ELASTIC PROPERTIES OF URANIUM - .78 TITANIUM
AS A FUNCTION OF PRESSURE TO 1.6 GPa

J. FRANKEL
D. DANDEKAR

OCTOBER 1983

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT CENTER
LARGE CALIBER WEAPON SYSTEMS LABORATORY
BENÉT WEAPONS LABORATORY
WATERVLIET N.Y. 12189

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The use of trade name(s) and/or manufacture(s) does not constitute an official endorsement or approval.

DISPOSITION

Destroy this report when it is no longer needed. Do not return it to the originator.
The transit time for passage of longitudinal and shear ultrasonic waves through polycrystalline depleted uranium - .78 weight percent titanium (Ti) alloy was determined as a function of pressure in a hydrostatic medium. Specimens of two thicknesses were used in order to eliminate bond-transducer effects from transit time determinations. The longitudinal velocity $v_L$ increases 3.5 percent from one atmosphere to a value of 3.48 km/sec at 1.6 GPa; the shear (CONT'D ON REVERSE)
7. AUTHORS

D. Dandekar*
U.S. Army Materials and Mechanics Research Center
Watertown, MA 02172

20. ABSTRACT (CONT'D)

Velocity $v_s$ increases 5 percent to 2.08 km/sec; the adiabatic bulk modulus $B_s$ increases 8.1 percent to a value of 120 GPa and the shear modulus $\mu$, 9.4 percent to 81 GPa over the same pressure range.
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>EXPERIMENTAL DETAILS</td>
<td>1</td>
</tr>
<tr>
<td>DATA ANALYSIS</td>
<td>3</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>5</td>
</tr>
</tbody>
</table>

## TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>6</td>
</tr>
<tr>
<td>II.</td>
<td>7</td>
</tr>
<tr>
<td>III.</td>
<td>7</td>
</tr>
</tbody>
</table>

### Table I.

**VALUE OF COEFFICIENTS FROM STRAIGHT LINE FIT**

\[
\frac{1}{\Delta fm} = a_0 p + a_1
\]

to data

### Table II.

**ESTIMATE OF PRESSURE DEPENDENCE OF TRANSIT TIMES FOR**

Longitudinal and shear waves in Dc - .78 Ti of initial thickness 4.863 mm

### Table III.

**ELASTIC PROPERTIES**

## LIST OF ILLUSTRATIONS

1. Schematic of Measurement. 8
2. \( \frac{1}{\Delta fm} \) Against Pressure. 9
INTRODUCTION

Ultrasonic measurements to a pressure of 1.8 GPa in pure depleted uranium (DU) by a pulse overlap technique were previously reported by Abey and Bonner (ref 1). The present measurements with a different technique show that within experimental errors the present alloying does not markedly change the elastic properties of the material in the pressure range studied.

EXPERIMENTAL DETAILS

DU alloyed with .78 weight percent titanium was obtained from the Oak Ridge National Laboratory. An ingot cast of U - .78% Ti was first forged and rolled at 913°K in vacuum and water quenched, then aged at 643°K in an argon atmosphere, and water cooled. The quench brought the uranium from the γ(bcc) phase to the α (orthorhombic) phase and the aging treatment served to reduce voids and residual stresses. The microstructure of the material was acicular. Observation of the microstructure and shear velocity measurements with varying shear wave polarizations suggest that the acicular grains had a very mild anisotropy in one direction. Measurements were made in the specimen direction which showed no anisotropy.

The starting material was fabricated into two cubes whose opposing faces were parallel to .0003 cm over each face. Special care was taken for an even thin bond. The bonding material was a rapid room temperature curing cyanoacrylate MIL-A-460508 type 1 class 2 by Loctite. The resonance frequency of the Lithium Niobate transducers was 10 or 15 MHz. This was considerably

reduced by bonding and mildly increased by pressure. Pressure was applied in a Birch-Bridgman 30 Kbar system with a 50-50 Pentane-Isopentane mixture as a pressure medium.

The measurement method is based on the use of the double balanced mixer, and is described by Peterson et al (ref 2) (Fig. 1). When two coherent waves are combined in the mixer with proper amplitudes, the mixer output is zero volts (a null echo) if they have a 90 degree phase relationship. This is equivalent to saying that there is an integer \( n \pm \frac{1}{4} \) number of rf periods in the continuous wave (CW) during the time interval in which it takes the ultrasonic wave to produce the \( m \)th echo at the transducer.

