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TM DEPENDENT, COMPRESSIBLE SIULATIONS OF SHEAR FLOWS:

TESTS OF OUTFLOW BOUNDARY CONDITIONS

I. INTRODUCTION

This paper describes recent numerical simulations performed at NRL of

shear flows transitioning to turbulence, and, in particular, the development

and evolution of coherent structures. There are two aspects of this problem

which are addressed in this report. The first is developing and testing the

model that was used in these studies. In particular, we are concerned with

the treatment of inflow and outflow boundary conditions suitable for both

compressible and incompressible flows. The second aspect is using this model

to describe shear flows.

The first problem, developing the proper computational tools, has been

the major goal of the last year's work and is discussed in Sections III

through VI. The numerical model we are usinq now is a restructured version

of the FAST2D computer code. This incorporates the Flux-Corrected Transport

(FCT) continuity equation algorithm (Boris, 1976b; Soris and Book, 1976)

which has been tested extensively for shock, detonation, and beam-aenerated

turbuelnce calculations (e.g., Book et al., 1980, Oran et al., 1982; Picone

and Boris, 1983). Since the algorithm is explicit in its present form, the

code is particularly efficient for studyinq flows that move at a substantial

fraction of the speed of sound in the material. Using time step splitting

techniques, we couple PCT to algorithms for the other physical processes we

want to represent. In Section III below we describe the general features of

the code. In Section IV, V, and VI we describe tests of the new outflow

boundary conditions.

The second aspect, application of the model, is the goal of the upcominq

research. We have used the model to simulate time dependent flows in two

confiqurations, the splitter plate and the round jet, for which substantial

ManuMpt approved Octber 28, 1983.
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data exist on the transition to turbulence. At the end of this paper, in

Section VII, we describe some preliminary results and their implications.
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II. BACKGROUND

The development and structure of turbulent flows is the focus of intense

study. We now know that flows which previously were thought to he totally

chaotic and statistical in nature are dominated by the persistence of rela-

tively large structures. These coherent structures were previously ignored

since their existence was masked or de-emphasized by experimental averaging

techniques. The classical description of turbulence and the mechanisms

responsible for its development are now considered deficient in their expla-

nations of these transient but orqanized and persistent structures.

The classical description of turbulence evolved from the observed

behavior of fluid flows as a function of Reynolds number. Many flows exhibit

a series of sudden transitions to new flow patterns as the Reynolds number is

increased. Each transition results in an increasingly complicated flow, and

at high Reynolds number the flows become irregular and appear chaotic in both

space and time. The transitions to the succession of flow patterns may be

caused by a sequence of fluid instabilities, each of which breaks some sym-

metry in the previously stable flow pattern and introduces some new scale in

the flow pattern (Liepmann, 1979). The transition to a purely chaotic flow

was postulated to occur through an infinite succession of instabilities, each

contributing to the increasing frequency content of the flow (Landau and

Lifshitz, 1959).

Several experimental observations have seriously eroded confidence in

the completeness of such a turbulence model for physical flows. First,

although laboratory created grid turbulence comes close, no flow has yet been

shown to exhibit pure, homogeneous isotropic turbulence in the classical

sense. Such a state is really a limiting condition. Further, since coherent
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structures exist on the larger scales, it is reasonable to assume the exis-

tence of similar structure on all scales larger than the dissipation scale.

Second, the transition to turbulence does not occur throuqh an infinite suc-

cession of instabilities, but after the appearance of relatively few insta-

bilities, typically three or four. This has led to the postulate of a theo-

retical connection between stranae attractor theory and transition to turbu-

lence. Third, intermittency in free turbulent shear layers indicates the

presence of a thin, sharp interface between turbulent fluid and irrotational

fluid. This finding leads to questions about whether such sharp interfaces

can be represented as a diffusive effect. Finally, the recent discovery that

coherent structures dominate flows which were previously believed to approach

pure turbulence directly causes us to reconsider the basic assumptions in the

classical theory of turbulence.

The search for new concepts of the nature of turbulence has centered on

understanding the mechanisms of the transition to turbulence in several

simple fluid flows. Shear flows generated by splitter plates and round jets

(e.g., Brown and Roshko, 1974; Browand and Weidman, 1976; Poshko, 1976;

Fiedler and Wygnanski, 1970) exhibit all of the troublesome intricacies asso-

ciated with the transition and in addition are particularly appropriate for

practical applications. Both larger and smaller scales of chaotic fluid

motion develop in these systems. Flow near the orifice may initially be

laminar for even high Reynolds numbers, and several distinct transitions are

easily discerned before the onset of an apparently fully turbulent shear

layer. It is still quite difficult, however, to pinpoint at which point in

the flow the label "turbulent" is applicable. Indeed, coherent structures of

large scale have been found to dominate well downstream in flows which appear

4
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chaotic on smaller scales. By using similarity arguments, for example, we

see that the splitter plate flow is always dominated by ever larger coherent

structures. Through flow visualization experiments, a great deal of insight

has been achieved into the exact mechanisms involved in the individual insta-

bilities as well as some indication of the sequence of appearance of various

scales of motion.

