.~ AD-A135 892 SYNTHESIS OF EFFICIENT STRUCTURES FOR CONCURRENT 1/
COMPUTATION(U) KESTREL INST PALO ALTO CA
. R M KING ET AL, 01 OCT 83 KES-U-83-6 AFOSR-TR-83-1060
UNCLASSIFIED F49620-82-C-0007 F/G 9/2

i ¢

i mua
s =
22 s, s

AFOSR.TR- ©23-1060 B

KES.U.83.6

SYNTHESIS of EFFICIENT STRUCTURES
for CONCURRENT COMPUTATION

by

Richard M. King
Ernst W. Mayrt

Cordell Green
Principal Investigator

Kestrel Institute
1801 Page Mill Road
Palo Alto, CA 94304

#-A7/35 872

October 1, 1983

FINAL TECHNICAL REPORT

Y t:"‘
e 3 ~ ‘-'ﬁ‘
(A U ECT = 7R
Prepared for: 3y DEC 151983
Air Force Office of Scientific Research
Building 410 D
Bolling AFB, DC 20332

Research sponsored by the Air Force Office of Scientific Research (AFSC), United States Air Force,
under contract F49620-82.C-0007. The United States Government is authorized to reproduce and
distribute reprints for governmental purposes notwithstanding any copyright notation hereon.

This document was prepared under the sponsorship of the Air Force. Neither the U. S. Government

nor any person acting on behalf of the U. S. Government assumes any liability resulting from the
use of the information contained in this document.

fcooperating scientist, Stanford University Department of Computer Science, Stanford, CA 94305

Approved for public release;
aistribution uplimited.

DTG EILE COBY

RPN - . -

N ' e i - el

ceteme e m—an

UNCLASSIFIED _
SECURITY CLASSIFICATION OF THIS PAGE (When Dnu‘Enlend)‘
s
REPORT DOCUMENTATION PAGE) BEF O O P N N ORM
T ER 2. GOVT ACCECRIUN NO.| 3. RECIPIENT'S CATALOG NUMBER
OSR-.IK-" 53-1060 e
1 (35
4. TITLE (and Subtitie) 8. TYPE OF REPORT & PERIOD COVERED
SYNTHESIS OF FFFICIENT STRUCTURES FOR CONCURRENT INTERIM, 1 OCT 82~-30 SEP 83
COMPUTATION i
P 6. PERFORMING OG. REPORYT NUMBER
KES.U.83.6 b
7. AUTHOR(s®) 8. CONTRACT OR GRANT NUMBER(a)
Richard M. King and Ernst Mayr F49620-82-C-0007
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
Kestrel Institute AREA & WORK UNIT NUMBERS
1801 Page Mill Road PE61102F; 2304/A2
Palo Alto CA 94304
1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE “4
Mathematical & Information Sciences Directorate 30 SEP 83 '
Air Force Office of Scientific Research 13, NUMBER OF PAGES P4
Bolling AFB DC 20332 18 '
4. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Oflice) 1S. SECURITY CLASS. (of this report) ft
UNCLASSIFIED |
1Sa. DECL ASSIFICATION. DOWNGRADING |
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report}

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necesaary and identify by block number)

Concurrency, parallelism, architectures, synthesis, transformation, inter-
processor communication, connectivity reduction, tree structures, systolic
arrays.

20. ABSTRACT (Continue on reverse side If ne-essary and identity by block number)
The object of the research is the deveclopment of programming knowledge for the

synthesis of concurrent programs. In this interim report techniquec are
described for synthesizing efficient parallel structures from high level speci-
fications of a problem. These structures contain collections of trees inter-—
connected in various ways. They cxamine an apparently diverse group of problems
and show that they all have properties in common that allow these syntheses to
be performed using only a few synthesis rules. They also explore some
alternative syntheses for some structures. Some of the synthesis (CONTINUED)

Foam “73
DD EDITION OF 1 NOV 65 1S OBSOLETE
1 ~ v
JAN 73 UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

a i o R R I —— L) -

e e e s

X UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered) N

ITEM #20, CONTINUED: paths use transformation rules designed to produce
parallel structures containing multidimensional lattices. These lattices are]
then transformed into structures containing trees in some cases. In other
cases the lattice structure is better and is retained. In yet other cases
the lattice structure is modified to make a better lattice structure.

