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3 - '3,*'1‘ his report contains the theoretical development of a model that describes the
i d .

‘\-J diffusion of interstitial diffusors in S704. Experimental data supporting this model
:‘ and the implications and conclusions predicted by this model are presented.

o In summary this model concludes that Pd, Au, Mo, Ta, W, Pt, Ti, and Al are
=i

“x potential candi}ates for use in VLSI gate metalization schemes, where as Ag, Cu,
:. Na, Ni, Mn, Fe, Mg and Ga are unsuitable. é/‘
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2 Chapter I

X MODELING

X

$3, A complete derivation of the diffusion equation is found in the Appendix along
‘ with analytical solutions for some interesting boundary conditions. In this chapter

o a new diffusion and solid solubility model is presented that allows calculation of
.s" the diffusion and solid solubility activation energy. Comparison of this model with
‘ experimental data is done in chapter IL
Y

3
N A. Interstitial Diffusion
by .

X! The diffusion of metals in silicon dioxide is assumed to be interstitial in nature
K [1.1, 1.2] . The diffusivity or diffusion coefficient for this type of diffusion is given
‘_: by the following expression:

% D= Doe:k";:“ (1.1)
e where E; is the activation energy for diffusion, k is the Boltzmann constant, T is
{ the temperature and D, is the diffusion constant.

To evaluate the diffusion coefficient at a given temperatﬁre the values of D,
-5, and E, must be known. The following two sections will allow us to estimate their

values in terms of fundamental quantities.
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1. Diffusion Constant, D,
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Using the Zener thecory [1.1] to predict D, allows us to write

{

‘ D, = pb2unfeé}ca (1.2)
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Ny
3 where p is the probability of an interstitial jump, b is the jump distance, 7 is the
K]
number of equivalent jump paths, v is the lattice vibration frequency, f is the
! » correlation factor, k is the Boltzmann constant and S, is the entropy.
From this equation we see that D, depends upon the crystal structure of
X
the lattice through which the diffusor is traveling. In all cases S; will be a positive
; number [1.1] so that D, will have a lower limit of
g D, > pbPvnf (1.3)
: To first order
3 pnf =1 (1.4)
3| So that
1
! 2 2
- D, == b*v =~ .025¢m* [sec (1.5)
is the lower limit for D,. This calculation used a lattice spacing for Si09 of 5 A
b, and a lattice vibration frequency of 1013hz/sec [1.3, 1.4] We will use this number
3 as an estimate of D, in our future predictions of D. '
§
3 2. Activation Energy of Dilfusion, E,
' To calculate the activation energy of metal diffusion in silicon dioxide we
2 use a classical approach introduced by Anderson and Stuart in 1954 [1.5]. In this
A
) model they assume that the activation energy is the sum of two terms; the first
is the strain energy between the lattice structure and the dilfusing atom, and the
: second is the electrostatic energy between a charged diffusing species and the silicon
N
b dioxide lattice. We cousider each in the following sections.
)
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a. Strain Energy

We first assume that the strain energy generated in a silicon dioxide
network due to the enlargement of a spherical doorway, of radius rg4, to accom-
modate an ion of radius r is approximately the elastic energy required to dilate a

spherical cavity from radius r4 to ». This strain energy {E,) is given by
Ey = 4nGry(r —ry)? (1.6)

where G is the shear modulus for silicon dioxide, G = 3.12 X 10'1dynes/em? [1.4],
r4 is the radius of the window through which the diffusing atom must pass, ry =
0.6 A [1.5], and r is the radius of the diffusing atom. The above expression is
reduced by a factor of two from the exact mathematical solution to account for the

very loose structure of silicon dioxide.

b. Electrostatic Energy, E,

We will approximate the electrostatic energy change by

_ Bzz,e2

E,

after Anderson and Struart [1.5]. where 8 is the finite displacement factor in
angstroms, given by

21-—r
A= 3.5

(1.8)

and r is the radius of the diffusing species. The geometric factors are determined
by assuming an interstitial diffusion jump distance of 7 A and an atomic radius
for oxygen (r,) of 1.4 A. The charge states of the diffusing specics and the oxygen
in the silicon dioxide lattice are z and z, respectively, for oxygen 2z, is 2. v is

approximately the diclectric constant of silicon dioxide, v = 3.9.
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Figure 1.1. Interstitial Diffusion Activation Energy. Interstitial diffusion activa-
tion energy calculated by the sum of the strain cnergy and the change
in the clectrostatic energy.




c. Activation Encrgy, E,

Combining the strain energy, Ej, and the clectrostatic interaction
energy, E}, yields the total interstitial diffusion activation encrgy. The material
parameter table found in Appendix A contains the known atomic radii for various
neutral and ionized metal atoms. Using these numbers and those presented allows
the generation of Fig. [1.1]. Figure [1.1] allows us to predict the activation energy

for interstitial diffusion in S7Og for atoms with known atomic radii.

3. Diffusion Constant for Interstitial Diffusion

Having values for D, and E, allows prediction, via Eqn. (1.1) of the
interstitial diﬂuéion coefficient for elements that we believe diffuse interstitially.
Figures [1.2 — 1.4] present the calculated Diffusivity for various metals and their
ions in St0p. The data used in the calculation of the figures are found in Appendix
A. Values appearing in the tables in brackets represent estimated values, for ele-

ments which no published data could be found.

