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~ABSTRACT

An experimental investigation was conducted to examine

the convective heat transfer in straight and curved ducts of

rectangular cross-section. The experimental configuration

was modeled as infinite parallel plates with one wall at a

constant temperature and the opposite wall adiabatic.

The experiments were conducted at steady state for tur-

bulent flow. Average Nusselt numbers were used to compare

the heat transfer characteristics of the straight and curved

sections. The development of Taylor-Gortler vortices in the

curved section was shown to enhance the heat transfer rate in

the curved section as compared to that of the straight section

by approximately 15 to 20 pr-eeitt. Improved heat exchanger

designs and improved cooling of turbine blades are two dis-

ciplines that could benefit from a better understanding of

the effects of curvature on the rate of heat transfer.
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A cross-sectional area of the orifice m

2Ac cross-sectional area of the channel m

2
Apipe cross-sectional area of the pipe m

pipe 2

APL area of the wall heater (Temsheet) m

Cpair specific heat of air at constant pressure J/KgK

Dc channel height m

De Dean number

Dhd hydraulic diameter m

Dorif diameter of the orifice m

Dpipe diameter of the pipe m

Fwo-w i  radiation shape factor
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average heat transfer coefficient W/m 2 C
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Symbol Meaning Units

Pwet wetted perimeter of channel m

Qair heat convected to the air W

Qlsi heat lost through inner wall (Plexiglas) W

Qlo heat lost through outer wall (Temsheet) W

power supplied W

Qr heat transferred by radiation W

R gas constant for air Nm/Kg J
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Symbol Meaning Units
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I. INTRODUCTION

* A. TAYLOR-GORTLER VORTICES

Since the early part of the twentieth century, consider-

able research has shown that fully developed laminar flow

along a concave wall does not remain two-dimensional [Refs.

1, 2, 3]. The flow instead forms a system of spiral vortices,

of counter rotating pairs, whose axes are in the principle

*. flow direction. This phenomenon is the result of the varia-

tions inthe centrifugal forces acting on the fluid particles,

and is known as Taylor-Gortler vortices. Figures 1 and 2

illustrate the type of fluid motion just described.

In a channel that is curved in the streamwise direction,

those fluid particles located in the center of the flow cross-

section are subjected to higher centrifugal forces than those

fluid particles traveling along the channel's boundary wall.

As a result, the fluid in the center of the channel moves out-

wardly towards the concave boundary. As the process continues,

the fluid particles near the boundary wall, move in a spanwise

direction, and finally radially inward replacing the outwardly

moving particles. These particles then come under the same

centrifugal forces and the process repeats itself. The re-

sulting cyclic motion, causes the formation, and propagation,

of the counter-rotating Taylor-Gortler vortices which are con-

sidered primarily a laminar flow phenomenon.

13
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It has been observed [Ref. 4] that the heat transfer rate

from flow along a concave curved wall is greater than that

for flow along a straight wall. It is thought that the addi-

tional mixing provided by the secondary motion of the Taylor-

Gortler vortices may account for this. It is also thought that

the cross-hatching that has been observed in reentry vehicles

can be explained in part by the presence of streamwise vortices

similar to the Taylor-Gortler vortice phenomenon.

There are many possible applications that could result from

a more thorough understanding of Taylor-Gortler vortices and

their effect on heat transfer and fluid flow characteristics.

By taking advantage of the increased heat transfer rate, im-

proved heat exchanger designs and improved turbine blade cool-

ing could result [Refs. 5, 6, 7].

B. HISTORY

The instability of an inviscid fluid flowing past a curved

boundary, was first considered by Lord Rayleigh in 1916 [Ref.

8]. By assuming that the fluid was non-viscous, he determined

that for the motion of an inviscid fluid to remain stable, its

circulation must increase with increasing radius. G. I. Taylor,

in 1923, [Refs. 1, 9], continued this study with an extensive

analytical and experimental study of viscous fluids. His in-

vestigations focused on the flow between two cylinders. For

the case where the inner cylinder was rotated while the outer

cylinder was held stationary, Taylor ascertained that such

16



flows become unstable when the value of a dimensionless para-

meter exceeded a critical value of 41.3. The parameter,

known as the Taylor number is defined as:

. T a - R e / - ---
TaF

where 'd' is the width of the gap, assumed small when compared

to 'Ri', the radius of the inner cylinder, and 'Re' is the

Reynolds number. The Reynolds number is based on the peri-

pheral velocity of the inner cylinder. Taylor determined

that for those cases in which the value of the Taylor number

exceeded 41.3, a secondary motion developed and the Taylor

vortices formed.