The measurement involves finding two frequencies. First a frequency is found for a null echo, then for another null, \( m \) (where \( m = \) echo number) extra periods are included in the time interval \( T_m \) by increasing the frequency to \( f' \).

\[
T_m = \frac{n \pm \frac{1}{4}}{f} = \frac{n + m \pm \frac{1}{4}}{f'} = \frac{m T_{rt}}{f'}
\]

The uncorrected round-trip time in the specimen is

\[
T_{rt} = \frac{1}{f'} - \frac{1}{f} = \frac{1}{\Delta f_m}
\]

The time \( T_m \) in reality is given by \( m T_{rt} \) less any delays. These are caused by the electronics and any phase changes at the transducer-specimen interface. One could make estimates of these corrections with available approximate theories by making measurements for two or more echoes. These require

---

2Peterson, G. L., Chick, B., and Junker, W., 1975 Ultr. Symp Proc., 650-653, IEE Cat. No. CHO 994-4SU.
measurements at exactly the resonance frequency of the transducer, equal confidence in measurements on different echoes, and knowledge (not available for lithium niobate) of the transducer acoustic impedance for the pressures of the experiment.

We found the most useful approach was to avoid estimates of the above effects and to evaluate the transit times by a difference method: We measured the $\Delta f_m$ in a given specimen for two echoes $m = 2$ and $m = 3$. The specimen was then reduced in thickness and the $\Delta f_m$ was found with the same transducer and bond. The difference of the inverse $\Delta f_m$ for the two specimen thicknesses gave the travel time for the thickness of the residual specimen (0.4683 cm at $P = 1$ atm.). Data on a second specimen of equal thickness with the first was also used and its values fell within the scatter of the first. Frequencies of measurement were reproduced at equivalent pressures for the thick and thin specimens (Figure 2).

DATA ANALYSIS

Data were separated according to echo number ($m = 2$ or 3) thick or thin specimen and longitudinal or shear wave. A straight line fit of the form $1/\Delta f_m = a_0 P + a_1$, was made through all data of each type by the method of least squares. Units of $P$ are in GPa and $1/\Delta f_m$ in $\mu$sec and $r$ is the regression coefficient (Table I). The linear fit is justified by the high correlation coefficients and by the small changes in transit times obtained. The transit times in the residual portion of the specimen were obtained by subtraction (Table II). On the basis of the regression fit and averaging of the $m = 2$ and $m = 3$ data, the standard deviations for transit times of the longitudinal and
shear waves are respectively \( \sigma_L = 0.018 \) and \( \sigma_S = 0.031 \).

An iteration process developed by Dandekar (ref 3) was used in determining the specimen length and ultimately the velocities from the transit times. Variations in \( 1+\Delta = \frac{B_S}{B_T} \) are included. Here

\[
\Delta(P) = \beta^2(P) \frac{B_S(p)}{T/p(P)} C_p(P)
\]

where \( \beta \) is the volume expansion coefficient and \( C_p \) is the specific heat.

References 4 and 5 were used to obtain the thermodynamic data for estimating \( \Delta(P) \). Because of the small changes involved, the iteration is only performed at 1.6 GPa; so we only report velocities and bulk moduli at that pressure (Table III). From the slopes of the bulk and shear moduli, we also get \( dB_S/dP = 5.5 \) and \( d\mu/dP = 4.4 \).

Within the error of the experiment which is larger for the pressure derivatives, these values correlate with those reported by Abey and Bonner (ref 1).