In the next section we derive an equation for determining the solid

solubility for these metals in silicon dioxide.
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Figure 1.2. Predicted Neutral Diffusion Coellicients. Calculated Diffusivity for the
indicated metals in silicon dioxide as a function of temperature.
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Figure 1.4. Predicted Ionized Diffusivity. Calculated Dillusivity for doubly and
triply ionized atoms.
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B. Solid Solubility

The solid solubility of metals in silicon dioxide is derived from solutions of the
thermodynamic equations for each possible diffusing species. See Appendix B for

derivation of the law of mass action and chemical potential.

The important assumption that makes this derivation justifiable is that the
ideal gas law holds for the loose structure of silicon dioxide. This allows us to calcu-
late the concentration of metal in silicon dioxide as a function of the concentration
of metal vapor. In the following sections we will derive the concentration of neutral,
singly, doubly, and triply ionized metal atoms in silicon dioxide or any other loosely

bound lattice utilizing the above assumption.

1. Neutral Diffusors

Using the law of mass action we write the concentration of neutral metal

atoms [M,,] in silicon dioxide as

[Moz] = [Myaa]e:%m (1.9)

where E;,, is the total internal energy and is the sum of the internal energy of the
silicon dioxide, Eps,_, plus that of the gas, Ep,,,- The internal energy, in this case,
is equal to zero since we are assuming that the ideal gas law holds, i.e. Fpy,, =
Ey,,,- k is the Boltzmann constant and T is the temperature. The concentration
of metal that sublimes from the solid in accordance with the ideal gas law, {Myq,]

, can be expressed as

N10PTC-1) - -
{Jwga-’] = (‘—‘—9-————-_)6'7‘4["10+(DTX10 ‘lnlO) (1-10).

-9 -
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In the above equation A, B, C, and D are constants that describe the vapor pressures
for each metal. [1.6] See material parameter table in Appendix A. N is Avogadro’s
number, 6.023 X 1023atoms/mole. R is the gas constant, 62396.0 torr cm3 / K mole

and T is the temperature in degrees Kelvin.

Thus for the neutral case, the amount of metal entering the silicon dioxide
from the overlying metal film is that predicted by the ideal gas law. Substituting

the above constants into Eqn. (1.10) and rearranging results in

—(E;py+Akin10—(kDT2 x 10~ 31n10)—kT(C—1)InT)

[Myz) = 9.653 X 10(B+18), T (1.11)

which is plotted in Fig. [1.5] for various metals.

2. Singly Ionized Diffusors

To find the solid solubility for singly ionized diffusors the following reac-

tion equations must be solved:

My 5 Mgas  AHyy (1.12)
Myas 5 My +€0s AFion (113)
Ml S M}, AEimage + Albinding + ABother (1.14)
as 5 €or  ALimage + X + BEother (1.15)
~ 10 -
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Figure 1.5. Interstitial Diffusion of Neutral Atoms. Solid solubility calculations for

the interstitial diftusion of neutral atoms. Pd,Mo,Fe,Au,Cu,Ta,W,Ni

and Pt have solid solubilities less than 10%¢m=3.
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e In the above equations the heat of formation for cach reaction is shown to the right

of each equation. AH,,, is the heat of sublimation and is known for all elements,

:5:: [1.3,1.4]. AE;,, is the ionization potential and is also known for most clements,
S

";'\", [1.3,1.4]). AEpinging is found as described in scction 2b. x is the electron aflinity.
.\ * . . ... . .

A AE;mqge is the image charge for both the positive ion and the negative electron.
v AFE ., is any other heat of formation, such as a catalyst to the diffusion process.
Combining all the unknown heats of formations into one term,

¢ Eremainder, gives

: AE:emainder = 2AEima.ge +2AEoher + X (1'16)
R

N
o Combining the above reaction equations results in
_‘, My S M:z + oz AHgyup + AEjon — AEbinding — AE¢emainder (1-17)
:"::-; for the metal solid solubility for the singly ionized diffusor.

Lo
.'f .

z We can deal with this equation in a manner similar to the neutral case,
2 which gives the following expression for the solid solubility of singly ionized atoms
¥e
e in Si0; (See Fig. [1.6]).

-3- B —(Einp+kAIn10-(xT2 DX 1073 n10)— KL (2C+1)inT)

- [M1] = 1.527 x 10(z+17)¢ 25T (1.18)
)

* -

K

Y

A 3. Doubly Ionized Diffusors

N NI . N .

s For doubly ionized diffusors we can derive the following reaction cquation

M S M:x+ +2e” AI[aub + AEion. + 2A L emainder (1'19)'

i In this derivation we have assumed that the unknown remainder heat of formation

: is twice that of the singly ionized case. Applying the law of mass action in a manner
e

S similar to the previous iwn cases results in

A

o - 12 -
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Figura 1.6. Singly lonized Solid Solubility. Calculated solid solubility for singly
ionized atoms. Ga and Na have values > 10%22¢m™3 while Ta and W

have values < 10'"0¢n=3,
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[Mgas] = e—Xaaa—XM;-:- —2X -

(ME e o
where x for each species is defined in Appendix B. We also know that
[M3F] = 2[e7] (1.21).
Combining these equations and reducing we obtain
(MEH] = 4{Mya]$ (Eﬂ;‘#) st (1.22).
Where E;,,; is the internal energy of ecach species
AE;; = 2AE,- — AFgas — AE) ++ (1.23)
or
Eint = AEjon — AEyinding — 20 Eremainder (1.24)
The solid solubility for the doubly ionized case is then
MEH] = 6.084 5 10018+ §), Bt NnI0=0T B0 Sit0) et n) (1.25)

and is plotted in Fig. [1.7]

4. Triply Ionized Diffusors

The solid solubility of the triply ionized diffusors, [M J;t 1], is found using

an approach similar to the other cases and results in.