Accessi;n For

NTIS GRA&I
DTIC T8
Unannsunced
Justifro eion

i,

UNCLASSIFIED
SECURITY CLASSIFICATION OF Tu'* PAGE/When Data Entered)

S ¥ Lo T 4

Contents

Page

1 ADstract L e e e e e e e e e e e e e e e e 1
2Imtroduction L .. L e e e e e e e e 1
2.1 Motivation e e e e e e e 1

2.2 Outline of TRANSCONS i ittt it ae e 1

3 Redistributional Problems - Broadcast, Census, Up-and-Down 2
1 Broadeasts L e e e e e e e e 3
3.1.1 Bottom-Up Synthesis of 2 Tree from a Chain. 3

3.1.2 Systolic Structure Synthesis L. 4
3.2Census Flunctions. L L L e e e e e e e 6

4 User-Assisted Aggregasion.o 6
S Parallel Prefix Computation - e 8
5.1 Introduction tothe Problem Lo 8

5.2 The Divide-and-Conquer Formulation. 8

8 Classification Problems e e 9
6.1 Ordered Classification e 10

6.2 Unordered Classificationo 10

7 Stringand Pastern Matching - L. oL oL Lo e 10
8 Conclusions. e e e e e 1
Techmical Appendix e e e e e 12
A.1 Description of the PROCESSORS Statement. 12
A2 Tranaformations e e e e e e 12
A.3 Creation of a Systolic Structure for Broadeast 14
PRIOPRRCOS L . e e e e e e e e e e e e e e e e e e e s 17T
ATR o0 Ta oA T LS R f‘”“: ‘: o

This
pppTeL L IR
Distrib:xtiu , itaited.
MATTHEW J. FEATER
Chisf, Technical

Information Division

Loo-la.

v ‘o
oot TAA

Figure 1.
. A Bucket Brigade Chain
. A Collection Chain

Figure
Figure
Figure
Figure
Figure
Figure

N e wwe

Structure of the Synthesis Process

Step 1 of » Transformation Into a Balanced Tree

Plates

............................
.................................

. Step 1 of 3 Transformation Into an Unbalanced Tree
. Simple Parallel Structure for Broadeasting
. Interna) Structure of a Prefix Computation Network

m»&&»uni

s

2. IxTRODUCTION 1

§1 Abstract , A
T [hor

The object of eur research is the development of programming knowledge for the synthesis of
concurrent programs. In this final report we describe techniques for synthesizing efficient parallel
structures from high level specifications of a problem. These structures contain collections of trees
interconnected in various ways. We examine an apparently diverse group of problems and show
that they all have properties in common that allow these syntheses to be performed using cnly & few
synthesis rules. Wealso expleresome alternative syntheses for some structures. Some of the synthesis
paths use transformation rules designed to produce parallel structures containing multidimensional
lattices. These lattices are then transformed into structures containing trees in some cases. In other

cases the lattice structure is better and is retained. In yet other cases the lattice structure is modified
to make a better Iattice structure. _ -

. vp o ch Rl

§2 Introduction

The purpose of this report is to explore certain aspects of generating parallel computation stractures .
from high-level specifications. To study this problem we will use a series of classical problems from 1
computer science and show how efficient implementations could be produced semiautomatically or ?
sutomatically. We are designing TRANSCONS, the TRANSformationa! CONcurrency Synthesiser, i
to reduce to practice the principles we enunciate in this repert. TRANSCONS will require a theorem i
prover. Earlier versions of the system will use human assistance to replace or supplement a theorem |
prover. This assistance takes the form of allowing the system to ask the user to assert a critical &
theorem or axiom. :

§§2.1 Motivation

The system we describe in this report accepts high-level descriptions of a problem and will produces a
description of a parallei structure to the topology level. It does not describe the layouts of individual l
processors on 8 VLSI “chip” or wafer, but the structures produced are simple and regular enough -
that the problem of producing layouts is tractable. |