---


4
REFERENCES


TABLE I. VALUE OF COEFFICIENTS FROM STRAIGHT LINE FIT

\[
\frac{1}{\Delta f_m} = a_0 P + a_1 \text{ TO DATA}
\]

<table>
<thead>
<tr>
<th>Spec</th>
<th>Thick (m = 3)</th>
<th>Thin (m = 3)</th>
<th>Thin (m = 2)</th>
<th>Residual Length = 4.863 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Echo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wave</td>
<td>Shear</td>
<td>Long</td>
<td>Shear</td>
<td>Long</td>
</tr>
<tr>
<td>(-a_1)</td>
<td>.235</td>
<td>.168</td>
<td>.222</td>
<td>.175</td>
</tr>
<tr>
<td>(-r)</td>
<td>.9423</td>
<td>.9730</td>
<td>.9807</td>
<td>.9813</td>
</tr>
</tbody>
</table>

\[<\text{Ave}>\]
## TABLE II. ESTIMATE OF PRESSURE DEPENDENCE OF TRANSIT TIMES
FOR LONGITUDINAL AND SHEAR WAVES IN DU - .78 Ti
OF INITIAL THICKNESS 4.863 MM

<table>
<thead>
<tr>
<th>Pressure (GPa)</th>
<th>Transit Time (μs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Long.</td>
</tr>
<tr>
<td>0.0</td>
<td>1.449</td>
</tr>
<tr>
<td>0.4</td>
<td>1.434</td>
</tr>
<tr>
<td>0.8</td>
<td>1.419</td>
</tr>
<tr>
<td>1.2</td>
<td>1.406</td>
</tr>
<tr>
<td>1.6</td>
<td>1.342</td>
</tr>
</tbody>
</table>

## TABLE III. ELASTIC PROPERTIES

<table>
<thead>
<tr>
<th></th>
<th>P = 0</th>
<th>P = 1.6 GPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>vL(0)</td>
<td>3.36 ± 0.04 km/sec</td>
<td>3.48</td>
</tr>
<tr>
<td>vS</td>
<td>1.99 ± 0.03 km/sec</td>
<td>2.08</td>
</tr>
<tr>
<td>B/L</td>
<td>111 ± 5 GPa</td>
<td>120</td>
</tr>
<tr>
<td>μ</td>
<td>74 ± 2 GPa</td>
<td>81</td>
</tr>
<tr>
<td>BT</td>
<td>108 ± 5 GPa</td>
<td>117</td>
</tr>
</tbody>
</table>
Figure 1. Schematic of Measurement.
Figure 2. \(1/\Delta f_m\) Against Pressure.

shear mode

<table>
<thead>
<tr>
<th>RUN</th>
<th>(m)</th>
<th>(\Delta m)</th>
<th>(\Delta m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>m=3</td>
<td>m=3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>m=3</td>
<td>m=3</td>
</tr>
<tr>
<td>UNS</td>
<td>2</td>
<td>m=3</td>
<td>m=2</td>
</tr>
</tbody>
</table>

longitudinal mode
READER EVALUATION

Please take a few minutes to complete the questionnaire below and return to us at the following address: Commander, Armament Research and Development Center, U.S. Army AMCOM, ATTN: Technical Publications, DRSMC-LCB-TL, Watervliet, NY 12189.


2. Please evaluate this publication (check off one or more as applicable).
   Information Relevant  Yes  No
   Information Technically Satisfactory
   Format Easy to Use
   Overall, Useful to My Work
   Other Comments

3. Has the report helped you in your own areas of interest? (i.e. preventing duplication of effort in the same or related fields, savings of time, or money).

4. How is the report being used? (Source of ideas for new or improved designs. Latest information on current state of the art, etc.).

5. How do you think this type of report could be changed or revised to improve readability, usability?

6. Would you like to communicate directly with the author of the report regarding subject matter or topics not covered in the report? If so please fill in the following information.

   Name:

   Telephone Number:

   Organization Address:
# TECHNICAL REPORT INTERNAL DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>Name of Branch</th>
<th>Attn: DRSMC-LCB-</th>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHIEF, DEVELOPMENT ENGINEERING BRANCH</td>
<td>D</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: DRSMC-LCB-D</td>
<td>DP</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>DR</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>DS (SYSTEMS)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>DS (ICAS GROUP)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>DC</td>
<td>1</td>
</tr>
<tr>
<td>CHIEF, ENGINEERING SUPPORT BRANCH</td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: DRSMC-LCB-S</td>
<td>SE</td>
<td>1</td>
</tr>
<tr>
<td>CHIEF, RESEARCH BRANCH</td>
<td>R</td>
<td>2</td>
</tr>
<tr>
<td>ATTN: DRSMC-LCB-R</td>
<td>R (ELLEN FOGARTY)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>RA</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>RM</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>RP</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>RT</td>
<td>1</td>
</tr>
<tr>
<td>TECHNICAL LIBRARY</td>
<td>TL</td>
<td>5</td>
</tr>
<tr>
<td>TECHNICAL PUBLICATIONS &amp; EDITING UNIT</td>
<td>TL</td>
<td>2</td>
</tr>
<tr>
<td>DIRECTOR, OPERATIONS DIRECTORATE</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>DIRECTOR, PROCUREMENT DIRECTORATE</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>DIRECTOR, PRODUCT ASSURANCE DIRECTORATE</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