(1.26).

[MEFF] == 27 [ Mg, ] (“’"’"’“T) it

h2
Assuming that the unknown heat of formation is three times that of the singly

ionized case. We obtain
Alip = AE;op — AEbinding - 3AEremainder (1'27)
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Figure 1.7. Doubly Ionized Solid Solubility. Calculated solid solubility for doubly
jonized atoms. Mn and Fe have values > 102%2¢m™3 while Na has a
value below 10'%¢m =3,
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or in terms of each species

.o, 4"

:1\;1 AEl.ﬂt = 3AE¢— + AEM:2++ - AEgaa- (1.28)

. Substituting known values results in

il 2 -3 2C+7)kTInT
o By —(Fine+AkIn10—(xT2DX 10 lnlO)—(—i_)
i [M-o!-z++] = 4.38 X 10(16+ %), %T (1.29)

R hY
QRN .
-_:‘::
el which has been plotted in Fig. [1.8].
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'y solubility of triply ionized metal atoms. Na has a value < 10'%m =3,
No other atoms were calculated due to lack of published information.
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In general the solid solubility takes on the form of

_Ee[]ectiuc

Csot = Coe™ #T (1.30)

for all cases. A negative value for E,ffectiye implies that the atom in question would
rather be in the oxide than out. Values for E,j fective for various elements are found

in Appendix A.

5. Calibration of Solid Solubility Calculations

The figures shown in this chapter were based on a value for AE, . 4inder
calculated from the measured solid solubility of silver in silicon dioxide. This
calculation assumes that all of the silver in the oxide was put there while in a singly
ionized state. In light of the data presented earlier which showed no detectable

diffusion for unbiased samples this is quite reasonable.

Using an upper bound , as observed with RBS, of [Ag,z] = 3 X 1018cm—3

H

we find AE, . ;mginder = 8.87¢V. Using this value in the following equation

Eint + kAIn10 — (kT2D X 10~3In10) — £L(2C + 1)inT
2

AE,ffective = (1.31)

we obtain a value for AE.f.ctive of approximately 0.5¢V for singly ionized silver
in S10g.

For the doubly and triply ionized cases AE, mainder Was taken to be
9eV since we can’t be sure of the exact values without more accurate data for the
ionized radii, image charge, etc. However, these values allow us to see trends of
the solid solubilitics in silicon dioxide and should be close to the actual values. In
the following chapter we compare this model with actual experiments to test its

validity.
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Chapter II
EXPERIMENTAL ANALYSIS

In this chapter a simplified cxpression for the diffusion equation which
allows extraction of the diffusion coeflicient from experimental data is developed.
The extracted diffusion coefficients and the observed activation energies are then

compared with the values predicted by the theory developed in chapter 1.

A. Solution of Diflusion Equation

A complete solution to the diffusion equation is given in Appendix C and Ref.
[2.1]. In this section we present a solution to the diffusion equation that holds when

the electric field, £, dominates the diffusion process and still meets the following

critria,
kT
£« prs ~ T X 1022V fem (2.1)
Then the flux can be written as (see Appendix C)
6C
J = quCyy € — DE (2.2).

In this equation q is the charge of an electron, b is the distance between potential
barricrs, about 5 A. u is the mobility, u = k%».l), C is the concentration and x is

the distance into the silicon dioxide.

When the electric ficld term is large compared to the concentration gradient

Eqn. (2.2) can be further reduced to

N c
J - k,I'DC_qolu (23)

...........................

A At
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! In the following this equation is used to determine the diffusion coefficient since
f\ the other parameters are known.

"; 1. Silver Diffusion
e

N . : - :

252 Using measured data on silver diffusion in silicon dioxide at 300°C we
\'.\ derive a flux for silver through silicon dioxide. This is done by dividing the amount
o of silver observed to pile up at the silicon/silicon dioxide interface during a BTS
:.\.: by the anneal time. In Fig. [2.1] we show how the amount of silver observed
:-, at the interface in atoms/cm? increases with time. The slope of this plot is the
flux of silver through the silicon dioxide. The solid solubility of silver in silicon
-3: dioxide at 300°C was observed with RBS to be 3 X 10'8¢m =3 as an upper bound.
\. Combining this number along with an electric field of 5.2 X 10* V/em and a flux of
) 1.43 X 10'2¢m=2/sec, see Fig. [2.1] we obtain by rearranging Eqn. (2.3)

<.

'. Dpg =45 X 10~ 3cm? /sec

: at 300°C.

_'i‘::: Using measured silver diffusion data in silicon dioxide at various tempera-
.':}: tures Fig. [2.2] can be drawn. The slope of this plot is the activation energy, E —a,
o for silver diffusion in silicon dioxide, E, is approximately 1.24eV.

I~

-

&
, |
e -2l - |
&




PR

vie

PV

= >
AR

L)

A

S

R

A

afa
L,

~
~
[
-,
~
ﬂ.'
B

o
s

(47

' W B

4 a

- (PRI

- - .

300

200

100~

METAL CONCENTRATION (x10"%cm™?)