Although the flows near the orifice may be laminar for both jets and

splitter plates, the shear layer generated is unstable to the Kelvin-

Helmholtz instability. Small perturbations in the flow grow into nonlinear

waves which break and roll up, transforming the original vorticity of the

shear layer into isolated clumps. The primary wavelength generated by the

instability is usually that of the fastest crowing mode for that particular

geometry or of some impressed wavelength determined by boundary conditions

or initial conditions. Further development of the shear layer proceeds

through the pairing of vortex clumps, a process which may be repeated many

times downstream. One of the effects of pairing is to generate subharmonics

of the original unstable wavelength, but smaller wavelength disturbances are

created as well. These disparate wavelengths arise from at least two causes:

imperfect pairing due to small fluctuations in the flow leaving an unpaired

vortex which then merges with a previously formed pair (Browand and Winant,

1973), and the generation of small-scale disturbances in the interaction of

the cores of the two vorticity clumps (Zabusky, 1981; Overman and Zabusky,

1981).

It should be emphasized that the flow may remain two-dimensional

throughout this process, and that the rich frequency content of the flow has

been produced by the action of only a few two-dimensional instabilities. As
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a matter of practical importance, however, the flow almost always becomes

three-dimensional when the Reynolds number is high enough. Three dimensional

instabilities generally begin to play a role about the same time that visible

vortex pairing ceases. This is primarily because the two-dimensional vortex

rolls or loops are deformed by wave instabilities in the thiru dimension or

by the presence of boundary conditions imposed by the system size. As these

deformations grow, further two-dimensional pairing becomes difficult to

observe and growth in the third dimension seems to be preferred. The non-

linear growth phase for the three-dimensional instabilities is marked by

increasing entanglement of vortex lines or loops, and the flow becomes more

strongly turbulent.

The shear layer grows as vortex cores entrain irrotational fluid into

the shear region. On the macroscopic scale the random walk of long vortex

cores or filaments spreads the reqion containing the vorticity. This process

resembles an eddy diffusion of vorticity at scales longer than the dominant

scale of the eddies responsible for the transport. Representing this convec-

tive phenomenon as microscopic diffusion at short scales is incorrect, how-

ever, because random walk mixing increases these gradients rather than

reducing them. The eddy diffusion-mixing length models work surprisingly

well macroscopically because the diffusion is nonlinear, and the eddy coef-

ficient is large where the macroscopically averaged vorticity is large. The

front which propagates from such nonlinear diffusion can be sharp and hence

has the potential to represent the thin transition between rotational and ir-

rotational fluid. True vorticity diffusion enters into the picture only at

the smaller scales, transporting vorticity into the continually thinning

irrotational layers of fluid which have been engulfed.
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In the work presented below, we describe numerical simulations of two-

dimensional shear flows which go unstable through the Kelvin-Helmholtz

instability. Our coal is to produce accurate enough calculations of the

time-evolution of the major physical auantities so that we can analyze the

flow behavior and test our concepts of the transition to turbulence. We

consider two geometries: cylindrical, such as the round jet, and Cartesian,

such as the splitter plate. In particular, we are interested in the initial

transient behaviour and in the resultinq unsteady pattern of structures.
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III. THE NUMERICAL MODEL

The code FAST2D was used to perform the shear flow calculations

described below. This code consists of a solutions of the time-dependent

conservation equations for mass, momentum and energy coupled to algorithms

describing gravity, molecular and thermal diffusion, and chemical reactions

with energy release. These various parts of the code are coupled by timestep

splitting and can be turned on or off independently by logical controls, as

required by the problem to be studied.

The continuity equations are solved using the FCT algorithm jPBFCT, an

advanced version of ETBFCT (Boris, 1976a). FCT is a finite-difference tech-

nique for solving the convective equations which is particularly useful in

problems where sharp discontinuities arise and are maintained throughout the

calculations. These discontinuities may be shocks or contact surfaces. In

the case studied here, we are concerned with interfaces in material density.

The algorithm modifies the linear properties of a high order algorithm by

adding sufficient diffusion during convective transport to prevent dispersive

ripples from arising, and ensures that all conserved quantities remain mono-

tonic and positive. This added diffusion is subtracted out appropriately

where not needed in an antidiffusion phase of the timestep to maintain second

order accuracy.

Another important feature of the FCT algorithms is their ability to

divorce the arid motion from the fluid flow. This freedom has been used to

incorporate variably spaced grids as well as adaptive grids (Book et al.,

1980; Oran et al., 1982) which automatically follows regions where there are

sharp aradients and more resolution is needed. In transition to turbulence

calculations, this means that r'ealistic spatial inflow and outflow problems
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can be solved rather than the more idealized periodic problems where temporal

but not spatial problems can be considered.