Instability of a similar nature is also observed when a

viscous fluid flows in a curved channel due to a pressure

gradient acting along the channel wall. This problem was first

considered analytically by W. R. Dean [Ref. 10] in 1928, for a

channel formed by two concentric cylinders, where the radius of

the innder cylinder was large in comparison to the spacing be-

tween the inner and outer cylinder walls. Dean concluded that

there would be an initiation of the flow instability, and the

propagation of vortices, when a similar dimensionless parameter,

the Dean number, exceeded a value of 36. The Dean number is

defined as:

De - Re

17



where 'd' represents the channel half-width, 'Ri' is the inner

cylinder radius, and 'Re' is the Reynolds number based on the

mean velocity of the undisturbed flow. The analytical work

of Dean was later verified by W. H. Reid [Ref. 11], using an

approximate solution.

In 1940, H. Gortler studied the stability of laminar bound-

ary layer profiles on curved walls under the influence of small

disturbances. He found that these disturbances were similar

to the vortices studied by G. I. Taylor. By approximate numer-

ical calculations, Gortler concluded that the disturbances or

vortices were produced only on the concave boundary walls. He

also concluded that the overall flow profile appeared to remain

laminar in nature (Ref. 2]. These results were verified, with

an exact solution, by G. Hammerlin, and reported by H. Schlichting

(Ref. 12] in 1955. A. M. 0. Smith completed an even more ex-

tensive numerical analysis that further substantiated these

findings [Ref. 3]. Recently with the use of hot wire anemometry,

laser doppler systems, and flow visualization techniques, [Ref.

13, 14], the result of these numerical solutions have been

demonstrated experimentally. In 1976, Y. Aihara [Ref. 15] con-

ducted a non-linear analysis of Gortler vortices.

As interest began to develop concerning the effects of the

secondary flows associated with the Taylor-Gortler vortices,

many studies were published concerning the influences of these

vortices on the transfer of heat in the laminar and turbulent

flow regimes. In 19IS, F. Kreith (Ref. 16], studied the

18
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influence of heat transfer with respect to the curvature of

the boundary wall for fully turbulent flows. He concluded

that the heat transfer from the heated concave boundary wall

was considerably higher than that transferred from the convex

boundary wall of the same curvature and under similar turbu-

lent conditions.

In 1965, L. Persen [Ref. 17], considered the special cases

of very high and very low Prandtl number fluids. He related

the increase in heat transfer from a curved wall to the pre-

sence of the Taylor-Gortler vortices.

There has been only a limited amount of published litera-

ture dealing with the flow and heat transfer in curved channels

of rectangular cross-section and large aspect ratios. Much

of what has been published involves the development of numer-

ical approximations and solutions for heat and mass transfer

in curved ducts of various geometries. K. Cheng and M. Akiyama

[Ref. 18] developed a numerical solution for forced convection

heat transfer with laminar flows in curved channels of rec-
.

tangular cross-section. However, they were concerned with

cross-sections with small aspect ratios.

In 1976, A. A. Shibani and M. N. Ozisik [Ref. 19] solved

the heat transfer problem between parallel plates with tur-

bulent flow, for the case of uniform wall temperature. They

used matched asymptotic expansion techniques for a wide range

of Prandtl numbers.

.'1
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Other experimental and analytical studies that are worth

citing with regard to this present study follow. Y. Mori [Ref.

20], obtained results for hydrodynamically fully developed

flows with constant wall heat flux, in curved channels of

square cross-section. W. M. Kays and E. Y. Leung [Ref. 21]

reported solutions for turbulent flow heat transfer in a con-

centric circular tube annulus with a fully developed velocity

profile and constant heat rate per unit length, for a fluid

of Prandtl number 0.7. Results for large aspect ratio channels

with rectangular cross-sections for laminar flows were reported

by M. Durao [Ref. 22] and J. Ballard [Ref. 23], while R. Holihan,

Jr. reported results for laminar and transition flows [Ref.

24]. P. F. Brinich and R. W. Graham [Ref. 25], reported

results for turbulent flows in a rectangular curved channel

with an aspect ratio of 6, for the inner wall heated, the

outer wall heated, and both walls heated.

20
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II. INTENT OF THE STUDY

The purpose of this investigation was to examine the

effect of streamwise curvature on the heat transfer rate in

a curved rectangular duct of large aspect ratio. The flow

velocities examined were in the turbulent regime. The results

of this study were compared to the heat transfer rates for

the same range of velocities, in a straight duct of identical

aspect ratio.

Taylor-Gortler vortices are considered to be a laminar

flow phenomenon. Enhanced heat transfer in curved channels

for transition and turbulent flows has been observed. Even

though it has not been proven that the vortices continue to

propagate at the higher flow velocities, this enhancement in

the transfer of heat has been attributed to the secondary

flow velocity components of the Taylor-Gortler vortices. It

is believed that these secondary components transport the

heated fluid from the outer concave wall, inward toward the

opposite wall of the channel, displacing the cooler fluid

particles and causing them to move toward the heated concave

wall. It was expected that similar results would be observed

in this study.