300°C

-

FLUX =
1.43 x 10'%cm ¥sec

5

10

15

TIME (ksec)

Figure 2.1. Silver Pile Up at the SiOy/S% Inlerface versus Time.
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a. Model versus Data

The model developed in Chapter I expresses the diffusion coeflicient
by Eqn. (1.1) and the solid solubility by Eqn. (1.30). Combining these two
equations with Eqn. (2.3) we write the flux of atoms through the SiOj as

—(EgiffusiontEqolidaolubility)

J = %woo,,e 5 (2.4)

We see from the above equation that the observed activation energy is equal to the
sum of the activation energies defined in Chapter I. From Chapter I the predicted
activation energy for diffusion is 1.3eV and the predicted solid solubility activation

energy is 0.5¢V. The sum of 1.8¢V is to be compared with that observed of 1.24eV.

Evaluating Eqn. (1.1) at 300°C for silver results in

DEredicted — 0.095¢~H = 9.2 X 10~ 4cm? /sec (2:5)

which is to be compared with our observed value at 300°C of Dy, = 4.5 X

10713¢m?/sec. We will reserve further discussion on these comparisons for the

discussion section.

2. Copper Diffusion

To calculate the diffusion coeflicient for copper we use the model developed
in Chapter I to estimate the solid solubility of singly ionized copper in silicon
dioxide at 450°C to be 1 X 10'8¢m=3. This assumption is necessary sincc the
solid solubility of copper in silicon diovide is below the detection limit of the RBS.
This number should be a high estimate and therefore will give us the worst case
answer. This approach also assumes that all the copper in the S:0a is singly ionized.

Using the observed data for copper we can make plots similar to Figs. [2.1,2.2]

- 24 -
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for determiniug the copper activation energy and copper flux througa the silicon
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dioxide, see Figs. [2.3,2.4].

We attribute the saturating of the data to the oxidation of the copper
e during BTS. After the copper has oxidized to the Cu/S:0y interface we lose both
adhesion and electrical contact resulting in loss of the field aided diffusion. Before
oxidation of the copper dominates, we find the observed activation energy to be

1.8¢V and the flux of copper atoms through the silicon dioxide at 450°C to be

‘:. approximately 1.0 X 10'3¢m—2/sec. Equation [2.3] can be used to calculate the
e diffusivity of copper in silicon dioxide at 450°C with an electric field of & = 5.2 X
104 V' /em, resulting in
kT
4 -1, 2
D, (450°C) = = 1.2 X 107 "em*[sec (2.6).
Caolg
: a. Model versus Data
2 The result of Eqn. (2.6) is in reasonable agreement with the value
of copper diffusion at 450°C predicted by Eqn. (1.1)
. . —1.2
S«; D’g:dwted = 0.025¢ ¥T" = 1.2 X 107 1%m?/sec (2.7)
Summing the diffusion activation energy, 1.2¢V, and the solid
-5 solubility activation energy, 0.64eV, results in the total activation energy, 1.84eV,

which compares nicely with the observed value of 1.8eV.

3. Dalladium, Gold and Titanium Diffusion

The diffusion of gold and palladium in silicon dioxide was undetectable

using both C-V and RBS techniques. This was expected in light of our model which
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predictes a very low solid solubility in S:O3 for these metals. Thus both palladium

and gold are potential candidates for low temperature processing.

Titanium was found to react with silicon dioxide forming a Titanium
oxide compound and is therefore not expected to be an interstitial diffusor. This
agrees with what was observed experimentally. Also since Titanium is quite reactive

the model presented earlier is not expected to apply.

B. Discussion

A comparison between the experimental results and those predicted by our
model is quite good. Excellant agreement is found for copper. A slight discrepancy
was found in the case of silver in that the theory predicts a lower diffusivity. In
light of experiments that revealed the catalytic behavior of the atmosphere in which

the experiment takes place, we bropose the following explanations:

(1)The strain component of our model could easily be modified by the presences
of a molecule or atom which changes the effective window, (r4) through which
diffusion occurs. The presence of such molecules or atoms could also have an effect
on the clectrostatic energy. If they were charged they would be able to shield or
enhance this effect and change the activation encrgy from that predicted by our

model.

(2)These molecules or atoms could also modify our description of the solid
solubility by adding another heat of formation into the equations. If we consider
the silicon dioxide as having a band gap then the addition of a molecule or atom
into Si09 changes the Fermi energy. This change in the Fermi energy may lower

the ionization energy of the metal atoms and therefore change the colid solubility.

This comparison of our model with experimental data illustrates the usefulness
of this approach. More work is needed before this model is completely quartitative.

In its present state, however, it can be used to predict which metals are likely
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candidates for VLSI applications and which are not. In the next chapter we explore

the implications and trends predicted by this model. :
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3 Chapter III

3
c
SR
)
:;7_: In this chapter recommendations for metals which maybe used successfully for
B VLSI applications are presented. Reasons for these conclusions are also presented.
W Futher results of experiments, not yet documented, are presented in support of these
0 predictions.
¢
- A. Implications
A To determine which metals are viable candidates for VLSI we need to define
% a criteria to compare each metal against. In the sections that follow we use the
j number of metal atoms found at the SiO3/S7% interface or an equivalent as our
::3 means of comparison. Further, we define an integrated area of 101%m=2 or greater
as the point of failure for a metal at a given temperature.
»
N
',
N We present the neutral, singly, doubly and triply ionized cases for most of the
:: atoms listed in Appendix A. For some atoms it is obvious that the present approach
_ doesn’t apply. Discussion of these discrepancies will occur later.
¥ '-: .
)
s
' 1. Neutral Case
b ".
- For the ncutral case we solve Eqn. (2.2) with £ = 0 and the following
:.‘ boundary conditions:
-
#
|
2
W
o
'
1
N
3

......................
......................
-------------
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Cloo,) = 0 (3.1)

C(z,0) = 0.
Where C is the concentration and Cj is the solid solubility.

