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- I. INTRODUCTION

- The long, slender, axisymmetric bodies that are conventionally used for
spin-stabilized projectile designs consist of an ogive nose section followed
by a constant diameter cylinder and a boattail. The ogive is similar in shape
to a cone but typically has a smaller associated wave drag and has more volume
for a payload. Secant ogives that are normally used are not tangent to the

-

Eﬂk cylinder at the end of the nose section. In order to decrease base drag, a
iy boattail is added. The boattail is a conical frustum that narrows the base to

r
t
’

typically 75% of the cylindrical body diameter. This description character-
izes the conventional spin-stabilized secant-ogive cylinder boattail (SOCBT)
projectile. Afterbody designs that statically stabilize nonspinning projec-
tiles are lifting surfaces of two types: thin fins and conical flares. Fins
positioned as a tail generate normal force to statically stabilize the projec-
tile, whereas conical flared afterbodies generate high pressure regions and
move the center of pressure rearward, behind the center of gravity.

; I' k) A

o 8

s
Sy
PN

The purpose of thnis study is to evaluate the ability of a boattail-flare
(see Figure 1) to improve the stability of the SOCBT configuration. Computa-
tional methods are used to solve the parabolized Navier-Stokes equations 1in
the flowfield around the projectile. Predictions of static pitching moment,
drag force, and roll damping, Magnus and pitch damping moments are made to
define the effects of the boattail-flare afterbody on the aerodynamics of the
ogive-cylinder projectile.

I1I. BACKGROUND
The gyroscopic stability of a spin-stabilized projectile can be assessed
by computing Sg» the gyroscopic stability factor.!

2 (pd/V)2 12

9 5
P I_y d CMa

S

(1)

where; I, = axial moment of inertia, kg - m3
Iy = transverse moment of inertia, kg - m3
pd/V = dimensionless axial spinrate
p = axial angular velocity, rad/sec
P = air density, kg - m3
d = maximum body diameter, m

1. Murphy, C.H., "Free Flight Motion of Symmetric Missile,"” U.S. Army
Ballistic Research Laboratory Report No. 1216, Aberdeen Proving Ground,
Maryland 21005, July 1963 (AD 442757).

7




= airspeed, m/sec

CMa static moment coefficient, per radian

If 0 € Sg < 1 the projectile is gyroscopically unstable. Note that Sq is

inversely proportional to air density; therefore, projectiles that are gyro-
scopically stable for standard atmospheric conditions may not be stable under
nonstandard temperature and pressure. Due to this as well as other uncer-
tainties in computin% Sg» Mmany designers have set 1.3 as a lower limit on
gyroscopic stability.

An additional requirement for spin-stabilized projectiles is that they be
dynamically stable. The dynamic stability of a projectile is defined by
Murphy! as

- =2
oo 2Ong - Cp) * 2 Kk " Cypg @)
d > X

where; CNu = normal force coefficient slope per radian
) = total drag force coefficient
CMPu = Magnus moment coefficient slope per radian

CMq + CM& = pitch damping coefficient
ky = axial radius of gyration

ky = transverse radius of gyration

The range of values of sy for dynamic stability are also given by Murphy!
and are found to be a function of the reciprocal of the gyroscopic stability.

1/sg = sq (2 - sq) (3)

2. "Engineering Des Handbook - Design for Comtrol of Projectile Flight
Characteristics, " Headquarters, US Army Materiel Commnd, September 1966.
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ITI. COMPUTATIONAL TECHNIQUE

Evaluation of the stability of secant ogive-cylinder projectiles with a
boattail, or boattail-flare afterbody, requires the calculation of the aerody-
namic forces (normal, drag, and Magnus) and moments (pitching, Magnus, and
roll damping). These parameters were determined using three techniques: solu-
tion of the parabolized Navier-Stokes equations, the method of characteris-
tics, and semi-empirical models.

