AN AXIOMATIZATION OF THE NON-TRANSFERABLE UTILITY VALUE

R.J. Aumann

STANFORD UNIV CA INST FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES

SEP 83 TR-415

UNCLASSIFIED N00014-79-C-0685
AN AXIOMATIZATION OF THE NON-TRANSFERABLE UTILITY VALUE

by

Robert J. Aumann

Technical Report No. 415
September 1983

PREPARED UNDER
NATIONAL SCIENCE FOUNDATION GRANT SES-8201373

AND THE
CENTER FOR RESEARCH ON ORGANIZATIONAL EFFICIENCY
STANFORD UNIVERSITY
CONTRACT ONR-N00014-79-C-0685

THE ECONOMICS SERIES
INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES
Fourth Floor, Encina Hall
Stanford University
Stanford, California
94305
AN AXIOMATIZATION OF THE NON-TRANSFERABLE UTILITY VALUE*

by

Robert J. Aumann

1. Introduction

The NTU (Non-Transferable Utility) Value is a solution concept for multiperson cooperative games in which utility is not "transferable" (games without side payments). Introduced by Shapley in [1969], it generalizes his [1953] value for TU (Transferable Utility) games. Many economic contexts are more naturally modeled by NTU than by TU games; and indeed, the NTU value has been applied with some success to a variety of economic and economic-political models. Two well-known applications are Nash's solutions [1950, 1953] for the bargaining problem and for two-person cooperative games, both of which are instances of the NTU value.

The original definition of the NTU value works roughly as follows: Given an NTU game \(V \) and a vector \(\lambda \) of "comparison weights" for the players, one derives a TU game \(v_\lambda \), and calculates its value \(\psi(v_\lambda) \); if this value is feasible in the original NTU game \(V \), then it is defined to be a value of \(V \). A precise definition is given in Section 4.

Technically, the definition is reminiscent of that of the competitive equilibrium, with \(\lambda \) playing the role of prices, and \(\psi(v_\lambda) \) the role of the demand. Historically, it grew out of successive attacks by several investigators, notably J. Harsanyi [1959, 1963], on the value problem for NTU games. The bare definition may perhaps seem a little strange and unmotivated; but when one delves deeper (Shapley

*This work was supported by National Science Foundation Grant SES82-01373 and Contract ONR-N00014-79-C-0685 at the Institute for Mathematical Studies in the Social Sciences, Stanford University.
[1969], Aumann [1975]), one finds that it is quite natural. Nevertheless, it has been the object of controversy (Roth [1980], Shafir [1980], Harsanyi [1980], and Aumann [1983]).

In this paper, we offer an axiomatization of the NTU value. Like any axiomatization, it should enable us to understand the concept better, and hence to focus discussion. One can now view the NTU value as defined by the axioms, with the treatment in Shapley [1969] serving as a formula or method of calculation. Thus the NTU value joins the ranks of the TU value and Nash's solution to the bargaining problem, each of which is defined by axioms, but usually calculated by a formula -- a formula whose intuitive significance is not, on the face of it, entirely clear.

This work is an outgrowth of ideas that have been "in the air" for many years. The problem of axiomatizing the NTU value is a natural one; already in his original paper Shapley discusses "properties of our ... solution that ... could be used in the derivation of our definition" [1969, p. 260]. Our treatment owes much to that discussion, and to subsequent oral discussions with Shapley.

Worthy of particular note is that the axioms refer to values as payoff vectors only -- the comparison weights associated with a value make no explicit appearance in the axioms. This is important because the question of the intuitive significance of the comparison weights has often been raised in critical discussion. By contrast, the viewpoint of Shapley [1969] is that his solution consists of both the payoff vector and the comparison weights (p. 259, 1.20 ff.; p. 261, 1.1), with the
latter playing at least as important a role as the former. Also worthy of note is the smoothness condition (3.1), which is indispensable for our approach (see Section 9).

The domain of the axioms — the family of games to which they apply — is described in Section 3; the axioms themselves are presented and discussed in Section 5. Section 6 is devoted to an alternative treatment, in which one of the axioms (Independence of Irrelevant Alternatives) is dropped. Proofs are presented in Sections 7 and 8. Section 10 discusses possible variations on the theme; it also contains a discussion of the implications of the axioms for our understanding of the intuitive content of the value solution.

