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TIME DEPENDENT, COMPRESSIBLE SIMULATIONS OF SHEAR FLOWS:
TESTS OF OUTFLOW BOUNDARY CONDITIONS

I. INTRODUCTION

This paper describes recent numerical simulations performed at NRL of
shear flows transitioning to turbulence, and, in particular, the development
and evolution of coherent structures. There are two aspects of this problem
which are addressed in this report. The first is developing and testing the
model that was used in these studies. In particular, we are concerned with

the treatment of inflow and ocutflow boundary conditions suitable for both

compressible and incompressible flows. The second aspect is using this model

to describe shear flows.

The first problem, developing the proper computational tools, has been
the major goal of the last year's work and is discussed in Sections I1I
through VI. The numerical model we are using now is a restructured version
of the FAST2D computer code. This incorporates the Flux-Corrected Transport
(FCT) continuity equation algorithm (Boris, 1976b; PRoris and@ Book, 1976)
which has been tested extensively for shock, detonation, and beam-generated
turbuelnce calculations {(e.g., Book et al., 1980, Oran et al., 1982; Picone
and Boris, 1983). Since the algorithm is explicit in its present form, the
code ig particularly efficient for studying flows that move at a substantial
fraction of the speed of sound in the material. Using time step splitting
techniques, we couple FCT to algorithms for the other physical processes we
want to represent. In Section III below we describe the general features of
the code. 1In Section 1V, V, and VI we describe tests of the new outflow
boundary conditions.

The second aspect, application of the model, is the goal of the upcoming
research, We have used the model to simulate time dependent flows in two

confiqurations, the splitter plate and the round jet, for which substantial
Manuscript approved October 28, 1983,
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data exist on the transition to turbulence., At the end of this paper, in

Section VII, we describe some preliminary results and their implications.




II. BACKGROUND

The development and structure of turbulent flows is the focus of intense
study. We now know that flows which previously were thought to bhe totally
chaotic and statistical in nature are dominated by the persistence of rela-
tively large structures. These coherent structures were previously ignored
since their existence was masked or de-emphasized by experimental averagina
techniques. The classical description of turbulence and the mechanisms
responsible for its development are now considered deficient in their expla-
nations of these transient but organized and persistent structures.

The classical description of turbulence evolved from the observed
behavior of fluid flows as a function of Reynolds number. Many flows exhibit
a series of sudden transitions to new flow patterns as the Reynolds number is
increased. Each transition results in an increasingly complicated flow, and
at high Reynolds number the flows become irregular and appear chaotic in both
space and time. The transitions to the succession of flow patterns may be
caused by a sequence of fluid instabilities, each of which breaks some sym-
metry in the previously stable flow pattern and introduces some new scale in
the flow pattern (Liepmann, 1979). The transition to a purely chaotic flow
was postulated to occur through an infinite succession of instabilities, each
contributing to the increasing frequency content of the flow (Landau and
Lifshitz, 1959).

Several experimental observations have seriously eroded confidence in
the completeness of such a turbulence model for physical flows. First,
although laboratory created grid turbulence comes close, no flow has yet been

shown to exhibit pure, homogeneous isotropic turbulence in the classical

sense, Such a state is really a limiting condition. Further, since coherent




structures exist on the larger scales, it is reasonable to assume the exis-
tence of similar structure on all scales larger than the dissipation scale.
Second, the transition to turbulence does not occur through an infinite suc-
cession of instabilities, but after the appearance of relatively few insta-
bilities, typically three or four. This has led to the postulate of a theo-
retical connection between strance attractor theory and transition to turbu-
lence., Third, intermittency in free turbulent shear layers indicates the
presence of a thin, sharp interface between turbulent fluid and irrotational
fluid., This finding leads to questions about whether such sharp interfaces
can be represented as a diffusive effect. Finally, the recent discovery that
coherent structures dominate flows which were previously believed to approach
pure turbulence directly causes us to reconsider the basic assumptions in the
classical theory of turbulence.

The search for new concepts of the nature of turbulence has centered on
understanding the mechanisms of the transition to turbulence in several
gsimple fluid flows. Shear flows generated by splitter plates and round jets
(e.g., Brown and Roshko, 1974; Browand and Weidman, 1976; Roshko, 1976;
Fiedler and Wygnanski, 1970) exhibit all of the troublesome intricacies asso-
ciated with the transition and in addition are particularly appropriate for
practical applications. Both larger and smaller scales of chaotic fluid
motion develop in these systems. Flow near the orifice may initially be
laminar for even hiqgh Reynolds numbers, and several distinct transitions are
easily discerned before the onset of an apparently fully turbulent shear
layer, It is still quite difficult, however, to pinpoint at which point in

the flow the label "turbulent” is applicable. Indeed, coherent structures of

: large scale have been found to dominate well downstream in flows which appear
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chaotic on smaller scales. By using similarity arguments, for example, we
see that the splitter plate flow is always dominated by ever larger coherent
structures. Through flow visualization experiments, a great deal of insight
has been achieved into the exact mechanisms involved in the individual insta-
bilities as well as some indication of the sequence of appearance of various
scales of motion,

Although the flows near the orifice may be laminar for hoth jets and
splitter plates, the shear layer generated is unstable to the Kelvin-
Helmholtz instability. Small perturbations in the flow grow into nonlinear
waves which break and roll up, transforming the original vorticity of the
shear layer into isolated clumps. The primary wavelength generated by the
instability is usually that of the fastest arowing mode for that particular
geometry or of some impressed wavelength determined by boundary conditions
or initial conditions. Further development of the shear layer proceeds
through the pairing of vortex clumps, a process which may be repeated many
times downstream. One of the effects of pairing is to generate subharmonics
of the original unstable wavelenath, but smaller wavelength disturbances are
created as well. These disparate wavelengths arise from at least two causes:
imperfect pairing due to small fluctuations in the flow leaving an unpaired
vortex which then merges with a previously formed pair (Browand and Winant,
1973), and the generation of small-scale disturbances in the interaction of
the cores of the two vorticity clumps (Zabusky, 1981; Overman and Zabusky,
1981) .

