LASER-INDUCED SURFACE MIGRATION VIA SURFACE PLASMONS
W C MURPHY ET AL. DEC 83 ROCHESTER/DC/83/TR-45
UNCLASSIFIED N00014-80-C-0472
F/G 7/5 NL
Laser-Induced Surface Migration via Surface Plasmons

by

William C. Murphy, Xi-Yi Huang and Thomas F. George

Prepared for Publication

in

Chemical Physics Letters

Department of Chemistry
University of Rochester
Rochester, New York 14627

December 1983

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.
Laser-Induced Surface Migration via Surface Plasmons

A classical model coupling a charged adspecies to a laser-induced surface plasmon is presented. Such coupling can enhance the rate and specify the direction of surface migration. For the particular case of an atomic oxygen ion of charge -1 adsorbed on aluminum which is exposed to CO$_2$ laser radiation of intensity of 1 W/cm2, the velocity of migration (61.3 microns/sec) is five orders of magnitude greater than the usual thermal velocities observed at room temperature.
LASER-INDUCED SURFACE MIGRATION VIA SURFACE PLASMONS

William C. Murphy, Xi-Yi Huang* and Thomas F. George
Department of Chemistry
University of Rochester
Rochester, New York 14627

A classical model coupling a charged adspecies to a laser-induced surface plasmon is presented. Such coupling can enhance the rate and specify the direction of surface migration. For the particular case of an atomic oxygen ion of charge -1 adsorbed on aluminum which is exposed to CO$_2$ laser radiation of intensity $I \text{ W/cm}^2$, the velocity of migration (61.3 pm/sec) is five orders of magnitude greater than the usual thermal velocities observed at room temperature.

* Permanent address: Institute of Physics, Academia Sinica, Beijing (Peking), The People's Republic of China
Migration of adsorbed particles on a solid surface is an important process in catalytic reactions.\(^1\text{--}^5\) Such motion has been observed even for adsorbates with very high binding energies at relatively low temperatures.\(^1\) This surface migration is essentially random motion that proceeds at a typical adsorbate velocity of a few angstroms per second.\(^1,2\)

Adsorbed particles on a surface, however, can be strongly influenced by the existence of surface plasmons. For example, it has been theoretically argued that the interaction between adspecies can be enhanced by these surface waves.\(^6\) Furthermore, laser-induced periodic surface structure has been explained in terms of surface plasmons.\(^7\) In the following, we shall examine the effect that a surface plasmon can have on the motion of a charged adspecies at low temperatures. We shall discuss the possibility of using a laser-excited surface plasmon to control both the rate and direction of surface migration.

If a smooth metal surface is exposed to laser radiation of an appropriate frequency, a surface plasmon can be excited via frustrated reflection.\(^8\) This plasmon will have an electric field, \(\hat{E}\), associated with it above the surface of the form:

\[
\frac{\hat{E}}{E_0} = \left[\frac{k_x}{k_g}, 0, -\frac{k_z}{k_g} \right] \exp[i(k_x x + k_z z - \omega t)] + c.c.,
\]

where the \(z\)-direction is perpendicular to the surface, \(x\) is parallel and in the direction of the plasmon propagation, and \(E_0\) is the amplitude and \(\omega\) the frequency of the laser field. The wavenumber \(k_g\) for the laser in the gas medium above the metal and \(k_x\) and \(k_z\) for the surface plasmon are given by

\[
k_g = \frac{\omega}{c}
\]

\[
k_x = \frac{\omega}{c} \sqrt{\frac{\varepsilon(\omega)}{\varepsilon(\omega) + 1}}
\]
$$k_z = \frac{\omega}{c} \frac{1}{\sqrt{\varepsilon(\omega)} + 1},$$ \hspace{1cm} (4)

where c is the speed of light.