This investigation was conducted using a single channel

with a rectangular cross-section and constant aspect ratio.

The channel incorporated both a straight test section and a

21
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curved test section. The results obtained in each test section

at approximately the same flow rates were compared in an effort

to determine the effects of the Taylor-Gortler vortices on the

transfer of heat. Also, the results of both the straight and

curved sections were compared to the results of Ballard [Ref.

23] and Holihan [Ref. 24].

The straight section results of this study were compared

to the results of Shibani and Ozisik [Ref. 19] for turbulent

flow between parallel plates. In addition, the results of

Kays and Leung [Ref. 21] and the Dittus-Boelter equation

[Ref. 26] were compared for Reynolds numbers in the range of

this study. Kays and Leung's data was for turbulent flow in

annular passages while the Dittus-Boelter equation was for

turbulent flows in circular tubes.

The curved section results of this study were compared

with the results of Brinich and Graham [Ref. 25] for turbulent

flow in a rectangular curved channel.

22



III. EXPERIMENTAL WORK

A. DESCRIPTION OF THE APPARATUS

To meet the objectives of this investigation, a channel

of rectangular cross-section was used. Details of its con-

struction are described in references 22 and 23. Plexiglas,

0.635 centimeters thick, formed the inner and outer walls of

the channel. These walls were separated by 0.635 centimeter

spacers that also served as the sides of the channel.

The channel, shown in Figure 3, had a straight section,

122.0 centimeters in length, followed by a curved section of

180 degrees of arc, folbwed by another straight section, 91.4

centimeters in length. The inner curved wall of the channel

had a radius of curvature of 30.5 centimeters. The rectan-

gular channel was .635 centimeters high and 25.4 centimeters

wide resulting in an aspect ration of 40. The hydraulic dia-

meter was 1.229 centimeters. The cross-sectional area of the

channel was 16.13 square centimeters. The wetted perimeter

was 52.07 centimeters. Figure 4 shows a cross-sectional view

of both the straight and curved sections of the channel.

An entrance bell constructed of plexiglas was connected

to the straight section of the channel. It was designed and

manufactured according to ASME nozzle standards, with an

elliptical curved base on a major axis equal to ten inches

and a minor axis of one inch. Cheese-cloth was attached to

23
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the entrance nozzle to prevent foreign matter from entering

the flow channel. An aluminum exhaust nozzle was attached

to the exit of the channel and directed the flow from the

channel into two inch diameter pvc piping. The two inch

pvc piping contained a concentric orifice with a diameter

of 1.065 inches and was constructed according to the ASME

Power Test Code. Pressure taps on either side of the orifice,

at 1 and 1/2 pipe diameters from the orifice, and connected

to manometers were used to calculate the mass flow rate, of

the working fluid, which was air at room temperature.

The flow of air was drawn through the channel by an

electrically driven Spencer Turbo Compressor, 30 horsepower

at 3500 rpm, rated at 550 cubic feet per minute at 70 degrees

fahrenheit and one atmosphere. The channel contained two

test sections from which experimental heat transfer data

could be obtained. The straight test section was located at

a distance downstream of the entrance bell that would ensure

hydrodynamically fully developed flow. The straight test

section was 29.2 centimeters in length with a heated test

section area of 741.7 square centimeters. The curved test

section was located in the lower half of the curved portion

of the channel. It was 28.3 centimeters in length, subtend-

ing an arc of 53.1 degrees, and having a heated test section

area of 718.4 square centimeters.

In each of the heated test sections, Temsheet, a carbon

impregnated porous paper with a uniform electrical resistivity,

26



was glued to the outer wall of each section. Joulean heating

was used to heat the flow of air through the channel. Since

the electrical resistance of the Temsheet is not constant,

but varies slowly with temperature, a precision resistor with

an electrical resistance of 2.0262 ohms was connected in series

with the Temsheet to allow the calculation of the instantaneous

power being supplied. Detailed schematics of each test section

are shown in Figures 5 and 6.

The variables that were measured and used in this invest-

igation were:

(1) the temperature of the air entering the channel (Tin)

(2) the temperature of the air leaving the channel (Tout)

(3) the temperature of the heated outer wall for each

test section (Two)

(4) the temperature of the unheated inner wall for each

test section (Twi)

(5) the temperature between the three layers of insulation

at each test section (Tins)

(6) the voltage across the precision resistor (V )

(7) the voltage across the Temsheet or heater (Vh)

(8) the temperature of the air at the orifice (Torif)

(9) the pressure upstream of the orifice (P up)

(10) the difference in the upstram and the downstream
pressure across the orifice (AP)

(11) the atmospheric pressure (Patm)

27
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Temsheet

Plexiglas

Thermoco uples

Figure 6. Curved test section, detailed schematic. .
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Each of the temperature measurements was made with Copper-

Constantan thermocouples. Those thermocouples that could be

removed easily from the channel were calibrated using a

ROSEMONT Commutating Bridge model 920A, and a ROSEMONT Constant

Temperature Bath model 913A. A second order polynomial was

fitted to each set of data. The resulting coefficients dif-

fered by less than 1.0 percent, so an average of each coeffi-

cient was used in converting emf to degrees centigrade in the

reduction of the data obtained.