**NOTE:** PLEASE NOTIFY DIRECTOR, BENET WEAPONS LABORATORY, ATTN: DRSMC-LCB-TL, OF ANY ADDRESS CHANGES.
<table>
<thead>
<tr>
<th>NO. OF COPIES</th>
<th>NO. OF COPIES</th>
</tr>
</thead>
</table>
| ASST SEC OF THE ARMY
RESEARCH & DEVELOPMENT
ATTN: DEP FOR SCI & TECH
THE PENTAGON
WASHINGTON, D.C. 20315 | COMMANDER
US ARMY AMCOM
ATTN: DRSMC-LEP-L(R)
ROCK ISLAND, IL 61299 |
| COMMANDER
DEFENSE TECHNICAL INFO CENTER
ATTN: DTIC-DDA
CAMERON STATION
ALEXANDRIA, VA 22314 | COMMANDER
ROCK ISLAND ARSENAL
ATTN: SMCR-ENM (MAT SCI DIV)
ROCK ISLAND, IL 61299 |
| COMMANDER
US ARMY MAT DEV & READ COMD
ATTN: DRDDE-SG
5001 EISENHOWER AVE
ALEXANDRIA, VA 22333 | DIRECTOR
US ARMY INDUSTRIAL BASE ENG ACTV
ATTN: DRXIS-M
ROCK ISLAND, IL 61299 |
| COMMANDER
ARMAMENT RES & DEV CTR
US ARMY AMCOM
ATTN: DRSMC-LC(D)
DRSMC-LCE(D)
DRSMC-LCM(D) (BLDG 321)
DRSMC-LCS(D)
DRSMC-LCU(D)
DRSMC-LCW(D)
DRSMC-SCM-O (PLASTICS TECH EVAL CTR, BLDG. 351N)
DRSMC-TSS(D) (STINFO)
DOVER, NJ 07801 | COMMANDER
US ARMY TANK-AUTMV R&D COMD
ATTN: DRSTA-RC
WARREN, MI 48090 |
| DIRECTOR
US ARMY INDUSTRIAL BASE ENG ACTV
ATTN: DRXIS-M
ROCK ISLAND, IL 61299 |
| COMMANDER
ARMAMENT RES & DEV CTR
US ARMY AMCOM
ATTN: DRSMC-LC(D)
DRSMC-LCE(D)
DRSMC-LCM(D) (BLDG 321)
DRSMC-LCS(D)
DRSMC-LCU(D)
DRSMC-LCW(D)
DRSMC-SCM-O (PLASTICS TECH EVAL CTR, BLDG. 351N)
DRSMC-TSS(D) (STINFO)
DOVER, NJ 07801 | COMMANDER
US ARMY TANK-AUTMV COMD
ATTN: DRSTA-RC
WARREN, MI 48090 |
| COMMANDER
ARMAMENT RES & DEV CTR
US ARMY AMCOM
ATTN: DRSMC-LC(D)
DRSMC-LCE(D)
DRSMC-LCM(D) (BLDG 321)
DRSMC-LCS(D)
DRSMC-LCU(D)
DRSMC-LCW(D)
DRSMC-SCM-O (PLASTICS TECH EVAL CTR, BLDG. 351N)
DRSMC-TSS(D) (STINFO)
DOVER, NJ 07801 | COMMANDER
US MILITARY ACADEMY
ATTN: CHMN, MECH ENGR DEPT
WEST POINT, NY 10996 |
| COMMANDER
ARMAMENT RES & DEV CTR
US ARMY AMCOM
ATTN: DRSMC-LC(D)
DRSMC-LCE(D)
DRSMC-LCM(D) (BLDG 321)
DRSMC-LCS(D)
DRSMC-LCU(D)
DRSMC-LCW(D)
DRSMC-SCM-O (PLASTICS TECH EVAL CTR, BLDG. 351N)
DRSMC-TSS(D) (STINFO)
DOVER, NJ 07801 | US ARMY MISSILE COMD
REDSTONE SCIENTIFIC INFO CTR
ATTN: DOCUMENTS SECT, BLDG. 4484
REDSTONE ARSENAL, AL 35898 |
| COMMANDER
ARMAMENT RES & DEV CTR
US ARMY AMCOM