Recent papers3*42526°7 describe the application of the thin-layer para-
bolized Navier-Stokes (PNS) computational technique to predict the flow about
slender bodies of revolution with sharp noses at supersonic velocities. The
PNS technique was used in this study to yield the aerodynamic coefficients
necessary for the evaluation of static, gyroscopic and dynamic stability.

Schiff and Sturek“ have employed the PNS computational technique to solve 3
for the flowfield about a sharp body of revolution and have made comparisons |'
with experimental data. Computed and measured pressure data in both the axial
and circumferential directions were consistent. ¥

The PNS solutions do not compute the base flow region. Therefore, calcu- -
lation og the base drag was performed using the method described by Roache and 9
Mueller. The base flow computation was started upstream of the afterbody i*

3. Schiff, L.B., and Steger, J.L., "Numerical Simulation of Steady Supersonic
Viscous Flow,” AIAA Jourmal, Vol. 18, No. 12, December 1980, pp. 1421-
1430.

) 4. Schiff, L.B., and Sturek, W.B., "Numerical Simulation of Steady Supersonic
Flow over an Ogive-Cylinder-Boattail Body,'" ARBRL-TR-02363, US Army
Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland 21005,
September 1981 (AD A106060).

5. Sturek, W.B., and Schiff, L.B., "Computations of the Magnus Effect for
Slender Bodiee in Supereonic Flow," ARBRL-TR-02384, US Army Ballistic
Research Laboratory, Aberdeen Proving Ground, Maryland 21005, December
1981 (AD A110016).

6. Sturek, W.B., and Mylin, D.C., "Computational Study of the Magnus Effect
on Boattailed Shell,” AIAA Journal, Vol. 20, No. 10, Oectober 1982, pp.
", 1462-1464,

- 7. Sturek, W.B., Guidos, B., and Nietubicz, C.J., "Navienr-Stokes Computation-
1 al Study of the Influence of Shell Geometry on the Magnus Effect at Super-
: sonic Speeds," ARBRL-TR-02501, US Army Ballistic Research Laboratory,
Aberdeen Proving Ground, Maryland 21005, June 1983 (AD A130630).

8. Mueller, T.J., and Kayser, L.D., "A Method of Determining the Turbulent
Base Presgsure in Uniform and Non-Uniform Supersonic Flows," ARBRL-TR-
02374, US Army Ballistic Research Laboratory, Aberdeen Proving Ground,
Maryland 21005, October 1981 (AD A107318),

9
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using local velocity profiles from the PNS computation and yielded the ratio
_ of base to freestream pressure from a method of characteristics solution. For
the cylindrical and boattailed afterbodies, the solution was started at the
end of the cylindrical portion of the projectile, whereas the solution for the
boattail-flare afterbody was started at the end of the flare with the charac-
teristic lines extending into the base region.

A second auxiliary calculation was required for the pitch damping coeffi-
cients used in determining the dynamic stability factor, sq. (See Equation 2.)

A semi-empirical technique developed by Devan and Mason® computes the pitch
damping coefficient based on trends in wind tunnel and flight test data for
this class of axisymmetric bodies.

IV. PROCEDURE

To adequately evaluate the effectiveness of different projectile desigr
a parametric study was undertaken using the eight different shapes shown
Figure 1 and described in Table 1. Figure 2 is a schematic of the projecti
shapes studied grouped according to geometric similarity. All data generat
in the investigation are also grouped in this fashion. The projectile shag
had the same nose section (ogive) and differed only in the length of t -
cylinder and afterbody sections. Included in study were both the convention..
boattail and unconventional boattail-flare afterbody.

TABLE 1. PROJECTILE PHYSICAL PROPERTIES. MATERIAL DENSITY ASSUMED
2.77 x 107 kg/mm3 (ALUMINUM)

L1 (rg) L3 éﬁgg Ix (kg - mt) ly
S0C1/2 171.6 0 0 1.74 6.38 x 102 1.08 x 10Y4
S0c3 228.8 0 0 2.14 8.04 x 102 2.23 x 10%
SocsT1 114.4 57.2 0 1.65 5.75 x 102 9.51 x 103
SOCBT?2 57.2 114.4 0 1.40 4,38 x 102 7.28 x 103
SOCBT3 114.4 114.4 0 1.81 6.03 x 102 1.39 x 104

9. Devan, L., and Mason, L.A., "Aerodynamice of Tactical Weapons to Mach
Number 8 and Angle of Attack 180°: Part II, Computer Program and Usere
Guide," N.S.W.C. TR 81-358, September 1981.