A total of sixty-one Copper-Constantan, 30 gauge thermo-

couples were located throughout the test apparatus to record

the desired temperatures. Four thermocouples were connected

in parallel to read an average temperature at the entrance

and exit to the channel. Five thermocouples were connected

in parallel and inserted between each of the layers of insula-

tion at each of the test sections. In addition, individual

thermocouples were positioned in each of the test sections,

eight in direct contact with the Temsheet and eight in the

plexiglas of the unheated inner wall. Small diameter holes

in the plexiglas were drilled to allow the installation of

the thermocouples. One thermocouple was inserted in the

two inch pvc pipe downstream of the orifice in accordance

with the ASME Power Test Code to record the temperature of

the air flowing through the orifice. The beads of the thermo-

couples in contact with the Temsheet were electrically insu-

lated from the Temsheet with ENMAR Heat Resisting Glyceryl

Phthalate.
30
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The thermal insulation consisted of 1/4 inch layers of

Armstrong Armaflex 22 Sheet Insulation, a flexible foamed

plastic material, on the heated side of each test section,

and 1/2 inch Armaflex 22 insulation elsewhere on the test

apparatus. Three layers of the 1/4 inch insulation were

used and covered an area slightly larger than each of the

heated areas. By positioning thermocouples between these

insulation layers, the heat lost to the environment could

be computed at each test section. The heat loss through

the 1/2 inch insulation surrounding the rest of the channel

due to the heated air flowing through the channel was small

in comparison. See Figure 7 for a detailed sketch of the

thermocouple placement and attachment. The insulation was

held in place by the use of Adhesive Heat Resistant ven-

tilation Duct Tape. The entire channel and all connections

between the channel, the pvc piping, and the orifice were

sealed with General Electrical Silicone Rubber Sealant Caulk

to ensure there was no leakage of air into the channel or the

piping which could affect the temperatures recorded as well

as the mass flow rate. Two aluminum electrodes, 0.318 centi-

meters thick, were inserted in between the Temsheet and the

plexiglas in each section as shown in Figure 7.

The data acquisition system used for this investigation

was a Hewlett Packard 3054A Automatic Data Acquisition/Control

System consisting of a 3456A Digital Voltmeter and a 3497A

Data Acquisition/Control Unit. Also used in conjunction with

31
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this data acquisition system, were a Hewlett Packard 9326

Computer terminal and 2671G Printer. Pressure measurements

were taken from Meriam vertical manometers, one whose fluid

was water with a 0 to 60 inch range, and the other whose

*fluid was mercury, calibrated to read inches of water with

a range of 0 to 415 inches. A photograph of the channel and

associated test equipment are shown in Figures 8, 9, and 10.

B. EXPERIMENTAL PROCEDURES

Experiments were conducted by varying the mass flow rate

of air corresponding to Reynolds numbers from approximately

12000 to 23000, where the Reynolds numbers are based on hy-

draulic diameter. For each mass flow rate, data was taken

automatically by the data acquisition system and the data

was immediately reduced and printed for examination and com-

parison. The experimental procedures followed were the same

for the straight and curved test sections. The results ob-

tained from the straight test section served as a baseline

for the comparison of the curved section results. Prelimi-

nary runs were performed to determine the time required for

the test rig to come to steady state. For this experiment

three hours were allowed for steady state to be reached.

After three hours, data was taken at ten minute intervals

to observe changes in parameters to ensure that a steady

state condition had been achieved. The criteria for steady

state was based on three variables:
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(1) the mass flow rate

(2) the heated boundary wall temperature

(3) the heater voltage

When these variables varied by less than two percent over a

ten minute interval, it was considered that a steady state

condition had been achieved.

It was also necessary to determine the approximate power

setting required to bring the heated wall of each test section

to approximately 50 degrees Centigrade. It had been deter-

mined by Holihan [Ref. 24] that this temperature was sufficient

to ensure a 20 degree Centigrade difference in the heated wall

and the unheated wall.

For each run, the atmospheric pressure, the pressure dif-

ference across the orifice, and the pressure upstream of the

orifice were entered into the computer for the mass flow rate

calculations. All other data was acquired by the data acquisi-

tion system directly from the experimental apparatus.