It should be emphasized that the flow may remain two-dimensional
throughout this process, and that the rich frequency content of the flow has

been produced by the action of only a few two-dimensional instabilities. As




a matter of practical importance, however, the flow almost always becomes
three-dimensional when the Reynolds number is high enough. Three dimensional
instabilities generally begin to play a role about the same time that visible
vortex pairing ceases. This is primarily because the two-dimensional vortex
rolls or loops are deformed by wave instabilities in the thiru dimension or
by the presence of boundary conditions imposed by the system size. As these
deformations grow, further two-dimensional pairing becomes difficult to
observe and growth in the third dimension seems to be preferred. The non-
linear growth phase for the three-dimensional instabilities is marked by
increasing entanglement of vortex lines or loops, and the flow becomes more
strongly turbulent.

The shear layer grows as vortex cores entrain irrotational £fluid into
the shear region. On the macroscopic scale the random walk of long vortex
cores or filaments spreads the reqion containing the vorticity. This process
resembles an eddy diffusion of vorticity at scales longer than the dominant
scale of the eddies responsible for the transport. Representing this convec-
tive phenomenon as microscopic diffusion at short scales is incorrect, how-
ever, because random walk mixing increases these gradients rather than
reducing them. The eddy diffusion-mixing length models work surprisingly
well macroscopically because the diffusion is nonlinear, and the eddy coef-
€icient is large where the macroscopically averaged vorticity is large. The
front which propagates from such nonlinear diffusion can be sharp and hence
has the potential to represent the thin transition between rotational and ir-
rotational fluid. True vorticity diffusion enters into the picture only at
the smaller scales, transporting vorticity into the continually thinning

irrotational layers of fluid which have been enqulfed.




In the work presented below, we describe numerical simulations of two-
dimensional shear flows which go unstable through the Kelvin-Helmholtz
instability. Our agocal is to produce accurate enough calculations of the
time-evolution of the major physical auantities so that we can analyze the
flow behavior and test our concepts of the transition to turbulence, We
consider two geometries: cylindrical, such as the round jet, and Cartesian,
such as the splitter plate. In particular, we are interested in the initial

transient behaviour and in the resulting unsteady pattern of structures.
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III. THE NUMERICAL MODEL

The code FAST2D was used to perform the shear flow calculations
described below., This code consists of a solutions of the time-dependent
conservation equations for mass, momentum and energy coupled to algorithms
describing gravity, molecular and thermal diffusion, and chemical reactions
with energy release. These various parts of the code are coupled by timestep
splitting and can be turned on or off independently by logical controls, as
required by the problem to be studied.

The continuity equations are solved using the FCT algorithm SPBFCT, an
advanced version of ETBFCT (Boris, 1976a). FCT is a finite-difference tech-
nique for solving the convective equations which is particularly useful in
problems where sharp discontinuities arise and are maintained throughout the
calculations. These discontinuities may be shocks or contact surfaces. In
the case studied here, we are concerned with interfaces in material density.
The algorithm modifies the linear properties of a high order algorithm by
adding sufficient diffusion during convective transport to prevent dispersive
ripples from arising, and ensures that all conserved guantities remain mono-
tonic and positive. This added diffusion is subtracted out appropriately
where not needed in an antidiffusion phase of the timestep to maintain second
order accuracy.

Another important feature of the FCT algorithms is their ability to
divorce the arid motion from the fluid flow. This freedom has been used to
incorporate variably spaced qrids as well as adaptive grids (Book et al.,
1980; Oran et al., 1982) which automatically follows regions where there are

sharp aradients and more resolution is needed. 1In transition to turbulence

calculations, this means that realistic spatial inflow and outflow problems
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can be solved rather than the more idealized periodic problems where temporal
but not spatial problems can be considered.

The JPBFCT routine solves the one-dimensional continuity eguation in
Cartesian, cylindrical, spherical or generalized nozzle geometries, depending
on the value of a logical switch. Since the algorithm is one-dimensional,

timestep splitting in the various directions is used to construct two- and

=

three~dimensional codes. The two-dimensional Cartesian and cylindrical cal-
culations are actually performed with the same code, but with the particular i
type of geometry specified at the beginning of the calculation.
In the calculations presented below, the arid spacing was set up at the ;
beginning of each calculation and held fixed in time. 1In general, the cell
spacing should not change more than 20-30% from cell to cell. For the
Cartesian calculations used to model the splitter plate experiments, finely
spaced cells were clustered around the centerline where the instability first

occurs and the coherent structures form. For the cylindrical calculations

used to model the gas jet, the grid was finely spaced in the jet and through
the region of the shear. Sample grids are shown in Figures 1 and 2.

In the calculations presented below, the gravity, diffusion, chemistry,
and enerqy release options included in the code are not used. Thus we will
not describe them in great detail in this report. However, we note that the
algorithms for chemistry, eneragy release and diffusion have been discussed by

Cran and Boris (1981).




IV. OUTFLOW BOUNDARY CONDITIONS

Solving fluid dynamics problems with realistic outflow boundary condi-
tions has always been difficult. The fundamental problem is that information
about the flow beyond the computational mesh is required to make the fluid
near the boundaries behave properly. There are a number of ways to handle
this problem, and they generally, like FCT, involve usina guard cells which
are not actually part of the calculation but which tell the boundary cells of
the computational mesh how the outside world is behaving. The simplest model
of outflow in guard cells is to say that the momentum, enerqgy, and density do
not change, i.e., there is effectively zero gradient. This can cause prob-
lems in long time calculations since it does not provide for the fact that as
we qo further from the phenomena being computed, the system relaxes to back-
aground conditions.

Here we present an outflow algorithm developed to use with the FCT
alagorithm described in the last section. The outflow algorithm incorporates
the requirement that the solutions must relax toward ambient conditions.

Then the strong nonlinear stabilizing properties of the FCT method appear to
eliminate instabilities which occur in other nonlocal methods when low order
extrapolations are used for specifying boundary conditions (Turkel, 1980).
The types of fluid problems for which the outflow algorithm is intended can
be written as a coupled series of single or multi-dimensional continuity
equations of the form

do _

T =" 7e(Qv) + Source - Sinks (1)

10
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where the compressible fluid must somewhere flow off the edge of the computa-
tional region. In this equation Q is a conserved quantity such as the mass,
momentum, or enerqy and v is the vector fluid velocity. The major require-
ment of the algorithm is that the fluid must be represented in the region off
the grid by fictitious "guard"” or "ghost” cells. These values are used to
compute the derivatives and gradients in the computational cells which are on
the edge of the grid. Throughout the discussion, we let the last cell on the
grid be cell N, The subscript g will be used to indicate the gquard cell.