10
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TABLE 1. (continued)

SOCBTF1 114.4 28.6 28.6 1.69 6.02 x 102 1.02 x 104
SOCBTF2 57.2 57.2 57.2 1.56 5.11 x 102 9.48 x 103
SOCBTF3 114.4 57.2 57.2 1.96 6.77 x 102 1.86 x 10“

Because of these geometric similarities the PNS code was advanced over
the 3 caliber ogive and onto the cylindrical section for 1 caliber. The
resulting data were used to restart the computation over different after-
bodies. In this way the computational time was reduced from the time that
would be required if the PNS solution was s..rted from the nose of each of the
eight bodies. The computations were carried out for an angle of attack of 2°
and a nondimensional spinrate of 0.19 (used for Magnus computations).

Using the Roache-Mueller method, the plane of data supplied by the PNS
solution at the end of the body was advanced into the base region to calculate
base pressure. Base pressure data, in the form of a ratio of base to free-
stream pressure, was converted to base drag coefficient form!9 using:

2 d? (1 - Pa/Pu)

Cpg =

(4)

M2

where d base diameter in calibers

freestream Mach number

The semi-empirical method of Devan and Mason was used to compute pitch
damping for the ogive-cylinder (SOCl, 2, 3) and ogive-cylinder-boattail
(socsTl, 2, 3) bodies, the data base did not allow ac-urate computations of
the boattail-flare bodies (SOCBTF1, 2, 3). The pitching moment of a boattail-
flare afterbody was assumed to be the same as that of the boattailed body of
equal length (e.g., SOCBTF1 and SOCBT1). Flares in general have been shown to

10. McCoy, R.L., "McDrag - A Computer Program for Estimating the Drag Coeffi-
cients of Projectiles,'" ARBRL-TR-02293, US Army Ballistic Research
Laboratory, Aberdeen Proving Ground, Maryland 21005, February 1981
(AD A098110).

11
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increase a projectile's pitch dampmg;1 predictions of this coefficient are
therefore conservative.

The computed data were reduced to the following aerodynamic coefficients.
Total drag was obtained from the summation of viscous, pressure, and base drig
coefficients. Normal force slope, CNa (assumed to be linear), was obtained hy

dividing the normal force coefficient by .0349 radian (2°). Pitching moment
slope, CMa’ and Magnus moment slope, CMPa’ were obtained by referencing the

moment coefficient to a point 3.6 calibers from the projectile nose in all
cases, and dividing by .0349 radian. Roll damping coefficient, Cl was

p
obtained directly from the PNS computation. Variations of dimensionless spin-
rate, pd/V, were evaluated from Equation 1 assuming Sq = 1.3, while dynamic
stability was evaluated from Equation 2.

V. RESULTS AND DISCUSSION

The aerodynamic stability of the projectile configurations was studied in
three ways: static, gyroscopic, and dynamic stability. Static stability is
defined in terms of the static pitching moment, gyroscopic stability in terms
gf Sg and dimensionless spinrate, and dynamic stability as defined in Equation

Typical wall pressure distributions at Mach 3 (angle of attack 2°) are
shown in Figure 3 for one group of configurations, S0C2, SOCBT2, SOCBTF2. The
effect of the boattail-flare afterbody is immediately apparent from the drama-
tic pressure recovery that occurs over the flared portion (Figure 3c). The
higher pressure on the windward side of the projectile is due to the angle of
attack and is responsible for the projectile's normal force. Higher leeward
pressure on the boattail detracts from the total normal force of the projec-
tile (Figure 3b). A large pressure recovery for the boattail-flare is shown
in Figure 3c.