2. Some Notation and Terminology

Denote the real numbers by \mathbb{R}. If N is a finite set, denote by $|N|$ the cardinality of N, and by \mathbb{R}^N the set of all functions from N to \mathbb{R}. We will think of members x of \mathbb{R}^N as $|N|$-dimensional vectors whose coordinates are indexed by members of N; thus when $i \in N$, we will often write x^i for $x(i)$. If $x \in \mathbb{R}^N$ and $S \subseteq N$, write x^S for the restriction of x to S, i.e., the member of \mathbb{R}^S whose i-th coordinate is x^i. Write 1_S for the indicator of S, i.e., the member of \mathbb{R}^N whose i-th coordinate is 1 or 0 according as i is or is not in S. Call x positive if $x^i > 0$ for all i in N. If $\lambda \in \mathbb{R}^N$ and $y \in \mathbb{R}^S$, define λy in \mathbb{R}^S by $(\lambda y)^i = \lambda^i y^i$, and denote the "scalar product" $\sum_{i \in S} \lambda^i y^i$ by λy. Write $x \geq z$ if $x^i \geq z^i$ for all i in N. Denote the origin of \mathbb{R}^N (the vector all
of whose coordinates are 0) by 0.

Let \(A, B \subseteq \mathbb{R}^n \) and \(\lambda, x \in \mathbb{R}^n \). Write \(A + B = \{a + b : a \in A \) and \(b \in B \}, \lambda A = \{\lambda a : a \in A \}, A + x = A + \{x\}, \) and \((1/2)A = \{(1/2)x : x \in A\}. \) Denote the closure of \(A \) by \(\overline{A} \), its complement by \(\neg A \), and its frontier \(\partial A = \overline{A} \cap (\neg \overline{A}) \) by \(\partial A \). If \(A \) is convex, call it smooth if it has a unique supporting hyperplane at each point of its frontier. Call \(A \) comprehensive if \(x \in A \) and \(x \geq y \) imply \(y \in A \).

3. **NTU Games**

Let \(N \) be a finite set, which will henceforth be fixed; set \(n = |N| \). The members of \(N \) are called players, its non-empty subsets coalitions; points in \(\mathbb{R}^n \) are called payoff vectors. An NTU game on \(N \) (or simply game) is a function \(V \) that assigns to each coalition \(S \) a convex comprehensive non-empty proper subset \(V(S) \) of \(\mathbb{R}^S \), such that

\[
\begin{align*}
& (3.1) \ V(N) \text{ is smooth;} \\
& (3.2) \text{ if } x, y \in \emptyset \ V(N) \text{ and } x \geq y, \text{ then } x = y; \text{ and} \\
& (3.3) \text{ for each coalition } S \text{ there is a payoff vector } x \text{ such that} \\
& V(S) \times \{0^{n-S}\} \subseteq V(N) + x.
\end{align*}
\]

Of these three conditions, only (3.1) is a substantive restriction from the intuitive viewpoint; the others are technical in nature. Condition (3.2) says that \(\emptyset \ V(N) \) has no "level" segments, i.e.,
segments parallel to a coordinate hyperplane; it is a familiar regularity condition in game theory. Condition (3.3) says that if one thinks of $V(S)$ as embedded in \mathbb{R}^N by assigning 0 to players outside S, then $V(S)$ is included in some translate of $V(N)$; it can be thought of as an extremely weak kind of monotonicity.

A TU game (on N) is a function v that assigns to each coalition S a real number $v(S)$. The NTU game V corresponding to a TU game v is given by

$$V(S) = \{ x \in \mathbb{R}^S : \sum_{i \in S} x_i \leq v(S) \} .$$

If T is a coalition, define a TU game u_T by

$$(3.4) \quad u_T(S) = \begin{cases} 1 & \text{if } S \supset T \\ 0 & \text{otherwise} \end{cases} .$$

The NTU game U_T corresponding to u_T is called the unanimity game on T.

Operations on games are defined like the corresponding operations on sets, for each coalition separately. Thus $(V + W)(S) = V(S) + W(S)$, $(\lambda V)(S) = \lambda V(S)$, $\vec{V}(S) = \frac{1}{|S|} \sum_{i \in S} V(S \setminus \{i\}) - v(S)$, and so on.

4. Shapley Values of NTU Games

Recall that the value of a TU game v is the vector $\phi(v)$ in \mathbb{R}^N given by

$$(4.1) \quad \phi^i(v) = \frac{1}{n!} \sum_{S \subseteq R} [v(S^R \cup \{i\}) - v(S^R)] ,$$
where \(R \) ranges over all \(n! \) orders on \(N \), and \(S_i^R \) denotes the set of players preceding \(i \) in the order \(R \). The value is usually defined by a set of axioms, which are then shown (Shapley (1953)) to lead to (4.1).