The JPBFCT routine solves the one-dimensional continuity equation in

Cartesian, cylindrical, spherical or generalized nozzle geometries, depending

on the value of a logical switch. Since the algorithm is one-dimensional,

timestep splitting in the various directions is used to construct two- and

three-dimensional codes. The two-dimensional Cartesian and cylindrical cal-

culations are actually performed with the same code, but with the particular

type of geometry specified at the beginning of the calculation.

In the calculations presented below, the grid spacing was set up at the

beginning of each calculation and held fixed in time. In general, the cell

spacing should not change more than 20-30% from cell to cell. For the

Cartesian calculations used to model the splitter plate experiments, finely

spaced cells were clustered around the centerline where the instability first

occurs and the coherent structures form. For the cylindrical calculations

used to model the gas jet, the grid was finely spaced in the jet and through

the region of the shear. Sample grids are shown in Figures 1 and 2.

In the calculations presented below, the qravity, diffusion, chemistry,

and energy release options included in the code are not used. Thus we will

not describe them in great detail in this report. However, We note that the

algorithms for chemistry, energy release and diffusion have been discussed by

Oran and Boris (1981).
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IV. OUTFLOW BOUNDARY CONDITIONS

Solving fluid dynamics problems with realistic outflow boundary condi-

tions has always been difficult. The fundamental problem is that information

about the flow beyond the computational mesh is required to make the fluid

near the boundaries behave properly. There are a number of wavs to handle

this problem, and they generally, like FCT, involve using guard cells which

are not actually part of the calculation but which tell the boundary cells of

the computational mesh how the outside world is behaving. The simplest model

of outflow in guard cells is to say that the momentum, energy, and density do

not change, i.e., there is effectively zero gradient. This can cause prob-

lems in long time calculations since it does not provide for the fact that as

we qo further from the phenomena being computed, the system relaxes to back-

ground conditions.

Here we present an outflow algorithm developed to use with the FCT

algorithm described in the last section. The outflow algorithm incorporates

the recuirement that the solutions must relax toward ambient conditions.

Then the strong nonlinear stabilizing properties of the FCT method appear to

eliminate instabilities which occur in other nonlocal methods when low order

extrapolations are used for specifying boundary conditions (Turkel, 1980).

The types of fluid problems for which the outflow algorithm is intended can

be written as a coupled series of single or multi-dimensional continuity

equations of the form

dQ _ (Qv) + Source - Sinks (1)
dt
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where the compressible fluid must somewhere flow off the edge of the computa-

tional region. In this equation Q is a conserved quantity such as the mass,

momentum, or enerqy and v is the vector fluid velocity. The major require-

ment of the algorithm is that the fluid must be represented in the region off

the grid by fictitious "guard" or "ghost" cells. These values are used to

compute the derivatives and gradients in the computational cells which are on

the edge of the grid. Throughout the discussion, we let the last cell on the

grid be cell N. The subscript g will be used to indicate the guard cell.

The linear extrapolation for outflow,

9 = QN +  9- (2)

is unstable when used in conjunction with most numerical methods for

advancing the grid variables. Even the zeroth-order extrapolation,

g: N

is unstable in the sense that the alqorithm has no knowledge of the physi-

cally correct asymptotic value of Q, and hence the flow cannot ever be

expected to relax to ambient conditions.

The formula tested here is a simple zeroth-order extrapolation plus a

slow local relaxation toward the known ambient value 0 amb*

Vchar _ %t . ( b - (4)

Q +t-Q 4
g N Lh m N

char
Here L char is a characteristic scale for the flow causing the relaxation to

ambient, and Vchar is the velocity of this relaxation. The auantity vchar

is typically the local sound speed for the pressure or flow velocity for an

entropy or species variable. This expression is an approximation to the

11



lowest order terms in an asymptotic expansion. It is valid for times long

compared to a sonic transit time of the system.

Two types of test calculations are presented: 1) a diaphragm breakina in

a barrel which releases a high pressure, supersonic gas into a low pressure

background, and 2) a cylindrical jet in which a lower density gas flows into

a quiescent background. The validity of the algorithm is shown by comparing

nested series of calculations where the outflow boundary of one grid is

interior to the flowfield of a larger grid. The first problem, the diaphragm

in a barrel, is not a shear flow problem. However, it is included in this

paper because it is an initial test of the outflow algorithms used.
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V. TEST OF THE OUTFLOW ALGORITHM: DIAPHRAGM IN A BARREL

1. The Test Problem

Below we compare a nested series of calculations where the outflow

boundary of one grid is interior to the flow field of a larger grid. Then

the approximate solution, obtained using the outflow boundary condition, can

be calibrated against the "correct" solution obtained before spurious

information from the outer computational boundary arrives at the outer edge

of the smaller grid. Calculations with three different size grids are

presented, a 40 x 40 grid, an 80 x 80 grid, and an even larger 150 x 300

grid.

A set of four runs using the FAST2D model have been performed. The

problem chosen is cylindrically symmetric and simulates the fluid flows which

occur when a thin diaphragm bursts. The diaphracm initially confines a high

pressure, isothermal gas in a thick-walled barrel. The general properties of

the four different types of computations performed are given in Table I.