To compute the instantaneous power supplied the following

relationship was used:

VH VR

The precision resistor voltage and the heater voltage were

read by the data acquisition system and the resistance of the

precision resistor was a known constant. A diagram of this

circuit is shown in Figure 11.
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Temsheet (heatr

SPower Spl

Figure 11. Circuit used to measure power supplied to
the Temsheet.
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IV. PRESENTATION OF DATA

A. ANALYSIS

The constant heat flux surface for the heated wall of each

test section was approximated by the uniform electrical resis-

tivity of the Temsheet. The insulated unheated wall was con-

sidered adiabatic since the heat losses through that wall were

negligible. The channel's large aspect ratio of 40 allowed

the modeling of the channel as parallel plates. The straight

portion of the channel upstream of the straight test section

was of sufficient length to ensure that the flow was hydro-

dynamically developed for the flow velocities of this study.

The straight portion of the channel downstream of the curved

test section was also of sufficient length to ensure that the

flow exiting the channel was thoroughly mixed and that the

temperature, Tout, was an average bulk temperature.

Based on these assumptions, the experimental configura-

tion was modeled as forced convection between parallel plates,

for hydrodynamically developed and thermally developing flows,

subjected to a constant heat flux. The boundary conditions

are one wall at a constant heat flux and the other wall

insulated.

To analyze this problem, several quantities were defined

as follows:

The heat convected to the air was calculated using the

expression:
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4: Qair h Cp (T - T in)

where 'Cpair' was the specific heat of the air at constant

pressure and 'W' was the mass flow rate of the air.

The average heat transfer coefficient between the heated

wall and the flow of air in the channel was defined by the

equation:
Qair

ApL AT

where 'Qair' is defined above, PL was the area of the

Temsheet in the test section, and 'AT' was the difference

between the average heated wall temperature (Two) and the

average bulk temperature (Tblk). The average bulk tempera-

ture was defined as the arithmetic mean of the entrance and

exit temperatures (Tin' Tout).

The average Nusselt number was then calculated as follows:

DhdNu-

Kair

In this equation 'Dhd' is the hydraulic diameter and 'K air '

is the thermal conductivity of air.

The Reynolds number was calculated for each test run as

follows:
h D

Rehd hd

Ac 1air
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4.'[-I where again 'W' and ?DhdI are the mass flow rate and hydraulic

diameter of the channel, 'Ac' is the cross-section of the

channel, and 'Pair' is the dynamic viscosity of the air.

For the curved section runs a Dean number was defined as:i-D
De = Rehd

where 'Re' is the Reynolds number based on hydraulic diameter,

'Dhd' is the hydraulic diameter, the 'Ri' is the radius of

curvature of the unheated inner convex wall.

A sketch of the control volume and a set of sample calcu-

lations for one test run of the curved section are given in

Appendix B.

B. RESULTS

The data obtained from each experimental run was evaluated

utilizing the expressions described in Part A above. The major

parameters resulting from this evaluation are shown in Tables

I and II. Table I contains the straight section results and

Table II contains the results of the curved section. A plot

of the average Nusselt number verses Reynolds number is given

in Figure 12 for the comparison of the results. Error bands

have been indicated as a result of an uncertainty analysis.

A sample calculation for the uncertainty analysis is given in

Appendix A.

e.' The results indicate an increase in the rate of heat

transfer with increasing Reynolds number for both the

41
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TABLE I

SUMMARY OF STRAIGHT TEST SECTION RESULTS

Rehd Qair 17AT35

(W) (W/m C) (C)

12940 114.43 63.55 24.27 29.9

14520 113.55 67.05 22.82 31.5

17020 120.00 76.70 21.09 36.1

20480 117.37 84.30 18.76 39.7

22980 121.31 92.04 17.76 43.4

Reynolds number and Nusselt number are based on hydraulic

diameter.

43



" ~. - - . . . . . o. . - - -.- o . .o.. . o

TABLE II

SUMARY OF CURVED TEST SECTION RESULTS

Rehd De Qair T

(W) (W/m C) (C)

13490 2707 115.28 77.23 20.79 36.2

16950 3403 117.50 91.26 17.93 42.9

- 21140 4243 114.94 105.46 15.18 49.7

23320 4680 113.43 111.47 14.17 53.9

Reynolds number, Dean number, and Nusselt number are

based on hydraulic diameter.
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straight and curved test sections. In addition, the heat

transfer rate was higher for each Reynolds number investigated

in the curved section.

In the investigation by Holihan [Ref. 24] a straight line

Aleast squares correlation of his data resulted in:

0.25Nu - 0.983 Red 300 < Red < 2000

for laminar flows, and

Nu - 0.110 Red 0 .56  2000 < Red < 3000

for transition flows in the straight test section. The curved

section data yielded:

3- = 0.065 Red 0.67 300 < Red < 2000

for laminar flow, and

N- = 0.117 Red0.58 2000 < Red < 3000

for transition flows.