Let \(V \) be a game. For each positive \(\lambda \) in \(\mathbb{R}^N \), write

\[
(4.2) \quad v^\lambda_A(S) = \sup \{ \lambda x : x \in V(S) \}.
\]

We say that the TU game \(v^\lambda_A \) is defined if the right side of (4.2) is finite for all \(S \). A **Shapley value** of \(V \) is a point \(y \) in \(V(N) \) such that for some positive \(\lambda \) in \(\mathbb{R}^N \), the TU game \(v^\lambda_A \) is defined, and \(\lambda y = \phi(v^\lambda_A) \). The set of all Shapley values of \(V \) is denoted \(A(V) \). The set of games \(V \) for which \(A(V) \neq \emptyset \) -- i.e., that possess at least one Shapley value -- is denoted \(\Gamma^N \) or simply \(\Gamma \). The correspondence from \(\Gamma \) to \(\mathbb{R}^N \) that associates the set \(A(V) \) to each game \(V \) is called the **Shapley Correspondence**.

5. **The Axioms**

A **value correspondence** is a correspondence that associates with each game \(V \) in \(\Gamma \) a set \(\Phi(V) \) of payoff vectors, satisfying the following axioms for all games \(U, V, W \) in \(\Gamma \):

0. **Non-Emptiness**: \(\Phi(V) \neq \emptyset \).
1. **Efficiency**: \(\Phi(V) \subseteq \mathcal{D}(N) \).
2. **Conditional Additivity**: If \(U = V + W \), then \(\Phi(U) \supseteq (\Phi(V) + \Phi(W)) \cap \mathcal{D}(N) \).
3. **Unanimity**: If \(U_T \) is the unanimity game on a coalition \(T \), then \(\Phi(U_T) = \{1_T/|T|\} \).
4. **Closure Invariance:** \(\phi(V) = \phi(V) \).

5. **Scale Covariance:** If \(\lambda \) in \(\mathbb{R}^N \) is positive, then \(\phi(\lambda V) = \lambda \phi(V) \).

6. **Independence of Irrelevant Alternatives:** If \(V(N) \subseteq W(N) \) and \(V(S) = W(S) \) for \(S \neq N \), then \(\phi(V) \subseteq \phi(W) \cap V(N) \).

For a fixed value correspondence \(\phi \), call \(x \) a value of \(V \) if \(x \in \phi(V) \). **Efficiency** says that all values are Pareto optimal. Suppose next that \(y \) and \(z \) are values of \(V \) and \(W \) respectively. We cannot in general expect \(y + z \) to be a value of \(V + W \), because it need not be Pareto optimal there. **Conditional additivity** says that if \(y + z \) does happen to be Pareto optimal in \(V + W \), then it is a value of \(V + W \); i.e., that additivity obtains whenever it does not contradict efficiency. **Unanimity** says that the unanimity game on \(T \) has a unique value, which provides that the coalition \(T \) split the available amount equally. **Closure invariance** is a conceptually harmless technical assumption; we simply do not distinguish between a convex set and its closure. If the payoffs are in utilities, then **scale invariance** says that representing the same real outcome by different utility functions does not affect the value in real terms. **Independence of irrelevant alternatives** (IIA) says that a value \(y \) of a game \(W \) remains a value when one removes outcomes other than \(y \) ("irrelevant alternatives") from the set \(W(N) \) of all feasible outcomes, without changing \(W(S) \) for coalitions \(S \) other than the all player coalition. (For a thorough discussion of this assumption, see the next section.)

These axioms are an amalgam of those that characterize the value for TU games (Shapley [1953]) and those that characterize Nash's
solution to the Bargaining Problem (Nash [1950]). Axioms 1, 2 and 3 are fairly straightforward analogues of the TU value axioms, with the unanimity axiom combining the symmetry and dummy axioms. As we have noted, Axiom 4 is purely technical; and Axioms 5 and 6 are essentially the same as the corresponding axioms in Nash's treatment.

Theorem A: There is a unique value correspondence, and it is the Shapley correspondence.

6. An Axiomatic Treatment Without IIA

IIA is perhaps the best-known of the axioms in the preceding section. This is partly due to its key role in Nash's work, and partly to its having stirred some controversy. In this section, after discussing the axiom, we offer an axiomatic treatment that avoids using it.

Whether or not IIA is reasonable depends on how we view the value. If we view it as an expected or average outcome, then IIA is not very convincing. By removing parts of the feasible set, we decrease the range of possible outcomes, and so the average may change even if it remains feasible. But in NTU games, viewing the value as an average is fraught with difficulty even without IIA, because the convexity of \(V(\mathbb{N}) \) implies that in general, an average will not be Pareto optimal.