Table I.

Calculation Grid Size Boundary Conditions Comments

41 40 x 40 Reflecting walls

*2 40 x 40 Outflow Algorithm Test of new outflow algorithm

#3 80 x 80 Outflow Algorithm Calibration for Run #2

#4 150 x300 Reflecting walls Calibration for Run *3

13



The results discussed in this section are illustrated by digitized

contour plots of the density. Consider Figure 3, which is a schematic

diagram of the initial conditions for the test problem considered in this

section. In this and the figures following, different typed letters in the

computational cells combine to form a 'shadowplot' where the boundaries

between two different characters represent contours of the fluid density.

Table II lists the letters used and the density ranges they span in all the

figures in this Section. The letter "I" is used for alternate bands to

improve the resolution.

Table II.

Shadowplot Contour Levels:*

1.OOE-03 < < 1.45E-03 1.45E-03 < -< 2.1OE-03

2.10E-03 < + < 3.20E-03 3.20E-03 < * < 4.80E-03

4.80E-03 < A < 7.o00E-03 7.OOE-03 < I < 1.00E-02

1.OOE-02 < B < 1.45E-02 1.45E-02 < I < 2.10E-02

2.10E-02 < C < 3.20E-02 3.20E-02 < I < 4.80E-02

4.80E-02 < D < 7.OOE-02 7.OOE-02 < I < 1.OOE-01

1.OOE-01 < E < 1.45E-01 1.45E-01 < I < 2.10E-01

2.10E-01 < F < 3.20E-01 3.20E-01 < I < 4.80E-01

4.80E-01 < G < 7.OOE-01 7.00F-01 < I < 1.OOE+00

1.OOF+00 < H < 1.45E+00 1.45E+00 < I < 2.10E+00

*E.g, read "E-030 as 10- 3

14
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The initial conditions are the same for calculations #1-4. The ambient

density is 1.29 x 10- 3 g/cm- 3 , the pressure is a fixed multiple, 1.0 x 10 9,

of the density, and the lower half of the barrel is pressurized to 1000 times

the ambient pressure. The barrel geometry is the same for all cases listed

in Table I. The spacinq of the computational grid, 0.1 cm, is also fixed in

all the computations. The cases listed in Table I differ only in the loca-

tion of the upper and right hand boundary and in the boundary condition

applied.

2. The Outflow Algorithm

The conserved quantities were convected by FCT in this problem: the

mass density, p, and the two components of the momentum density, pv, and

Pvy. The characteristic velocity for relaxation of density and oressure

fluctuations Is the sound speed, here constant at 3.2 x 104 cm/s. The char-

acteristic lenuth was taken as the radius of the cylinder, 4.0, 8.0, and 15.0

cm for the three different sized grids. The density was extrapolated beyond

the end of each exterior row or column by

C
P + - •t (Pamb - P1) (5)
g N aal

(r g - ( Vr)N (6)

(PzV ) q  (pv) N7)

where Cs is the sound speed. Since the pressure and density are

proportional to each other, the pressure is extrapolated as in Eq. (5).
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3. Results of the Calculations

Figure 4 shows a series of shadowplots from Calculation #i, which has

reflecting walls. Figure 4A shows that after 25 timesteps the shock has

moved only about 5 cells up the barrel (0.5 cm) and has not yet reached the

rim. By step 50, shown in Fiqure 4B, the flow inside the barrel is still

essentially one-dimensional. However, as the shock and followinq supersonic

flow emerge from the barrel, the first evidence of the multidimensional

nature of the flow is evident. By step 100, shown in Figure 4C, the flow has

hit the upper boundary and the rarefaction is working its way back toward the

bottom of the barrel. By step 200, shown in Figure 4D, the primary shock has

had time to rattle back and forth between the solid barrel wall and the outer

and top boundaries, which here are solid walls.

Figure 5 presents a series of shadowplots taken from Calculation #4,

performed on the 150 x 300 grid. These plots show the solution of the out-

flow test problem without any interference from the boundarieq. The barrel

wall and the nested 40 x 40 and 80 x 80 computational regions are outlined on

this figure. Note that of the 150 x 300 cells used in the computation, only

128 x 215 are shown on the figures.

Figures 6 through 10 are composites of the different calculations at

fixed timesteps. Calculations 02 and 3 have the outflow boundary conditions

at the upper and riqht hand walls. From Figure 6 we see that by step 100 the

shock would have reflected from the top wall in Calculation #1. Comparing

Figures 4 and 6, we see that by this time the reflection from the closed wall

in Figure 4 has affected the answers down to about cell 34 on the Z axis.