The axial distribution of normal force for this group of configurations
is shown in Figure 4. The local normal force rises over the 3-caliber ogive
and l-caliber cylinder, decreases sharply over the 2-caliber boattail but is
partially recovered when one caliber of the boattail is flared.

The wall pressure and normal force recovery effect of the boattail-flare
afterbody depends largely on the value of freestream Mach number. Using the
SOCBTF1 configuration as an example, Figures 5a-c show the dramatic change in
wall pressure recovery over the .5-caliber flare. At Mach 2 (Figure 5a) wall
pressure recovery is minimal and the pressure difference from windward to lee-
ward side is negligible. For Mach 3 and 4 (Figures 5b and 5c) the effect of
the flare is significant, producing a large difference between windward and

11. Robineon, M.L., "Boundary Layer Effecte in Supersonic Flow Over Cylinder-
Flare Bodies," Australian Defense Scientific Service Weapons Research
Establishment Report No. 1238, July 1974.

12
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leeward wall pressures. When these pressure differences are converted to nor-
mal force distributions, the effect of Mach number is again observed (Figures
ﬁd-C).

A. Static and Gyroscopic Stability

The ability of the boattail-flare afterbody to augment the normal force
of the secant ogive cylinder projectile radically changes the static pitching
moment. Integration of the normal force distribution yields a total normal
force located at the center of pressure. The static pitching moment is
defined by this force and the difference between the center of pressure and
center of gravity locations. Comparisons can be made between the SOC, SOCBT
and SOCBTF configurations on the basis of static pitching moment because this
moment is referenced to the same point for each body (3.6 calibers from the
nose as described in the Section IV). Figure 7a, b, and ¢ compare the pitch-
ing moment characteristics of the cylinder, boattial and boattail-flare after-
bodies in the three groups of configurations. (Recall Figure 2.) Consistent
with the axial distribution of normal force, the SOC and SOCBTF configurations
in each group exhibit the lowest pitching moment coefficient (significantly
lTower than the SOCBT). Comparing all flared bodies, SOCBTF, Figure 7d shows
that the SOCETF1 has the smallest pitching moment coefficient for all but Mach
4,

Of the three flared configurations the SOCBTF1 has the shortest boattail-
flare afterbody length; the pitching moment performance of this configuration
relative to configurations with longer flares (e.g., SOCBTF3) must therefore
be explained. Wall pressure distributions reveal that the shorter flare main-
tains a large difference between windward and leeward pressure over its entire
tength whereas the longer flares allow the flow to expand over their length
thus losing normal force. (Compare Figure 3c between 5 and 6 calibers and
Figure 5b between 5.5 and 6 calibers.) The SOCBTF1 configuration is unique in
that it has the shortest boattail and therefore does not generate the loss in
normal force characteristic of long boattails.(Review Figures 3b and 5) As
the freestream Mach number increases to Mach 4, the long flare of the SOCBTF3
generates increasingly more normal force and finally overcomes the loss asso-
ciated with its long boattail. However, the SOCBTF3 3is the greatest normal
force and the smallest moment arm (cg-cp) and is therefore subjected to the
smallest pitching moment at Mach 4,

From computed pitching moment data and an assumed s, of 1.3, dimension-
less spinrates (pd/V) can be determined from Equation 1 gs described in Sec-
tion IV. Figure 8a, b and c show that pd/V decreases with freestream Mach
number for all configurations with the lowest pd/V associated with the SOC and
SOCBTF. In each .ise the boattail-flare afterbody reduced pd/V below that
required of the boattail afterbody but not as low as the configuration without
an afterbody (SOC). The shortest boattail-flare afterbody (SOCBTF1), however,
shows a pd/V comparable to the corresponding SOC configuration (Figure 8c).
In addition the SOCBTF1 shows the lowest required pd/V of all flared after-
bodies (Figure 8d).
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B. Dynamic Stability

e Dynamic stability as defined in Equation 2 requires the aerodynamic coef-
) . ficients of drag, normal force, Magnus moment, and pitch damping. Evaluation
N of these coefficients will precede discussion of the dynamic stability factor,

Sd.

