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Abstract

A well-known job shop scheduling problem can be formﬁlated as follows.
Given a graph G with node set N and with directed and undirected arcs, find an
orientation of the undirected arcs that minimizes the length of a longest path

"{ AR S

in G. We treatathe problem as a disjunctive program, without recourse to
integer variables, and give a partial characterization of the scheduling poly-
hedron P(N), i.e., the convex hull of feasible schedules. In particular, we Fe
derive-,all the facet inducing inequalities for the scheduling polyhedroa
P(K) defined on some clique with node set K, and give a sufficient condition
for such inequalities to also induce facets of P(N). Onf of our&results is that
roplv inelvdi’d
any inequality that induces a facet of P(H) for somé Hsgél 31;; in;uces a facet
of P(K). Another one is a recursive formula for deriving a facet inducing ,
tpequality with p positive coefficients from one with p-1 positive coefficients,

f.
/ﬁ;'also addresszthe constraint identification problem, and giveﬁg procedare

for finding an inequality thet cuts off a given solution to a subset of the

constraints.
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1. Introduction

We considér the following machine sequencing problem which i2 a

special case of resource-constrained scheduling (for background material see

i, 21, (8,...,121). A number of items have to be processed by performing a
sequence of operations on each of them on specified machines. There are n
operations to be performed, including a fictitious "ston" (operation n), the
objective being to minimize total completion time subject to (i) precedence
constraints between the operations, and (ii) the condition that a machine can
process only one item at a time, and operations cannot be interrupted. The

problem can bte stated as

min t
n

'
t
v
a

1,3)eA

(®) o,

ad
\Y)

ieN

tj-:i > d1j \Y ti-tj > dji’ (1,3)eE

where ti is the starting time of operation 1, dij is‘the minimum
required time lapse between starting operation 1 and starting operation

j (for instance, completion time of operation i, plus set-up time for
operation j), A 1indexes the pairs of operations constrained by prece-

dence relations, E the pairs that use the same machine and therefore cannot
overlap in time, and "V" is the logical "or". It is useful to represent the
problem by a disjunctive graph [1, 2, 10, 12] G = (N°,A°,E), where ¥° = {0}UN
1s a set of nodes, ome for each operation, plus a source node 0; A° = AU{(0,j)]"

is not preceded by an operation} is a set of (conjunctive) directed arcs; E is

a set of undirected arcs, one for every pair of operations to be performed

| e

A‘.\




on the same machine. Solving the problem involves orienting the undirected
arcs, i.e., choosing for each of them one of the two possible diractioms. It
is therefore convenient to represent each undirected arc by a disjunctive pair
of directed arcs, i.e., a pair of which one member needs to be selected: hence
the name disjunctive graph. We will use this latter representation, and con-
sider E to consist of pairs of directed arcs (i,j),(j,i); with ET = {d,3)eE|lL< 3},
E” = {(1,1)E]1 > 3}, and E = E' UE~. The arcs of E occur in disjoint maximal
cliques (by a clique we mean a complete digraph), of which there is one for
every machine. Thus if M indexes the set of maximal cliques (machines), and
for VCZNO, < V > denotes the subgraph of G induced by V, then for every reM,
the node set Kr of the rth maximal clique < K; > corresponds to the set of
operations to be performed on the same machine (r).

Every directed arc (i,j)cAUE has a positive length dij' while the arcs

(0,1) 6A™\A have length d ; = 0. For a pair (4,1, G,01eE, d $#d,. 1is

] j it
not only possible, but typical. We will assume that the arc lengths are
integers satisfying the triangle inequality dij + djk > dik’ ¥ 1,j,k. Though

this assumption involves some loss of generality, it is realistic for the

machine sequencing problem, The disjunctive graph G is illustrated in Figure 1




on a problem with 5 items (directed source-sink paths), 4 machines (maximal
cliques, whose arcs are shown in dottaed lines), and 14 operations (aodes other
than the source). The numbers on the arcs are the lengths dij'

The subgraph obtained from G by deleting the disjunctive arc set
E 1is the ordinary digraph D = (NO,AO), in which node 0 has indegree
zero and outdegree the number of items, node n has indegree the number
of items and outdegree zero, while all remaining nodes have indegree and
outdegree one. In fact D 1is the union of as many disjoint (except for
their end nodes) paths from O to n, as there are items,

A selection in G consists of exactly one member of each pair of
dis junctive arcs in E, Thus, if o = %[El, there are 2% possible
selections in G. In the undirected representation of E, a selection
in G corresponds to an orientation of all the undirected arcs of G,

°, 4%ys) is an ordinary di-

For every selection S in G, Ds = (N
graph; and the problem obtained from (P) by replacing the set of dis-
junctive constfaints indexed by E with the set of conjunctive con-
straints indexed by S is the dual of a longest path (critical path) prob-
lem in Dg. Thus solving (P) amounts to finding a minimaximal path in the
disjunctive graph G, i.e., finding a selection (orientation) § that minimizes
the length of a critical path in Dy over the set of all possible selections,

Problem (P) stated at the beginning of this section has a variable
tj associated with every node of G except for 0, One can of course
introduce a variable £ for node 0, but then the problem does not
change if to is constrained by to = 0, which leads to the elimination

of the variable just introduced. We therefore prefer to work with

vectors ts]fn that don't have a component co constrained to be Q.

(.




Problem (P) is a disjunctive program. It can also be represented as a
mixed integer program by introducing a binary variable for every disjuactive
constraint, but there are advantages to not doing that and using instead the
disjunctive programming approach (for background see [3, 5]). 1In this paper
we investigate the properties of the scheduling polyhedron P, the closed coa-
vex hull of all vectors te R" satisfying the constraints of (P). Seccion 2
introduces the polyhedron P, states some of its basic properties, and discusses
the relationship of P to polyhedra defined by subsets of the constraint set.
Section 3 deals with scheduling polyhedra P(K) defined on a clique with node
set K, and characterizes the vertices of P(K). Section 4 gives a complete
characterization of the facets of P(K). One of the results is that any in-
equality that defines a facet of P(H) for some HCK also defines a facet of
P(K). Another result is a procedure for deriving a facet defining inequality
for P(K) with p nonzero coefficients from a facet defining inequality with
p-1 nonzero coefficients. This section also lists all the facets of P(K),
for K of arbitrary size, having one, two or three nonzero coefficients.
Section 5 gives a sufficient condition for an inequality that defines a facet
of P(K) to also define a facet of P, The condition is verifiable in O(iEt)
time. Finally, section 6 addresses the constraint identification problem and
gives a procedure for identifying facet defining inequalities that cut off
2 given t am? that violates some of the disjunctions of (P)., Some of

our results were presented in [4].

2. Some Properties of the Scheduling Polyhedron

Any te]Rz1 satisfying the constraints of (P) will be called a
schedule for G, The feasible set of (P), or the set of schedules

for G, can be written as




5
:j-ci > dij’ (i,5)eA
n s
Is= teR L, 2 90, ieN

t.-t, >d,. Vvt -t, >d.,, i,jeK,, iy, AeM

The closed convex hull of T, cleconv T, will be called the scheduling

polvhedron, and denoted P(N), or simply P,

T 1is a disjunctive set, and its convex hull is easiest to describe

when T is in disjunctive normal form [3, 4], i.e., in the form T = U T.,

SeQ
where Q is the index set of all selections in G, and TS is the

(polyhedral) set of schedules for the digraph D defined by the

S

selection S in G:

- il 2 1
£ tizdij (i,j)eAUS

ieN

t
\Y
o

If D contains a cycle, Ts=¢. So the only selections of interest

S

are those for which the associated digraph D has no cycles, i.e.,

s

those indexed by Q* = {SeQ|D  is acyclic}, since T = |J T.. In the
S SeQ* 5
sequel we assume that Q* ¥ @, For any SeQ*, we will denote by L(i,j)S

the length of a longest path from i to j in D The length of the

sl
(unique) path from i to j in D will be denoted by L(i,j).

Theorem 2.1, For every §eQ¥, TS has dimension n.
Proof., We define n + 1 vectors tleRp,i=O,l,...,n, as follows,
Let t° be defined by :? = L(C,§)g, j=i,...,m; end for i=l,...,n,

et t° be defined by




T —— .

where

6
2¢. + € j=1i
i
tj =
2t§ A j#*i, L L
0 < €< 1/2.

Clearly, :°eTS. For i=l,...,n, c§ >0, Vi, and for (h,j)eAL S, one can

. i i i
essily check that tj - th > dhj' Thus for 1 = 0,1,...,n, t7eT

Also, the n+l
h

s°

points tieimp are affinely independent, since the n X n matrix whose it Tow

is ti

- 2t°, i=1,...,n, is ¢ times the identity matrix of order n.”

Corollary 2.2. P is full dimensional.

Next we turnm to the extreme points of P. First we characterize

the extreme points of TS for an arbitrary SeQ¥,

Theorem 2.3, A schedule t for D is an extreme point of T

S S

if and only if t_ = £(0,n);, and for all jeN\{n}, £y = 40,3)g or

3

t, = L(O,n)S -z(j,n)s , or both.

Proof. Necessity. Let t*eTy be such that t* > 4(0,n)c.  Define

tl and cz b; t1=t*+€ t1=t* j #n; and t2=t*-€ ;:2=t* jEn
y n n 3 j j! k] n n 3 _j j, 3 ’
For, suitably small € > 0, tl,tzeTs, and t* = %(t1+t2), with tl Lt A tys

hence

tions

Now let t°eT

t* is not extreme, Thus the condition tn = I,(O,n)S is necessary.

