*K-1) + OMM*TMP
ISN 0047 TMP = E(2%K)
ISN 0048 E(27K) = DIMAG(ZA(K)) + PHI(2*K) + B(1)
ISN 0049 THT(2*K) = E(2*K)
ISN 0050 DEM = DABS(TMP-E(2*K)) .
ISN 0051 IF(DEM.GT.DEMX) DEMX = DEM
ISN 0053 E(2%K) » OM*E(2%K) + OMM*TMP !
ISN 0054 306 CONTINUE .
ISN 0085 IFCIT.NE.ITP(IP)) GO TO 840 -
ISN 0057 IP = IP + 1
ISH 0058 WRITE(6,841) IT
ISN 0059 841 FORMAT(/3X,
» ‘THETA BEFORE AND AFTER RELAXATION AT IT = ',14)

ISN 0060 WRITE(6,832)(THT(I),I=1,128)
ISN 0061 WRITE(6,832)(E(1),I=1,128)
ISN 0062 832 FORMAT(1P10E13.5)

' ISN 0063 840 CONTINUE

a8 ISN 0064 . IFCIT.GE.ITPCIPMX)) STOP

g g NOW USE THESE THETAS TO GET THE NEXT APPROXIMATION TO LN R(K) i

| ISN 0066 . CALL CISPLN(Y,X,E,F,KJMX,2,128,1) 3

’ g NOW FIND THE AJ AND BJ COEFFICIENTS CORRESPONDING TO THE LN R(K) DATA .
ISN 0067 0O 310 JP = I,N |
ISN 0063 310 ZA(JP) = DCMPLX(F(2%JP=1),F(2*JP))
ISN 0069 DO 307 NP = I,N
ISN 0070 307 ZA(NP) = DCONJG(ZA(NP)) :
ISN 0071 CALL FFT2(ZA,6, IWK) f
ISN 0072 DO 308 JP = 1,N

s ISN 0073 308 ZA(JP) = DCONJIG(ZA(JP))/ZNN

- ISN 0074 CALL SHUFL(N,ZA,2CC)

ISN 0075 . ZA(6S) = ZA(1)
ISN 0076 DO 311 NP = 1,NB2P1
ISN 0077 ZA1(NP) = (DCONJG(ZA(NP2-NP)) + ZA(NP))/2.000
ISN 0078 311 ZA2(NP) = ZI*(DCONJG(ZA(NP2-NP)) ~ ZA(NP))/2.0D0
ISN 0079 ZW = 2W2N -
ISN 0080 DO 312 NP = 1,NB2P1 ‘ ‘ : '
ISN 0081 ZW = ZW/2W2N :
ISN 0082 312 ZCCUNP) = (ZAL(NP)+ZA2(NP)*ZW)/2.0D0
ISN 0083 W = Z1/2W .
ISN 0084 DO 313 I = 2,NB2 )
ISN 008S ZW = 2W*ZW2N 4 :
ISN 0086 NP = NB2 + I
ISN 0087 ZBB = (ZA1(NP2-NP)+2A2(NP2-NP)*2W)/2.0D0 )
ISN 0088 313 ZCC(NP) = DCONJG(ZBB) ) I
ISN 0089 A(1) =  DREAL(ZCC(1)) E
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ISN
ISN
ISN
ISN
ISN

ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN

ISN
ISN

ISN
ISN
ISN
ISN
ISN

ISN
1SN

0090
009!
0092
0093
0094

0095
0097
0098
0099
0101
0102
0103
0105
0106
0108
0109
0110

0111
0112

0113
0114
0118
011§
0117

o118
0119

(2 XaNe]

S \_

ZCC(NP1)=0.5D0*DCONJG(ZAL(1)-ZA2(1}))
A{65) = DREAL(ZCC(6S5))
DO 314 NP = 2,N
A(NP) = 2.0DO~DREAL(ZCC(NP))
314 B{NP) = 2.0DODIMAG(ZCC(NP))

CHECK FOR CONVERGENCE

IF(IT.EQ.1) DEMX = 1.0D0
NRV = 0 :
DO 809 LL = 2,128

809 IFCE(LL).LE.E{LL=-1)) NRV = NRV + 1|
WRITE(6,400) IT,DEMX,NRV

400 FORMAT(15,1PE12.3,18) :
IF(DEMX.LT.ANGERR ) GO TO 316
IT = IT + 1 :
IFCIT.LE.IMX) GO TO 305 f
WRITE(6,213) .

213 FORMAT(//5X,'ITERATIONS FOR A AND B DID NOT CONVERGE') :
STOP

316 WRITE(6,203) IT,OM,DEMX
203 FORMAT(//10X,'A AND B ITERATIONS CONVERGED AT IT = ',I3,

bt ! USING OM = ',F6.3,' . MAXIMUM ANGULAR ERROR =',
ol 1PE12.3,' RADIANS')
WRITE(6,220)

220 FORMAT(// 4%X,'K',11X,'THETA',15X,'PHI"',//)
DO 69 K = 1,128
69 WRITE(6,221) K,E(K),PHI(K)
221 FORMAT(15,1P2E20.6)

————

RETURN
END
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DICTIONARY OF VARIABLES