An alternative is to view the value as a group decision or arbitrated outcome; i.e., a reasonable compromise in view of all the possible alternative open to the players. In that case IIA does sound quite convincing and even compelling. An anecdote -- it happens to be a
true one -- may serve to illustrate its force. Several years ago I served on a committee that was to invite a speaker for a fairly prestigious symposium. Three candidates were proposed; their names would be familiar to many of our readers, but we will call them Alfred Adams, Barry Brown, and Charles Clark. A long discussion ensued, and it was finally decided to invite Adams. At that point I remembered that Brown had told me about a family trip that he was planning for the period in question, and realized that he would be unable to come. I mentioned this and suggested that we reopen the discussion. The other members looked at me as if I had taken leave of my senses. "What difference does it make that Brown can't come," one said, "since in any case we decided on Adams?" I was amazed. All the members were eminent theorists and mathematical economists, thoroughly familiar with the nuances of the Nash model. Not long before, the very member who had spoken up had roundly criticized IIA in the discussion period following a talk. I thought that perhaps he had overlooked the connection, and said that I was glad that in the interim, he had changed his mind about IIA. Everybody laughed appreciatively, as if I had made a good joke, and we all went off to lunch. The subject was never reopened, and Adams was invited.

Note that we are discussing a true game, not an individual decision problem. The members had different interests, coalitions could be formed, etc. Occasionally issues even came to a vote; and when they did not, the vote was definitely "there," in the background. If ever there was a situation in which IIA could be criticized, this was it.
Yet I think that the members were right to laugh off my suggestion. No matter how convincing such criticism may seem in the abstract, the concrete suggestion to reconsider the choice of Adams because Brown could not come sounded -- and was -- absurd.

Let us nevertheless examine the consequences of omitting this axiom. It turns out that IIA is not nearly as central here as in the Nash theory; something is lost, but less than might have been expected. The result is as follows:

Theorem B: The Shapley correspondence is the maximal correspondence from Γ to \mathbb{R}^N satisfying Axioms 0 through 5.

More explicitly:

(6.1) A satisfies Axioms 0 through 5.

(6.2) If ϕ satisfies Axioms 0 through 5, then $\phi(V) \subseteq A(V)$ for all games V in Γ.

What is lost, of course, is the categoricity of the axioms. There are many correspondences ϕ satisfying Axioms 0 through 5. With Axiom 6, there is only one; the system is fully determined. On a practical level, though, there isn't much difference. Many of the applications involve necessary conditions only; they assert that every value has a particular form (e.g., competitive equilibrium). This kind of result remains unchanged when Axiom 8 is omitted. The other kind of result -- every outcome of a particular form is a value -- is weakened; but if we interpret a "value" of V to mean a member of $\phi(V)$ for some ϕ.
(rather than for a particular, fixed Φ) satisfying the axioms, then this kind of result also remains true. Another kind of application in which dropping IIA changes nothing is when there is only one Shapley value ($|A(V)| = 1$); for example, this is the case for 2-person games, and in Aumann and Kurz [1977].

7. Proof that the Shapley Value Satisfies the Axioms

In the remainder of the paper, we abbreviate $\partial V(N)$ by ∂V. We call a member λ of \mathbb{R}^N normalized if $\max_i |\lambda_i| = 1$.

Let V be a game, and let $y \in \partial V$. Since $V(N)$ is smooth (3.1), there is a unique supporting hyperplane to $V(N)$ at y. That means that there is a unique normalized λ in \mathbb{R}^N such that $\lambda \cdot x$ is maximized over $V(N)$ at $x = y$. By comprehensiveness and (3.2), this λ is positive; denote it $\delta(V,y)$.

Lemma 7.1: $A(V) \subseteq \partial V$.

Proof: Follows from the efficiency of the TU value.

Lemma 7.2: Let $y \in A(V)$, and let $\lambda = \delta(V,y)$. Then the TU game v_λ is defined, and $\lambda y = \Phi(v_\lambda)$.

Proof: By the definition of the Shapley value (Section 4), there is a positive μ in \mathbb{R}^N, which we may assume normalized, such that v_μ is defined and $\mu y = \Phi(v_\mu)$. By the efficiency of the TU value,

$$\mu \cdot y = \sum_i \mu_i y^i = \sum \Phi^i(v_\mu) = v_\mu(N) = \sup \{ \mu \cdot x : x \in V(N) \}.$$
Hence u^*x is maximized over $\mathcal{V}(N)$ at $x = y$, i.e., $u = \delta(V, y) = \lambda$, and the proof is complete.

Proposition 7.3: The correspondence A from Γ to R^N satisfies Axioms 0 through 6.

Proof: Axiom 0 follows from the definition of Γ. Axiom 1 is Lemma 7.1. To verify Axiom 2, let $y \in A(V)$, $z \in A(W)$, $y + z \in \mathfrak{S}U$; we wish to show $y + z \in A(V)$. Let $\lambda = \delta(U, y + z) = \delta(V + W, y + z)$.