The dielectric function of the metal, $\varepsilon(\omega)$, will in general be less than negative one for the plasmons excited. Under this condition, the x-component of the wavevector, Eq. (3), will be real and the z-component, Eq. (4), will be imaginary:

$$k_z = i \kappa.$$

(5)

If a particle of charge q is now introduced above the surface, it will couple to the plasmon electric field. The equations of motion for this particle can be readily obtained from Eq. (1) as

$$\frac{\ddot{x}}{m} = \frac{2qE_0}{k_g} \sin(k_x x - \omega t) e^{-\kappa z} - \frac{\partial V(x,y,z)}{\partial x},$$ \hspace{1cm} (6a)

$$\frac{\ddot{z}}{m} = \frac{2qk_x E_0}{k_g} \cos(k_x x - \omega t) e^{-\kappa z} - \frac{\partial V(x,y,z)}{\partial z},$$ \hspace{1cm} (6b)

where m is the mass of the adspecies and $V(x,y,z)$ is the interaction potential between the adspecies and the surface. This interaction can be quite complicated, especially in the presence of the surface plasmon. We shall assume that the interaction is sufficiently strong to confine the charged particle to an equilibrium distance from the surface, $z = z_{\text{eq}}$. However, it will be free to move along the plane of the surface. These conditions would be characteristic of a physisorbed state.

Under these assumptions, Eq. (6a) can be simplified and converted to an integral form,
\[x(t) = \frac{2}{\omega} C \int_0^t dt' \int_0^{t'} dt'' \sin[k_x x(t'') - \omega t''], \quad (7) \]

where the constant is
\[C \equiv \frac{2qE_0 e^{-xZeq}}{mk_q \omega^2}. \quad (8) \]

We now change the variable of integration in Eq. (7) to
\[u'' = k_x x(t'') - \omega t'' \quad (9) \]
and similarly for \(t' \). Furthermore, we note that the velocity of the particle will be much slower than the plasmon:
\[\dot{x}(t'') \ll \frac{\omega}{k_x}. \quad (10) \]

Under these conditions, we can readily integrate Eq. (7) to give
\[x(t) = C(k_x x(t) - \omega t - \sin[k_x x(t) - \omega t]). \quad (11) \]

However, for any time greater than a few periods of the laser frequency, the oscillatory term will be insignificant. Therefore,
\[x(t) = \frac{C \omega}{k_x C - 1} t. \quad (12) \]

Consequently, coupling a charged adspecies to the plasmon will produce a linear motion parallel to the plasmon.

If an aluminum surface is exposed to a laser of low intensity (1 W/cm²) with a frequency of \(1.8 \times 10^{14} \) Hz (CO₂ laser at 10.6 μm), surface plasmons
can be excited. We now consider an atomic oxygen ion of charge -1 adsorbed on the surface, which will couple to this plasmon. The resultant velocity can be obtained from Eqs. (8) and (12) as

\[\dot{x} = 61.3 \, \mu\text{m/sec}. \]

(13)

This is substantially larger than the usually thermal velocities of a few angstroms per second that are observed at room temperature. Furthermore, we can easily increase this speed by using a laser of higher intensity. It should also be noted that the velocity of a negatively charged particle is with the plasmon; the positive particle will move against it. Thus, the plasmon-induced motion has a preferred direction.

We have shown that a laser-excited surface plasmon can impart substantial motion to a charged adspecies. However, we have only considered this effect for weakly-bound adsorbates at low temperatures. The exact form of the surface interaction potential was not considered, and the phenomena of surface relaxation that often accompanies migration\(^2,12\) was not examined. Finally, it should be noted that the interplay of the surface plasmon with the adspecies/surface potential could have a substantial effect on surface migration. Research to overcome these limitations in this model is now in progress.
Acknowledgments

This research was supported in part by the Office of Naval Research, the Air Force Office of Scientific Research (AFOSR), United States Air Force, under Grant AFOSR-82-0046, and the U.S. Army Research Office. The United States Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation hereon. TFG acknowledges the Camille and Henry Dreyfus Foundation for a Teacher-Scholar Award (1975–84) and the John Simon Guggenheim Foundation for a Fellowship (1983–84).