The linear extrapolation for outflow,

Qg =0 " (QN - QN-1) (2)

is unstable when used in conjunction with most numerical methods for

advancing the grid variables. Even the zeroth-order extrapolation,

Qg = QN (3)
is unstable in the sense that the algorithm has no knowledae of the physi-
cally correct asymptotic value of O, and hence the flow cannot ever be
expected to relax to ambient conditions.

The formula tested here is a simple zeroth-order extrapolation plus a

slow local relaxation toward the known ambient value Qanb'

v

char

= cm——— & A . -
O = % * 1 t o (9 = O (4)

char
Here Lchar is a characteristic scale for the flow causing the relaxation to
ambient, and v is the velocity of this relaxation. The quantity v

char char

is typically the local sound speed for the pressure or flow velocity for an

entropy or species variable, This expression is an approximation to the

11




lowest order terms in an asymptotic expansion. It is valid for times long
compared to a sonic transit time of the system.

Two types of test calculations are presented: 1) a diaphragm breaking in
a barrel which releases a high pressure, supersonic gas into a low pressure
background, and 2) a cylindrical jet in which a lower density gas flows into
a quiescent background. The validity of the algorithm is shown by comparing
nested series of calculations where the outflow boundary of cne grid is
interior to the flowfield of a larger grid. The first problem, the diaphragm
in a barrel, is not a shear flow problem. However, it is included in this

paper hecause it is an initial test of the outflow algorithms used.
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V. TEST OF THE OUTFLOW ALGORITHM: DIAPHRAGM IN A BARREL

1« The Test Problgﬂ

Below we compare a nested series of calculations where the outflow
boundary of one grid is interior to the flow field of a larger grid. Then
the approximate solution, obtained using the outflow boundary condition, can
be calibrated against the "correct" solution obtained before spurious
information from the outer computational boundary arrives at the outer edge
of the smaller grid. Calculations with three different size grids are
presented, a 40 x 40 grid, an 80 x 80 grid, and an even larger 150 x 300
grid.

A set of four runs using the FAST2D model have been performed. The
problem chosen is cylindrically symmetric and simulates the fluid flows which
occur when a thin diaphragm bursts. The diaphraam initially confines a high
pressure, isothermal gas in a thick-walled barrel. The general properties of

the four different types of computations performed are given in Table I.

Table 1I.

Calculation Grid Size Boundary Conditions Comments

£ 2 40 x 40 Reflecting walls
#2 40 x 40 Outflow Algorithm Test of new outflow algorithm
#3 80 x 80 Outflow Algorithm Calibration for Run #2

#4 150 x300 Reflecting walls Calibration for Run #3




PO

The results discussed in this section are illustrated by digitized !

contour plots of the density. Coﬁsider Fiqure 3, which is a schematic
diagram of the initial conditions for the test problem considered in this
section. In this and the figures following, different typed letters in the
computational cells combine to form a 'shadowplot' where the boundaries
between two different characters represent contours of the fluid density.
Table II lists the letters used and the density ranges they span in all the
fiqures in this Section. The letter "I" is used for alternate bands to

improve the resolution.

Table II.

Shadowplot Contour Levels:*

1.00E-03 < < 1,45E-03 1.45E-03 ¢ = < 2.10E~03
2.10E-03 < + < 3.20E-03 3.20E-03 ¢ * < 4.80E-03
4.80E-03 ¢ A < ?7.00E-03 7.00E=-03 ¢ I < 1.00E~02
1,00E=-02 < B < 1,45E-02 1.45E-02 ¢ I < 2.10E=-02
2,10E-02 ¢ C < 3.20E=-02 3.20E-02 ¢ I < 4.80E-02
4.80E-02 ¢ D < 7.00E=02 7.00E=-02 < I < 1.00E~O1
1.00E-01 ¢ E < 1,45E-O1 1445E-01 ¢ I < 2.10E-O1
2,10E«01 ¢ F < 3.20E-O1 3.20E-01 ¢ I < 4.80E-O1
4.80E=-01 ¢ G < 7.00E-0" 7.00E-01 ¢ I < 1.,00E+00
1.00F+00 < H < 1.45E+00 1.,45E+00 < I < 2.10E+00

*E.q, read "E-03" as 10-3




The initial conditions are the same for calculations #1-4, The ambient
density is 1.29 x 10”3 g/cm™3, the pressure is a fixed multiple, 1.0 x 109,
of the density, and the lower half of the barrel is pressurized to 1000 times
the ambient pressure. The barrel geometry is the same for all cases listed
in Table I. The spacing of the computational grid, 0.1 cm, is also fixed in
all the computations. The cases listed in Table I differ only in the loca-
tion of the upper and right hand boundary and in the boundary condition
applied.

2, The Outflow Algorithm

The conserved quantities were convected by FCT in this problem: the
mass density, p, and the two components of the momentum density, vy and
pvy. The characteristic velocity for relaxation of density and pressure
fluctuations is the sound speed, here constant at 3.2 Xx 10% cm/s. The char-
acteristic lenath was taken as the radius of the cylinder, 4.0, 8.0, and 15,0
cm for the three different sized grids. The density was extrapolated beyond

the end of each exterior row or column by

C
S
p = p_ +— ¢ At ¢ (p - p.) (5)
q N wall amb N
(Wr)q = (Wr)w (6)
(pvz)q = (pv)N (7

where cs is the sound speed. Since the pressure and density are

proportional to each other, the pressure is extrapolated as in Eq. (S).
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3. Results of the Calculations

Figqure 4 shows a series of shadowplots from Calculation #1, which has
reflecting walls. Figure 4A shows that after 25 timesteps the shock has
moved only about S5 cells up the barrel (0.5 cm) and has not yet reached the
rim. By step 50, shown in Fiqure 4B, the flow inside the barrel is still
essentially one-dimensional. However, as the shock and following supersonic
flow emerge from the barrel, the first evidence of the multidimensional
nature of the flow is evident. By step 100, shown in Figure 4C, the flow has
hit the upper boundary and the rarefaction is working its way back toward the
bottom of the barrel. By step 200, shown in Figqure 4D, the primary shock has
had time to rattle back and forth between the solid barrel wall and the outer
and top boundaries, which here are solid walls.