N Figures 9a-d compare the drag coefficients of all configurations. As
» mentioned in the proceedure section, drag coefficient is the algebraic sum of
- viscous drag and pressure drag (from PNS computation) aleng with base drag
(from Roache-Mueller). The boattail afterbody configurations (SOCBT) have the
AN least drag due to the narrowing of the base. This narrowing causes a flow
expansion that decreases the base pressure (Pg/P. decreases) but also geomet-

A,
'::“ rically decreases the base diameter (dg). The combined effect decreases base
;:J drag. (See Equation 4.)

) The boattail-flare afterbody exhibits a significantly larger drag coeffi-
» cient in all cases but for the SOCBTFl. The source of this drag penalty is
S two-fold: the pressure drag associated with the oblique shock formed at the
T;i boattail-flare junction and the higher base drag associated with the larger
-~ diameter base. Of all flared configurations, however, the SOCBTF1 shows the
Ve smallest drag rise (Figure 9d).
s Figures 10a-b compare the Magnus moment coefficient slope of all config-
oy urations. Consider a spinning axisymmetric body at angle of attack. The
- component of freestream velocity perpendicular to the body (cross flow) is
o decelerated on the side that opposes spin and is accelerated on the side that
T is coincident with spin. This difference in velocity across the body gives
: rise to a difference in pressure and & side force develops, the Magnus force.
Yo This force becomes more significant as the boundary layer thickens on the aft
:ﬁ end of the projectile. This is especially true of boattail afterbodies where
N the expanded flow accelerates the boundary layer growth. In contrast a flare
'jg generates an adverse pressure gradient and thins the boundary layer!! In

™ this study it was expected that the SOCBT confiquration would have the highest
o Magnus moment with the SOCBTF configuration having the lowest. This is sup-
- ported in Figure 10. Comparing all of the SOCBTF configurations the shortest
.:ﬁ flare, SOCBTF1, had the smallest Magnus moment (Figure 10d).

The roll damping coefficient data are illustrated in Figures lla-b. Due
to the viscous boundary layer a shearing force is generated on the projectile
surface in the direction opposite the spinrate. (Hence, the coefficient is
usually negative.) Because the roll damping coefficient arises from viscous
shear, it is directly proportional to the velocity component tangent to the
body surface. Using an aeroballistic coordinate system, the component of
velocity in the x-direction (along the body axis, positive rearward) is desig-
nated u, the component perpendicular to the body axis is v, and the third com-
ponent to form a right-handed axis system is w. Roll damping coefficient is
then proportional to dw/dy. As the radius of the spinning body decreases,
surface velocity decreases also (w = Qr). As Figure 11 illustrates the SOC
design has the largest roll damping because it has the greatest body diameter
from nose to base. When a boattail afterbody is used (SOCBT) the roll damping
decreases slightly as the body radius decreases. The boattail-flare afterbody
design increases roll damping to a small degree because it has an increased
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body slope -- but the SOCBTF has less roll damping than the SOC with a
constant diameter shape.

From the discussion above it is also clear that roll damping is propor-
tional to surface area -- the larger a body is the more viscous shear is gen-
erated. Figure 1la, that represents the longest group of projectiles (the
S0C3, SOCBT3, SOCBTF3 are 7 calibers long), also shows the largest roll damp-
ing. Figures 11b, and ¢ represent the two groups of projectiles that are 6
caliters in length and therefore show less roll damping. The increase in roll
damping predicted for the boattail-flare afterbody could be viewed as a disad-
vantage to the design if it were not for the small magnitude of that increase.
Figure 11d illustrates that the boattail-flare afterbody design that leads to
the smallest increase in roll damping is not the shortest flare (which has
been the pattern up to this point) but the one with the shortest cylindrical
section, SOCBTF2. Reviewing Figure 2, it would seem that the SOCBTF2 has the
smallest overall amount of surface area.