The data for the present study resulted in

Nil - 0.063 Rehd 0 . 6 5  104 < Rehd < 2.5 x 104

for turbulent flow in the straight test section, and

M. - 0.040 Rehd0 72  104 < Rehd < 2.5 x 104

for similar flow in the curved section.
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In the turbulent regime of this study, the rate of heat

transfer was about twenty percent higher in the curved section

when compared with the straight section. This compares favor-

ably with earlier studies by Kreith [Ref. 16], where he re-

ported an increase in the rate of heat transfer along a

concave wall of from twenty-five to sixty percent for

Reynolds numbers, based on hydraulic diameter, between

104 and 106. Holihan reported an increase of fifteen per-

cent for laminar flow and thirty percent for transition

flow [Ref. 24]. Ballard reported an increase of eleven

percent in the heat transfer rate for laminar flows [Ref. 23].

V.4
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V.

V. DISCUSSION AND CONCLUSIONS

Holihan [Ref. 24], in his study, determined that there

was a negligible difference in the fluid bulk temperature

and the unheated wall temperature. He additionally demon-

strated that the radiated heat transfer from the unheated

wall surface was minimal. These results were verified for

the present study and provide the basis for the assumption

that the heat transfer to the air flowing through the channel

was solely by convection from the heated Temsheet.

As was mentioned earlier, the high aspect ratio of the

channel provided the basis for the assumption that the ex-

perimental apparatus, as configured, could be modeled as

infinite parallel plates. Holihan's data [Ref. 24] also

tended to verify this assumption. His experimental data,

in the laminar flow region, approached the theoretical limit

for average Nusselt number for parallel plates with one wall

heated at a constant heat flux and the opposite wall

adiabatic [Ref. 27].

Based on the assumptions mentioned above, comparisons were

made with other analytical and experimental results that were

of the same or similar problem. Again the problem being, flow

between infinite parallel plates with one wall at a constant

heat flux and the opposite wall adiabatic.
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A comparison of the experimental results of this study

and the experimental results of Ballard [Ref. 23] and Holihan

(Ref. 24] are shown in Figure 13, for the straight section,

and Figure 14 for the curved section. Figure 15 shows a com-

pilation of all the data on one plot. Ballard's data was

strictly in the laminar region, while Holihan's data covered

the laminar as well as transition regions. The channel aspect

ratio was 40 for each of these studies and the experimental

procedures were similar in each case. Ballard and Holihan

compared their data to the analytical studies by McCuen,

[Ref. 28], for heat transfer between infinite parallel plates

with constant wall temperatures and heat flux. Their results

plotted above the analytical solution and the difference was

attributed to the difference in the geometries used in the

studies, and to the limitations inherent in any experimental

work. The side wall effects and the inability to totally

account for all the heat transfer processes and/or losses

were also factors that may have caused the difference.

A comparison of analytical and experimental results with

those of the present study for the straight test section is

shown graphically in Figure 16. The results of Shibani and

Ozisik [Ref. 19] is shown for turbulent flow between parallel

plates. The correlation used was

Nu 12 + .024 Re 824
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for 0.1 < Pr < 10 and 104 < Re < 106. The Dittus-Boelter

equation [Ref. 26] for heat transfer in a straight tube for

constant wall temperature is plotted from the following

correlation:

Nu = .02 Re

for a Prandtl number equal to 0.71. Additionally, Kays and
Leung [Ref. 21] obtained data for heat transfer in annular

passages, with one wall heated at a constant heat rate.

The data shown is for r* = 1.0 which equates to parallel

plates.

The curve section data is plotted in Figure 17 and is

compared with the experimental results of Brinich and Graham

[Ref. 25] for flow and heat transfer in a curved channel. The

accuracy of the data points used are subject to errors, in

that the actual values were not given in their study and had

to be taken from a plot of Stanton number versus Reynolds

number as given in the reference.

The data from the present study fell below the correlations

that were used as comparisons. These differences can also be

attributed to the differences in geometries and conditions of

heating used. Experimental error and side wall effects may

have also contributed to the overall difference in results.

The data from the present study and that from the Brinich

and Graham study seem to compare favorably and exhibit a simi-

lar trend. Irrespective of the differences noted above, it
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appears that there is a definite enhancement of the heat

transfer rate in the curved test section for laminar, tran-
sition, and turbulent flows. Streamwise curvature, result-

ing in secondary flows, seems to cause the enhancement.

Whether the Taylor-Gortler vortices continue into the

transition and turbulent flow regimes remains to be seen.