Within and just outside of the barrel, the solutions are still essentially

the same. Calculation #3 in Figure 6 shows that the expanding plume has

16



reached cell 65 (Z - 6.5 cm) and so the flow is still interior to the 80 x 80

grid. At this point no errors have propaqated back from this boundary into

the interior region. The outline of the region considered in Calculations 41

and #2 are shown in this figure. Calculation #3, which uses the 80 x 80

grid, and the new outflow boundary conditions, provides a calibration of the

open boundary condition used in Calculation *2. Thus we can here compare

Calculations #2 and 43 in Figure 6 and see that they show substantially the

same result.

In Figure 7 (step 150), Calculation #3, the rarefaction behind the

primary shock is well formed and appears as a white strip starting from the

outer corner of the barrel wall. Reflection off the upper boundary at Z =

8.0 cm would have occurred by this time if the upper wall had been a reflec-

ting boundary. in this case, where we are using a model for the outflow, we

can see that small errors are beginning to move inward.

By step 200 in Figure 8, Calculation #3, the flow has exited through the

upper surface but has not yet reached the outer wall. Some errors have been

propagating toward the region of the 40 x 40 calculation on the larger

80 x 80 grid, but have not reached it yet. Thus this Figure is good for

comparison with Figure 8, Calculation #2. The extent of the outflow boundary

condition errors at the boundary of the 80 x 80 region is found by comparing

with Figure 8, Calculation #4.

By step 300 in Figure 9, Calculation #2, the primary shock has spread

down around the barrel and has reached the ground plane at Z - 0.0 cm. The

errors which are generated by the open boundary conditions should have

reached the 40 x 40 region by now, yet Calculations #2, 3, and 4 are still

essentially identical.
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Finally, by step 400 in Fiqure 10, Calculation #3, the errors from the

outflow boundary conditions have reached the vicinity of the barrel. Compar-

ison with Figures 10, Calculations #2 and 4, show only small differences

which can be associated with the outflow boundary algorithm we are testing.

The accuracy of this result in the 40 x 40 case is surprising where the

computational boundary was closer than a barrel diameter at every point.

18
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VI. TEST OF THE OUTFLOW ALGORITHM: CYLINDRICAL GAS JET

1. The Test Problem

The test problem described above is related to interior ballistics,

atmospheric explosions and airblast problems as well as shear flows. It

shows our first application of these boundary conditions in an important

problem where both supersonic and subsonic flows are important. The flows

were dominated by divergence rather than rotation, and the relaxation was

primarily by acoustic waves rather than convection of vortices off the

system boundary. The excellent results obtained from these tests encouraged

us to proceed with the difficult subsonic problems described here in this

Section. In combustion problems, expansion and vorticity are equally

important. Thus we felt that the separate tests of both fluid dynamic

aspects was appropriate.

The Kelvin-Helmholtz outflow tests presented in this section were

done in preparation for transition to turbulence calculations such as those

presented in the next section. We wish to test the boundary condition

algorithm described above in a calculation in which the flows are subsonic

throughout the course of the calculation and hence the flow is essentially

incompressible. Here we consider a jet of neon gas moving at 2 x 10 4 cm/s

which is vented into a quiescent air background. There is a small initial

perturbation at the interface between the jet and the air which causes the

the shear flow eventually to become unstable. After a longer time, the usual

pattern of rotating coherent structures form at the interface. These

structures merge and flow out of the computational system, i.e., off the top

of the computational mesh.

19
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2. The Outflow Algorithm

The basic outflow algorithm used in this case states that the pressure

in the guard cell just across the boundary is extrapolated from the boundary

cell but relaxes to a prespecified ambient value. Specifically,

P P +W At (PmbPN) (8)

and

CS
-- (9)RI

where P is the guard cell pressure, Pamb is the ambient pressure, and PN isg

the boundary pressure. Here w reflects the rate of relaxation and is con-

trolled by the sound speed, C., and a characteristic radius, R'. We have

taken R' as the characteristic radius of the disturbance, in this case the

radius of the nozzle. Since the flows here are typically a third to a fourth

of the speed of sound, the outflow velocity for vorticity can be estimated

using the sound speed. For slower flows the fluid velocity should be used.

The guard cell pressure, Equation (8), then effects the calculation of the

guard cell energy value. The relaxation rate w is an adjustable parameter

representina the characteristic rate and size of flow patterns leaving the

arid and presumably could be adjusted to improve the match between large- and

small-grid calculations still further. The density and momenta are extrapo-

lated according to

q N (10)

(Vx)g PVx N (11)

(PV) + (pv y)N  (12)
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Note atht in this case unlike the barrel caclulation previously described,

pressure and density are decoupled. Thus to account for effects of sound

waves, we need to modify only the pressure at the boundary. Modifying the

density has little or no effect because there is no substantial inflow of

mass except at the nozzle.

3. Results of the Calculations

In order to test the outflow boundary conditions algorithm, we performed

a series of three calculations summarized in Table III. In the first and

largest calculation, a stretched 60 x 120 mesh represents a reqion 7.6 cm in

radius by 26.0 cm in length. The second calculation was initialized by using

the results from step 2000 of the first calculation, but uses only the first

54 x 100 cells of the original mesh. Thus it represents a volume of 3.25 cm

radius by 10.8 cm length. The final calculation used a 54 x 100 mesh,

equivalent to the mesh used in Calculation #2. However, this last

calculation was started from step = 0 with the smaller mesh.