Appendix C

ALGEBRAIC
FORTRAN SYMBOL EQUIVALENT DEFINITION, USE, COMMENTS
A(J), B() A, B, Eq. 2-20, 2-21
AK % = S5° Eq. 2-23
AKP £ =v1-£2 Eq. 2-30
2
AKQ % -
ALM A Eq. 2-31
CAPK K (#) Eq. 2-34
4 ,)
CAPKPM K (% Eq. 2-34
DLT é Eq. 2-28
A A
DXIM, DXIR Re (A8), . (88) Eq. 2-38, 4-4
EX 1/(e - ;Tr") See Figure 2
.. X
EXINV = -
G, H G, H See Figure 1
HCPKPM 3 K'(#') - ’
oM - Relaxation factor used in
¢ » & mapping
T
PBN T . .
N \
PHI ¢ -
SGA a Eq. 2-31
ss S Eqs. 2-23
TAU T Eq. 2-28

Cc-1
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FORTRAN SYMBOL

ALGEBRAIC

DEFINITION, USE, COMMENTS

EQUIVALENT

TPI 2 -
XIR, XIM Re (£), Iom (&) -

ZA(N) A (n Eq. A-9; used elsewhere

for temporary storage

ZB b Eq. 2-9

ZC < Eq. 2-9

2D a Eq.. 2-9

21 Wy .

ZN, 2T, ZLE, ZTE ZN ’ZT See Figure 1

ZAL, ZBT, ZGM a, B, ¥ Eq. 2-22

ZAL(N), ZA2(N), A,m) , A, (), See, for example, Eq.

ZCC(N) A-9. Also used for
c(n) temporary storage

ZBOM 0 -

ZBOMK JQ.K

ZEETA n -

ZETA z -

ZNTRD centroid of the ew-plane
ZPMSTR L - plane image of ZNTRO
ZOMS(K), ZOMP(K) We , W -

ZPLUS, ZMINUS nt, o Eq. 1-6

ZXI é? -

Xy X+ey
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LEVEL 21.7 ( DEC 72 )

ISN
IS4
1SN
ISH
IS
ISN

ISN
1S4
ISN
ISi
ISN
ISN

ISN
ISHN

1SN
s
ISN

IS
ISN

0002
0002
0004
0005
0006
0007

0008
0003
0010
0011
0012
0013

0014
0015

0016
0017
oo1e

0019
0020

Appendix D
LISTING OF METRIC GENERATOR PROGRAM

0S/360 FORTRAN H

COMPILER OPTIONS - NAME= MAIN,OPT=02,LINECNT=60,SIZE=0000K,

QOO0 0NOD

[z X2 Ks}

(s X2X32] ano [2X s X ]

o000

SOURCE ,EBCDIC,NOLIST , NODECK,LOAD ,MAP ,NOEDIT,ID,XREF

PROGRAM CIMTVL - A PROGRAM TQ CALCULATE THE METRICS OF A COORDINATE
TRANSFORMATION FOR TURBOMACHINERY CASCADES. FOR DOCUMENTATION,SEE:

J. P. NENNI AND W. J. RAE, EXPERIENCE WITH THE DEVELOPMENT OF
AN EULER CODE FOR ROTOR ROWS, ASME PAPER B3-GT-36, MARCH 1983
W. J. RAE, A COMPUTER PROGRAM FOR THE IVES TRANSFORMATION IN
TURBOMACHINERY CASCADES, AFOSR TR-81-0154, ADA096416, NOV 1980
W. J. RAE, MODIFICATIONS OF THE IVES-LIUTERMOZA CONFORMAL-
MAPPING PROCEDURE FOR TURBOMACHINERY CASCADES, ASME PAPER
83-GT-116, MARCH 1983

W.J. RAE, REVISED COMPUTER PROGRAM FOR EVALUATING THE [VES
TRANSFORMATION IN TURBOMACHINERY CASCADES, CALSPAN CORPORATION
REPORT 7177-A-1, JULY 1983

THE PROGRAM READS A CARD DECK CONTAINING THE COORDINATES X(K,L) ,
Y(K,L) ¢ K = 1,KMX 3 L = 1, ,LMX, AND FINDS BY FINITE DIFFERENCES

THE METRICS OF A TRANSFORMATION TO A RECTANGLE(KSI,ETA). 1IN THIS
RECTANGLE, THE IMAGE OF THE BLADE SURFACE LIES ALONG ONE SIDE, AND
THE IMAGES OF THE POINTS AT INFINITY LIE AT CORNERS OF THE RECTANGLE
(SEE TWE REFERENCES ABOVE). THE METRICS ARE WRITTEN ON TAPE I.