Figure S5 presents a series of shadowplots taken from Calculation #4,
performed on the 150 x 300 grid. These plots show the solution of the out-
flow test problem without any interference from the bhoundaries. The barrel
wall and the nested 40 x 40 and 80 x 80 computational regions are outlined on
this figure. Note that of the 150 x 300 cells used in the computation, only
128 x 215 are shown on the fiqures,

Figures 6 through 10 are composites of the different calculations at
fixed timesteps. Calculations #2 and 3 have the ocutflow boundary conditions
at the upper and right hand walls. From Figure 6 we see that by step 100 the
shock would have reflected from the top wall in Calculation #1. Comparing
Fiqures 4 and 6, we see that by this time the reflection from *he closed wall
in Pigure 4 has affected the answers down to about cell 34 on the Z axis.
Within and just outside of the barrel, the solutions are still essentially

the same, Calculation #3 in Figure 6 shows that the expanding plume has

16
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reached cell 65 (Z = 6,5 cm) and so the flow is still interior to the 80 x 80

grid. At this point no errors have propagated back from this boundary into

L3

the interior region. The outline of the region considered in Calculations #1
and #2 are shown in this figqure. Calculation #3, which uses the 80 x 80
grid, and the new outflow boundary conditions, provides a calibration of the
[ open boundary condition used in Calculation #2. Thus we can here compare

u Calculations #2 and #3 in Figure 6 and see that they show substantially the

same result,

In FPigqure 7 (step 150), Calculation #3, the rarefaction behind the
primary shock is well formed and appears as a white strip starting from the
outer corner of the barrel wall. Reflection off the upper boundary at 2 =
8.0 cm would have occurred by this time if the upper wall had been a reflec=~
ting boundary. In this case, where we are using a model for the outflow, we
can see that small errors are beginning to move inward.

By step 200 in Figure 8, Calculation #3, the flow has exited through the
upper surface but has not yet reached the outer wall. Some errors have been
propagating toward the region of the 40 x 40 calculation on the larger
80 x 80 grid, but have not reached it yet., Thus this Fiqure is good for
comparison with Figure 8, Calculation #2. The extent of the outflow boundary
condition errors at the boundary of the 80 x 80 region is found by comparing

with Figure 8, Calculation #4.

By step 300 in Figure 9, Calculation #2, the primary shock has spread
down around the barrel and has reached the ground plane at 2 = 0,0 cm. The
errors which are generated by the open boundary conditions should have

reached the 40 x 40 region by now, yet Calculations #2, 3, and 4 are still

essentially identical,




Cube o . ]

Finally, by step 400 in Figqure 10, Calculation #3, the errors from the
outflow boundary conditions have reached the vicinity of the barrel. Compar-
ison with Figures 10, Calculations #2 and 4, show only small differences
which can be associated with the outflow boundary algorithm we are testing.
The accuracy of this result in the 40 x 40 case is surprising where the

computational boundary was closer than a barrel diameter at every point.
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VI. TEST OF THE OUTFLOW ALGORITHM: CYLINDRICAL GAS JET

1. The Test Problem

The test problem described above is related to interior ballistics,
atmospheric explosions and airblast problems as well as shear flows., It
shows our first application of these boundary conditions in an important
problem where both supersonic and subsonic flows are important. The flows
were dominated by divergence rather than rotation, and the relaxation was
primarily by acoustic waves rather than convection of vortices off the
system boundary. The excellent results obtained from these tests encouraged
us to proceed with the difficult subsonic problems described here in this
Section. In combustion problems, expansion and vorticity are equally
important. Thus we felt that the separate tests of both fluid dynamic
aspects was appropriate.

The Xelvin-Helmholtz outflow tests presented in this section were
done in preparation for transition to turbulence calculations such as those
presented in the next section. We wish to test the boundary condition
algorithm described above in a calculation in which the flows are subsonic
throughout the course of the calculation and hence the flow is essentially
incompressible, Here we consider a jet of neon gas moving at 2 x 104 cm/s
which is vented into a quiescent air background. There is a small initial
perturbation at the interface between the jet and the air which causes the
the shear flow eventually to become unstable., After a longer time, the usual
pattern of rotating coherent structures forms at the interface. These
structures merge and flow out of the computational system, i.e.,, off the top

of the computational mesh.
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2. The Outflow Algorithm

The basic outflow algorithm used in this case states that the pressure
in the guard cell just across the boundary is extrapolated from the boundary

cell but relaxes to a prespecified ambient value. Specifically,

Pq = Py + weldt o (Pamb-PN) (8)
and
CS
W= (9
where Pq is the quard cell pressure, Pamb is the ambient pressure, and PN is

the boundary pressure, Here w reflects the rate of relaxation and is con=-
trclled by the sound speed, Cs, and a characteristic radius, R'. We have
taken R' as the characteristic radius of the disturbance, in this case the
radius of the nozzle. Since the flows here are typically a third to a fourth
of the speed of sound, the outflow velocity for vorticity can be estimated
using the sound speed. For slower flows the fluid velocity should be used.
The guard cell pressure, Equation (8), then effects the calculation of the
quard cell energy value. The relaxation rate w is an adjustable parameter
representing the characteristic rate and size of flow patterns leaving the
arid and presumably could be adjusted to improve the match between large- and
small-grid calculations still further, The density and momenta are extrapo-
lated according to

(10)

(1)

{(12)




Note atht in this case unlike the barrel caclulation previously described,
pressure and density are decoupled. Thus to account for effects of sound

waves, we need to modify only the pressure at the boundary. Modifying the
density has little or no effect because there is no substantial inflow of

mass except at the nozzle,

3. Results of the Calculations

In order to test the outflow boundary conditions algorithm, we performed
a series of three calculations summarized in Table III. 1In the first and
largest calculation, a stretched 60 x 120 mesh represents a reqion 7.6 cm in
radius by 26.0 cm in length. The second calculation was initialized by using
the results from step 2000 of the first calculation, but uses only the first
54 x 100 cells of the original mesh. Thus it represents a volume of 3.25 cm
radius by 10.8 cm length. The final calculation used a 54 x 100 mesh,
equivalent to the mesh used in Calculation #2. However, this last

calculation was started from step = 0 with the smaller mesh,

Table III
Calculation Grid Size Comments
$ 60 x 120 Step 0 - 3000
42 54 x 100 Steps 2000 - 3000