S be such that tg = L(O,n)s, but the remaining condi-

of the Theorem are violated for jeN* € NM\{n}; i.e., let N¥ :=

{jeN\{n}lt(O,j)s < t? < £(0,n)g - Z(j,n)s}. Define ¢’ and t” by

t! =

t2 4+ € jau*, t! = t%, joN\N¥; and t” = t0-€, jeNw, t7 = 5, jeN\N,

j 375 i 3T

for suitably small €, t/, t"¢T., t' # t° #¢t”, and t° = S(t'+t").
s 2

the condition tj = L(O,j)S or tj = tn - L(j,n)s or both, for /»/

je¥\{nl, is also necessary.




Sufficiency. Suppose teTS is not extreme. If tn>.£(0,n)s, we

are done. So let :_1 = L(O,n)s . By assumption, there exist tl,tzeTS,
1 2 1.1 2 . .

tT #t #¢t°, such that ¢ = -2-(c +t°). Now T, = L(O,n)s implies

1 2

== L(O,n)s, and since t:1 £t £ tz, there exists jeN\{n} such

that either :Jl. <t, < t? or t2. < tj < t}'. In the first case

h|
200 1 L2 200 405
£( :J)s < tj < tj < '-j < ( ’n)s = (J:n)s "
and in the second case the same condition holds with the roles of t:l and

tz reversed, In both cases t violates the condition that tj = L(O,j)s

or = 4(0,n)g - £(j,n)g or both. "

3
Corollary 2,4. If t is an extreme point of P, then t, = E(O,n)s,

and tj= L(O,j)s or tj = Z(O,u)s - L(j,n)g or both, ¥ieN\{n]}, for some SeQ*.
Proof., Every extreme point of P is an extreme point of TS for some SeQ*.ll
For every (not necessarily maximal) clique < K >, we define a schedule

for <K > as a vector teT(K), where

ti > L(0,1), ieK
T(K) = teRP ,
tyoty 2 dij v £ty 2 dji’ 1,__1;-_K, i#]
where p = [Kl, and L(0,i) 1is the length of the (unique) path from 0 to
i inD = (NO,AO). The closed convex hull of T(K), clconv T(K), will be called

the gcheduling polvhedron on < K >, and denoted P(K).

For any Vc N, we denote by S(V) a selection in<V >, i.e., a

set of arcs containing exactly one member of each disjunctive pair of

—_— —_—

arcs with both ends in V., For V'chN s We say that the selection S(V)

is an extension to <V > of the selection S(V') (the selection S(V')

is a restriction te <V’ > of the selection S(V)) if the arcs of §(V)

with both ends in V' are precisely those of S(V').




versely, we say that a schedule t’ for <K > 1is a restriction to <K >

of the schedule t for G, if t is an extension of t’, By the choice of
the lower bounds ©L(0,i), ieK, every schedule for G can be restricted to

any of the cliques of G, Therefore, for every clique <K > of G,

(2.2) P 2 P(K).

The more interesting question, of course, is when can a schedule for some
clique < K > be extended to a schedule for G. This question is intimately re-
lated to the problem of facet lifting, i.e., to the connection between facet
inducing inequalities for P(K) and for P, It will be investigated in section
5, where we will give a sufficient condition for an inequality that defines
a facet of P(K) to also define a facet of P. This condition is always satis-
fied for some of the cliques of G, so at least some of the facet inducing
inequalities for P(K) are always facet inducing for P itself., This provides
the main, though not the only, motivation for focusing in the next 2 sections

or the polyhedra P(K).

3. The Scheduling Polvhedron on a Clique

In this section we study the properties of the scheduling polyhedron

on & clique, or briefly the clique polyhedron P(K) = clconv T(X). If IK| =p

and if we denote Li = L(0,1), ieK, then

g, 2L, i
T(K) = {te RP
-t / - K, i#
£ izdij\ ty tjzdji,Vi,jC, 3

As before, a vector teT(K) will be called a schedule for < K >,
Apart from its connection with machine sequencing, and more generallv

with the resource constrained scheduling protlem, the polyhedron T(X) is an

e e
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interesting object in its own right. A selection S(K) in < K > is the arc
set of a tournament in < K >, Every tournament is known to have a directed
Hamilton path (i.e., a directed path containing all the vertices), and for
an acyclic tournament this path is unique. 1In fact, every acyclic tourna-
ment is the transitive closure of its unique directed Hamilton path. A
selection S(K) is therefore uniquely determined by the sequence of the nodes
of K in its directed Hamilton path, and conversely, every selection S(K) de-
fines a unique sequence of the nodes of K. Thus the scheduling problem on

a2 clique, namely the problem of finding

(3.1) min max t, ,
teT(K) 1eK

with Li = 0, i¢K, is a "dual" formulation of the problem of finding a short-
est Hamilton path in < K >, using node rather than arc variables. The
latter problem in turn is polynomially equivalent to the traveling sales-
man problem (TSP). Indeed, an optimal tour for the TSP yields a shortest
Hamilton path by deletion of the largest arc. Conversely, fiading for each
i¢K 2 shortest Hamilton path originating in i (which is problem (3.1)) with
the extra condition that t; = Li = 0), then adding to eacﬁ path the unique
arc that closes it, and choosing the shortest of the p resulting tours,
yields an optimal solution to TSP.

The scheduling polyhedron P(K) on a clique < K > is related to the
linear ordering polyhedron PLO on < K > studied recently by Grdtschel, Jﬁhger
and Reinelt [5]. PLo is the convex hull of the incidence vectors of acyclic
tournaments in < K >, It is & bounded polytope in .Rp(p-l)
bv the arcs of the complete digraph < K >, whereas P(K) is an unbounded polv-

hedron in R?. When P(K) is specialized to the case where L, = 0, i¢K, there

i

, the space spanned |




-oa
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is a one to one correspondence between its vertices and acyclic tournaments
in < K >, as will be shown later in this section. Hence there is a one to
one correspandence between the vertices of P(K) (in the case Li = 0, ieK) and
those of PLO' One might therefore expect a similarly close relationship be-

tween facets of PLo and those of P(K). In fact, however, the facets of P(K)

are rather different from, and seemingly unrelated to, those of P A set of

Lo’

p vertices that lie on a facet of PL may not lie on & facet of P(K), and vice

0
versa. While the facets of PLO are independent of the arc lengths, the facets

of P(K) strongly depend on the arc lengths dij'

Whenever possible without risking confusion, the notation S(K) for a
selection in < K > will be abbreviated to 8., Every selection § in < K >

defines a polyhedron

>L iekK

i

| 12t

T(R)g = {te mP‘

tj = tizdij’ (i,j)‘s

which is nonempty if and only if S is acyclic. Let Q(K) be the set of selec-

tions in < K >, and Q(K)* = {SeQ(RK)|S is acyclic]. Then the disjunctive

normal form of T(K) becomes

T(R) = -/ T(K)g -
S5eQ(K)*

For every SeQ(K)*, T(K)S is obviously full-dimensional; hence so is P(K).

For 1¢K and an acyclic selection S in < K >, we defipe the rapk of i
in S as the position (rank) of i in the sequence associated with S.

Theorem 3,1. Let S be an acyclic selection in < K >, and let
j(1),...,i(p) be the sequence defined by S on K, Then T(K)S is a displaced

polvhedral cone with vertex t° defined by




12
O —
T T M
(3.2)
£° . = max{L, 2 +d }, k=2,...,p
5 (k) 50 S5k-1) T d5-1), 5000 seeesPs

and extreme rays given by Voo i=1,...,p, where

: 1 k=p-1i+1,...,p
(3.3)

W, =
30k 0 otherwise.

Proof. The vector t° satisfies all the inequalities of T(K)S, and

any ttT(K)s satisfies tj > t?, ¥ jeK. Now define new variables t; = tj - t?,

jeK, and let T(K)é be the polyhedral cone

e, 20, 1K
T(R)g = {t'e RP o, )
(-t 20 , (1,18

We will show that teT(K)g if and only if t'cT(K)é, where t’ = t - t°,

o ' '
Let t'eT(K)é. Then t{ > 0 implies t:i > ti > Li’ and tj - ti > 0 implies
o o.
tj -2 tj -t 2 dij’ hence teT(K)g.
Conversely, let teT(K)s. Then ¢t > to, which 1mplies't5 >0, jeK.
I [o]
Further, for every (i,j)sS, tj - :i 2>max1dij, Lj - ti]; and hence
y ’ o o o
- - - - ¢ = O
;] £ me{dij’ Lj ti} (cj o .
siace
0 o o o
£y - £, = max{Lj, e+ dij} e

= max{dij, Lj - t:}.

Finally, the vertex t’ = 0 of T(K)é corresponds to the point t = % of T(K)

This proves that T(K)s is a displaced polvhedral cone with vertex :°,

e L
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In view of the correspondence between T(K)s and T(K)é, the extreme direc-
tions of T(K)S are precisely those of T(K)é. Since the vertex of T(K)é is
the zerc vector, w is a direction vector of T(K)é (hence of T(K)S) if and
only if wcT(K)é. For i = 1,...,p, it is easy to see that wieT(K)é. Further,
each wi satisfies w? =0 for j = j(),...,j(p~i), and wﬁ(k) - w;(k-l) =0
for all ke{l,...,p}\{p - 1 + 1}. Since each wie RP satisfies with equality
p-1 inequalities whose coefficient matrix has full row rank, each wi is extreme.
It remains to be shown that wi, i=1,...,p are the only extreme direc-
tion vectors of T(K)é. This we do by expressing an arbitrary t'eT(K)é
as a positive linear combination of the wi, i=1,...,p.