Then λ^*x is maximized over $\mathcal{V}(N) + \mathcal{W}(N)$ at $x = y + z$, and hence over $\mathcal{V}(N)$ at $x = y$; hence $\lambda = \delta(V, y)$. Since $y \in A(V)$ it follows from Lemma 7.2 that the TU game v_λ is defined, and $\lambda y = \phi(v_\lambda)$. Similarly the TU game w_λ (the notations w_λ and u_λ are analogous to v_λ) is defined, and $\lambda z = \phi(w_\lambda)$. Hence the TU game u_λ is defined, and $u_\lambda = v_\lambda + w_\lambda$. Hence by the additivity axiom for the TU value,

$$\lambda(y + z) = \lambda y + \lambda z = \phi(v_\lambda) + \phi(w_\lambda) = \phi(v_\lambda + w_\lambda) = \phi(y_\lambda).$$

But $y + z \in \mathcal{V}(N) + \mathcal{W}(N) \subset \mathcal{U}(N)$; together with (7.4), this shows that $y + z$ is a Shapley value of U, as was to be shown. The remaining axioms are straightforward, and so the proof of the proposition is complete.

8. **Proofs of the Theorems**

Throughout this section, ϕ is an arbitrary but fixed correspondence from Γ to R^N satisfying Axioms 0 through 5.
Lemma 8.1: If V is the game corresponding to a TU game v, then $\Phi(V) = \{\Phi(v)\}$.

Proof: Note first that Γ contains all games corresponding to TU games, so that we can apply our axioms to all these games at will.

Let V correspond to the TU game v. For any real number a, let V^a correspond to the TU game av. Then V^0 corresponds to the TU game that is identically 0 (i.e., vanishes on all coalitions), and hence by Axioms 1, 2, and 3,

$$\Phi(V^0) + \{1/n\} = \Phi(V^0) + \Phi(U_N) \subset \Phi(V^0 + U_N) = \Phi(U_N) = \{1/n\}.$$

By Axiom 0, it follows that

$$(8.2) \quad \Phi(V^0) = \{0\}.$$

Hence by Axioms 1 and 2, $\Phi(V) + \Phi(V^{-1}) \subset \Phi(V + V^{-1}) = \Phi(V^0) = \{0\}$. By Axiom 0, it follows that each of $\Phi(V)$ and $\Phi(V^{-1})$ consists of a single point, and

$$(8.3) \quad \Phi(V^{-1}) = \Phi(V).$$

If a is a positive scalar, then Axiom 5 with $\lambda = (a, \ldots, a)$ yields

$$(8.4) \quad \Phi(V^a) = a\Phi(V).$$

Combining this with (8.2) and (8.3), we deduce (8.4) for all scalars a, no matter what their sign is. From Axiom 3 and $\Phi(aU_T) = a1_T/|T|$ we then deduce that
for all coalitions T and all real numbers a.

Now each TU game v may be expressed in the form $v = \sum_T \alpha_T u_T$, where the α_T are real. Hence for the corresponding game V we have $V = \sum_T \alpha_T u_T$. By (8.5), and Axioms 1 and 2, it follows that

$$V = \sum_T \alpha_T u_T = \sum_T \phi(\alpha_T u_T) = \sum_T \phi(\alpha_T) u_T = \phi(V).$$

But we have already seen that $\phi(V)$ consists of a single point. Hence $\{\phi(v)\} = \phi(V)$, and the proof of the lemma is complete.

Lemma 8.6: $\phi(V) \subseteq A(V)$ for each V in Γ.

Proof: Let $y \in \phi(V)$. By Axiom 1, $y \in A(V)$. Setting $\lambda = \delta(V,y)$, we deduce from (3.2) that λ is positive. By Axiom 5 (scale covariance) applied both to ϕ and to A, we may assume without loss of generality that $\lambda = (1,\ldots,1)$. If V^0 corresponds to the TU game that is identically 0, then by (3.3), $V + V^0$ is a game; moreover, $y \in \Phi(V + V^0)$, and $V + V^0$ corresponds to the TU game v_λ (see (4.2)). Hence by Lemma 8.1, Axioms 2 and 4, and again Lemma 8.1, we have

$$\lambda y = y \in \phi(V) \cap \Phi(V + V^0) = (\phi(V) + 0) \cap \Phi(V + V^0)$$

$$= (\phi(V) + \phi(V^0)) \cap \Phi(V + V^0) = \phi(V + V^0) = \phi(v_\lambda) = \{\phi(v_\lambda)\}.$$
Theorem B follows from Proposition 7.3 and Lemma 8.6.