References

<table>
<thead>
<tr>
<th>Office of Naval Research Attn: Code 413</th>
<th>2</th>
<th>Naval Ocean Systems Center Attn: Technical Library</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>800 N. Quincy Street Arlington, Virginia 22217</td>
<td></td>
<td>San Diego, California 92152</td>
<td></td>
</tr>
<tr>
<td>ONR Pasadena Detachment Attn: Dr. R. J. Marcus</td>
<td>1</td>
<td>Naval Weapons Center Attn: Dr. A. B. Amster</td>
<td>1</td>
</tr>
<tr>
<td>1030 East Green Street Pasadena, California 91106</td>
<td></td>
<td>Chemistry Division China Lake, California 93555</td>
<td></td>
</tr>
<tr>
<td>Commander, Naval Air Systems Command Attn: Code 310C (H. Rosenwasser)</td>
<td>1</td>
<td>Scientific Advisor Commandant of the Marine Corps Code RD-1</td>
<td>1</td>
</tr>
<tr>
<td>Washington, D.C. 20360</td>
<td></td>
<td>Washington, D.C. 20380</td>
<td></td>
</tr>
<tr>
<td>Naval Civil Engineering Laboratory Attn: Dr. R. W. Drisko</td>
<td>1</td>
<td>Dean William Tolles Naval Postgraduate School</td>
<td>1</td>
</tr>
<tr>
<td>Port Hueneme, California 93401</td>
<td></td>
<td>Monterey, California 93940</td>
<td></td>
</tr>
<tr>
<td>Superintendent Chemistry Division, Code 6100 Naval Research Laboratory Washington, D.C. 20375</td>
<td>1</td>
<td>U.S. Army Research Office Attn: CRD-AA-IP</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P.O. Box 12211 Research Triangle Park, NC 27709</td>
<td></td>
</tr>
<tr>
<td>Defense Technical Information Center Building 5, Cameron Station Alexandria, Virginia 22314</td>
<td>12</td>
<td>Mr. Vincent Schaper DTNSRDC Code 2830</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Annapolis, Maryland 21402</td>
<td></td>
</tr>
<tr>
<td>DTNSRDC Attn: Dr. G. Bosmajian Applied Chemistry Division Annapolis, Maryland 21401</td>
<td>1</td>
<td>Mr. John Boyle Materials Branch</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Naval Ship Engineering Center Philadelphia, Pennsylvania 19112</td>
<td></td>
</tr>
<tr>
<td>Naval Ocean Systems Center Attn: Dr. S. Yamamoto Marine Sciences Division San Diego, California 91232</td>
<td>1</td>
<td>Mr. A. M. Anzalone Administrative Librarian PLASTEC/ARRADCOM</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bdgd 3401 Dover, New Jersey 07801</td>
<td></td>
</tr>
<tr>
<td>Dr. David L. Nelson Chemistry Program Office of Naval Research 800 North Quincy Street Arlington, Virginia 22217</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TECHNICAL REPORT DISTRIBUTION LIST, 056

Dr. G. A. Somorjai
Department of Chemistry
University of California
Berkeley, California 94720

Dr. W. Kohn
Department of Physics
University of California, San Diego
La Jolla, California 92037

Dr. J. Murday
Naval Research Laboratory
Surface Chemistry Division (6170)
455 Overlook Avenue, S.W.
Washington, D.C. 20375

Dr. R. L. Park
Director, Center of Materials Research
University of Maryland
College Park, Maryland 20742

Dr. J. B. Hudson
Materials Division
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. W. T. Peria
Electrical Engineering Department
University of Minnesota
Minneapolis, Minnesota 55455

Dr. Theodore E. Madey
Surface Chemistry Section
Department of Commerce
National Bureau of Standards
Washington, D.C. 20234

Dr. Keith H. Johnson
Department of Metallurgy and Materials Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. Chia-wef Woo
Department of Physics
Northwestern University
Evanston, Illinois 60201

Dr. J. M. White
Department of Chemistry
University of Texas
Austin, Texas 78712

Dr. Robert M. Hexter
Department of Chemistry
University of Minnesota
Minneapolis, Minnesota

Dr. R. P. Van Duyne
Chemistry Department
Northwestern University
Evanston, Illinois 60201

Dr. J. E. Demuth
IBM Corporation
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. S. Sibener
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. M. G. Lagally
Department of Metallurgical and Mining Engineering
University of Wisconsin
Madison, Wisconsin 53706

Dr. Arold Green
Quantum Surface Dynamics Branch
Code 3817
Naval Weapons Center
China Lake, California 93555

Dr. Adolph B. Amster
Chemistry Division
Naval Weapons Center
China Lake, California 93555

Dr. S. L. Bernasek
Princeton University
Department of Chemistry
Princeton, New Jersey 08544
TECHNICAL REPORT DISTRIBUTION LIST, 056

Dr. F. Carter
Code 6132
Naval Research Laboratory
Washington, D.C. 20375

Dr. Richard Greene
Code 5230
Naval Research Laboratory
Washington, D.C. 20375

Dr. Richard Colton
Code 6112
Naval Research Laboratory
Washington, D.C. 20375

Dr. L. Kesmodel
Department of Physics
Indiana University
Bloomington, Indiana 47403