Paralle] structure synthesis can be used in several ways:

;
|
> to set up routing in a general purpose parallel computer such as the Ultracomputer {Sehwarts-80] t

or the Universal Parallel Computer [GalPaul-83] i

» to design custom VLSI
» to control the configuration phase of Wafer Scale Integration. :
In particular, we bave studied the feasability of the following: i

» “classical” array problems, among them polynomial-time dynamic programming
» systolic array problems such as matrix multiplication, polynomial evaluation, convoiution

[KungLei-78]
» many graph probiems [(HMS-83] [LipVal-81]

> search problems such as pattern matching, unification (part of inference), and combinatorial space
search.

§82.2 Outline of TRANSCONS

TRANSCONS is intended to synthesise paralle]l structures, first semisutomatically and then
sutomatically. The final result is a synthesis system with an efficiency expert [Kant-79] that es-
timates processor and memory cost as well as time. TRANSCONS asks for little manual assistance
{depending on the power of the currently integrated theorem prover).

We have previously explored techniques that produce lattice structures. These intrinsically take
linear time (in the extant of one of the dimensions of the problem) to compute their function. We
now consider the synthesis of tree structures, in which it is reasonable to hope for solutions to
problems in logarithmic time.

In this report we discuss the synthesis of tree structures from structures consisting of chains of
processors carrying data in a bucket brigade manner from one end to the other, and from raw
specifications using a3 general divide-and-conquer formulation. We aiso discuss the synthesis of s
certain systolic structure from the chain. Additionally, we describe relstionships between paralie!
implementations of data redistribution problems, prefix summation problems, classification prob-
lems, and substring matching. We show how these problems are related and we show uniform
techniques for producing good paraliel structures for all of these problems.

. iow level interconnection
Bigh level transformations |y o pecifications | _ | specification
V specifications |+ processor |~ |- processor
declarations description

Figure 1. Structure of the Synthesis Process

The programming language V, in which TRANSCONS, its inputs, and its outputs are written, is
a wide spectrum language that can specify conceptual schemata, specifications, low-level programs,
program transformation rules, and (with some special extensions) processor interconnections. As
far as V is used in this report it will be self-explanatory. The PROCESSORS statement, used to
specify multiple processors and interconnections, will be described in some detail in the Appendix.

§3 Redistributional Problems - Broadcast, Census, Up-and-Down

In this section we consider the class of problems in which data are either available at a central source
and where there is an opportunity to simultaneously operate on this data at multiple sites, or where
dats are available at diverse sources and where it is necessary to summarize this data in a single
place. We also consider problems which combine these features.

We start with a high-level specification for a given problem. In the synthesis process we develop a
low level specification which is functionally equivalent, but which exhibits concurrency and which
describes the programs to be run on the various processors.

Suppose we have s broadcast problem. A naive solution to this problem is a chain of processors.
See Figure 2. In [King-83] we studied a formal method to obtain such a configuration from the high
level probilem specification.

INPUT }—[P1] —[P2}—. ... — _.[P1]

Figure 2. A Bucket Brigade Chain

An ansalogous technique can produce s chain in the reverse direction (see Figure 3) for computing,
for example, the sum over a list. Here the desired value is computed incrementally, and the partial
sum is passed from one processor to the next. In each processor a new contribution is added in.

[P1] P2 . [Pn}—[OUTPUT]

Figure 3. A Collection Chain

3. REDISTRIBUTIONAL PROBLEMS L

These structures are no faster than linear in the sise of the problem. We explore ways to improve
this.

TRANSCONS can be described in 3 diagram as foliows:

trans formations

] restructuring

. transformations

high leve}
specification

inefBcient
parallel structure

efficient
paralle] structure

(virtualization)

In this paper we do not describe the first step of the above diagram. This was studied in [King-83).
We study the restructuring transformations of the second step.

§§3.1 Broadcasts

In this subsection we discuss the problem of deriving an efficient parallel structure for broadeasting.
There are three alternative paths: A simple version, the bucket brigade chain of Figure 2, can be
iuproved to a tree; the chain can be improved into a systolic array; and the tree structure can be
synthesized by divide and conquer. The first two methods will be described below, and the third
will be discussed in a later section.