Lemma 8.3: If \(\phi \) is a value correspondence, then \(A(V) \subset \phi(V) \) for all \(V \in \Gamma \).

Proof: Let \(y \in A(V) \). Then \(y \in \nabla(N) \), and there is a comparison vector \(\lambda \) such that the TU game \(v_\lambda \) (see (4.2)) is defined, and

\[
\lambda y = \phi(v_\lambda) .
\]

Let \(V_\lambda \) be the game corresponding to \(v_\lambda \). Define a game \(W \) by

\[
W(S) = \begin{cases}
V_\lambda(N) & \text{when } S = N \\
\lambda V(S) & \text{when } S \neq N .
\end{cases}
\]

Then \(\lambda y \) is a Shapley value of \(W \), so \(W \in \Gamma \), so \(\phi(W) \) is defined.

Let \(V^0 \) correspond to the TU game that vanishes on all coalitions. Then \(V_\lambda = W + V^0 \) and \(\phi(W + V^0) = \phi(W) \), and so by Lemma 8.1 and Axioms 4, 2, 1 and 0, we have

\[
\{\phi(v_\lambda)\} = \{\phi(W + V^0)\} = \phi(W + V^0) \supset (\phi(W) + \phi(V^0)) \cap \phi(W + V^0)
\]

\[
= (\phi(W) + \emptyset) \cap \emptyset = \phi(W) \neq \emptyset .
\]

Hence

\[
\phi(W) = \{\phi(v_\lambda)\} = \{\lambda y\} .
\]

By definition, \(W(N) = V_\lambda(N) \supset \lambda V(N) \), and \(W(S) = \lambda V(S) \) for \(S \neq N \).

Moreover \(y \in \nabla(N) \) yields \(\lambda y \in \lambda V(N) \). Hence by Axioms 6, 5 and 4, \(\lambda y \in \phi(\lambda V(N)) = \lambda \phi(V) \). Hence \(y \in \phi(V) \), as was to be proved.
Theorem A follows from Proposition 7.3 and Lemmas 8.6 and 8.7.

9. Smoothness

The smoothness condition (3.1) is of the essence; without it, the Shapley correspondence fails to satisfy the conditional additivity axiom, and both our theorems become irreparably false.

To see how smoothness works, let \(y \) be a Shapley value of \(V \). The associated "comparison vector" \(\lambda \) always defines a supporting hyperplane to \(V(N) \) at \(y \); because of smoothness, it is the only supporting hyperplane. If now \(z \) is a Shapley value of \(W \), then \(y + z \) is efficient in \(V + W \) if and only if the supporting hyperplanes at \(y \) and \(z \) are parallel; therefore, \(y \) and \(z \) must be associated with the same comparison vector, and then additivity follows from the additivity of the TU value.

Without smoothness, the reasoning breaks down. It is possible for \(V(N) \) and \(W(N) \) to have parallel supporting hyperplanes at \(y \) and \(z \), by dint of which \(y + z \) is efficient in \(V + W \); but these need not be the hyperplanes defined by the comparison vectors that make \(y \) and \(z \) Shapley values. For example, let \(N = \{1,2\} \), let \(V \) correspond to the TU game given by \(v(12) = v(1) = v(2) = 0 \), and define \(W \) by

\[
W(1) = W(2) = (-\infty,0), \quad W(12) = \{x \in \mathbb{R}^2 : x_1^1 + x_2^2 \leq 6 \text{ and } x_1^1 + 2x_2^2 \leq 8\}
\]

(see Figure 1); setting \(U = V + W \), we see that \(U \) corresponds to the TU game \(u \) given by \(u(12) = 6 \), \(u(1) = u(2) = 0 \). Then \(A(V) = \{(0,0)\} \), \(A(W) = \{(4,2)\} \), and \(A(U) = \{(3,3)\} \); \((0,0) + (4,2) \) is efficient in \(U \).
but it is not a value. What is happening is that \(V(N) \) and \(W(N) \) both have hyperplanes at the respective Shapley values that are orthogonal to \((1,1)\); but the value \((4,2)\) of \(W \) is associated with the comparison vector \((1,2)\), not with \((1,1)\).

Smoothness may be interpreted as local linearity, or, if one wishes, local TU; but note that it is needed for the all-player coalition only. In the guise of differentiability, it has played a significant role in several of the applications; so it is interesting that it makes an appearance on the foundational side as well.