The solution is

z

C(z,t) = Cyerfc
2(Dt)s

(3.2).

where Cy is given by Eqn. (1.30), D, the diffusion coefficient, is given by Eqn.

(1.1) and ¢ is the time in seconds.

To get from this equation to our definition for failure we must integrate
from x to infinity. Here x is the location of a fictitious silicon/silicon dioxide

interface. This gives us

! 1
Cn, =C, 2(%)2415; —zerfc z ‘ (3.3).
2(Dt)2

The above equation yields the number of atoms which have passed the

point zin a  mi-infinite slab of silicon dioxide. This simplified view represents the
case where the metal atoms pile up at the SiO2/S7% interface or diffuse into the
silicon substrate but do not interfere with the diffusion process. The value for z
is the silicon dioxide thickness that we wish to consider. Figure {3.1] is a plot of
this equation versus temperature for an oxide thickness of 1000 A and a time of 1
year. It can be scen that all the atoms considered do not cause any failures, as we
have defined failure, until very high temperatures. Figure {3.2] is a similar plot,
however the time is 10 ycars. We observe only a slight increase in the number of
neutral atoms that passed through the silicon dioxide for the ten year case versus

the one year case. This result implies that for the neutral case, the solid solubility

- 32 -




Lo A i s it i, S Shnaodline e St Jhre i hset Sha S i St St it S A A e e el AL A A v"“v-_’?_ L N O
-, - . N P e .- Lt et . - .- - e T T Lt et L . R B . . . . - -

dominates the diffusion process in the silicon dioxide. The metal concentration
reaches solid solubility rapidly and no further diffusion takes place. Fortunetly the
solid solubilities for all most all metals is small enough not to rule any out as possible

candidates for VLSI applications.
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Figure 3.1. Number of Neutral Atoms Passed the Oxide after One Year.
Calculated number of neutral atoms diffused through a 1006 A oxide
after 1 year.
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2. Ionized Case

Equation (2.3) is used for the ionized case to predict a failure. Using the
same definition of failure, i.c. 1010 atoms/cm? or more that reach the interface for
a given time and temperature, as in the neutral case. We rewrite Eqn. (2.3) as

Cn, = k—quCEt (3.4).

Where Cpy, is the number of atoms that reach the interface per square centimeter.
D is the diffusion coefficient, Eqn. (1.1). C is the solid solubility, Eqn. (1.30). &
is the electric field, 108V /em. T is the temperature, k is the Boltzmann constant

and q is the charge on a electron. t is the time.

For the ionized case an additional criteria for failure is nceded, the value
of the electric field. We set the field at a value of 108 V' /em. Using this value for the
electric field and one year for the time, Eqn. (3.4) is plotted against temperature,
Figs. [3.3 — 3.5], to reveal the failure rate for ionized metal atoms diffusing in
S103. To evaluate failures after ten years or any other length of time, we simply

multiple the values in these figures by the length of time in years.

These curves depend on the silicon dioxide thickness only in the deter-
mination of the effective electric field. Thus for this approach to be valid the solid
solubility of each metal must be reached quickly. The observed behavior of copper

and silver support this assumption.

Figure [3.3], the singly ionized case, predicts the most failures. Those
atoms that ionize easily should be considered very carefully before using in VLSI
applications. Metais to the left of and including palladium in Fig. [3.3] should be
safe for for VLSI applications.
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B. Qther Considerations

The model presented so far only predicts the diffusion and solid solubility of
atoms in and through silicon dioxide. There are two major considerations that can
dominate and invalidate the present approach. The first consideration is when the
atom in question reacts with the silicon dioxide and the second consideration is

whether the atom reacts with any other substances present.

Examining the atoms found in Appendix A. we see that both titanium and
aluminum reduce silicon dioxide. This reaction is the reason that aluminum has
worked so well as a metallization system. Arsenic, phosphorus, boron and sodium
are know network formers in silicon dioxide [3.1 —3.5] and therefore diffuse by

methods different than those presented in this work.

All of the atohs we have considered, except for gold and platinum, form
stable oxides. Oxidation of the diffusing atom will obviously cause a change in the
predicted diffusivity and solid solubility. The data for copper is a vivid example.
Another example is manganese which oxidized so rapidly that continuity of the
electric field was lost very quickly. Even so manganese reached levels detectable by

RBS in the silicon dioxide, in further support of our model.

The reaction of the diffusing atom with any substance will also alter its
predicted behavior. It is believed that a reaction of some diffusing atoms with
w -ier molecules has a catalytic enhancement on the diffusion of these atoms. Once
an understanding of this reaction is obtaincd it can be casily incorporated into our

model.

In addition to the above considerations, a metal that is to be considered for
VLSI applications must also have good adhesion, be easily etched, delincated, form

ohmic contacts with silicon and be easily appliced.
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1. Conclusions

From this study in can be concluded that Pd, Au, Mo, Ta, W, Pt, Ti, and

Al are potential candidates for VLSI metalization.

It is possible that gold should be climinated duc to its well known diffusion
in silicon. Others aspects, such as adhesion, low contact resistance and easy chern-

mical processing should also be considered before any final choice is made.
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A. Material Parameters

Table A.l.
Silver Pile Up at 300°C.

APPENDIX A

are presented as well as summary tables of the copper and sliver data.