Restarted from step 2000 of #1

#3 54 x 100 Steps 0 - 3000




In crder to compare the results of the two calculations, we present

contours of the quantity
R = R (1)

where n(1) is the number density of neon and n(2} is the number density of
air, where air was taken as one species with the mean properties of a mixture
of 20% 02 and 80% N2. By definition, the contours range from R = 0, 100%
air, to R = 1, 100% neon. Figure 1! shows the ratio R for Calculation #1 at
steps 500, 1000, 2000, and 3000 and presents a time history of the flow. We
see that the system initially goes unstable at 1.14 cm from the nozzle. The
structures grow, merge and finally exit out of the top of the computational
grid. We have set the inflow velocity to 2 Xx 10" cm/s. It takes ~1000 time
steps for a fluid element entering the system at the nozzle to reach the top
of the large agrid, 26 cm if it is not slowed appreciably in interaction with
the background air. Thus much of the material entering at step 2000 will be
exiting the computational arid shortly after step 3000. The material effec-
tively changes over every 1000 steps. Thus the calculation was continued far
enouch to test the boundary condition algorithm for long term fidelity and
stability.

Figure 12 shows a comparison of step 3000 for calculations #1, 2, and 3.
First we note that the first two figures lock very similar within the
54 x 100 range, which is very encouraginag. The last fiqure, on the far
right, however, while qualitatively similar to the first two, has differ-
ences. Figure 13 shows a composite for the 54 x 100 and 60 X 120 calcula-
tions, starting at step 500 through step 1500. Throuch steps 1000 the calcu-

lations are quite similar, however small but noticeable differences begin to

appear between steps 1000 and 1500.
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4. Discussion

The constants chosen in implementing the boundary conditions may not
have heen the best ones and this has to be tested. First, the value of R'
should probably be larger than the radius of the inlet., This value should
reflect the characteristic sizes of the structures, and we know that they
grow according to a similarity condition. Also, the appropriate velocity to
use would be the fluid velocity, not the speed of sound, if the vortices were
leaving the region at very slow speed. The speed of sound was appropriate in
the barrel problem because that was a problem in supersonic flow., Here we
are concerned with subsonic flows.

The shear flow discussed in this section is unstable and will always
go unstable as long as there is some small perturbation, even just noise or
roundoff, between the flowinag and quiescent gas. However, unlike the dia-~
phraam in the barrel problem discussed above, the exact appearance of the
Kelvin- Helmholtz instability in the nonlinear regime is very sensitive to
background conditions, initial conditions, and to small fluctuat.ons in the
system. This is the crux of the problem in expériments 3.=o: many realiza-
tions are possible depending on fluctuations in the initial and boundary
conditions. 1In these situations some of the difficulty encountered in doing
the computations reflects the same difficulty in the experiments. Both high-
light the highly nonlinear sensitivity of the system to the boundary condi-~

tions,
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VII. GAS JET AND SPLITTER PLATE SIMULATIONS

In this section we describe preliminary results obtained using the model
described above to simulate the coherent structures developed from Kelvin-
Helmholtz instabilities in shear flows. In the previous section, we empha-
sized numerical methods; here we emphasize the physical results. We discuss
two configurations of the FAST2D model discussed above: a cylindrical gas jet
and the Cartesian splitter plate geometry.

1. Splitter Plate

Figure 14 shows a sequence of frames from a two-dimensional simulation
of the flow generated at an idealized splitter plate. The tip of the split-
ter plate is located at x = 0.0 cm and y = 4.0 cm, the dividing point between
the light gray fluid entering into the lower half of the computational region
(air at high wvelocity) and the darker gray fluid (air at somewhat lower
velocity). Figure 2 shows the type of variably spaced grid used near the
trailing edge to represent the Cartesian splitter plate problem. The y-
direction has good resolution near the centerline. The velocity of the
lower stream is 1.5 x 10" cm/s and the upper stream is considerably slower,
flowing from left to right at 5 x 103 cm/s. As the large spanwise vortices
propagate downstream, they merge and grow. Therefore the larger computa-
tional cells encountered by the flow further downstream and further from the
centerline will bhe adequate to resolve the larger coherent structures about
as well as the smaller structures are resolved near the splitter plate,

The initial stages of the development of the flow are not shown in
Figqure 14. During this early period, before 0.87 ms, the shear flow estab-

lished by the trailing edge of the splitter plate is initially restricted to

a very narrow layer which broadens quickly at first due to viscosity and then




more slowly as both streams of fluid leave the splitter plate. As in the
case of the cylindrically symmetric jet simulations discussed in the boundary
condition test problem and in the next section bhelow, the flow is Kelvin-
Helmholtz unstable. 1Initially, during the linear gqrowth period of the insta-
bility, most of the computed reqion behaves as if there were periodic bound-
ary conditions because the impressed perturbation has a wavelength short
compared to the system length., By 0.87 ms, the first panel in Figure 14, the
influence of the inflow and cutflow is felt., Merging vortices move off the
right edge of the computational system and unperturbed fluid moves in on the
left.

Our preliminary calculations used boundary conditions which prespecified
values for the mass, momentum and energy density of the inflowing gas. These
zonditions, however, did not correctly provide the feedback from the Kelvin-
Helmholtz rolls and vortex meraging on to the newly entering fluid. We know
that pressure pulses from upstream create small transverse flows at the
trailing edge of the splitter plate. These pulses, then, start the insta-
bility at finite amplitude for the next coherent vortex roll up. When the
inflow pressure was specified as ambient, we observed that the first vortex
structures formed very far downstream. The apparent reason for this was that
the pressure perturbations arriving at the inflow boundary were cancelled by
the non-physical condition of specifying the inflow pressure. Clearly a more
physically reasonable treatment of the inflow response to pregssure fluctua-
tions as well as the outflow was required for this type of problem.

The more correct way to treat the inflow is to specify the inflow
density and velocity, and then to use a zero slope condition on the pressure

at the inflow boundary to derive the enerqgy. This algorithm was used for all
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the simultions which follow. It allows pressure differences between the top
and bottom streams to generate transverse flows and implies that the physical
plenum admitting the gas into the region we are simulating is of zero length,
Physical treatment of a real plenum could be added by extending the sgplitter
plate into the computational reqion. A simple lumped parameter boundary
calculation representing the real plenum could also be developed using the
more detailed model to calibrate it. Then a phenomenology would be incorpor-
ated to estimate the pressure build up and velocity changes which could be
expected on inflow. Thus we see that the pressure reflection condition is
one limit of such a model for which the plenum has zero volume. This limit
is appropriate when the fluid flow is slow compared to the sound speed, the
gsituation most often considered in experiments but not necessarily applicable
when the flows are as fast as in this calculation.