Table III

Calculation Grid Size Comments

41 60 x 120 Step 0 - 3000

42 54 x 100 Steps 2000 - 3000

Restarted from step 2000 of #1

43 54 x 100 Steps 0 - 3000
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In order to compare the results of the two calculations, we present

contours of the quantity

n(1)
R -- l (13)n(1) + n(2)

where n(i) is the number density of neon and n(2) is the number density of

air, where air was taken as one species with the mean properties of a mixture

of 20% 02 and 80% N2. By definition, the contours ranae from R = 0, 100%

air, to R = 1, 100% neon. Ficure 1' shows the ratio R for Calculation 41 at

steps 500, 1000, 2000, and 3000 and presents a time history of the flow. We

see that the system initially goes unstable at 1.14 cm from the nozzle. The

structures grow, merge and finally exit out of the top of the computational

grid. We have set the inflow velocity to 2 x 104 cm/s. It takes -1000 time

steps for a fluid element entering the system at the nozzle to reach the top

of the large arid, 26 cm if it is not slowed appreciably in interaction with

the background air. Thus much of the material entering at step 2000 will be

exiting the computational arid shortly after step 3000. The material effec-

tively chanaes over every 1000 steps. Tnus the calculation was continued far

enouch to test the boundary condition algorithm for long term fidelity and

stability.

Figure 12 shows a comparison of step 3000 for calculations 41, 2, and 3.

First we note that the first two figures look very similar within the

54 x 100 range, which is very encouraqina. The last figure, on the far

right, however, while qualitatively similar to the first two, has differ-

ences. Figure 13 shows a composite for the 54 x 100 and 60 x 120 calcula-

tions, startinq at step 500 through step 1500. Throuch steps 1000 the calcu-

lations are quite similar, however small but noticeable differences begin to

appear between steps 1000 and 1500.
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4. Discussion

The constants chosen in implementinq the boundary conditions may not

have been the best ones and this has to be tested. First, the value of R'

should probably be larger than the radius of the inlet. This value should

reflect the characteristic sizes of the structures, and we know that they

arow according to a similarity condition. Also, the appropriate velocity to

use would be the fluid velocity, not the speed of sound, if the vortices were

leaving the reqion at very slow speed. The speed of sound was appropriate in

the barrel problem because that was a problem in supersonic flow. Here we

are concerned with subsonic flows.

The shear flow discussed in this section is unstable and will always

go unstable as long as there is some small perturbation, even just noise or

roundoff, between the flowina and quiescent cas. However, unlike the dia-

phraem in the barrel problem discussed above, the exact appearance of the

Kelvin- Helmholtz instability in the nonlinear regime is very sensitive to

background conditions, initial conditions, and to small fluctuat. ons in the

system. This is the crux of the problem in ex-?ptiments 6.qo: many realiza-

tions are possible depending on fluctuations irn the initial and boundary

conditions. In these situations some of the difficulty encountered in doing

the computations reflects the same difficulty in the experiments. Both high-

liht the highly nonlinear sensitivity of the system to the boundary condi-

tions.

23



VII. GAS JET AND SPLITTER PLATE SIMULATIONS

In this section we describe preliminary results obtained using the model

described above to simulate the coherent structures developed from Kelvin-

Helmholtz instabilities in shear flows. In the previous section, we empha-

sized numerical methods; here we emphasize the physical results. We discuss

two configurations of the FAST2D model discussed above: a cylindrical gas jet

and the Cartesian splitter plate geometry.

1. Splitter Plate

Figure 14 shows a sequence of frames from a two-dimensional simulation

of the flow generated at an idealized splitter plate. The tip of the split-

ter plate is located at x = 0.0 cm and y = 4.0 cm, the dividinq point between

the light gray fluid enterinq into the lower half of the computational region

(air at high velocity) and the darker gray fluid (air at somewhat lower

velocity). Figure 2 shows the type of variably spaced grid used near the

trailing edge to represent the Cartesian splitter plate problem. The y-

direction has good resolution near the centerline. The velocity of the

lower stream is 1.5 x 104 cm/s and the upper stream is considerably slower,

flowing from left to right at 5 x 10 3 cm/s. As the large spanwise vortices

propagate downstream, they merge and grow. Therefore the larger computa-

tional cells encountered by the flow further downstream and further from the

centerline will be adequate to resolve the larger coherent structures about

as well as the smaller structures are resolved near the splitter plate.