Continued study of the effect of streamwise curvature and

the development and propagation of the Taylor-Gortler vor-

tices throughout all flow regimes is required.
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VI. RECOMMENDATIONS

To better understand the effects of streamwise curvature

on the enhancement of heat transfer, a significant amount of

study still remains. With the introduction of today's data

acquisition systems, in conjunction with portable computers,

instantaneous recording of data and its reduction, for imme-

diate analysis, saves an immeasurable amount of time and

reduces the chance of human error. The present experimental

apparatus has been used over a range of Reynolds numbers

throughout the laminar and transition regimes, into the tur-

bulent regime. Results have compared well with previous data

and correlations. A new flow channel of similar design should

be constructed prior to further testing, due to the age and

condition of the present equipment. A new set of calibrated

thermocouples and possibly the introduction of pressure trans-

ducers, instead of manometers, that could be connected to the

data acquisition system, would provide more consistent, and

as a result, more accurate data for flow rate measurements.

Also, since the present apparatus has been modified several

times in the past, resulting in leaks that are difficult to

locate and stop, a new flow channel would help to eliminate

some of the inaccuracies to temperature and flow measurements
%I

introduced by undiscovered leaks. It is also highly recom-

mended that a method of safeguarding each piece of equipment,
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so that in the event of a power failure, when power is re-

stored, each item would require the operator to manually

restart it.
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APPENDIX A: EXPERIMENTAL UNCERTAINTY

The uncertainties for the major variable in the experiments,

were calculated in accordance with the method described by S.

Kline and F. McClintoch [Ref. 29]. The estimates of the un-

certainty in the measured quantities were made conservatively.

As a result, there is considerable confidence in the uncer-

tainties as calculated.

The following equations were used to calculate the

uncertainties:

(1) di - [YKA ( yI) + (dK) + (!)2

aP (d 2 dAP 2 1/2 1/2

air Pair + A

(2) dQr di 2 +d C Pair 2 d(T out T in) 2 1/2

m Cpair Tout Tin

dQa 2 dAPL 2  dAT 2 1/2
C3) dF F ( + (---=)  +

(air PL

2 dDh 2  air 2 1/2

iihd air

(((5) dRehd Rehd ) dDhd 2  d air 2 dA) 1/2

L•"= +(-hd) + air
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The values obtained for the uncertainties for the values

in the curved section test run at a Reynolds number of

17500 are:

Quantity Uncertainty

A .0005

AP .0026

A c .0098

Cp .0034

Dhd .008 7

.0412

K .0050

K. .0012

Nii .0421

ut .0223

Qair .0382

Rehd .0260

Tk .0092

Tin .0046

Tout .0049

T .0063

Tou -T. .0136otin

Y .0051

Al' .0222

AT .0032

1 1 air.0027

Pair .0003

p 59
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The major source of uncertainty in the average Nusselt number

is the uncertainty in the pressure readings from the mano-

meter which affects the mass flow rate calculation. In

order to obtain a more accurate pressure measurement, it

has been recommended that pressure transducers or inclined

manometers be used instead of vertical manometers in future

studies.
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APPENDIX B: SAMPLE CALCULATIONS

Figure 18 below, shows the major heat transfer components

for each of the test sections. The sample calculations that

follow, demonstrate the methods used by the computer to calcu-

late these components as well as the Reynold's number, average

heat transfer coefficient, and average Nusselt number for each

set of data. The sample calculations are for the curved sec-

tion, but those for the straight section are similar. Reynolds

number, Nusselt number, and Dean number are based on hydraulic

diameter.

Temsheet

* LI ........ ~ - -I
Q 1 0

Figure 18. Energy balance in straight section.
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A. SAMPLE CALCULATION DATA

VH a55.2325 V

VR 4.4075 V

R PR -2.0262 a

p atm - 30.45 in. Hg

AP' = 22.5 in. H20

-cP 1  = 13.05 in. H 0

T in = 25.41 C

T0  ~ = 28.08 C

T 0  = 44.50OC

Twi - 25.99 C

T ins = 38.66 C

T~ 5  32.52 C

T orif - 28.32 C

A.. K - 26.52 x 10 W/mK
.%,, air

C pair - 1006 J/Kg K

U air =18.63 x 10-6 Kg/ms

K ins = 3.6495 x 10 2 W/mK

Ax= 0.00635 m

L o =0.70

ew 0.40

a 5.669 x10 -8W/M K

a .5325

y 1.402

gc a 1 Kg m/NS2

R - 286.8 Nm/Kg K
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Fwo-wi M 1.0

ApL - .07188 m
2

A M .0016 m 
2

C2
A .002027 mApipe

Dc  .00635 m

Dpipe a .0508 m

Dorif - .027051 m

Pwet .5207 m

B. TEMPERATURE CALCULATIONS

1. Bulk Temperature (Tblk)

T in + Tout = 25.41 + 28.08 = 26.75 CTblk 2 2

2. Mean Temperature Difference (AT)

AT = Two-Tblk = 44.50 - 26.75 = 17.75 C

3. Temperature Difference in the Insulation (ATins)

ins insi ins2 = 38.66 32.52 = 6.14 C

C. POWER CALCULATIONS

1. Power Supplied (Qp)
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VH VR = (SS.2325)(4.4075) = 120.14 W

PR (2.0262)