Let t'eT(K)é, and consider the p vectors t(i)

W _ -
bY tj(k) = tj(l)’ k = 1,...,[), and for i = 2,--.,?,

, 1 =1,...,p, defined

0 k=1,...,1-1
NC
(k)

:5(1) " tyi-1) k=1,...,p.

Then each t(i) is either the zero vector, of a positive multiple of
p .

p-i+l T t(l).“

i=1

Next we turn to the extreme points and extreme direction vectors of P(K).

the extreme direction vector w , and t! =
Naturally, every extreme point of P(K) is an extreme point of T(K)s for some
S¢Q(K)*; but the converse will be shown to be true only if P(K) satisfies
a regularity condition. Also, every extreme direction of P(K) is an extreme
direction of T(K)S for some SeQ(K)*, but the converse is never true.

In order to prove some properties of the vertices of P(K) we need a
characterization of the extreme direction vectors of P(K), so we start with

the latter.
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Theorem 3.2. The extreme direction vectors of P(K) are precisely the

unit vectors ei, i=1,...,p.

Proof. For i = 1,...,n, the unit vector e, is an extreme direction vec-
tor of every cone T(K)S such that i is the last node of the sequence defined
by S. Hence every e, is a direction vector of P(K), and since e, is a unit
vector and T(K) is contained in the positive orthant, each e is extreme for
P(K). Every other extreme direction vector of T(K)s, for every SeQ(K)*, is
the sum of unit vectors; hence none of them is extreme for P(K). Since every

extreme direction of P(K) is an extreme direction of T(K)s for some SeQ(R)*,

it follows that P(K) has no extreme direction vectors other than the p unit

vectors ei.H

Next we turn to the extreme points of P(K). We will say that the dis-

junctive set T(K) (as well as the polyhedron P(K) and the clique <K > ) is

regular, if

(3.4) LJ. - Li < dij R Fi,jeK , 1 #£j

and ‘
(3.5) d,. +d, >4 R ¥ i,j,keK, 1 # 3§ #k#1i.

15 7 %k 7 %k

Condition (3.4) implies that for every S¢Q(K)*, the vertex t® of the cone

T(K)s satisfies t?(l) = Lj(l) and

(] o)
3-6) 500 T f1en t aeD, 00 T Tiaor KT TP

i.e., the second term of the bracketed expression in (3.2) is strictly greater

than the first termm for k = 2,...,p, where, as before, p = iK{. By recur-

./
\' "/
sively substituting for t?(k-l)’ (3.6) can also be written as i
k
o -
.7 =L, + T > , k= esesPe ‘
-7 500 T Fw T D4, sm T H® Zaeeeop

i
i
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Later we will show that regularity plays a crucial role in the facial
structure of P(K): certain facets exist only if P(K) is regular. Here we
prove that regularity is a necessary and sufficient condition for the vertex
of every cone T(K)s to be a vertex of P(K).

Lemma 3.3. Let t°¢ RP be a schedule for < K >, If there exists a
schedule t* such that t* < t° and ty < t: for some i¢K, then t° is not a
vertex of P(K).

Proof. 1If there exists t* as described, then t° can be expressed as the
sum of t* and a positive combination of unit vectors. Since the latter are
direction vectors of P(K), t® is not an extreme point of P(K).H

Lemma 3.4. Let jeK be such that Ly - L, >d,, for some ieK\{j}. Then

i ij
for every SeQ(K)* in which j has rank 1, the vertex of T(K)s is not a vertex

of P(K).
Proof. Let S be any acyclic selection with associated sequence
J(,...,3(p) such that § = j(1) and { = j(q) for some 1 < q < p; and let

t° be the vertex of T(K)S. Then t° satisfies (3.2). Now let S*eQ(K)* be

the selection associated with the sequence 4(1),...,4(p), where 4(1) =1 = j(q),

and

j(k-1) k=2,...,q
L(k) =
(k) k=gqg+1,...,pP;

and let t* be the vertex of T(K)S*. Then tI(l) = Lj(q) < t;(q) = t:(l)’ since
the positivity of dkt for all k,ieK implies that t§(q) > Lj(l) = Lj >

L For 2 < k £ q, we show by induction that tg(k) = t?(k)' For

1~ by
k = 2, we have tI(Z) = Lj = t;(l) = ti(2)' Suppose the equality holds for

k=2 r -1, and let k = r < q. Then by the induction hypothesis

wge-coy




16

o
(3.8 tﬁ(r) = max{Lj(r-l)» t5(z-2) * dj(r-l),j(r)}

0 _ .0
= 5(e-D) T oy

For k = q + 1, we have

3.9 - to ) }
(3.9) ex{ly 1) S5ea-1) * d5(a-1), 1)

1(q+1)

I

[o] " .
max{Ly (er1)* S5 * 45q), i (q)]

) _ .o
b(qtl) T Ci(g+1)’

where we have used the triangle inequality d <d, . +
¢ 8 WEEEY 3(q-1),3(e*D) = ©3(a-1),3(Q)

d, .
j @), 3i(q+D)
Finally, for q + 2 <k < p (1f p > q + 2), we have again by induction

on k,
]
.10 “lo0 ™50 faen e, 0]
o] o]
=00 T S0
We have shown that tg < t; for all heK, with tﬁ < tg for h = j(q) = L(1). '

From Lemma 3.3, it then follows that t° is not a vertex of P(K).ﬂ

Lemma 3.5. Let the ordered triple {1,3j,h} be such tnat dij + djh =d,.
Then for any S¢Q(K)* in which i and h have rank 1 and 2 respectively, the
vertex of T(K)s is not a vertex of P(XK).

Proof. Let S be any acyclic selection with associated sequence
j(1),...,3(p) such that 1 = j(1), h = §(2), and j = j(q) for some 2 < q < p;

and let t° be the vertex of T(K)s- Then t;(l) = Lj(l) and

[«]

Siy T ™

e o ) ~
R TION tj(k-l) T dj(k-l),j(k)]’ k=2,...,p.
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Now let S* be the selection associated with the sequeace 1(1),...,4(p),

where L(1) = i = j(1), £(2) = j = j(q), and

j(k-1) k=3,...,q
(k) =
i) k=g+1,...,p

* . * = = o = o
and let t* be the vertex of T(K)S* Then tz(l) Lj(l) tj(l) tz(l)‘

For 2 < k < q, we show by induction that t% -For k = 2,

o]
Tk S B
o] o]
tj(q) = t£<2). Suppose ti(k) <

IN

ey = =5y oy Ly Y A, i@]

t;(k) for k = 2,...,r-1, and let k = r < q. Then by the induction hypothesis

(o)
ery S B Ly ey B ey * Y2, 5D}
= ¢° =
j(r-1) ()’

Fork = q+ 1, (3.9) holds and for ¢q +2 <k < p, (3.10) holds for
the same reasons as in the proof of Lemma 3.4, This proves that tz(k) < CZ(R)
fork=1,...,p.
Further, from the positivity of dkl for all k,4eK, it follows that
tI(Z) < ci(3) and tz(Z) = t;(Q) > t3(3) = t§(2). Therefore at least one
of the two inequalities ti(Z) < tz(Z) and t2(3) < tz(3) holds strictly. l
Thus from Lemma 3.3 it follows that t% is not a vertex of P(K).H
Theorem 3.6. The vertices of P(K) are precisely the vertices of the
cones T(K)S, SeQ(K)*, if and only if T(K) is regular,
Proof. The "only if" part follows from Lemmas 3.4 end 3.5. To prove
the "if" part, suppose T(K) is regular, and let t° be the vertex of the
cone T(K)s for some SeQ(R)* with associated sequence j(1l),...,j(p), where
p = lK‘. Suppose now that to = %(t1 + tz) for some tl, tzeT(K). We will

show by inducrion on k that for i = 1,2, t;(k\ = for k = 1,...,p, -/

o
®5 (k)
and :§(k) < :2(5) for L >k, for k = 1,...,p~1. For k = 1, the inequalities

<
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= 2 ° = i =
1,2, and the equation tj(l) Lj(l) imply that tj(l)

i 1
{ = 1,2, Further, t;(l) < tg(z) for all £ > 1, or else for some

i
ty 2yt

Ly
Le{2,...,p} we have

T i
Loy " 45w, S5@ T 4w, S T o

contrary to the first regularity condition, (3.4).

= = - i = 40 ' i i
Suppose for { = 1,2, k=1,...,r-1, tj(k) tj(k)’ and tj(k) < tj(z)

for all £ > k; and let k = r. Then ti(r) - :i(

e or else from (3.4) and
the induction hypothesis

i o _ .0
B <5 T -1 T Y-, i

i
* - T Ye-n, 10,

i i
a contradiction. Further if r < p, then for i = 1,2, t}(r) < tj(j) for all

L > r; or else there exists £ > r with t;(r-l) < ti(z) < t?(r) for i = 1 or

2, which implies

i i i
8- * 40,10 T 4w, S e T e, = fim

contrary to the second regularity condition, (3.5).
This completes the induction and proves the "if" part of the Theorem. ||

Example 3.1. Consider the clique K = {1,2,3} shown in Fig. 2, with

Ll =10, L, = 8, L, = 11; d12 =1, d13 =2, d21 = 2, d23 = 4, d31 = 32

3

2

1, d,. = 2.

— e
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Condition (3.4) is violated for the ordered pair {i,j} = {2,1} and

condition (3.5) for the ordered triples {2,1,3} and {3,1,2]}.