With the aerodynamic coefficients of drag and Magnus moment, the dynamic
stability factor, sy, as given in Equation 2, can be evaluated. Table 2 lists
the values of sy grouped by geometric similarity. Dynamic stability was

increased for all boattail-flare projectiles when compared to the straight
cylinder bodies. The boattail-flare afterbody increased sq in only a few

cases when compared to the boattail bodies. At Mach 4, the boattail-flare
consistently led to a more dynamically stable projectile. For the first
group, the SOCBTF1 increased the stability of the projectiles for all of Mach
numbers.

TABLE 2. DYNAMIC STABILITY FACTORS (s4)*

MACH = 2 MACH = 3 MACH = 4
S0Cl .273 .292 .293
S0CBT1 .353 .365 .360
SOCBTF1 .360 .376 .378
S0C2 .273 292 .293
SOCBT2 .349 .367 .365
SOCBTF2 .341 .362 .384
S0C3 .307 .321 .339
SOCBT3 427 419 .428
SOCBTF3 .414 .398 .430

*BOXES INDICATE THOSE CONFIGURATIONS AND MACH NUMBERS AT WHICH THE
BOATTAIL-FLARE AFTERBODY HAS INCREASED DYNAMIC STABILITY.
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relative importance of the individual aerodynamic coefficients used with

| ,-"1 SO AL PASOLANL S A I & A a0 AL LU ge i SIS AL LR SECTRLTLTL L L L TR AR Pl Nt Gt it vhw
RN \
N

Calef |
,ﬁt The dynamic stability factor involves many aerodynamic coefficients, but

o is defined in a complicated manner. Platoul? has attempted to determine the }
e \
- > dynamic stability. Examining sy in a parametric manner, Platou concluded:

i (1) CNu and Cp have only a small influence on sy except when CNG - 20,
;Ej is maximum (i.e., CNu is maximum and CD is minimum) sq is maximum.

I‘ -

N (2) sq is maximum when the transverse moment of inertia, ly, is minimum.

’ (3) sq4 is maximum when Magnus moment slope, CMPa’ is minimum,

TN
QE: (8) 1If pitch damping, CMq + C"& , is minimum then sq is maximum. Also,
yﬁQ if pitch damping is maximum then the relative influence of CMPa on
NN sq is increased.
AR The data computed by this study showed the following trends for the flare
AR shapes:
-

ly CNa ) CMPa CMq * CM&
s smallest SOCBTF2 SOCBTF2 SOCBTF1 SOCBTF1 SOCBTF1
- SOCBTF1 SOCBTF3 SOCBTF2 SOCBTF2 SOCBTF?2
5& largest SOCBTF3 SOCBTF1 SOCBTF3 SOCBTF3 SOCBTF3
R ;..'
‘;ff Platou's conclusions can be used to explain the findings illustrated in
:}; Table 2. As mentioned, all projectiles showed an increase in the dynamic
St stability at Mach 4. Examining the data generated in this study, it has been
VN shown that:

D (1) Magnus moment slope was minimum at Mach 4 for all projectile designs
A studied.

e (2) Pitch damping was essentially independent of Mach number.

CAd

_ (3) At Mach 4 the term Cne = 2Cp s a maximum,

)

ﬁg Also discussed was the increase in dynamic stability generated by the
SN SOCBTF1 for the first group of configurations at all Mach numbers., Examining
! the flare data generated in this study it was shown that:

;:.':'1 12. Platou, A.S., "The Influence of the Magnus Moment on the Dynamic Stabil-

\ ity of a Projectile,'" ARBRL-MR-2155, US Army Ballistic Research
Laboratory, Aberdeen Proving Ground, Maryland 21005, January 1972
(AD 738016).
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(1) For all Mach numbers the SOCBTF1 has the highest CNu and the lowest
Cp, and therefore has the greatest value for the term Cy - 2Cp.