In this section the material parameters used in the interstitial diffusion model

- Diffusion of silver through silicon dioxide by the pile up of silver at the interface.

o ey imemee B2 (o (Nedpg/time
(cts) (cts) (cm~2) (cm~2/sec)

660 1100 7.99x1014 2.96x1011

1.19x1012

3000 1025 3.98x10153 1.33x1012

1.75x1012

10640 1060 1.34x1016 1.24x1012

1.47x1012

24234 1100 2.93x1016 1.36x1011

........
. .
......
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Table A.2.

Silver Pile Up at the Interface for Various Temperatures.

- ¢
‘e

L]
-, !
2

£

90 minute anneals

“oe .
efele
'-J

o

S5

N temp Area @ HS§102 Ny 1/kT
5N . Interface t'he (eV)
- c (cts) (cts) (cm~2)

275 598 960 8.8x1014 21.18

300 2./5 1029 3.98x1015 20.25
o = 9.1x1014

335 6167 1081 8.95x1015 19.09
o = 4.3x1015

350 15936 1088 1.84x1016 18.63
o = 5.65x1013

365 32182 1068 3.06x1016 18.19

g = 5.11x1015
455 24200 1090 15.94
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Table A.3.
Copper Pile Up at 5703 Interface.
450°C with a positive electric field of 5 X 10* V/em.

time Area @ H 510 (N.) (N /time
(sec) interface 512 tfcu t cu

(cts) (cts) (cm~2) (em~2/sec)

3600 9765 1194 2.99x1016 8.32x1012

1.50x1016 4,17x1012

7200 14525 1139 4,67x1016 6.49x1012

2.83x1015 3.93x1011

14400 15413 1162 4,86x1016 3.38x1012

Table A.4.

Copper Interface Pile Up With Temperature.

Copper silicon/silicon dioxide interface pile up at various temperatures.

temp Area @ H 510 (N.) 1/kT (eV

°Cc Interface Si 2 ticu / (e

(cts) (cts) (em—2
400 1621 1083 5.48x1015 17.24
450 14525 1139 4.67x1016 16.05
500 18679 1111 6.16x1016 15,01
350 230 1111 4,29x1014 18.63
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APPENDIX B

A. General Theory of Reaction Equilibria

For the case of constant temperature and pressure the Gibbs free energy may

be written as [B.1],

G=U-TS+PV (B.1)

since it is at a minimum with respect to the proportions of the reactants. The

incremental Gibbs energy may be written as [B.1],

dG =Y p;dN; = dU (B.2)
i

where p; is the chemical potential of species j and dIV; is the change in the number

of molecules of species j.

The change in the Gibbs free energy in a reaction is seen to be closely related
to the chemical potentials of the reactants [B.1]. In equilibrium this change must

be zero for constant P and T.

dG =) p;dN; =0 (B.3)
i
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The change, dIV;, in the number of molecules of species j is proportional to
the number of moles of species j as determined by the balanced chemical equation
of reaction. Let v; denote this cocflicient and let A; denote the chemical compound

of species . Then the balanced chemical equation can be written as

Y v =0 (B.4)

We can write dNJ- as:

dNJ' = deN’ (B.5)

where dIN” is the increment in the number of times the reaction takes place [B.1].

Combining Eqn. (B.3) and (B.5) results in:

dG = ) pv;dN’ =0 (B.6)
i

simplifying

Z BV = 0 (B.7)
J-

Equation (B.7 ) must be satisfied to be in equilibrium at constant temperature

and pressure.

B. Law of Mass Action and Equilibrium for Idea Gascs

If we assume that cach constituent behaves like an idea gas, the chemical

potential, u;, of identical polyatomic molecules is found as follows [B.1]:
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2
Each molecule has rotational and vibrational motions so that the total energy,
{ ’ E, of a molecules’ orbital ¢ is the sum of two parts,
N Et = Ein; + En (B.8)
f.. where E;,; refers to the internal degrees of freedom and E, to the translational
¥ . . .
] motion of the center of mass of the molecule. For translational motion it can be
- :
shown [B.1] that
R
-Ds
&
:‘-; K2 fan\2
31 Bn= (%) B.9
p n 2m\ L ( )
..J
3'5 where n is the quantum number of the translational orbital and L is the is integer
3 times half a wave length. E;,; includes the vibrational energy of the molecule on
‘ -
the force constant and the rotational energy of the molecule [B.1].
Al
::j In the classical regime the probability that a given translational orbital, n, be
. occupied is always very small in comparison with one. When we write the grand
sum of the orbital in this regime we may neglect terms in the \? and higher powers
‘;:' of )\, because such terms correspond to occupancy of the orbital by more than one
R
>, molecule.
Accordingly, the grand sum for the system of all orbitals, ¢, for which the
'. " translational quantum number is precisely n and for which the internal quantum
ﬁ number 7 assumes all possible valucs is
3 z=14+X E e~ (FinetBn)/kT (B.10)
. since we're assuming the classical regime we may flactor ¢=En/kT ¢ obtain
::.
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' = 1B TS BT (B.11)
.7 )
:
N Note that \ is the absolute activity, A = e*/¥T. We define
3
- Zing = ) e Dine/kT (B.12)
i

- as the partition function of all the internal degrees of freedom.
. So equation (B.11) becomes
3
b1
2 2 =1 + hzjppefn/FT . (B.13)
:

The probability that the translational orbital, n, is occupied irrespective of the
5 state of internal motion of the molecule, is given by the ratio of the term in )\ to
, ' the grand sum z.
. ‘Xz te_E"/kT E./kT
f(Bp) = =228 A~ Nzjppe Bl B.14
- for the classical regime which holds when f(E,) < 1.
- If we now compare this result to that of an idea monatomic gas [B.1] we note
; that the only difference is the addition of the z;,; term and A\ becomes:
4
n 243
; Ik N {2z ke \?
2 ) = ehil kT _(_”L) 1 (B.15)
) vV mjlcT Zint

and thus

.-l‘
o
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g If we let C; = N[V denote the concentration of molecules of species j we can

\ rewrite equation (B.16) as

N

3

3 27 2 | |

Note that E;,; includes all internal degrees of freedom regarding vibration,

)

rotation, electronic excitations and all the nuclear orientations. i

This result for the chemical potential is the sum of the term in the logarithm

of the concentration and a term that is a function only of temperature:

? pj = kTInC; + kTx;(T) (B.18)
. where we define |

3, (2nh2\ E;

3 Xi = Eln(mjk:r) T % - (BN
. Note that the internal free energy E;,; is an additive term in the chemical
potential of the jt# chemical component.

The equilibrium condition 3 v;u; = 0 now becomes

A Z vipj = kT Z(u;lan +vix;) =0 (B.20)
’ or

n-




Z lnC;" = - Z ViXj (B.21)

[[¢% =e v =k (1) (B.22)
- |

Where we define the equilibrium constant K,(T') by

K (T) = e~ LViXs (B.23)

Equation (B.22) is known as the law of Mass Action.
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APPENDIX C

A. Diffusion

124" 4"8 4 -8 an

Diffusion is the random molecular transport of material to relieve a non-
equilibrium condition. This trénsport is driven by a concentration imbalance where
on the average the areas with a higher concentration of material loses or trans-
ports material to areas of lower concentrations. Additional driving forces such
as electromagnet fields or perhaps gravitational fields can aid or hinder diffusion

depending on their direction.

In this section the diffusion equations for positively and negatively charged
particles will be derived. First we will derive the flux for a charged particle and

the transport equation which determines their distribution in a solid. Then we will

2t - o

present solutions to the transport or.diffusion equations under various conditions

- : and assumptions.

1. Flux

b Figure [1] represents the potential hills formed by the atoms of a crystal.
These poiential hills impede the motion of any charged particles within the crystal.

The hcight of the potential barrier W is typically of the order of clectron volts
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Figure C.1. Potential Distribution. Model of ionic motion within a crystal with
zero electric field.

[C.1 —C.3] in most materials. The distance between successive potential barriers,

a, is of the order of a lattice spacing which is several angstroms.

If a constant electric field is applied, the potential distribution as a func-
tion of distance will be tilted as shown in figure [2]. This will help positive ions
move to the right and hinder their motion to the left. With the field appliéd the
flux, J, (J = number of any species passing through a unit area in a unit time)
at z will be the average of the fluxes at position (z — §) and at (z + §). Using thé

notation shown in figure [2],

(J1—J2) + (J3— J4)
2

J(z) = (C.1)

Consider the component J. It will be given by the product of (1) the
density per unit area (normal to the dircction of the flux) of particles at the potential
valley at (z - a), (2) the probability of jumps of any of these particles to the valley
at z and (3) the frequency of attempted jumps, v.

J1 = aC(z - a)e'k—ql‘('”"‘s?'“e)u (C.2) !
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Figure C.2. Potential Distribution. Model of ionic motion within a crystal with an
applied electric field.

where aC(z — a) is the density per unit area of particles situated in the valley at
(z—a) [C.2,C.4]and the exponential factor is the probability of a successful jump

from the valley at (z — a) to the valley at z [C.4,C.5]. Note the lowering of the
bairier due to the electric field, €.

Likewise

J2 = aC(z)e~Br{w+ial), (C.3)
J3 = aC(z)e~ Pr{w=zaf), (C.4)
J4 = aC(z + a)e~Fr(w+39),, (C.5)

Substituting thesc expressions for J1,J2,J3, and J4 into cquation (C.1)

we get

w aé af a __qaf
J = %’.e" er C(z - a)e‘g‘m‘ —C(z)e” T+ C(z)e W — C(z +a)e BT (C.6)
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making the assumption that [C.6],

dC(z)

C(z F¥a) =C(z) Fa- 52

(C.7)

J becomes

J= —e—i'T[C(I)( elf"' 2¢ '2’“5)_ aagiz)( 7 +e

wia
0
H
N’
—_—
—~~
Q
Q0
A

e*4e”?

Since [C.6] sinhz = ©=5f— and coshz = £4"

_ qaf 80(:1:) qaé
= —Dco h(sz) 3.+ asmh(—%—T)C’(z) (C.9)

w
where D = va2e~ T

In the special case where £ <« 2"T the cosh z — 1 and the sinhz +— 2,

[C.6], reducing J to,

aC(z)
dz

where p = (E"T)uaze'f’;"‘ = E%‘D' By the Einstein Relationship, u = E%D, Dis

J = —-D——+ uéC(z) (C.10)

known as the diffusivity and y is the mobility.

A similar derivation for the motion of a negatively charged specics results

in,

J(z) = ~Deo h(;’Zf;,)agi’) ?gsinh(g%)cu) (C.11)

v
where D = a%ve~ T = LC.qI”"
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Figure C.3. Element of a Solid. No matter is created or distroyed within element.

When & < 2kT the flux for a negatively charged particles becomes,
qa

8C’(:c)

J(z) = —DZLE _ uec(a) (C.12)

2. The Transport Equation

Figure [3] shows a small element of a solid which is still large compared
to atomic distances. Within this volume no material is formed or consumed. An
inventory of the material contained within the element bounded by the planes at

position z and z + Az yields

Increase in the density per unit area

Jin — Jout = unit time (C.13)
In terms of concentrations, we write
a y
Aza—(’; — J(z) - J(z + Aq) (C.14)

where C’ is the average concentration within the element.