Table 1 lists

Table 1
Vertices t of T(K)
Sequences 31 & a:
associated ij P = 3 <3 4 -9
with S specified 21 21 * T3l
1,2,3 (10,11,15) (10,11,15)* (10,11,15)*
3,1,2 (13, 8,12) (13, 8,12)* (14, 8,12)*
2,3,1 (12,13,11)* (12,13,11)* (13,14,11)*
1,3,2 (10,14,12) (10,14,12)* (10,14,12)*
2,1,3 (10, 8,12)* (11, 8,13)* (11, 8,13)*
3,2,1 (15,13,11) (16,13,11) (16,13,11)*

*Vertices of P(X).

the sequences associated with the 3! = & acyclic selections Se¢Q(K)* and the

vertices of the corresponding cones T(K)s. Because the regularity condi-

tions are violated, only 2 of the 6 vertices of the cones T(K)S are vertices

of P(R): (12,13,11) and (10,8,12). For every other t, there exists some

/

t’ such that t’ < t. If we replace d,, = 2 by d,, = 3, condition (3.4)

21 21
is satisfied for all i,jeX, i # j, and condition (3.5) is violated only
for the triplet {3,1,2}. As a result, all but one of the vertices of the
cones T(K)s become vertices of P(K), the exception being (16,13,11) (since
there exists a vertex (12,13,11)). £ we also replace d31 = 1 by d31 = 2,
T(K) becomes regular, and as a result all 6 vertices of the cones T(K)S be-

come vertices of P(K).H

Next we turn to the facets of P(K).

4L, Facets of the Clique Polvhedron

Given a convex polyhedron C C:BF, an inequality ox > a, is said to

define (or induce) a k-dimensional face of C, if ox > o for every x ¢ C
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and gx = @, for k + 1 affinely independent points x ¢ C. Thus the inequality
ox > Qg defines a facet of C, if ox 2> ays for all x ¢ C, and ox = a for
n affinely independent points x ¢ C.

Let \K\ = p. Fori=1,...,p!, let s* be the ith acyclic selection

in < XK >, and let ji(l)""’ji(p) be the sequence associated with Si.

Further, let v’ be the vertex of the cone T(K)si’ i.e., let vt ¢ BP be
the vector whose components are defined recursively by
L. k=1
i, M,
i _ i
.1 Viok) T
! k=2,...,p.

i
maxuji(k): Yy, -1 T "ji(k-n,ji(k)} ’

Finally, let V be the p! X p matrix whose ith row is vi, and let
e = (1,...,1)T have p! components.
Theorem 4.1. The inequality ot > 1, where g, t am?, defines a facet

of P(R) if and only if o is a vertex of the polyhedron

Vo
F = ae]Rp .
o

v
o

v
o

Proof. ot > 1 defines a facet of P(R) if and only if (i) ot > 1 for

all teP(K), and (ii)at = 1 for p affinely independent points teP(K).
Condition (i) holds if and only if q¢F. Indeed, every vertex of P(K)

is present among the row vectors vi of V; and the extreme direction vectors

of P(X) are the rows of the identity matrix associated with the constraint

a 2 0. Furthermore, every row vi that is not & vertex ¢f P(K), is never-

theless contained in P(K). Hence ot > 1 is satisfied by all te¢P(K), if and .-

only if Vo > e and ¢ > 0, i.e., if and only if o¢F. _ /
Further, condition (ii) holds if and only if for some integer kefl,...,pl, !

hY
P(K) has k extreme points vi(n', h=1,...,k, and p-k extreme direction vectors
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e h=%k=+1,...,p, such that vi(h)a =1, h=1,,..,k and e o=
J(h)’ ’ sV ? ’ j(h)
aj(h) =0, h=%k+1,...,p. The "if" part of this statement holds since

vi(l)a = 1 and 3 (hy = 0 imply (vl(l) + ej(h)) a=1, k = k+1,...,p, and the

i(l)’. vi(k), vi(l) ,vi(l) A

501y 3(p)
independent. The '"only if" part follows from the fact that any teI(K) that

p points v vey + are affinely
is not a vertex of P(K) and satisfies gt = 1, can be represented as a posi-
tive linear combination of extreme points vi of P(K) th;t satisfy avi =1,
and extreme direction vectors ej of P(K) that satisfy eja = 0, where the
weights of the vi sum to 1. Thus (ii) holds if and only if for some
ke{l,...,p}, o satisfies with equality k of the inequalities via‘z 1 and
p-k of the inequalities aj > 0, such that the p inequalities in question
form a system of rank p; i.e., if and only if ¢ is a vertex of F.||

0f course, Theorem 4.1 remains true if all redundant inequalities are
removed from the system defining F. Because of the large number of constraints
that define F, Theorem 4.1 by itself does not seem to offer & practical way
of generating facets of P(K). When combined with the next Theorem however, it
provides an efficient way of obtaining those facet inducing inequalities with
few positive coefficients.

Theorem 4.2. Let < B > and < K > be cliques, with HCK, |H| = £ and
|®| = p, 2 <4 < p. The inequality oy > 1, where g, yeIRz, defines a facet
of P(H), if and only if the inequality (o,00t > 1, where (a,0), te rP, de-
defines a facet of P(K).

Proof. Necessity. Suppose ay > 1 defines a facet of P(H). Then there
extst [ affinely independent points yieP(H), i=1,..,4, such that each yi

is a schedule for < H >, and ayi =1,41=1,...,£, Each yl can be extended

5 i

to a schedule =~ for < K > as Zollows. If S(H)

-

is the selection in < H > de-
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that of K. Thus there are large classes of facets of P(K) that can be gen-
erated at & fixed computational cost, whatever the size of K. More generally,
the work needed to derive a facet inducing inequality for P(X) grows with the
number of positive coefficients of the inequality; and facets defined by in-
equalities with few positive coefficients are easy to generate.

Next we address the question of how one can derive a facet inducing
inequality with p positive coefficjients from one with p-1 positive coefficients.
Let < K > be a clique with lKl = p, let HCK with lHl = p-1, say
H={1,...,p-1}, and let V and W be the matrices whose rows are the vertices
of P(K) and P(H), respectively. Note that every row wi of W corresponds to

i

some row vk of V, where vk = (v, vkp)’ and the sequence associated with vk

assigns rank p to node p. For all the remaining rows of V, the associated

sequence assigns rank p to some node je{l,...,p-1}. Let R(V) and R(W)

denote the row index sets of V and W, where every row of V that corresponds
to a row of W preserves the index of the latter, i.e., the first lR(W)l ele-
ments of R(V) are those of R(W).

For any matrix M, let det(M) denote the determinant of M, let MS denote
the matrix whose rows are those rows of M indexed by S, and let MJ be the
matrix obtained from M by substituting a column of 1's for the jth column.

Theorem 4.3, Let WS be a (p-1)x(p-1) submatrix’'of W such that the in-

equality ot > 1, where the components of o are

» j=1,...,p-1
(4.2)

’ J = p,

induces a facet of P(K). Further, let
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det(vP . ) det (VR (. 1)
%.3) sulkl’ _ .o suit}

det(VsU{k}) 1 R(V)'S de‘:(VSL‘{i})

Then the inequality Bt > 1, where the components of p are

§)
5w oot sty
j det(Vv

su{kh

(&.4)

ta.

= 1’~-'9Pa

also induces a facet of P(K); and if the minimum in (4.3) is positive and

unique, then 8, >0, § = 1,...,n,

h|
Proof. Since the inmequality ot > 1 induces a facet of P(K), it also

induces a facet of P(H) (Theorem 4.2), hence the vector o = (al,...,ap_l)

is a vertex of the polyhedron o= {e|We > e, o > 0} (Theorem 4.1).

We have to show that if (4.3) holds, then B defipned by (4.4) is a vertex

of F' = {B|VB > e, B > 0}. Then by Theorem 4.1, the inequality Bt > 1

induces a facet of P(K).

Consider the system of equations
I3 i
(4.5) vB=1 , 1ieS

where v* is the ith row of V. Since SCR(W), each vl is of the form (wi, vip)'
There are two possible cases,.

Case 1. There exists no BcFV satisfying (4.5) with SP > 0. Then there
exists some keR(V)\S such that (4.5) together with v'B = 1 implies B, = 0
and has the unique solution B = o, Hence the minimum in (4.3) is 0 and B = ¢

. v
is a vertex of F .

Case 2. The minimum in (4.3) is positive, i.e,, there exists BcFV
satisfying (4.5) with Ep > 0. Then (4.5) defines an edge of Fv, one of

whose endpoints is £ = o, whereas the other endpoint is given bv the smallest
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value of SP for which either (i) some inequality Bj >0, je{l,...,p-1},
becomes tight; or (ii) some inequality vis > 1, ieR(V)\S, becomes tight,

Let B; and Bi be the values of Ep for which (1) and (ii), respectivelyv, occur.
We claim that E; > Bi. For suppose B; < Ei, i.e., there exists a vector
£%¢ RP that satisfies (4.5) and 8; = 0 for some j e{l,...,p-1}, and such that

*

v'6° > 1, ¥ {eR(V)"S. Then (B]s--sBY 1o
J*'l

FV('\{B\Si = 0}, hence we have viﬁo = 1 for p-1l of those inequalities indexed
- %

o]

85 41+

.,5:} is a vertex of
by ieR(V)\S, for which j, has rank p in the sequence defined by vi. But this
contradicts the assumption that B; < Bi.