3.1.1 Bottom-Up Synthesis of a Tree from a Chain

This first synthesis path restructures s bucket brigade chain into a functionally equivalent tree. It
does this one level at a time. The arity of the tree is arbitrary, but for clarity we will describe the
process of synthesizing binary trees.

Balanced trees can be built from chains in the following manner:
» Introduce a chain of new processors half the length of the old.

> Forge » connection from each element ¢ of the new chain to (a): element 2i or (b): elements 2¢
and 25 4 1 of the old.

» Unless they are needed for another purpose, (a): cut all the links of the old chain or (b): cut links
between elements 25 + 1 and 2i 4 2 of the old chain.

» The first element of the old chain received the information to send down the chain over a link.
Cut that link and forge a link from its source to the first node of the new chain.

» Iteratively apply this transformation to the new chain until it consists of a single node.

The formal transformation rule contains parts which guarantee applicability and assert the existence
of certain functions between old and new chain indices. This is discussed in detail in the Appendix.

The above outline describes two variants of the transformation, s and b. In one variant, a, all of
the links of the original chain are cut, and we achieve a balanced binary tree (see Figure 4). In
the other variant, b, only ope of the links from the new chain to the old chain is forged, and the
link from the linked-to old chain element to its successor is not cut. See Figure 5. In this case we
achieve a slightly unbalanced tres, but the depth of the tree is the same. The entire structure takes
25% fewer nodes than the one of Figure 4. To pay for this nodes such as P1 must be able to relay
messages 33 well as compute; formerly they would have only needed to compute.

It is evident that the new parallel structures are functionally equivalent to the old, and that they
are faster. Any node reachable from the broadcast source in the old parallel structure is reachable
in the new one, and the path length is asymptotically half the length. There is no consideration of a
bottleneck here, because we are assuming that the same data is received by all of the leaf processors,
s0 all of the intarnal nodes receive a single value (or the same set of values) and can duplicate that
value for their children.

© o © o

(s

|
|
P (k2] (k3] [P [ps] [Re] [P7] [Pg]

wn

Figure 4. Step 1 of a Transformation Into a Balanced Tree

= (= © &
|

-

$
P fF B P
Figure 5. Step 1 of a Transformation Into an Unbalanced Tree

The transformation of Figure 5 leaves corner nodes (marked o) buried at all levels of the tree; not
merely just above the leaves. These nodes eventually have in-degree==1 and out-degree=1. They
can be easily removed, resulting in the 25% saving mentioned above.

3.1.2 Systolic Structure Synthesis

We now study distributional problems preferably implemented by a systolic array. For a specific
example, suppose we are evaluating

vig{(1,...,I) ; must be enumerated in order
Vi€{l,...,n} ; may be enumerated in any order
B,' - 8,' -+ A

and suppose that / and n are of the same order of magnitude, or that all of the B-values are in a
single place and we choose not to distribute them. A systolic structure is preferable to a tree.

Consider the structure below:

. '—@ @r = E—(fud in ! A-values)

Figure 6. Simple Parallel Structure for Broadcasting

in which each of the [A-values is added to sach of the n B-values.

We explicate the [partial sums, using virtualisation. This creates a separate processor for each step
in the summation process for each of the B-values

i e vk

3. REDISTRIBUTIONAL PROBLENMS

5
PB1i; IpB2I PBAl |« foed in A/
1 1 1
[
PB11 .- [PB21)— PBAIl oo Al
> 4 T
(partially done sums flow upward) ‘
(feed — PB10} [PB20}— —, ... PBno
B-vslues
here)
and modify that slightly to feed in A-values in only one place.
feed in A-
values, withdraw
—~ angRREI e s answers
1 1
(partially done sums flow upward, l
<+
3 - :
A-values l go down) l
<4
[PB11] [PB21] PBni
T 4
(partially | done sums flow upward)
(feed——PB10 | — PBno
B-values
here)

oo sl

We then identify P,; with P,i., j—& for all appropriate &:

take out answers

feed in B vector ‘——-' P2 e ——

.
]

feed in A vector

This parallel structure is better than the one of Figure 6§ because it does not imp~ee »."*nvoWs
requirements on the I/O capabilities of the system. In Figure 6 it is not shown how B-vaiues et
to the various Bi. If this were shown we would see that the assumption was made either that th:
broadcast problem was embedded in a larger problem that allows the data to already be there oi
that all n B-processors HEAR the I/O processor. The systolic array shown above allows the 1/0
processors to be connected to only a single processor.