Dr. Dan Pierce
National Bureau of Standards
Optical Physics Division
Washington, D.C. 20234

Dr. K. C. Janda
California Institute of Technology
Division of Chemistry and Chemical Engineering
Pasadena, California 91125

Professor R. Stanley Williams
Department of Chemistry
University of California
Los Angeles, California 90024

Professor E. A. Irene
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina 27514

Dr. R. P. Messmer
Materials Characterization Lab.
General Electric Company
Schenectady, New York 12301

Dr. Adam Heller
Bell Laboratories
Murray Hill, New Jersey 07974

Dr. Robert Gomer
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. Martin Fleischmann
Department of Chemistry
Southampton University
Southampton S09 5NH
Hampshire, England

Dr. Ronald Lee
R301
Naval Surface Weapons Center
White Oak
Silver Spring, Maryland 20910

Dr. John W. Wilkins
Cornell University
Laboratory of Atomic and Solid State Physics
Ithaca, New York 14853

Dr. Paul Schoen
Code 5570
Naval Research Laboratory
Washington, D.C. 20375

Dr. Richard Smardzewski
Code 6130
Naval Research Laboratory
Washington, D.C. 20375

Dr. John T. Yates
Department of Chemistry
University of Pittsburgh
Pittsburgh, Pennsylvania 15260
TECHNICAL REPORT DISTRIBUTION LIST, 056

Dr. R. G. Wallis
Department of Physics
University of California
Irvine, California 92664

Dr. R. W. Plummer
Department of Physics
University of Pennsylvania
Philadelphia, Pennsylvania 19104

Dr. N. Ramaker
Chemistry Department
George Washington University
Washington, D.C. 20052

Dr. E. Yeager
Department of Chemistry
Case Western Reserve University
Cleveland, Ohio 41106

Dr. P. Harsma
Physics Department
University of California
Santa Barbara, California 93106

Professor D. Hercules
University Pittsburgh
Chemistry Department
Pittsburgh, Pennsylvania 15260

Dr. J. C. Hemminger
Chemistry Department
University of California
Irvine, California 92717

Professor N. Winograd
Department of Chemistry
Pennsylvania State University
University Park, Pennsylvania 16802

Professor T. F. George
Chemistry Department
University of Rochester
Rochester, New York 14627

Dr. G. D. Stein
Mechanical Engineering Department
Northwestern University
Evanston, Illinois 60201

Dr. G. Rubloff
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Professor A. Steckl
Department of Electrical and
Systems Engineering
Rensselaer Polytechnic Institute
Troy, New York 12181

Professor Horia Metiu
Chemistry Department
University of California
Santa Barbara, California 93106

Professor G. H. Morrison
Department of Chemistry
Cornell University
Ithaca, New York 14853

Captain Lee Myers
AFOSR/NC
Bollig AFB
Washington, D.C. 20332

Dr. David Souire
Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709

Dr. J. C. Hemminger
Chemistry Department
University of California
Irvine, California 92717

Professor N. Winograd
Department of Chemistry
Pennsylvania State University
University Park, Pennsylvania 16802

Professor T. F. George
Chemistry Department
University of Rochester
Rochester, New York 14627

Dr. G. D. Stein
Mechanical Engineering Department
Northwestern University
Evanston, Illinois 60201

Professor A. Steckl
Department of Electrical and
Systems Engineering
Rensselaer Polytechnic Institute
Troy, New York 12181

Professor G. H. Morrison
Department of Chemistry
Cornell University
Ithaca, New York 14853

Captain Lee Myers
AFOSR/NC
Bollig AFB
Washington, D.C. 20332

Dr. David Souire
Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709

Dr. J. C. Hemminger
Chemistry Department
University of California
Irvine, California 92717

Professor N. Winograd
Department of Chemistry
Pennsylvania State University
University Park, Pennsylvania 16802

Professor T. F. George
Chemistry Department
University of Rochester
Rochester, New York 14627

Dr. G. D. Stein
Mechanical Engineering Department
Northwestern University
Evanston, Illinois 60201

Professor A. Steckl
Department of Electrical and
Systems Engineering
Rensselaer Polytechnic Institute
Troy, New York 12181

Professor G. H. Morrison
Department of Chemistry
Cornell University
Ithaca, New York 14853

Captain Lee Myers
AFOSR/NC
Bollig AFB
Washington, D.C. 20332

Dr. David Souire
Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709