Now Si is the value defined by (4.3), namely the pth component of the
solution B, as defined by (4.4), of the system vie = 1, ieSU {k}, where
keR(V)\S is the index of the inequality that becomes tight for Ep = Bi. Hence
g is a vertex of Fv, i.e., Bt > 1 induces a facet of P(K),

Further, if the minimum in (4.3) is both positive (as in case 2 above)
and unique, then aj > 0 for all j, since otherwise, as shown above, the mini-
mum in (4,3) is not unique.“

In the following we will list all facet inducing inequalities for P(K)
with 2 or 3 positive coefficients. But first we examine fhe trivial facet

inducing inequalities, i.e.,, those having a single positive coefficient.

Proposition 4.4, For all jeK, the inequality tj > Lj

induces a facet

of P(K).
Proof. W.l.o.g, we assume that Lj >0 for all j. This can always be

guarénteed by shifting the origin of the coordinate system, which does not

affect the facial structure of P(K). Then the vector o defined by o, = 1/L1,

3

@ =0, ¥1 43, {s a vertex of T = {«|Vy > e, o >0}, where the rows of V
are the vectors vi defined by (4.1). Hence from Theorem 4.1, the inequality

ot > 1, that is t, > L., induces a facet of P(K).L

3 3




Next we turn to facet defining inequalities with two nonzero coefficients.

Theorem 4.5. Let <K > be a clique. For any i,jeK, i # 3,

(4.6) ( L, -~ L )ti + (d

d ., + + - - -
13 1" Lj - Li):j ; d,.d - L.d L.d

it 15731 i 3d jois

is a nontrivial facet inducing inequality for P(K) if and only if

4, -d,, - L .
4.7 dJl < Lj { < dij

Procf. From Theorem 4.2, (4.6) defines a facet of P(K) if and only
if it defines a facet of P({i,j}). From Theorem 4.1, this is the case if
and only if the point ao = (a:, a;), where

+L, - d -
_ dii L1 Lj o _ ji+Lj Li

., T [0 = H)
d,. +L.d +L.d ’ d +L.4d..+L.d
I R TR A TR LT T AR TARIL Y

is a vertex of the polyhedron F({i,j}) defined by the inequalities
Liai + max{Lj, L, + dij}aj'z 1
. +4d,. L2
(4.8) max{Li, Lj jl}qi + LjaJ >1

> >
2 0, aj >0

If (4.7) holds, then the maximum in the first and second inequalities
of (4.8) is attained for Li + dij and Lj + dji’ respectively, and o is the
unique solution to the system obtained by requiring these two inequalities
to be tight. Since ao also satisfies the remaining two inequalities of
(4.8), it is a vertex of F({1,j}) and hence the inequality (4.6) defines
a facet of P(K). Further, 4f (4.7) holds, then a; > 0 and °§ >0, i.e.,
the facet is nontrivial.

On the other hand, if L, - Lj 2 dij or Lj - L2 dji (both inequalities

cannot held at the same time), then the maximum in the first or second in-
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equality of (4.8) is attained for Li or Lj’ respectivelv, and the solution

to the svstem of two equations is oy = 0, o, = 1/L, in the first case, qj = 0,

3
ay = l/Li in the second; hence in these cases gt > 1 coincides with one of
the two trivial facet defining inequalities associated with the indices i,j,
and (4.6) does not induce a facet.)
Note that (4.7) is the regularity condition (3.4) for the clique
< {1,3} > since |{1,3}| = 2, condition (3.5) does not apply. Thus regu-
larity of the clique < {1,j} > is a necessary and sufficient condition for
the polyhedron P(K) (where < K > is any clique containing {1,j}) to have a
facet inducing inequality ot > 1 with oy >0, oy >0 and o = 0, #k # 1,j.
Next we characterize the facet inducing inequalities with 3 nonzero
coefficients for an arbitrary clique < K > with ‘K‘ = p. From Theorem 4.2,

an inequality of the form o > 1 induces a facet of

t + o, t + g, t
PR PR PRE PR P B
P(K) if and only if it induces a facet of P({jl, 35 j3]), the clique poly-
hedron defined on the vertex set {jl, j2, j3}. From Theorem 4.1, this is

the case if and only if o = (¢ , &. ) is a vertex of the polyhedron

s O
17 737 i3
3
F={oq¢eR |Va > e, ¢ >0},

where eenf and V is the 6 X 3 matrix whose rows are defined by (4.1) for

p = 3. To simplify the notation, we assume that {jl, 3y j3} = {1,2,3}.
i .

Denoting by Py the sequence (permutation) associated with row v= of V, we

will assume that the rows of V, indexed by R(V), are ordered so that

Pl = (1’2:3) P[& = (1?3!2)
pz = (29311) P5 = (2’1)3)
By = (3,1,2) pg = (3,2,1).
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Further, we will assume that < {1,2,3} > is regular; which implies

that the matrix V is of the form

// Ly L +dp Ly #d1p * ¢y
L, + dyy + dy L, L, +d,,
v - Ly +dy Ly +dg; *+ 4y L3
L Ly +dy3 +dg L+
Ly +dn L Ly +d5 * g3
Ly dyp +dy Ly +dj, Ly

As in Theorem 4.3, we let V{i k, 2} denote the 3 X 3 matrix consisting of
| R ]
rows i,k,4 of V, and let V%i,k,ﬁ} be the matrix obtained from V{i,k,i} by
substituing 1 for every entry of column j.
Theorem &4.6. Let K = {1,...,p}, let < {1,2,3} > be regular, and let every
4 X &4 submatrix of (V,e) be nonsingular. Then P(K) has exactly four facets

induced by inequalities gt > 1 with o, > 0 for j = 1,2,3, ay = 0 for

]
j=4,5...,p. In particular the coefficients of the four inequalities

are defined by . '

= j ° = 2
(4.9) @y det(V{i’k’z})/;et<vii’k’l}> , 5 =1,2,3,

o = 0, j = 4,5,...,p, where the four triplets i,k,LeR(V) are {1,5,r}, {2,6,s1,
{3,4,t} and {r,s,t}, with {r,s,t} = {2,3,1} or {4,5,63.

Proof. From Theorem 4.2, an ipequality ot > 1 with aj =0, j =4,5,...,p,
induces a facet of P(K), if and only if the inequality altl + “2‘2 + a3t3 >1,
induces a facet of P({1,2,3}). From Theorem 4.1, this is the case if and

only if o is a vertex of the polyhedron F = {a¢ RB‘VQ >e, o >0}
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According to a classical result of Steinitz, the number of vertices
of a polytope (bounded polyhedron) inIR3 is bounded by 2f - &4, where f is
the number of facets; and this bound is attained when the polytope is simple
(totally nondegenerate), i.e., when each vertex lies on exactly 3 facets,
or, equivalently, on exactly 3 edges (see for instance Grunbaum [5], p. 190).
Now F is never simple, since Vi1 = Y410 Vo2 = V52 and Vay = Vea, and as a
result each of the 3 vertices having a single positive component (nameiy:
o = 1/L1, a, = ay = 03 a, = 1/L2, a; = ay = 0; and ag = 1/L

lies on 4 facets, i.e., is degenerate, if it exists at all (i.e., if L, # 0).

3
Furthermore, F is unbounded. We therefore define a polytope (bounded poly-
hedron) F*, obtained from F by

(i) assuming L, > 0, j = 1,2,3 (this guarantees the existence of

3

the 3 vertices with ome positive component);

(11) replacing Lj by L, + ¢ > Lj’ j=1,2,3, in rows 4,5,6 (this

b
makes those same 3 vertices nondegenerate); and

(1ii) adding the inequality o +a, + ay <M, where M > l/Lj, j=1,2,3
(this makes F* bounded).

Given the regularity of < {1,2,3} > and the assumption that every &4 x &
submatrix of (V,e) is nonsingular, F* ic simple; and listing its vertices
allows us to list those of F,

Since F* has 10 fascets (defined by the 6 imequalities Vialz 1, the 3

inequalities o, > 0, and the inequality introduced in (iii)), it has 2f - 4 = 16

3
vertices, Of these, 3 1lie on the plane o + ay + ay = M and are therefore
not vertices of F. Another triplet consists of the 3 vertices with exactly

one positive component; these are also vertices of F, A third triplet of

vertices of F*, also shared with F, are those with exactlv two positive

P
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components, that give rise to the facet defining inequalities (4.6) for the
corresponding 2-clique polyhedra. A fourth triplet consists of those ver-
tices of F* having two positive components, whose counterparts in F have a
single positive component (because of the degeneracy caused by Vi1 = Vaye
Vos = Vsys Vaa = v63). This is a total of 12 vertices of F* (6 vertices
of F) with one or two positive components (see Table 2, in which the facets
are numbered from 1 to 6 for via 21, i=1,...,6; 7,8,9 for o, > O,
j=1,2,3; and 0 for o + o, + oy <M. Thus there are 4 facets left,
each with 3 positive components.