A formal presentation of these techniques, called virtualisation and aggregation, can be found :p
[King-83].

§§3.2 Census Functions

Trees perform broadcast operations well. They can aiso be used to compute a class of functions
called Census Functions (see [LipVal-81]). Examples of census functions include 3,], min, and
“4nd the largest subarray of the array that contains a single value®. These have in common that
they are functions on a string @,,6a,...,8, Which can be grouped in an arbitrary manner.

It is possible to perform a census function by using a collection chain (shown in Figure 3). It 1s
always possible to replace such a structure by a tree structure which replaces the task of taking
the census operation on a string of length n by the task of taking the census operation on a string
of “sums” whose length is n/2. The structure of the transformation is the same as the one for
broadcasts, making adjustments for the fact that the data have to flow upwards in the tree, and
that if a segment of the original chain is allowed to remain than the link tying it to the higher
level chain has to be attached to the end of the segment. TRANSCONS contains transformations
for census functions as well a broadcasts, but in the interests of brevity these are not presented.
The correctness of these transformations is proved in a similar manper to that of the broadcast
transformations.

§4 User-Assisted Aggregation

In the previous section we presented methods for generating paralle] structures with a tree of
communicstion links. In this section we use the results of that section as a building block as
we develop techniques to solve problems such as the normalisation of a set of numbers, standard
deviation, and marking the largest interval of elements of a vector that satisfy a given predicate.
These problems have in common that information must travel both from a central point to the
elements of an arrsy, and vice versa.

The naive method of combining two applications of the techniques of the previous section would
yeld 8 pair of trees, one with upward communication links and one with downward ones. This uses
50% more nodes than the problem really requires, and it would be desirable to merge these trees
in the obvious manner. This involves a new form of aggregation, different from that used to merge
diagonal collections of processors in the previous subsection. There, the nodes that were combined
had conceptually very similar roles. Here, this will not be the case. We therefore need to merge
processors in more general ways than previously.

- v

4. USEBR-ASSISTRD AGGRRGATION ki

In examples such as normalization the aggregation is fauirly simple to £od. ln more general cases such
as those that arise from graph problems, however, tkis would not be so easy. Finding aggregations
across “family” boundaries can be difficult because of the large number of possibilities involved.
Human intervention is necessary here; automation is difficuit for the following reasons:

» The bounds of arrays are o’tea arbitrary.

» There are many aggregations avaiiabie; it is not clear which are useful.
» It is not uncommon for two logical data to share parts of an array.

» It is possible for one array to match the combination of two others.

For these reasons, TRANSCONS understands the AGGREGATE statement, of the form:

AGGREGATE Namepoungiters = Psetyound
HAS Asetyoung
(HEARS Prname2r(pound) tters2somnd
(USES Aset2pound---))
HAS .. ;

This statement is a parameterized statement. The sters is a predicate defining permissible bindings
of the variabies in the list bound. It means that those processors in the set Pset),ynq (Which is a
set-valued expression) are aggregated (i.e. identified to form a single processor named Name,,una)
for each binding of the variabies in dound that is permitted by the predicates in iters. It is explicitly
permitted that the set-valued expression can include enumerated elements and explicit setformers.

The HAS, HEARS and USES elements are analogous to those of a PROCESSORS statement (see
Appendix), although in an AGGREGATE statement there can be more than one HAS clause.
HEARS clauses are associated with specific HAS clauses.

When the user provides such assistance searching a potentially enormous set of possible interfamily
aggregations is avoided. TRANSCONS's abilities are used to check the validity ~f the user-proposed
aggregation.