(2) For all Mach numbers the SOCBTFl has the smallest Magnus moment
slope.

(3) For all Mach numbers the SOCBTF1 has the smallest pitch damping.

VI. CONCLUSION

An investigation of the aerodynamics and stability of a flared afterbody
for axisymmetric projectiles at supersonic speeds has been completed using
computational fluid dynamic methods to predict the aerodynamic coefficients of
interest. The parametric nature of the study has lead to the evaluation of
the characteristics of the boattail-flare relative to the conventional SOCBT
design. Although all of the three SOCBTF designs studied can be characterized
by similar conclusions, the SOCBTF1 (having the shortest boattail and flare)
has been shown to yield:

(1) The smallest static pitching moment coefficient and required spin-
rate, therefore the greatest degree of static stability, of all
designs with afterbodies (excluding the SOC designs).

(2) The greatest degree of dynamic stability enhancement of all design
groups studied (independent of Mach number).

(3) The 1least Magnus moment of all designs studied and the smallest
rise in total drag and roll damping of all designs studied with
boattail-flare afterbodies.

With the reduction in the static instability of the spin-stabilized pro-
jectile provided by the boattail-flare afterbody, the projectile designer is
afforded a greater degree of freedom in choosing values of spinrate, (or gyro-
scopic stability factor), axial and transverse moments of inertia. Even
though the boattail-flare afterbody will allow the designer to reduce spinrate
and still achieve gyroscopic stability (or hold spinrate constant and gain
more gyroscopic stability) these degrees of freedom are not usually available.
Rather, the projectile designer is given a minimum value of Sg and axial spin-

rate suitable for the atmospheric operating conditions and the type of gun
tube that will be used for firing, and asked to meet these parameters with a
projectile that will also carry a given payload. The designer can then use
the boattail-flare afterbody to extend the range of values over which the
axial and transverse moments of inertia may vary. (Axial moment can be
decreased and the transverse moment can be increased.)

Although the present investigation has established the aerodynamic and
stability characteristics of a subcaliber flare (boattail-flare) afterbody

for spin-stabilized projectiles, subsequent work may demonstrate further iq
application to other ballistic projectile designs. ::j
It has already been shown that the length (transverse moment of inertia) .'1

of spin-stabilized projectiles with the boattail-flare afterbody can be Iy
Ty
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increased without the loss of gyroscopic stability. Current research is
applying the subcaliber flare to long spin-stabilized projectiles with a high
density penetrator core as well as long rod penetrator fin-stabilized projec-
tiles where a long boattail followed by a subcaliber flare replaces the fins.

With the present computational technique applied to a flare, future work
could investigate the application of a flared afterbody to long projectiles

that require stable flights without spin, in addition to enhanced drag for
short range.
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Schematic Drawings of Projectile Groups
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o
" LIST OF SYMBOLS
gé; Cp = drag coefficient
(-r Cpg = base drag coefficient (Equation 4)
c, = roll damping coefficient
TN p
;ig CM = slope of static pitching moment coefficient
a
. Cm = slope of Magnus moment coefficient
. pa
- CMq + CM& = pitch damping coefficient
' CN = slope of normal force coefficient
- @
.Sk d = maximum body diameter,m
:E; I = axial moment of inertia kg - m?
i; Iy = transverse moment of inertia kg - m3
.Sﬁ Ky = axial radius of gyration
E% ky = transverse radius of gyration
i;‘ L1 = cylindrical body length
\.‘.': L2 = boattail afterbody length
o L3 = flare afterbody length
- M. = freestream Mach number
] p = axial angular velocity, rad/sec
é: PB/Pw = ratio of base pressure to freestream pressure
n pd/V = nondimensional spinrate about projectile axis
izs Sg = gyroscopic stability factor (Equation 1)
%E Sq = dynamic stability factor (Equation 2)
:T. v = air speed, m/sec
EEZ X/D = projectile length in calibers
‘:3 Y = ratio of specific heats
ff' P = air density, kg/m3
:._;.‘ 53
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