IMPLICIT REAL™8(A-H,0-2)
DIMZNSION Q(410,6)
READ(5,100) KMX,LMX

100 FORMAT(2014)
READ{5,101) SG

101 FORMAT(8710.4)

SG IS THE SLANT GAP BETWEEN BLADES
DO 10 K = 1,KMX
KMILMX = (K~1)®*LMX
LKA = KMILMX + 1
LKB = KMilMX + LMX

10 READ(5,200)((Q(LK,5),Q(LK,6)),LK=LKA,LKB)
200 FORMAT(1P4E20.13)
Q(LK,8) CONTAINS X(K,L), Q{LK,6) CONTAINS Y(K,L)

KM=XMX-1
LM=LMX~-1

=~ SET X AND Y AT K=KMX AND L=1
LK=KM*LMX+1
Q(LX,5)=Q(1,5)
Q(LK,6)=Q¢1,6)

=== FIND X AND Y AT K=1 AND Le=LMX

Q(LiiX,5)=200*2(LM,5)-Q(LMX-2,5)
Q{LMX,6)=2D00*Q(LM,6)-Q(LMX-2,6)

=== FINDG X AND Y AT K=KMX AND Ls=LMX
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ALl

ks

.

ISN
1SN
ISN
ISN
1SN

IsH
ISN

ISN
ISN
ISN
ISN
ISN
ISN

ISN
ISN
ISN
ISN

ISN
ISN
ISN
ISN
ISN

ISN
ISN

ISN
1sM
ISN
ISN
ISN
ISN
ISN

1SN
ISN
1SN
1SN
1SN
ISN

1SN
1SN
ISN
184
1SM

0021
0022
0023
0024
0025

0026
0027

0023
0029
0030
0031
0032
0033

0034
0036
0038
0040

0042
0043
0044
0045
0046

0047
0049

00S1
0052
0053
0054
0055
0056
0087

0058
0059
0060
0061
0062
0063

0064
0065
0066
0067
0068

OO0

(s X2 Xy}

aon0n

(2 X2 X 2]

501

504

505

LK=KMX*LMX }
Q(LK,5)=2D0*Q(LK-1,5)-Q(LK-2,5)
Q{LK,6)=200"Q(LK-1,5)-Q{LK-2,6)
TDELXI=4DO/DFLOAT(KM) '
TDELZT=2D0/DFLOAT(LM) '

DO 520 K=1,KMX
KMILMX=(K=-1)*{MX

DO S10 L=1,LMX
LK=XMILMX+L
LP1=LK+1
LMl=LK-1
KP1=LK+LMX
KM1=LK-LMX

IF(K.EQ.1) GO TO 501
IF(X,EQ.KMX) GO TO 501
IF(L.EQ.1) GO TO 504
IF(L.EQ.LMX) GO TO 505

K=2 TO KM AND L=2 TOQ LM (CENTERED DIFFERENCES)

DXDXI=(Q(KP1,5)-Q(KM1,5))/TDELXI
DYDXI=(Q(KP1,6)-Q{KM1,6))/TDELXI
DXDZT=(Q(LP1,5)-Q(LM1,5))/TDELZT
DYDZT=(Q:{LP1,6)-Q(LM1,6))/TDELZT
GO TO 509

IF(L.EQ.1) GO TO 510
IF(L.EQ.LMX) GO TO 510

[ S—

K=1 OR KMX AND L=2 TO LM

LK2=LMX+L

LKKM= (KM-1)*LMX+L
DXDXI=(Q(LK2,5)-Q(LKKM,5))/TDELXI
DYDXI=(Q(LK2,6)-Q(LKKM,6))/TDELX!
DXDZT=(Q(LP1,5)-Q(LM1,5))/TDELZT
DYDZT=(Q(LP1,5)-Q(LM1,6))/TDELZT
GO TO 509

L=1 AND K=2 TO KM

LKI=KMILMX+1
LK2=LK1+1

LK3=LK2+1
DXDZT=(-300*Q(LK{,5)+400%Q(LK2,5)-G(LK3,5))/TDELZT
DYDZT=(-300*Q(LK1,6)+4D0*Q(LK2,6)-Q(LK3,6))/TDELZT /i
GO TO 506 H

L=LMX AND K=2 TO KM

- /‘i
LKS=(KMX-K)*LMX+LM 1]
LKB=KMILMX+LM I
DXDZT=(Q(LKS,5)-Q(LKB,5))/TDELZT

pa=SG
IF(K.GT.KMXH) DQ=-SG I
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0070
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0072

0073
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0075
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0078
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0080

0087
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o000 O

0O 0Oo0 oo0oon

DYDZT=(Q(LKS,6)+DQ-Q(LKE,6))/TDELZT

506 DXDXI=(Q(KP1,5)~Q(KM1,5))/TDELXI
DYDXI=(Q(KP1,6)~-Q(KM1,6))/TDELX!]

509 RDMi=(DXDXI*DYDZT-DXDZT*DYDXI)
STORE DERIVATIVES IN THE ORDER DKSI/DX,DKSI/DY,DETA/DX,DETA/DY

Q(L¥,1)=0YDZT/RDM]
Q(LK,2)=-DXDZT/RDM1
Q(LK,3)=-DYDXI1/RDMI
Q(LK,4)= DXDXI/RDM1
510 CONTINUE
520 CONTINUE

STORE DERIVATIVES ON TAPE 1
LKMX=LMX*KMX
WRITE(L) KMX,LMX,LKMX,((QCI,J),I=1,LKMX),J=1,4)
STOP
END
1}
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