2. Heat Lost Through the Outer Plate (Qlo)

AT in s  6.14
Q10 (AXins)/(Kins) ApL) = (0.00635)/(3.6495x10-Z)(.07188)

= 2.54 W

3. Heat Radiated (Qr)

a. Radiation Resistance (RR)

1 - wo+ 1 1 -Cwi

1 + 1 + 1
APLwo wi A-w2

b. Heat Radiated

r a 4 Twi4 )

= (Two -T )

RR

- (5.669x10-8 )[(44.50+273) 4 - (25.99+273) 
4

40. 74
4U -/

- 3.02 W

D. MASS FLOW RATE CALCULATIONS

1. Pressure Conversions
N/2

a. Patm 3 0 .45 in Hg x 3374.1 - 102741.35 N/rn
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b. AP = 22.5 in H20 x 248.64 = 5594.4 N/rn 2

c. P1 = (13.05 in H2 0 x 248.64) + 102741.35 - 105986.10

N/m
2

4.

2. Density of Air (pair)

a Patm = (102741.35) 1.1889 Kg/rn
-air ' RTorif (Z86.8)(Z3.3Z+Z73 =

3. Expansion Factor (Y)

Y = 1-[0.333+1.145(82+0.78 5+12B 1 3 )]

4%Y 1

- 1-[0.333+1.145((.5325) 2+0.7(.5325) 5+12(.5325) 
13

5594.4
x (1.40Z) (105986.10)

= .9738

4. Area of Orifice (A)

(Dorif 2 7r(.02705) 2 2Al = =___ " _____= .0005747 m
4 4

5. Mass Flow Rate (ii)

i = YKA YZgcPai r p= (.9738)K(.0005747)

x (Z[I) (1.1889) (5594.4)

- .06455 K
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Iterating:

Assume a Reynolds number pipe 55000

Obtain a value for K, the flow coefficient, from

reference 30. K = .6332

Solve for di. 1 = .0409 Kg/s

Solve for new Re pi D Pe = (.0409)(.0508)
pipe Apipeair .000Z7)(18.3xlo-6

Re .pip54988

Repipe 54988

Check convergence and repeat process if necessary.

(Convergence if difference less than .001)

fi = .0409 Kg/s

E. REYNOLDS NUMBER CALCULATIONS

diD. (.0409)(.0508)
1. Repipe = Apipe=air  t.OOZOZ-7)(1S.3xl0 6 = 54988

2. DR = (.0409)(.00635)

d Ac Uair ('.U16iJ(18.03x1L-6  = 8713

fn Dhd

3. Rehd -Ac Uair

a. Dhd = xAc = 4).0016) = .01229 m
hd Pwet 5U

Rehd Dhd = (.0409)(.01229)

hd Ac Uair (.001lb(l8.63xl0-6 = 16863

F. HEAT CONVECTED TO AIR CALCULATION

I. Qair - dCp(Tout-Tin) i (.0409) (1006) (28.08-25.41)-109.86W
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G. AVERAGE HEAT TRANSFER COEFFICIENT CALCULATION

109.8_ = 86.11 W/m

ApI AT (.07188) (17.75)

H. AVERAGE NUSSELT NUMBER CALCULATION

' Dhd = (86.11)(.01229) = 3990

Kair 26.52 x 10

I. DEAN NUMBER CALCULATION

De = Rehd Ri = 16863 129 3385hd R.30 338

5%

a.

4i
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S. :

APPENDIX C: CORRELATIONS

The correlations obtained for the present study were

obtained using the method of least squares for a first degree

polynomial, as outlined by C. F. Gerald [Ref. 29]. In this

method the values of Reynolds number (x) and Nusselt number

(Y) were first converted to their natural logarithmic value.
2

Next the summations of xi, xi  Yi' and x.Y. were calculated.

The values of these quantities were then placed in a matrix:

Nx ao  E Yi
ExiExi Zxi Yi

1 1 1

and the resulting simultaneous equations

aON + alex i  i

2aoEx + alExi2  E ExiY i

were solved for a and a,.

The equation of the line then became:

Ln u =a o + alLn Re

or

RE - eao Real

The standard error for the present study correlation was

calculated by the following equation:

2 E(Yi -Yi )

N -n
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where: Y is the actual value of the average Nusselt number

obtained experimentally.

Yi is the value of the average Nusselt number calculated

from the correlation equation.

N is the number of data points used in the correlation.

n is the degree of the polynomial used.

For the present study the following correlation was obtained

for the straight section:

NIu = .063 Rehd
0 .65

with a standard error of:

2
2 = 0.1988

The correlation obtained for the curved section was:

Sii = .040 Rehd0.
7 2

and its standard error was determined to be:

a2 = 0.1050
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