The outflow boundary conditions were handled as described in the previ-
ous sections of this paper. With a fluctuating inflow pressure it is import-
ant to relax the outflow pressure toward an ambient value. This is because a
background, base pressure for the system has to specified in compressible
calculations when the inflow pressure is allowed to float in response to
pressure waves from upstream. Relaxation of the density and momentum toward
ambient is less important on outflow because these values are given at the
inflow boundary. The long time values of all the variables must bhe available
to the solution from the begqinniny to prevent secular deviation of the calcu-
lated flow from properties characterizing the ambient medium,

The mechanism which reinitiates the instabilities close to the inflow
boundary works through pressure pulses generated at various scales by the

£luid accelerations involved in nonlinear vortex rollup and vortex merging
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downstream. They are required to ensure that the flow remains essentially
divergence free everywhere when a coherent structure or vortex is locally
accelerated. Though these pulses are transmitted acoustically, they exist
even in the incompressible limit.

Evidence for this mechanism is supplied by the sequence of density
shadowplots shown in Figqure 14, By 0.87 ms the initial linear arowth phase
is over and the instability has saturated rather uniformly along the original
slip line, States similar to what occurred in this calculation prior %o 0.87
ms are shown in the following section on the evolution of the instability in
the round jet. In the splitter plate calculation, a long unrippled portion
of the interface is seen on the left of the 0.87 ms panel, showing that the
initial instability has flowed away from the trailing edge., However, the
pressure perturbations resulting from this were small and short scale, so
that they did not initiate the Kelvin-Helmholtz instability strongly enough
for small scale vortices to appear on the left of the 0.87 ms panel.

The first vortex merging is also shown approaching the richt hand
boundary in the top three panels of the figure. This flow structure is both
large and irreqular enough to generate stronder pressure perturbations, which
can be seen driving noticeable fluctuations into the left half of the inter-
face at 0,98 and 1.03 ms, By the last frame at 2.06 ms, a spectrum of modes
is seen in what looks like a snapshot from an experimental flow visualiza-
tion,

2. Gas Jet

First we consider the coherent structures in the transition from laminar
to turbulent flow in coflowing gas jets in two cases: air into air, which is

constant density, and air into freon, where the density ratio is about 6:1,
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These simulations were performed in order to isolate and study the effects
of density gradients, which is one of the the major physical conditions
distinguishing reactive flow from classical turbulence. The calculations
also provided important information on the application of inflow and outflow
boundary conditions to subsonic shear flow problems.

In the first case, air into air, the densities are constant and these
density gradients do not exist. However, the second case, air into freon, a
light gas into a heavy gas, has the added effect of vorticity gdeneration

through the term

ggavoxVP

dt 2
P

QF )]

where £ is the vorticity, and p and P are the fluid density and pressure
fields, respectively.

The geometry is the same as in the gas jet described in Section VI. The
air flows into the cylinder from a hole at the bottom center at a velocity of
1.5 x 10% cm/s. Unlike the problem discussed in Section VI, in which the jet
flowed into a quiescent background, the fast jet of air is surrounded by a
co-flowing jet at the much lower velocity of 5 x 103 cm/s. The co-flow is
either air or freon. Also, the right hand boundary here is a hard wall with
only the top boundary open.

The instability in the fluid is generated by imposing a small sinusocidal
perturbation on the momentum at the interface, initially at r = 0.6 cm. This
divergence free perturbation is largest at the material discontinuity and

goes smoothly to zero at the sidewalls and at the center of the system. The
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maximum amplitude of the perturbation is 2% of the jet velocity. Given the
initial density and the momentum perturbation, an incompressible velocity
perturbation is implied.

Figures 15 and 16 summarize the air into air and the air into freon
calculations we wish to discuss. The first effect observed in these calcula-
tions is the formation of a Kelvin-Helmholtz instability at the slip line,
Because of the short wavelength and fixed amplitude of the perturbation, the
problem initially evolves as a periodic, time dependent system except for one
or two instability wavelengths at each end. The first panel of Figqure 15
(the air into air cylindrical jet) shows this effect at 240 us. Here a
rather uniform band of mixed material forms separating the two fluids. This
uniform buffer zone does not initially display the vortex meraing which char-
acterizes the fully developed nonlinear flow. Indeed, a fully developed
turbulent-looking flow is not set up until most of the jet material initially
on the computational mesh has flowed out the top and been replaced by fresh
material through inflow.

The two calculations look qualitatively different., There is a notice-
able decrease in the entrainment in the air-into-freon calculation. The
vorticity generated at the nozzle moves away at a density-weighted velocity
intermediate between the velocity of the two streams. In the air into freon
case, Figqure 16, the sloped lines on the figure which track structures moving
on interface show that these structures move more slowly than in the air into
air case in Figure 15, As the coherent structures move with a density
weighted velocity, the air into freon case has a much greater slip velocity
between the jet and the coflow. As a result, for the air into freon case,

the freon entrainment is reduced and the nonlinear coherent structures form
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much closer to the nozzle lip. As can be seen from the sloped lines on the
two figures, the velocity of the vortices is faster in the air into air case
by about a factor of two. Because the air is moving much faster than the
vortices in the air into freon case, relatively little freon gets entrained.
The calculation shown in Figure 16 shows a choking effect in which the
dense coherent structures squeeze light material in the jet and push the jet
flow outward at the nozzle. This acain affects the lower boundary through
the pressure reflection condition, and thus effects the inflow of material.