ATTN: DRSMC-LC(D)
DRSMC-LCE(D)
DRSMC-LCM(D) (BLDG 321)
DRSMC-LCS(D)
DRSMC-LCU(D)
DRSMC-LCW(D)
DRSMC-SCM-O (PLASTICS TECH EVAL CTR, BLDG. 351N)
DRSMC-TSS(D) (STINFO)
DOVER, NJ 07801 | US ARMY FGN SCIENCE & TECH CTR
ATTN: DRXST-SD
220 7TH STREET, N.E.
CHARLOTTESVILLE, VA 22901 |
| NOTE: PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH AND DEVELOPMENT CENTER,
US ARMY AMCOM, ATTN: BENET WEAPONS LABORATORY, DRSMC-LCB-TL,
WATERVLIET, NY 12189, OF ANY ADDRESS CHANGES.
<table>
<thead>
<tr>
<th>NO. OF COPIES</th>
<th>NO. OF COPIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMANDER</td>
<td>DIRECTOR</td>
</tr>
<tr>
<td>US ARMY MATERIALS &amp; MECHANICS RESEARCH CENTER</td>
<td>US NAVAL RESEARCH LAB</td>
</tr>
<tr>
<td>ATTN: Tech Lib - DRXMR-PL</td>
<td>ATTN: Dir, Mech Div</td>
</tr>
<tr>
<td>WATERTOWN, MA 01272</td>
<td>CODE 26-27, (Doc Lib)</td>
</tr>
<tr>
<td></td>
<td>WASHINGTON, D.C. 20375</td>
</tr>
<tr>
<td>COMMANDER</td>
<td>COMMANDER</td>
</tr>
<tr>
<td>US ARMY RESEARCH OFFICE</td>
<td>AIR FORCE ARMAMENT LABORATORY</td>
</tr>
<tr>
<td>ATTN: CHIEF, IPO</td>
<td>ATTN: AFATL/DLJ</td>
</tr>
<tr>
<td>P.O. BOX 12211</td>
<td>AFATL/DLJG</td>
</tr>
<tr>
<td>RESEARCH TRIANGLE PARK, NC 27709</td>
<td>EGLIN AFB, FL 32542</td>
</tr>
<tr>
<td>COMMANDER</td>
<td>DIRECTOR</td>
</tr>
<tr>
<td>US ARMY HARRY DIAMOND Lab</td>
<td>US NAVAL RESEARCH LAB</td>
</tr>
<tr>
<td>ATTN: Tech Lib</td>
<td>ATTN: Dir, Mech Div</td>
</tr>
<tr>
<td>2800 POWDER MILL ROAD</td>
<td>CODE 26-27, (Doc Lib)</td>
</tr>
<tr>
<td>ADELPHIA, MD 20783</td>
<td>WASHINGTON, D.C. 20375</td>
</tr>
<tr>
<td>COMMANDER</td>
<td>COMMANDER</td>
</tr>
<tr>
<td>NAVAL SURFACE WEAPONS CTR</td>
<td>AIR FORCE ARMAMENT LABORATORY</td>
</tr>
<tr>
<td>ATTN: TECHNICAL LIBRARY</td>
<td>ATTN: AFATL/DLJ</td>
</tr>
<tr>
<td>CODE X212</td>
<td>AFATL/DLJG</td>
</tr>
<tr>
<td>DAHLGREN, VA 22448</td>
<td>EGLIN AFB, FL 32542</td>
</tr>
</tbody>
</table>

**NOTE:** PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH AND DEVELOPMENT CENTER, US ARMY ARMCOM, ATTN: BENET WEAPONS LABORATORY, DRSMC-LCB-TL, WATERVLIET, NY 12189, OF ANY ADDRESS CHANGES.