From Theorem 4.3, there is a vertex with 3 positive components ad-

jacent to every vertex with 2 positive components. Two vertices (of a

3-dimensional polytope) are of course adjacent if and only if they share

Table 2
Vertex Positive Lies on Vertex Positive Lies on
of F* components facets of T components facets
1 j=1 0,8,9 - i=1 1,4,8,9
2 j =2 0,7,9 - '
3 ji=3 0,7,8 -
4 j=1 1,8,9 1 j=1 1,4,8,9
= 2,7,9 2 j=2 2,5,7,9
6 j=3 37,8 3 j=3 3,6,7,8
7 j=1,2 1,5,9 4 j=1,2 1,5,9
8 j=2,3 2,6,7 5 j=2,3 2,6,7
9 i=1,3 3,4,8 6 j = 1,3 3,4,8
10 j=1,2 2,5,9 2 j=2 2,5,7,9 .
11 j=2,3 3,6,7 3 j=3 3,6,7,8 /
12 j=1,3 1,4,8 1 j=1 1,4,8,9 o
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two facets. Thus the vertices with 3 positive components adjacent to
{1,5,9}, {2,6,7} and {3,4,8} are of the form {1,5,r}, {2,6,s} and {3,4,t],
respectively; whereas those adjacent to {2,5,9}, {3,6,7} and {1,4,8] are
of the form {2,5,u}, {3,6,w} and {1,4,z}, respectively. Clearly, at least
3 of these 6 potential vertices are distinct, and we krow there exists a
Ath vertex with 3 positive components. Finally, every vertex is adjacent
to exactly 3 other vertices, Checking all possible combinations shows
that there are only two ways of satisfying these requirements, namely if
{r,s,t} = {2,3,1} and {u,w,z} = {1,2,3}, or if {r,s,t} = {4,5,6} and {u,w,z} =
{6,4,5}. 1In the first case, there exists a vertex {1,2,5}, adjacent to
{1,5,9} and to {2,5,9}; a vertex {2,3,6}, adjacent to {2,6,7} and {3,6,7};
and a vertex {1,3,4}, adjacent to {3,4,8) and to {1,4,8}. The 4™ vertex

with 3 positive components is in this case {1,2,3}, adjacent to {1,2,5},

{2,3,6} and {1,3,4}. In the second case, there exists a vertex {1,4,5],
adjacent to {1,5,9} and {1,4,8}; a vertex {2,5,6}, adjacent to {2,6,7} and
{2,5,9}; and a vertex {3,4,6}, adjacent to {3,4,8} and {3,6,7}. The fourth
vertex in this case is {4,5,6}, adjacent to {1,4,5}, {2,5,6} and {3,4,6].
Thus the only two possible facial structures of F* are those represented

1
Note that the polytope F*, which is bounded and totally nondegenerate

by the graphs G¥ and G; of Fig. 3.|;

(simple), has 16 vertices and 24 edges. The (unbounded) polyhedron F has

at most (i.e., when the only degenerate vertices are those with 1 positive
component) 10 vertices and 18 edges, as shown in Fig. 4, where G1 and G2

are the "graphs" of F (the 3 unbounded edges of F being represented by "half-

edges" of G, and G,).

1
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Thus P(K) has at most & facets induced by inequalities ot > 1 with
o >0 for j = 1,2,3. The regularity of < {1,2,3} > is a necessary condi-
tion for the existence of 4 distinct facets of this type, but is not by
jitself sufficient. For sufficiency we need, besides regularity, the absence

of any singular 4 x & submatrices of (V,e), as assumed in the Theorem,

Example 4.1. Let G be the disjunctive graph shown in Fig. 5.

G has two disjunctive cliques, induced by the nc.- rets K; = {1,6}
and K, = {2,4,7}, respectively. For < K, > we have L, = L(0,1) = 0,
L6 = L(0,6) = 1, and d16 = 2, d61 = 3, P(Kl) has 3 facets, defined by the
inequalities t, 2 0, t, 2 1 (Proposition 4.4), and t, + 4t6 > 8 (Theorem 4.5).
For < K

>, we have L, = L(0,2) = 2, L, = L(0,4) = 2, L, = L(0,7) = 3,

2 2

and d,, = 2, dpy = 4, ;5 = by d,0 = 3, dyp =5, d;, = 6. We see that <X, >

is regular, and the matrix defining the polyhedron F is




P(Kz) has 10 facets: 3 of them are defined by the trivial inequalities

t, >2, t, >2, t, >3 (Proposition 4,4); another 3 by the inequalities

7

2 4

t, + 2t > 10

tz + 2t7

28, + 7t, > 39

14

v

with 2 positive coefficients (Theorem &4.5); and, finally, 4 facets are

defined by inequalities with 3 positive coefficients (Theorem 4.6):

5t, + 16t, + 4t, > 102

4 7
£, + St:4 + 19t7 > 115
13t, + 3t, + 24:7 > 206
£, + vt4+ 3:72 27.

These 4 inequalities correspond, in the notation of Theorem 4.6, to
the vertices {1,2,5)}, {2,3,6}, {1,3,4} and {1,2,3}, respectively, of F.
Here we have multiplied each inequality with the determinant in the

denominator of the expression (4.9) in order to express them in incegers.H

5. Lifting the Facets of the Clique Polvhedron

In this section we address the question as to how the results of the
previous sections can be used to derive facet inducing inequalities for the

general scheduling polyhedron P = clconv T introduced in section 1. 1In
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define t° by t? = L(O,j)s. Clearly, t° is a schedule in G. Further, by
the definition of S, i(O,j)s = L(0,3) for all je{£}UB(i), hence t° satis-

fies t, = L(0,1). The next n-q schedules th, h=1,...,n-q, are defined

recursively by t? = t?_l for jeN\{n-h+1} and t? = t?-l + 1 for j = n-h+l.
Each of these vectors is a schedule that satisfies ti = L(0,1), Then the

(n-q) x n matrix whose rows are the vectors th - t°, h=1,...,n-q, is of

the form M = (Ml’ MZ)’ where Ml is (n-q) x q, while M, is the (n-q) X (n-q)

2
nonsingular matrix

Thus M has rank n-q, and the n-q+l schedules th are affinely independent.“

Corollary 5.2. The inequality ti > L(0,1) defines a facet of P if and
only if B(1) = 0.

Next we address the question of 1ifting the facets of clique polyhedra.
We need a couple of definitions and some auxiliary results.

Let < K > be a clique, S(K) an arbitrary acyclic seléction in K, and

< K, > the maximal clique containing < K > . As before, let M be the index

4
set of the maximal cliques of G. We will say that the selection

S = U S(Kr)
reM

i{s a conformal extension of S(K) to G, if it satisfies the following
requirements:
(1) S(Kﬁ) is any acyclic extension of S(K) to < KL > , such that, if

1ek and ¢k, K, the rank of 1 in S(K,) is less than that of j.
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(1) For reM {4} such that KrfﬁB(K) = 9, S(X) is any acyclic selec-

tion in < Kr >,
(i1i) For reM\{2} such that KrfﬁB(K) # 9, S(K) is any acyclic selec-

tion in < Kr > such that

() 1if ieR_(B(K) and jexr\B(K), the rank of i in S(R)) is less than

that of j;
gy if jeKrfWB(i) for some iek, the ramk of j im S(Kr) is no greater

than the rank of i im S(K); and

(y) 1if i,hek, j(i)eKrfWB(i), j(h)eKrfTB(h), and the rank in S(R) of i

is less than that of h, them the rank in S(Kr) of j(1) is less than that

of j(h).
For any ieN, B(i) 1is the set of nodes jeN\{i} 1lying on the

(unique) path P(0,i) from O to 4 in D. Therefore every clique
has at most one node in B(i). Let M(i) be the index set of cliques
that have such a node, i.e., M(i) = {reMlKrﬁB(i)#(ﬂ, and let {jt(i)} =

KrﬂB(i).

A (not necessarily maximal) clique <K > of G will be called
dominant, if for every i,heK such that M(i) N M(h)#), and every
TeM(1) N M(h),

{5.1) +L(jr(h),h) < L(jr(i),i) +d., .

4y ()i, )

The term "dominant' seems justified by the properties of these cliques.

lLemma 5.3. Let < K > be a dominant clique in G, and S(K) an acyelic

selection in < K > . Then every conformal extension S of S(K) to G has the

property that, if 1eK, 3e{0}UB(K) and i is reachable from j in the digraph

D, = (No, AO\JS), everv longest path from j to i im Ds contains onlv arcs of

S
A°UsS(R).
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Proof. Let S be & conformal extension of S(K) to G, and for some ieK,

je{0} UB(K), let P(j,i)s be a longest path from j to i in D Suppose now

X
that P(j,i). contains an arc of S\S(K); in particular, let (3153,) be the
last such arc encountered when P(j,i)s is traversed in the direction of its
arcs, and let (jl,jz)cS(_Kr). Then from property (iii) of S, for k = 1,2,
jkcB(K); in particular, jk lies on the unique path P(O,ik) in D for some

i, ¢K, and (11,12)¢S(K). Further, if < K > is dominant, dj 3 + L(jz,iz) <

k
1°2
L(jl'il) + diliZ’ and replacing the segment of P(j,i)s from j1 to 12 by

the path P(jl,il)LJ{(il,iz)} yields a path from j to i in D  longer than

P(j,i)s. This proves that P(j,i)S cannot contain any arc of S\S(K).H
Theorem 5.4, Let < K > be a dominant clique in G, y° a schedule for

< K > with associated selection S(K), and S a conformal extension of S(K)

to G. Then the vector t°¢ R" defined by

v jeK
(5.2)  t] =< 40,0 JeB(K)

U - L(j,n)g jeN\KU B(K)

is a schedule for G if U is sufficiently large to satisfy, ior any
selection V in G, the condition

;
(5.3) U >max {4(0,n)y, max {y§+ 40,m 0]
. JCK

Proof. We show that t® is a schedule for G by showing that it
is a schedule for DS' For this purpose we examine all the arcs of Ds

and show that t° satisfies the associated inequalities, All pairs 1i,]

considered below are such that (i,3)eAlUS.
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If both i and j belong to any one of the three sets X, B(K) or
NMKUB(K), then substituting the values of tz and t? given by (5.2)

into the inequality tz - tz > dij shows the latter to be satisfied,

For 1eB(K), jeN\KUB(K), c‘j’-t‘i’ = U-£(j,n)g - £(0,1)¢ > d

U>20,m)g > 400,0)¢ + dy; + 4(4,m)5g.