Then the Bernoulli effect accelerates the jet fluid through the slowly

changing channel formed by the slower, higher density coherent structures.
The panel at 390 us on the lower left shows the jet accelerating so much that
the density has dropped noticeably. A higher pressure region forms just
above the nozzle to accelerate the jet axially through the constriction
formed by the coherent structure. This higher pressure also pushed the

interface laterally at the nozzle lip, as can be seen in the remaining panels

of Figure 16. This displacement becomes the seed for the next coherent

structure.
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VIII. DISCUSSION AND SUMMARY

This paper has presented a summary of work to date at NRL on developing

and testing a model to use for studies of unstable shear flows transitioning
to turbulence, The main features of the model are that it is two-dimen-
sional, fully compressible, and time dependent in either Cartesian or cylin-
drical geometry. To date, emphasis has heen on development of the model as
opposed to application, althouagh some results and model predictions hawve been
discussed in Section VII,

Future emphasis will be on applications although there is is still much
to he learned about inflow perturbations., In particular, we are interested
in how well this model compares to experiments. Calculations using this
model will be compared to experiments to test the effects of density differ-
ences on the initial instability and on transition to turbulence., We now
know that it be necessary to add a number of other physical processes to the
purely convective calculations shown above. For example, we might have to
consider buoyancy and molecular diffusion. Buoyancy should be important at
distances 8 to 10 nozzle diameters downstream, and molecular diffusion could
be important when very light gas flows into a heavier gas. Algorithms for
gravity, and molecular diffusion are currently a part of the model., We are
currently developing subgrid turbulence models, and the particular inflow
nozzle model will have to be developed in coordination with the experiments.
Finally, computational diaanostics must be included that operate on the come
puted primitive quantities (such as mass, momentum and energy) and put then
in a form that can be directly compared with the experiments. These diaanos-
tics includes such quantities such as fluctuation velocities, correlations,

and various averaqges.
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We will also look at the effects of energy release, which occurs in
reacting shear flows in combustors. Calculations with a model for heat
release should at least qualitatively reproduce some of the bulk effects seen
in the experiments (Yule and Chigier, 1979; Yule, 1981). For example, there
is a noticeable extension of the turbulent transition region when there is
chemical enerqgy release,

In conclusion, we feel that we now have a tool which has been developed
carefully and tested in a number of calculations. The limitations and

remaining difficulties are reasonably well known.

ACKNOWLEDGMENTS

We would like to thank T.R. Young, J. Tittsworth, and H. Brock for their
help in implementing FAST2D and with the graphics that made these results
presentable., We would also like to thank Professors N, Chigier, P. Libby,
S.S. Penner, J. Lumley and F. Gouldin for encouraaing this project, and
Oors. A, Wood, R. Miller, K. Ellingsworth, T. Coffey and R. Lau for supporting
of this work. We thank J.M. Picone and J.H. Gardner for their careful
preliminary reading of this manuscript. The calculations of round jets and
splitter plates were performed under ONR project #RR024-03-01 and NRL proiect
#RRO11-09~43. Those calculations presented in Section V to benchmark the
outflow boundary condition on the barrel problem were performed on the
Reactive Flow Modelling Facility developed under joint ONR/NRL sponsorship,

project #RR014~-03-0F,

32




Iy

hred - i

[ DS iy

P

L

.

e

5.

st

.'?,. i N

¥

e

2

. e e -

iy

4.0

Ll

33

R(cm)

Sample computational grid used in the cylindrical calculations of

the round jet.

Figure 1,




*a3erd 193317ds ay3
JO SUOTIPINOTERD UPTIS®3IR) By} ul pasn ptrab Teuotrjzejznduwos ardues ¢z ainbig

:5; . *
0'82 R T T 9 %0 |




cell &
4.0

34 Barrel Wall
b< < |
32 1
20 11111111
a9 ITIIIIII
28 ITIIIIILX
27 ITITIIIX
26 | €& Axis ITIIIIIL
a5 ITIIIIIX
24 ITIIIIII
23 ITIIIIII
a2 ITIIIII]
21 ITIIXIIII
Z(cm) 20 ITIIIIIII
19 Diaphragna ITITIIIII
18 l ITIIIIIII
ITIIIIIL
16 ITITIIIIL
19 {HHHHHHHHHHHHHHM TTITITIT
14 | HHHHHHHHHEHHHHH TTTTIIIIT
13 | HHHHHHHHHHRHENH  TITIIIIT
‘ 12 {HHHHHHHHHHEAHHH  TITIIII]
! 11 {HHHHNHHHHHHHHH  TITIITT
. 10 |HHHHHHHHHHHHHHH  TIIIIII]
’ HHHHHHHHEHHAHHH T ITIIII]
HHHHHHHHHHNHHHH TTTIIII]
HHHHHHHEHHHEEH  TTTITIIY
HHHHHHHHEHEHHNH TITIIII]
ITIIIIIL
HHMHHHHHEHMHHEH  TTITIIII
HHHHHHHENHHRHRS I IIITIIIX] Symmetry
alaaaaasanzanashROOOSRRS! L Plane
HHHHHHHHEHEHEHHHH  ITIIITIT

~AWd>AGOCND O

0.0
y 111111111112222222222333333333
b cell & 123456789012345678901234367890123456769

0.0 R(cm) 4.0

Pigure 3. Initial conditions for the calculations of an explosion in a
barrel. The outer and upper walls are solid in Calculations #1
and #4, <Calculations #2 and 3 use the outflow algorithm at the
upper and outer walls,