Figure 1

\(V(N) \), \(W(N) \), and \(U(N) \) are, respectively, horizontally, vertically, and diagonally hatched.
10. Discussion

a. Vanishing Comparison Weights and the Non-Levelness Condition

Shapley's treatment (Shapley [1969]) permits some of the comparison weights λ^i to vanish. Ours does not. Vanishing comparison weights are undesirable for several reasons. In the direct, non-axiomatic approach, their intuitive significance is murky; and in the axiomatic approach, they greatly complicate matters. In the applications, vanishing λ^i have played no significant role; in most specific cases it can be shown that the λ^i must be positive, though the definition allows them to vanish.

Our definition of "Shapley value" explicitly takes λ positive; and the non-levelness condition (3.2) assures that whatever emerges from the axioms will be associated with a positive λ. A verbal statement of (3.2) is that weak and strong Pareto optimality are equivalent.

One can avoid the non-levelness condition by strengthening the efficiency axiom to read as follows:

1*. Strong Efficiency: if $y \in \mathcal{V}(N)$, then $\{x \in \mathcal{V}(N): x \leq y\} = \{y\}$.

This is more than strong Pareto optimality; it says that y is in the relative (to $\mathcal{V}(N)$) interior of the strongly Pareto optimal set, or equivalently that $\delta(V,y)$ is positive. If we replace Axiom 1 by Axiom 1*, then one can simply drop (3.2), and our theorems remain true.

b. The Domain

The domain Γ of the axioms is the set of all games that possess at least one Shapley value. This might be considered an esthetic
drawback, since in this way the Shapley value enters into its own
taxiomatic characterization (albeit only via the domain). If one wishes
to avoid this, one can replace Γ by any family Γ^* with the following
properties:

(10.1) $\Gamma^* \subset \Gamma$.

(10.2) All games corresponding to TU games are in Γ^*.

(10.3) If $V \in \Gamma^*$ and λ is a positive vector in \mathbb{R}^N, then $\lambda V \in \Gamma^*$.

(10.4) The game obtained from any V in Γ^* by replacing $V(N)$ by any
one of its supporting half-spaces is also in Γ^*.

(10.5) $V \in \Gamma^*$ if and only if $V \in \Gamma^*$.

We adopted Γ as a domain because it is the largest such family,
and is thus the most useful from the point of view of applications.

It should be noted that the restriction to Γ is not gratuitous;
there are indeed games not possessing any Shapley value. For example, let
$N = \{1, 2\}$, and define V by

$$V(1) = V(2) = (-\infty, 0) \quad , \quad V(12) = \{ (\xi, \eta) \in \mathbb{R}^N : \eta < 0 \quad \text{and} \quad \xi^2 \eta \leq -1 \} .$$

If $x = (\xi, \eta)$ were a value, then the tangent to $\partial V(N)$ at x would
have a slope equal in magnitude (but opposite in sign) to the slope of
the line connecting x with the origin; and this can never be, since the
respective slopes are $-\eta/2\xi$ and η/ξ. The example is of course highly
pathological, since each player can guarantee 0 to himself, but can
never achieve this in \(V(N) \); but it does show that one cannot simply take the domain to be the set of all games.

c. Conditional Additivity

The Conditional Additivity Axiom can be replaced by the following pair of axioms:

2ª. Conditional Sure-Thing: If \(U = \frac{1}{2}V + \frac{1}{2}W \), then
\[
\phi(U) = \phi(V) \cap \phi(W) \cap \omega(U(N)).
\]

2ºb. Translation covariance: For all \(x \) in \(R^N \), \(\phi(V + x) = \phi(V) + x \).

In Section 6, we suggested that the value of a game may be viewed as a group decision, compromise, or arbitrated outcome, that is reasonable in view of the alternatives open to the players and coalitions (rather than an outcome that is itself in some sense stable, such as a core point). In these terms, 2ª says the following: Suppose that \(y \) is a reasonable compromise both in the game \(V \) and in the game \(W \). Suppose further that one of the games \(V \) and \(W \) will be played; at present it is not yet known which one, but it is common knowledge that the probabilities are half-half. Then \(y \) is a reasonable compromise in this situation as well,\(^{12}\) unless the players can use the uncertainty to their mutual advantage.

d. Non-Uniqueness of the Value

Given the above view of the value as a reasonable compromise, some readers may be disturbed by the fact that a given game \(V \) may have more than one value.\(^{13}\) Non-uniqueness, they may say, is all very well for
stability or equilibrium concepts; but a theory of arbitration, of reaching reasonable compromises, should "recommend" a single point.

On closer examination, there seems to be no particular reason to accept such a view. Compromises may be based on many different kinds of principles and criteria. Such criteria are usually overlapping, in the sense that a given one applies to only a limited range of situations, and to a given situation several criteria may apply. This results in a multi-valued function — a correspondence.