15 since

o

s . - -_Oz_‘. o
For ieK, jeN\KU B(K), tj tg U L(J,n)s -y 2 d

ij,,since r > yg -+
L(i,m)¢ > y: g+ LG,

It remains to be shown that the constraints are also satisfied for
ieB(K), jeK; for all remaining ordered pairings of the three index sets
used in the definition of to, the corresponding arc sets are empty.

Now for ieB(K) and jeK, tg - t: = y? - L(O,i)s. Let the rank of node j

in S(K) be k. The schedule y° satisfies the inequalities y;(h) 2> L(0,j)h)),

_ o _ 0 - -
h=1,...,p, and yj(h) yj(h-l) > dj(h-l),j(h)’ h 2,...4p, where p [K\
and h is the rank of j(h) in S(K)., It is not hard to see that these inequal-

ities, plus the fact that 3 = j(k), imply

(56 y{ > max {10,300, L(0,3Ge-1)) + 4

k
L(C,3 (1)) + T d
h=2

J(k-1),3Ck)’"""?
1 . _

jch-1),3¢h) J

The expression on the righthand side of (5.4) represents the length
of a longest among those paths from O to j in DS’ which use only arcs
in AOLJS(K). Since < K > is a dominant clique, from Lemma 5.3 this
is equal to L(O,j)s, the length of any longest path from 0 to j in DS'
Hence we have 7

[o] (o] (o] A
tj-ti = yj - L(O’i)s _> L(O;j)s - b(o,i)s 2 dij.

T
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Since t° satisfies all the inequalities associated with the arcs of

DS’ it {s a schedule for DS’ hence for G.“

We are now readv to state the main result of this section.

Theorem 5.5. Let < K > be a (not necessarily maximal) dominant
clique of G, with |K\ = p > 1. If the inequality oy > 1, where a,yeimp, de-
fines a facet of P(K), then the inequality (q,0)t > 1, where (a,O),thRn, de-

fines a facet of P.

OQutline of proof If the inequality oy > 1 defines a facet of P(K), there

exists a set of p extreme points yi, i=1,...,p of P(K), such that ayi =1,
i=1,...,p.

Since < K > is dominant, from Theorem 5.4 ev;ry yi has at least one con-
formal extension ti to G. From each such schedule ti for G, additional sched-
ules can be constructed by adding a small positive scalar to certain components.
Using this approach one can in fact construct n a8ffinely independent schedules
ti for G, each of which is an extension of some schedule for < K > and there-

fore satisfies ati = 1, This proves that the inequality (o,0)t > 1 induces

a facet of P. Details are given in an Appendix.”

6. Identifying Violated Inequalities

For every clique < K > of G, let 5F(K) be the set of all facet inducing
inequalities for P(K) = clconv T(K), and let ¥ = UF(K), where the union is
taken over all cliques of G. 1In order to be able to use the inequalities of
v as cutting planes in an algorithm for solving (P), one needs a way to solve

the following

Constraint Ideatification Problem (CIP). Given some :°e:m“ that satis~

[+]

fies t?- t? >t (1,1 er, & > 0, ieN, but violates some of the disjunc-

i i3’
tions defining T, find an inequality in ¥ violated by t°, or show that none

exists.
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Let t°¢ R" be as defined in CIP, let <K > be a clique at least one
of whose disjunctions is violated by to, let F(K) be the polyhedron defined
in Theorem 4.1 relative to < K >, and denote by tx the vector whose compon-

ents are tj’ jeK., Further, let do be defined by
oo o
(6.1) tea = min{tKalqu(K)}.

Then if tfa® < 1, the inequality “otx > 1 obviously cuts off t° and
CIP is solved. Otherwise we have

Proposition 6.1. If tgaoiz 1, tzeP(K), i.e., t® satisfies all the in-

equalities of F(K).

o)

Proof. If‘toao > 1, then from the definition of ao, th

K
vertex g of F(K)J

> 1 for every

Thus the procedure that suggests itself for solving CIP is to choose
some clique < K > at least one of whose disjunetions is violated by tﬁ, and
solve (6.1), However, in the absence of additional information we may well
choose a clique < K > for which C;QO >1., Also, if < K > is large, solving ’
(6.1) is expensive.
The next Theorem gives a sufficient condition for #(K) to contain an
inequality violated by t°. The condition occurs frequently and is easy to
check, Furthermore, the Theorem restrict:. the size of < K > to the mini-
mum subject to the above condition,

Theorem 6.2. Let t° be as defined in CIP, Let < K > be a (not nec-

essarily maximal) clique, with |K| = p and t;(l) < e £ t;(P)' such that t°

satisfies . ) ’ /
°

(6.2) ty(ny = L0,3(1),
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o

(6.3) 3~ T 451,30

o]
tj(P) <t

and, if p > 3,

o ) - -
(6.4) o = Saed T G, a0 0 K= 2eeespel

Further, let ao be defined by (6.1). Then the inequality “t >1

K
cuts off t°.

Proof. We prove by contradiction that tﬁd’(K). It then follows that
7 (K) contains an inequality that cuts off t°, and from (€.1), aotK >11is
such an inequality.

Suppose tzeP(K). Then there exist vectors L;eT(K) and scalars xi >0,

1=1,...,p+1, such that

o pt+l 1 B+1}\ .
= z toA . 2 = .
RS 1 !
Since tj(l)'z L(0,3j(1)) for any tKeT(K) and t;(l) = L(0,j(1)), we have ‘
i _ ,0 - .
tj(l) = tj(l)’ i=1,...,ptl. Similarly, since tj(k) > max{L(0,j(k)),

£ * 401y, 500 TF B EIEO and £l = el gy F Ay gy g0
k =2,...,p-1, it follows that ti(k) - :;(k), k = 2,...,p-1, whenever p > 3.
But chen from (6.3), for at least one i¢{l,...,p+l}, we have t;(P) < t?(P) <
t;(p-l) + dj(p-l),j(p) = t?(p-l) + dj(p-l),j(p)’ contrary to the assumption
that tLer(k), 1 = 1,...,pHl. Thus €2 2 (K)..|

Condition (6.2) of Theorem 6.2 requires that the smallest component

of tE be equal to the lower bound on its value in any schedule. This condi-

tion is always met by a basic schedule t° for those cliques < X > such that

no node of B(K) is contained in any disjunctive clique. For other cliques,

the condition may or may not be satisfied, but it is of course easv to check.




(A

The remaining conditions simply state that a minimum size clique to be

considered is the one with node set K = {j(1),...,j(p)], where 3(1) is the

node for which t§(1) = L(0,3(1)), and j(p) is the first node in the sequence

o
defined by t £ hich the conditi t. -t >d
efined by or whic e condition 3(p) j(p-1) 2 Y5(p-1),3(p) (and
hence the corresponding disjunction) is violated.

When there is mo clique for which the conditions of Theorem 6.2 are

satisfied, there is no guarantee that Qo defined by (6.1) cuts off t°. In such

cases it is a reasonable heuristic to choose a clique for which (6.3) and (6.4)

are satisfied, while tj(l) - L(0,5(1)) is small (in comparison with other
cliques), and which has not yet been used to derive a cut.

Example 6.1. Consider the disjunctive graph G of Example 4.1.

Minimizing tg subject to £ -ty 2 dij, (i,5)er and t, >0, feN, yields

t° = (0,2,0,2,0,1,3,6). Since c? = 1(0,1) = 0 and tz =1<e)+ . = 2,

the clique induced by {1,6] satisfies the conditions of Theorem 6.2. Thus
we solve

min °°1 + 106

E.t. Oal + 206 P 1

4y +la6>1

1
oy ag 2 0

1
and find (Q%, 06) = (1/8, 1/2), which yields the inequality

+4t, > 8

f1 7 %%
violated by t°. Since < {1,6] > 15 & dominant clique, this inequality
induces a facet of P. Minimizing t7 subject to the same constraints as
before, plus t, +4t, > 8, ylelds & (0,2,0,2,0,2,4,6),

1_ 1 1
Since t, = L(0,2) = 2 and t, < tz + dZ& = 4, the clique induced by

{2,4] satisfies the conditions of Theorem 6.2. Solving




min 202 + 2a
s.t. 2a2 + 40&

6Q2 + 2°4

v

v

ays o 2

"
yields (q;, ai) = (1/10, 1/5), and the inequality

2

t, + 2t, 210

violated by cl. Again, < {2,4} > is a dominant clique and hence the inequality

induces a facet of P, Adding this inequality to the earlier constraint set

on t and minimizing t, yields t2 = (0,4,0,3,0,2,4,7).

The conditions of Theorem 6.2 8re no longer satisfied, since t? > L(0,3)

for § = 2,4,7. However, each of the cliques not yet used to derive & cut,

i.e., {4,7], (2,7} or {2,4,7}, provides an inequality that cuts off t2 (this

can be seen by checking the list of facet-inducing inequalities for P(Kz) in

Example 4.1). 1In particular, if we take the clique {2,4,7}, then solving

min 202 +
5.t. 2u2 +
1002 +

802 +

20, +

6a2 +

1302 +

yields (a;, 02, o;) = (13/206, 3/2p6, 24/206) (with 5, = 0 for i = 1,3,4),

and the (facet inducing) inequality v

131:2 + 3t4

which cuts off :2.1\

4a4

AQL

204

IOQ4

IZQL

+ 2‘0:7

+ &g

7
+ 70, > 1
Cses I
+ 3a7 >1
+ 6a7 >1
+ 10a7 21
+ 30,21
o a7 20,

> 206,
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Appendix: Proof of Theorem 5.5.