35




I RicM) ——em———p 4.0
* 4.0
40
kod
k
a7
36
29
ko3 AMAAAAAAAAAAS &
a3 ITIIIZIZLIIIIIIT@=
-4 ccceeececccectlo-
] £ceeceecccceeer~-
30 TTTITIIY TITTITIY
» 11111111 cceccececcecceeyrrrrnre
28 115111 Item) TRITLTSSRRIRT{IIRILNIL
a7 128200031 ITITRIITRILRERLIQIRLILNLILL
26 ITITILIL DDDODDDDPDODOOD|T1IIIINT
a3 111111 DDDODDODPODODOD FIIILIILX
o 132089831 TITRRITTSIRRIRRNLIRILING
2 133838881 133328441
R 1308328 ¢ 132202851
3 132209081 1232003230022 0020000 001
20 |evscsncsvsssceee [IITIIIIT TTXRRITINILITINLfIRIILINIL
J9IIIIIITIITILIIL(IITILILII FFFFFFEFFFFEFFF(ILI1I11E
(O{ITIIIIILINIIRIR{IZITIINL FFFEEFEFFRFFFFF (TT111111
AZJIIITITITRIIRIIRIfIIRINIIL TITIRIZIISRIIXT|RILIIIINL
16 FFFFFFFFFFFFFEF(ITIIIIII 000000000000000 (T111I111
ISPITIIITITTITTITZIfILRLLNEN 900000000000000 (11111111
14 (SRR LTI L TLLT TXTIREXERTINTIT(RIRIRLLL
13 [ et ataeR e TIIITITE IILTTIRSTSIRIRNX(NININILL
12 [Heannsnsasaaetd | 11111111 1222332332220 020R0 0000244
11 |0 RREIM]{ TIIITII] 111111
10 | eSS RNaSNaTH TTITTIIT 132232831
LA T TV ST 84 S 3 bbbt dbbbbbtil 121228 8 81
8| HeeNeNoseeaM | TTIITIT NN EN| TTITII1T
7 | HRHHMHNNMMN TTTTTIT 12222233
& | HHH SN | TITITT1D HAOMMHNENNMM | TTITTIILY
3 (HOORNNNSIESOMM| T TITTITL m::::g}:
4 {1Eerassestsen | TTITITIIL SN0
3 {reeavenesesseses x:nnu STEP = 25 m“;:;:;{ STEP = 30
2 (SR s R { TTTIIST] HEMS0M00000|
1 R INRRB RN | TT 111111 A nmiiun B
0.0
0.0 1 —p 1111111111222223222233333333 4. 0
12343678901204567890123436 76901 23434709
GCGGCGCCCOITIFFIIEIDDIICIBBIAAAS ITIITII111110000IFFITIERIIDDIICCCITIINGDI
IITITIIIIIFFFIIETIDDITICIBL1AAA IITIT1I1XI2100011FFIIEELIDDIICCCIINGED
TIIIIIIIIITIDDICIIAS+++eBAAAAAA- I11I11111I1I00GIIFFIIERIDDIITICCILY
ITIIIITIIILIODICIIACscsonasaAAS TIIITI1IXTIQIIFFFFFIGELIDDITIICCCILY
ITIIIIIIIIIIIDDCI[ASessaosasnn— I1ITITLIQIFFIIEDIZIILIIDODIICCCIIIINARD]
EEEEEEEEEEEE! IDCI[oserene .- OQOQI IFFFFFFLIEDIIIDIDDIITICCCCITIREBNIDT
EEEEEEEEEEEEET [CBAs—sersas s FFFFFFFFFFEFI11EDI1A®ACITICCCCCIIIBRBTIDI
EEEEEEEEEEEEEEICI® ——¢sessoc FFFFFFFFF 11DCH
EEEEEEEEEEEEEEEl o~ -doeso-m FFFFEFEFF 118 ICCC111108080111IDD
IZITITITIIIITIERS~ Al |FFFFFFEEEFFEPIECBASe—C ]
ITITIITIILNIIILI TIIT FFFF FrF (ITITITIY
tiirrrrtrILLLL|AIIILILL |FFEFEFEFFFFFEFFIIIIINIIL
IrrtrrrItIIRRLfEIIRIIILY lidddddddd IIIIIIIIfeallllilIAAAALD !
IZTITIRIIZYINRLQRIIININL |FPFFFFFFPFFEFEFE {II21111] [ ecenlllAMAAAALL
FFFEFFFRFFFEFFF (LITIII1L TITITRTITNLITLT{ILIRIRNLI |——soannrannnaall !
FFEFFFERFFEFFFF IITITIILT TITIITRRISSTIRILTIRITILILI (~—vrnoAnessAlll i
FFEFFFFEFFFFFFFITTITINLL T1LRIRRITIRRTSI{I2I2L11]|——eoennananall] ;
FEFFEFEFFFFEFFF I ILITLIINT TITITSSTTRIRINIIRIRIZIZIIL|+ateceranneacle
FEFEFFFFFFFFFFFITIILINLL ] IIRIRSRIZIIRIRINLIIRIZLLIL|eaeneccesscacCe
FFFEFFFFFFEFERFITIIITINIL i ITTTIIIZRIIILIINIILINIII|ecaseeceecenalCl
rryrrezgrzIIRLOfRILILINY | ITTTRIITIIZITII{IIIINIIL] |seeeeeserees]llC
IfrrrrrIsLLLILLfLILIILLY | TITITIIITIILIII{IITIIIII] |soaaeeoseses]]l]
rirrrsrneprIILLIIILILILOL TITTIIITIIISINI{IIZITITI1]onencanesnsll]l .
140280 RS2 8R2220) IIIISIXLTIIILTIRII|IT1IILIL] |eaanecamanlllll 1
00GcQ0eGeGEaEeefITITITIL ITITZIRITRIRINII{RIRIIIII (eoaaasAnaAlBIng !
COC000GEeECecRA I TTTITTIT IITIZIRITITIRIT{IIIIIII] |0asanrAAAAAlBOD ;
{ceQagceoceeQ0ee{IIIIIIIT ] ITITRIRISLIIITIN{ILLINILI|eonandAAAAAALLIT
1860CCCCocQcRCOC (TTTITTIL TITITTIZILITLII(IIIIININ | maasAAAAAAAAAL]
(LTI LLL T LT RO S R R 8 B JIIRTITIZTILININ(ITIIIIT]|eanaaAAAAAAAALIL
[BS82243432203322 18320008 ITITIRILIIIIIITJITIILINI| ceresAAMAAAAALI |
frearrtrrTTIILILyILIILLIL ITITITRLIITITRIININRNNL SAAAAAAAT T '
$1TITTLLIILIRETILLILITINY tragseEtoItILLIfITILIILLIY ~eaAAALLL
freorerosLRLLILILQLILRILNY | TITTIRQRRIIRIRT(RERNLLLL -eAAIIIL
freereaetooLLRLbL(LILILIIL | IRITRIRRIZIZINEfRRINNINL -eAllll
1 RR 4222302200012 2202001 IRTRIRIRRITIRLIILEIINILIL ——epe
HeaRassseRReea{ITTIITLIT ' TITIRITIRIRERLINIZRINILILL
ARRRaneeseane (TTTIIILT - JrrnrIYRIIRRIRRqLIRIILLL -
rasnaasnansnnnt (1111111 STEP = 100 ITLLITTIIIILRTn {ITILNLRe $TER = 200
e T T PR SR S L] 1 TITIISIESITIINL|ILNLLNIL D
| Hnnansnanssensm 11 ITIIT] | TrrrIryLLILRRLLfIIIILILLL
i
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Fiqure 13. Comparison of the 60 x 120 and 54 x 100 calculations at three
early times in the calculation.
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Figure 15. Shadow plots of the mixing parameter R for the calculation of a
fast air jet moving into a slower coflowing air jet,
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Fiqure 16, Shadow plots of the mixing parameter R for the calculation of a
fast air jet moving into a slower coflowing freon jet,
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