When Az 0, €’ 1+ C(z) and LEXA2=I0) , 30(2) o fing that
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e . (C.15)

which is the transport equation in one dimension. If we expand our thinking to

three dimensions the transport equation becomes

aC(z)
ot

= —div J(z) (C.16)

Combining the transport equations and our equation for flux, equation

(C.10) results in

aCz) 3] qa€\3C(z) 2D . ﬂ{)
3t _—5;[ Dcosh(2kT)———-az +— sinh kT C(z) (C.17)

If we now assume that D and ¢ are independent of z and £ <« —2%? we

»

may write equation ( C.17), the one dimensional diffusion or transport equation, as

8C(z) . 8C%(z) aC(z)
o~ PTar o, (C18)
Likewise for negative species under the same assumptions
8C(z) . 8C%(z) 3C(z)
3 D 5.2+ ué 9 (C.19)

B. Solutions

Before solving the one dimensional diffusion equation let us reiterate the as-

sumptions imposed so far and comment on their validity:
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(1) Diffusion only in one dimension, normal to the surface.

(2) The electric ficld and the diffusion coefficient are independent of time and

direction.
(3) € <« %L,
(4) Solid is homogeneous.

Assumption one is reasonable since we are considering the diffusion of charged
particles and thus diffusion is enhanced parallel to the direction of the electric field.
The electric field is independent of time and direction if the solid is locally uniform.
The assumption that D is independent of time and direction requires a, 4 and w be

independent of time and direction. This is true if the solid is locally homogeneous.

To see if £ - & 2—11’5,11 we assume a = 10 A which is a conservatively high value

for a lattice spacing. Then

2:—GT = 1723.40T V /cm (C.20)

where k is the Boltzmann constant and ¢ is the charge of an electron.

Table 1 shows —271"41 for different values of temperature. We see that fields of

10% — 10° V' /em are probably small enough to make assumption three valid.

Table C.1.

Estimates of £ < 25—3'

2kt

Temp °K qa

300 5.170x105 V/cm

600 1.034x106 V/cnm

700 1.206x106 V/cm
- 61 -
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Assumption four is valid since our samples are Czochralski grow silicon with
) thermally grown silicon dioxide and is therefore homogeneous, at least locally.
\ Using these assumption we solve the diffusion equation in one dimension for
:;: positive particles, equation ( C.18), for the following boundary conditions.
(1) C(0,t) = Cs.

2 (2) C(oo,t) = 0.
- (3) C(z,0) = 0.

A where C; is the solid solubility of the particle in the silicon dioxide. The solution
X
- can be shown to be [C.7—C.9].

i gDEt DEt

] C T — £z T+ =

» Cz) = Z|erfe]l —FL | + e*rerfc gﬁr—— (C.21)
% 2|7 aopt 2(Di)s

2

v

N Figure [4] is a plot of this equation for 300°C, 1.5 hours, £ = 5.2 X 104V Jem
j and a solid solubility of, Cs, of 3 X 1018¢m 3. Different diffusivities are shown in the

4

1 figure to allow a comparison with the silver data presented eatlier. This solution to
“4

h the diffusion equation models reality when the substance the particles are diffusing
? through is semi-infinite. As a further example figure [5] is a plot of equation (C.21)
3

Y when T = 100°C, t = one year, £ = 106V/cm, Cs = 3 X 10'8¢m™3, and the
diffusivity takes on the valucs shown in the figure.

. As an approximation to the case when the diffusing particles pile up at the
14

Y S10,/ 81 interface, equation (C.18) may be solved with following boundary condi-
" tions.

. (2) C(z,0) = 0.

iy aC(a,t

. (3) et =0
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where a is the Blm thickness.

The solution to these conditions is [C.7 — C.9],

2\1
d (ﬁi— s ) 2\%
C(z,t) = Cy|1 -2 Z (2 ) e—ﬁ?.Dte-z—qk’e’l‘sin (ﬁ2 _( q¢ ) ) N

3
a1 6P2+ gbp

where the 3,'s are the positive roots of

1

1 L
2 qé' 2\? _ 2kT 2 qé' 2\?

Figure [6] is a plot of this equation for 300°C, 1.5 hours, £ = 5.2 X 104V /cm,
Cs = 3X1018¢m™3, and a films thickness of 5700A. Figure [7] is a plot of equation
(C.22) with T= 100°C, £ = 105V /cm, Cy = 3 X 108c¢m =3, a = 5700 A, and a

time of one year.
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Figure C.d4. Solution to the Diffusion Equation for a Semi- infinite Slab. 300°C,
1.5 hours, £ = 5.2 X 104 V/em and Cs =3 X 1018cm—3, :
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Figure C.5. Solution to the Diffusion Equation for a Semi- infinite Slab. 100°C,
t = one year , ¢ = 10V /em and Cy = 3 X 10'8¢m 3,
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Figure C.6. Solution to the Diffusion Equation for a given film thickness. 300°C,
1.5 hours, £ = 5.2 X 10*V/em, Cs = 3 X 108¢m™3 and a film
thickness of 5700 A.
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Figure C.7. Solution to the Diffusion Equation for a given film thickness. 100°C,
t = one year , & = 108V /em, Cs == 3 X 10'¥m™3 and a film
thickncss of 5700 A.
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