A good analogy is to law; in fact, one can view civil law as Society's way of reaching "reasonable compromises". Specific laws always have limited ranges; these ranges often overlap and yield contradictory results. An important function of a judge is to "resolve" such contradictions in each specific case brought before him, by selecting one of the applicable laws. It is no wonder that judgements are often overturned on appeal, and that different jurisdictions reach different opinions on identical cases. Law is multi-valued, not incoherent.

In much the same way, a value correspondence is a coherent system. Its coherence is expressed by the axioms, by the way that they relate values of different games to each other. The axioms say, if you can decide such-and-such in case (a), then you can decide so-and-so in case (b). There is no reason to expect such a system to be single valued.

The original definition of the NTU value is an instance of this kind of system. Here a "criterion" is a vector \(\lambda \) of comparison
weights, which the players (or the arbitrator) use to compare utilities. Given such a criterion, a "reasonable compromise" is the TU value $\psi(v, \lambda)$; and the criterion "applies" to the NTU game V if $\psi(v, \lambda)$ is feasible in V.

Our results say that every value system that is coherent, in the sense that it satisfies the axioms, must be of this specific kind.
Footnotes

1/ I.e., games with side payments, representable by a coalitional worth ("characteristic") function.

2/ See the references of Aumann [1982].

3/ The random order expected contribution formula for the TU value, and the maximum product formula for the Nash Bargaining Problem.

4/ Specifically, the idea of adding the zero-game V^0 (see Section 8) to a given NTU game in order to obtain the induced transfer game is due to him.

5/ The importance that Shapley attaches to the endogeneous determination of comparison weights is evident from the title of his paper, as well as from its introduction.

6/ For a nice example of this phenomenon, see Luce and Raiffa [1957], pp. 132-3, especially Figure 8. In Game A, $(5,50)$ sounds reasonable as an average of different possible outcomes. In Game B, it does not, since 50 is the maximum possible utility for Player 2.

7/ We are purposely staying away from the word "fair", in order to avoid ethical connotations.

8/ Condition (3.3), which is used only here, is needed to ensure that $(V + V^0)(S)$ does not fill all of R^S.

9/ Satisfies Axiom 6 as well as 0 through 5.

10/ We are referring to the existing applications to economic and/or political models, not to isolated numerical examples.

11/ In effect, (3.2) asserts that no part of the efficient surface is level, whereas 1* asserts this only on a neighborhood of the value.

12/ Compare Shapley [1969], p. 261, IV.

13/ I.e., that $\emptyset(V)$ may contain several points. Of course, Theorem A guarantees that the correspondence \diamond is unique.
References

Aumann, R. J. [1975], "Values of Markets with a Continuum of Traders," *Econometrica* 43, pp. 611-646.

Reports in this Series

378. "Unemployment Equilibrium with Stochastic Rationing of Supplies" by Ho-mou Wu.

380. "On the NTU Value" by Robert J. Aumann.

382. "Informational Equilibrium" by Robert Kast.

383. "Cooperative Oligopoly Equilibrium" by Mordecai Kurz.

390. "Aggregates, Activities and Overheads" by W.M. Gorman.

392. "Efficiency and Fairness in the Design of Bilateral Contracts" by S. Honkapohja.

393. "Diagonality of Cost Allocation Prices" by L.J. Mirman and A. Neyman

395. "Asymptotic Normality of the Censored and Truncated Least Absolute Deviations Estimators" by J.L. Powell

396. "Dominance-Solvability and Cournot Stability" by Herve Moulin

397. "Managerial Incentives, Investment and Aggregate Implications" by B. Holmstrom and L. Weiss
Reports in this Series

398. "Generalizations of the Censored and Truncated Least Absolute Deviations Estimators" by J.L. Powell.

401. "Short-Run Analysis of Fiscal Policy in a Simple Perfect Foresight Model" by K. Judd.

402. "Estimation of Failure Rate From A Complete Record of Failures and a Partial Record of Non-Failures" by K. Suzuki.

404. "On the Optimality of Individual Behavior in First Come Last Served Queues With Preemption and Balking" by Refael Hassin.

405. "Entry with Exit: An Extensive Form Treatment of Predation with Financial Constraints" by J.P. Benoit.

406. "Search Among Queues" by A. Glazer and R. Hassin.

411. "Transversality Conditions for Some Infinite Horizon Discrete Time Optimization Problems" by Ivar Ekeland and Jose A. Scheinkman.

412. "Asymptotic Efficiency of the Partial Likelihood Estimator in the Proportional Hazard Model" by Aaron K. Hahn.

413. "A Monte Carlo Comparison of Estimators for Censored Regression Models" by Harry J. Paarsch.

414. "Instrumental-Variable Estimation of an Error-Components Model" by Takeshi Amemiya and Thomas E. MacCurdy.