The initial stages of the development of the flow are not shown in

Figure 14. During this early period, before 0.87 ms, the shear flow estab-

lished by the trailing edge of the splitter plate is initially restricted to

a very narrow layer which broadens quickly at first due to viscosity and then
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more slowly as both streams of fluid leave the splitter plate. As in the

case of the cylindrically symmetric jet simulations discussed in the boundary

condition test problem and in the next section below, the flow is Kelvin-

Helmholtz unstable. Initially, durinq the linear growth period of the insta-

bility, most of the computed region behaves as if there were periodic bound-

ary conditions because the impressed perturbation has a wavelength short

compared to the system length. By 0.87 ms, the first panel in Figure 14, the

influence of the inflow and outflow is felt. Merging vortices move off the

right edge of the computational system and unperturbed fluid moves in on the

left.

Our preliminary calculations used boundary conditions which prespecified

values for the mass, momentum and energy density of the inflowing gas. These

7onditions, however, did not correctly provide the feedback from the Kelvin-

Helmholtz rolls and vortex mercinq on to the newly entering fluid. We know

that pressure pulses from upstream create small transverse flows at the

trailing edge of the splitter plate. These pulses, then, start the insta-

bility at finite amplitude for the next coherent vortex roll up. When the

inflow pressure was specified as ambient, we observed that the first vortex

structures formed very far downstream. The apparent reason for this was that

the pressure perturbations arriving at the inflow boundary were cancelled by

the non-physical condition of specifying the inflow pressure. Clearly a more

physically reasonable treatment of the inflow response to pressure fluctua-

tions as well as the outflow was required for this type of problem.

The more correct way to treat the inflow is to specify the inflow

density and velocity, and then to use a zero slope condition on the pressure

at the inflow boundary to derive the energy. This algorithm was used for all
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the simultions which follow. It allows pressure differences between the top

and bottom streams to generate transverse flows and implies that the physical

plenum admitting the gas into the region we are simulating is of zero length.

Physical treatment of a real plenum could be added by extending the splitter

plate into the computational region. A simple lumped parameter boundary

calculation representing the real plenum could also be developed using the

more detailed model to calibrate it. Then a phenomenoloqy would be incorpor-

ated to estimate the pressure build up and velocity changes which could be

expected on inflow. Thus we see that the pressure reflection condition is

one limit of such a model for which the plenum has zero volume. This limit

is appropriate when the fluid flow is slow compared to the sound speed, the

situation most often considered in experiments but not necessarily applicable

when the flows are as fast as in this calculation.

The outflow boundary conditions were handled as described in the previ-

ous sections of this paper. With a fluctuating inflow pressure it is import-

ant to relax the outflow pressure toward an ambient value. This is because a

background, base pressure for the system has to specified in compressible

calculations when the inflow pressure is allowed to float in response to

pressure waves from upstream. Relaxation of the density and momentum toward

ambient is less important on outflow because these values are given at the

inflow boundary. The long time values of all the variables must be available

to the solution from the beginning to prevent secular deviation of the calcu-

lated flow from properties characterizing the ambient medium.

The mechanism which reinitiates the instabilities close to the inflow

boundary works throuqh pressure pulses generated at various scales by the

fluid accelerations involved in nonlinear vortex rollup and vortex merging
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downstream. They are required to ensure that the flow remains essentially

diverqence free everywhere when a coherent structure or vortex is locally

accelerated. Thougih these pulses are transmitted acoustically, they exist

even in the incompressible limit.

Evidence for this mechanism is supplied by the sequence of density

shadowplots shown in Fioure 14. By 0.87 ms the initial linear Crowth phase

is over and the instability has saturated rather uniformly alonq the original

slip line. States similar to what occurred in this calculation prior to 0.87

ms are shown in the following section on the evolution of the instability in

the round jet. In the splitter plate calculation, a long unrippled portion

of the interface is seen on the left of the 0.87 ms panel, showing that the

initial instability has flowed away from the trailing edge. However, the

pressure perturbations resultinq from this were small and short scale, so

that they did not initiate the Kelvin-Helmholtz instability strongly enough

for small scale vortices to appear on t~he left of the 0.87 ms panel.

The first vortex merging is also shown approaching the right hand

boundary in the top three panels of the figure. This flow structure is both

large and irregular enough to cenerate stronger pressure perturbations, which

can be seen drivinq noticeable fluctuations into the left half of the inter-

face at 0.98 and 1.03 ms. By the last frame at 2.06 ms, a spectrum of modes

is seen in what looks like a snapshot from an experimental flow visualiza-

tion.

2. Gas Jet

First we consider the coherent structures in the transition from laminar

to turbulent flow in coflowing gas jets in two cases: air into air, which is

constant density, and air into freon, where the density ratio is about 6:1.
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These simulations were performed in order to isolate and study the effects

of density gradients, which is one of the the major physical conditions

distinguishing reactive flow from classical turbulence. The calculations

also provided important information on the application of inflow and outflow

boundary conditions to subsonic shear flow problems.

In the first case, air into air, the densities are constant and these

density gradients do not exist. However, the second case, air into freon, a

light gas into a heavy gas, has the added effect of vorticity 4eneration

through the term

d VpxVp (14)

where is the vorticity, and P and P are the fluid density and pressure

fields, respectively.