We will make use of the following auxiliary result:

Lemma 5.6. Let < K > be a dominant c¢clique of G, yo an extreme point of
P(R) with associated selection S(K), and S a conformal extension of S(K) to G.
Further, let t° be the extension to G of y° defined by (5.2), and let keK be
such that yz > L(0,k). Then every path P(i,j)s in DS
ie¢B(k) and such that S drs for all (r,S)GP(i,j)s; terminates in some
jeB(K).

Proof. Let P(i,j)s be a path in DS originating with some iéB(k) and such
°

1 0 °
(longest) path P(O,i)s from 0 to { in Ds-such that ts - tr = drs for all
(r,s)eP(O,i)s. It then follows that the path P(O,j)s:=P(0,i)slJP(i,j)s is a

longest path from 0 to j in DS, since t: - t: = drs for all (r,s)eP(O,j)s. Now

originating with some

that tg -t = drs for all (r,s)sP(i,j)s. Since ¢t L(O,i)s, there exists a

suppose je¢K. Since < K > is a dominant clique of G, it then follows from Lemmna
5.3 that P(0,))g contains only arcs of A°US(R), i.e., is of the form P(0,k) U
P(k,j)s, where P(0,k) is the (unique) path from 0 to k in D. But thean P(0,k)

is a longest path from 0 to k {in DS and tz = L(0,k), contrary to t; = yg >
L(0,k), as assumed in the Lemma. Thus j¢K.

Suppose next that jeN\KUB(K), and let (r,s) be the (unique) arc of P(1,,3)g
such that reB(K), seN'\KUB(K). Then from the definition of t°, :: - t: > drs’
contrary to our assumption about P(i,j)s. This proves that j¢N'KUB(K).
Consequently jeB(K).!

Proof of the Theorem. Let yi, i=1,...,p, be extreme points of P(K),

each of which satisfies oy = 1, We will cortract n schedules ti for G, each
of which is an extension of one of the p schedules y1 for < K >, and therefore
satisfies (¢,0)t = 1. We will then prove that these n vectors tic‘Rn are affine-
ly independent, by showing that the (n-1) X n matrix whose rows are the vectors
ti - tl, i=2,...,n, 18 of full row rank.

W.l.0.8., we assume that the numbering of the nodes of G is such that
K= {1,...,p}, B(X) = {p+l,...,q}, and N'RUB(K) = {q+1,...,n}.

(i) TFirst, we extend to G the p affinely independent schedules yi,
i=1,...,p, for <K > To this end for { = 1,...,p we let S(k)i be the selec-

tion in < K > associated with yi, and S, a conformal extension of S(K)i to G,

i




A2

with the proviso that the arcs of Si chosen freely under rule (ii) of the
definition of a conformal exteansion (see section 5) are the same for all
i¢{l,...,p}. Next, for i = 1,...,p, we let ti be the extension of yi to G de-
fined by (5.2) for § = Si’ with the proviso that the scalar U used in the defini-
tion of ti be the same for all ke{l,...,p}. The fact that the vectors ti defined

in this way are schedules for G follows from Theorem 5.4. WNote that our specifica-

tions for S, and t' imply that £(j,n)g = £(j,n), snd tl = c;, je\RUB(K),

b
{=2,...,0. L i 1 .
Subtracting the vector t~ from each of the p-1 vectors t°, { = 2,...,p,
yields the (p-l) X n matrix Ml whose rows are ti - tl, i=2,...,p, and which
is of the fom M1 = (Mll, M12’ Q). Here Mll is the (p~1) x p ful} row rank

matrix whose rows are the p-l linearly independent vectors yi -y ,1=2,...,p,
M12 is (p-1) x (gq~p), and 0 is the (p-1) x (n-q) zero matrix.

(i1) The next gq-p schedules ti, i =p+tl,...,q, are generated as follows,
For every node keK, there exists at least one among the p vectors yi chosen at
1(k), such that yi(k) > L(0,k). To see why

k
this is true, notice that if yi = L(O,k) for i = 1,...,p, then the p vectors yi

the beginning of this proof, say y

lie in the (p-2)-dimensional subspace of RP defined by the two equations oy = 1

and Ve ™ L(0,k), hence they cannot be affinely independent,

Now let S(K)i(k) be the selection in < K > associated with yi(k)

1(k)

s S
the extension to G of
vt defined by (5.2) for § = Syy- FOT 1eB(K), let A1), ) be the set of
nodes jeN reachable from i (including i itself) by a path P(i,j)s in DS ’

ik
such that for every (r,s)eP(i,j)s s ti(k)- ti(k) = drs’ and let( ) 106

1 (k) s r

ik)
a8 conformal extension to G of S(K)i(k)’ and t

Then from Lemma 5.6, A(B(k))i(k) «B(X), k=1,.,.,p, and since fer each

ke{l,...,p} by definition A(B(k)) contains B(k),

1(k)

p t
U A(B(k)) = B(K).
kel 10k Y

w.l.0.8., let the g-» nodes of B(K) be numbered in such a way that
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AGB())g gy = (oHl,e.0p + By

AB(2))y () MBM) gy = P+ 8y + 1,.c,p * 8]

p-1
A(B(p))i(p)\#lA@(r))i(r) =P+, *L.p+ B,

with p + Ep = q; and, in addition, if i,je{p + sk_l +1,...,p + sk} for some
ke{l,...,p} (where we define B, = 0) and (i,j)eAlJS(K)i(g), then i < j.
We then define the vectors tp+h for h = 1,...,31 by

1(1)
t + y Y=p+ B, -bhtl,...,p+ B
ot _ % 1 1

3 A(D) , otherwise

with 0 < < <1, h = 1,...,61; and for h = Bk-l + l,...,Bk, k =2,...,ps by

PR t§(k) +e , delp+ B+ Be = b Hloeeep * 5k}"’;(B(k))i(k) 
. ti(k) otherwise ,
where0<;h<1,¥h, and
k-1

A, gy = ABD) 4 N (U ABD) ().

From Lemma 5.6 and the definition of A(B(k))i(k)’ each of the vectors

t‘H"h defined above is a schedule for DS , hence for G.
i(k)
Renumbering the schedules PF , h= 1,...,Bp(-q-p) as ti, i = p+l,...,q,

and subtracting from each ti the vector t, we obtain the (q-p) X n matrix Mz

whose rows are ti - tl, i=p+l,...,q, and which i{s of the fom M2 =

(MZI’ MZZ’ 0). Here M,, is (g-p) X p, O is the (q-p) X (n-q) zero matrix, and
M, is a (q-p) X (q-p) lower block triangular matrix of the form

(&1 o . . . o

21 Ip - . . 0

e
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where ﬁll is (p-1) x p and has full row rank. Let ﬁll be a (p-1) x (p-1) non-

singular submatrix of Mll’ and let ﬁZI be the matrix obtained from M

21
moving the column corresponding to the one that was removed from Mll'

let us permute the blocks of columns of Mvz’ and the corresponding blocks of

by re-
Further,

and M . be the resuiting

by reversing the order of the s blocks, and let M22 12

Mo
matrices.

Then M is of full row rank if and only if the (nr-1) X (n-1) matrix

My, M O
M= My My, 0
0 0 M

is nonsingular; ance ﬁll :nd M33 are nonsingular, M is nonsingular if and only
if the matrix Mo:=M22 - M21M11 2 is nonsingular. It is not hard to see that
the numbers“ej used in the comstruction of MZZ can always be chosen in a way
that makes Mo nonsingular, We show this by induction on q-p. For q-p =1,
Ehe“co?dition is <g # m,, where m_ is the first element of the last row of
MZIMI{MIZ' Such eB: obviously exists. Suppose the condition can be satisfied
for q-p = 1,2,...,t-1, and let g-p = t, Llet A be the matrix consisting of the

last t rows and first t columms of ﬁo' Denoting by a,, the elements of A and

1]

by A,, the cofactor of a and using expansion by the last column of A, we have

1] iy’

t
det (A) = altAlt + E

a, A .
1 it'it

2

By the induction hypothesis, there exist numbers 0 < ej <l, j§ = Ss,

Bs -1,...,84 - t + 1, such that Alt # 0. Since 8, = ‘Bs-t - My where o,

is the element of ﬁZlﬁI}ﬁlz in the position corresponding to a ., we have that
det (A) # 0 if and only if
t
A, /A

_ ¥ m - Ta
Bs t 1t qup 1t 1771t ’

€

a condition which can obviously be satisfied. This completes the induction.
Thus the n schedules ti for G, £ = 1,...,n, are affinely independent. 1In
addition, each one of them is an exteansion of a schedule for < K >, hence satis-

fies (q,0)t = 1. Therefore the inequality (g,0)t > 1 defines a facet of P.|
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to 8lso induce facets of P(N). One of our results is that any inequality that
induces a facet of P(H) for some HCK, also induces a facet of P(K). Another one

is a recursive formula for deriving a facet inducing inequality with p positive
coefficients from one with p-1 positive coefficients. We also address the constraint
identification problem, and give 8 procedure for finding an inequality that cuts off
a given solution to a subset of the constraints.