The geometry is the same as in the gas jet described in Section VT. The

air flows into the cylinder from a hole at the bottom center at a velocity of

1.5 x 104 cm/s. Unlike the problem discussed in Section VI, in which the jet

flowed into a quiescent background, the fast jet of air is surrounded by a

1' co-flowing jet at the much lower velocity of 5 x 10 3 cm/s. The co-flow is

either air or freon. Also, the right hand boundary here is a hard wall with

only the top boundary open.

The instability in the fluid is generated by imposing a small sinusoidal

perturbation on the momentum at the interface, initially at r - 0.6 cm. This

divergence free perturbation is largest at the material discontinuity and

goes smoothly to zero at the sidewalls and at the center of the system. The
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maximum amplitude of the perturbation is 2% of the jet velocity. Given the

initial density and the momentum perturbation, an incompressible velocity

perturbation is implied.

Figures 15 and 16 summarize the air into air and the air into freon

calculations we wish to discuss. The first effect observed in these calcula-

tions is the formation of a Kelvin-Helmholtz instability at the slip line.

Because of the short wavelength and fixed amplitude of the perturbation, the

problem initially evolves as a periodic, time dependent system except for one

or two instability wavelengths at each end. The first panel of Figure 15

(the air into air cylindrical jet) shows this effect at 240 tis. Here a

rather uniform band of mixed material forms separating the two fluids. This

uniform buffer zone does not initially display the vortex meraing which char-

acterizes the fully developed nonlinear flow. Indeed, a fully developed

turbulent-looking flow is not set up until most of the jet material initially

on the computational mesh has flowed out the top and been replaced by fresh

material through inflow.

The two calculations look qualitatively different. There is a notice-

able decrease in the entrainment in the air-into-freon calculation. The

vorticity generated at the nozzle moves away at a density-weighted velocity

intermediate between the velocity of the two streams. In the air into freon

case, Fiqure 16, the sloped lines on the figure which track structures moving

on interface show that these structures move more slowly than in the air into

air case in Figure 15. As the coherent structures move with a density

weighted velocity, the air into freon case has a much greater slip velocity

between the jet and the coflow. As a result, for the air into freon case,

the freon entrainment is reduced and the nonlinear coherent structures form
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much closer to the nozzle lip. As can be seen from the sloped lines on the

two figures, the velocity of the vortices is faster in the air into air case

by about a factor of two. Because the air is moving much faster than the

vortices in the air into freon case, relatively little freon gets entrained.

The calculation shown in Figure 16 shows a choking effect in which the

dense coherent structures squeeze light material in the jet and push the jet

flow outward at the nozzle. This again affects the lower boundary through

the pressure reflection condition, and thus effects the inflow of material.

Then the Bernoulli effect accelerates the jet fluid through the slowly

changing channel formed by the slower, higher density coherent structures.

The panel at 390 us on the lower left shows the jet accelerating so much that

the density has dropped noticeably. A higher pressure region forms just

above the nozzle to accelerate the jet axially through the constriction

formed by the coherent structure. This higher pressure also pushed the

interface laterally at the nozzle lip, as can be seen in the remaining panels

of Figure 16. This displacement becomes the seed for the next coherent

structure.
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VIII. DISCUSSION AND SUMMARY

This paper has presented a summary of work to date at NRL on developing

and testing a model to use for studies of unstable shear flows transitioning

to turbulence. The main features of the model are that it is two-dimen-

sional, fully compressible, and time dependent in either Cartesian or cylin-

drical geometry. To date, emphasis has been on development of the model as

opposed to application, although some results and model predictions have been

discussed in Section VII.

Future emphasis will be on applications although there is is still much

to be learned about inflow perturbations. In particular, we are interested

in how well this model compares to experiments. Calculations using this

model will be compared to experiments to test the effects of density differ-

ences on the initial instability and on transition to turbulence. We now

know that it be necessary to add a number of other physical processes to the

purely convective calculations shown above. For example, we might have to

consider buoyancy and molecular diffusion. Buoyancy should be important at

distances 8 to 10 nozzle diameters downstream, and molecular diffusion could

be important when very light gas flows into a heavier gas. Algorithms for

gravity, and molecular diffusion are currently a part of the model. we are

currently developing subqrid turbulence models, and the particular inflow

nozzle model will have to be developed in coordination with the experiments.

Finally, computational diagnostics must be included that operate on the com-

puted primitive quantities (such as mass, momentum and energy) and put them

in a form that can be directly compared with the experiments. These diacnos-

tics includes such quantities such as fluctuation velocities, correlations,

and various averaqes.
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We will also look at the effects of energy release, which occurs in

reacting shear flows in combustors. Calculations with a model for heat

release should at least qualitatively reproduce some of the bulk effects seen

in the experiments (Yule and Chiqier, 1979; Yule, 1981). For example, there

is a noticeable extension of the turbulent transition region when there is

chemical energy release.

In conclusion, we feel that we now have a tool which has been developed

carefully and tested in a number of calculations. The limitations and

remaining difficulties are reasonably well known.
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