The following consistency checking is performed on AGGREGATE declarations:
(i) formally specified conditions:

» Pset is disjoint for all distinct settings of bound and for all settings of the respective bounds for
two AGGREGATE statements.

» Name((specific bound}) HAS {array element) iff 3 P(F)€ Pset((specific bound}) that HAS
{array element).

if Pname2=Name, then
V bound s.t. iters, bound2==F(bound), bound 3 bound2:
3 Pyy € PSF Nyound, P'M € Petyounds:
P,y HEARS P}, (USES A)

(meaning that the HEARS clauses of the AGGREGATE statement are those induced by the under-
lying processors);

(ii) informally specified conditions:

» The order of total amount of computation done by processors underlying a given node does not
exceed the length of the longest chain.

» It is not true that A HEARS B and B HEARS A for the same USES datum. (But violation of
this condition is likely to imply violation of others)

A simple example of the utility of the AGGREGATE statement can be the aggregation of cor-
responding nodes in two balanced binary trees; one resuiting from the identification of 3 broadcast
problem and one from the identification of a census function on the same data.

§5 Parallel Prefix Computation

In this section we will use the divide and conquer scheme to derive a method for performing a
parallel prefix computation. To be concreze we use summation in what follows, although t=c methods
descrived are general.

§§5.1 Introduction to the Problem

Consider the problem of forming the vector of partial sums of the form V¢,0 < { € n—1lv; «~
Z;_o v; (summation in place). The naive soiution to this problem is (deciarations omitted)

vi€{0,... n—1} do
V"- - vy
3 E(0,...8))

. A slightly less naive version is

total—0
Vi€({0,...,n—1)) do

vl — total «— total <+ v,
od

which does allow taking advantage of the cumulative nature of the calculation (i.e. that
=m0 85== 3_jm0 85 + 3i). Probably the best route for deriving the latter from the former is formal

differsntiation [Paige-79]. The induction variables are v’ and a new variable which also receives the
value of v/ in the second line of the first fragment.

We build a structure that binds the vector together using a balanced binary tree. Each of the leaf
ncdes starts by sending its value to its parent. Each internal node accepts a value from its left son
and sends that value to its right son. It also adds the values from its two sons and sends that to its
parent. All internal nodes, when they receive a value from their parent, send it vo their two children.
All leaf nodes add any vaiues received from their parent into their contents. See Figure 7. This
structure is best built by a divide-and-conquer scheme.

H (corim
. vALUE) (VALUE)
:
S (RrTabvep L)
K
.
o o)
K (cortzo APRAY [LEDIT g
..- VALVE) ARBAY TLEMENT o VALIE
L:UPVARDS TLOW 2:SEND LEFT VALUE 3:RESTND PARENT'S “::"w ™
o RIGHT SRANOH VALUES T0 CHILDREN

Figure 7. Internal Structure of a Prefix Computation Network

Our model should be distinguished from the “standard® ome for parallel prefix circuits (see for
example, Fleb-83] and (LadFish-80]) because we permit nodes to be reused and because we require
the i*® element of the answer to be developed in the same place as the i* element of the input
vector. In the cited previous work the circuit was a combinatorial network without memory, i.e. it
was required to be a directed acyclic graph and no node would be reused.

§§5.2 The Divide-and-Conquer Formulation

We will derive the tree architecture using a divide and conquer scheme. In what follows, we will
use divide and conquer twice. We will specify the unary function F(2) in terms of the divide and
conquer scheme and » binary infix operator ¢ & 2 which adds s to esch element of the vector 2.

i

8. CLASBIPICATION PROBLEMS 4

(The operation is assumed to be addution for concreteness, but the method is general.) We will then

specify &.
The general binary divide and conquer formulation can be described thus: (= is function definition)
if [Di=1 then ¥

otherwise Combine(F(¥'), F(P"))
1 +1 ‘
2 !

F@o)= {
where ¥ || #/=0 and |D’|=[

which is an instance of the standard divide-and-conquer scheme. It remains to specify the function
Combine.

In prefix summation the Combine operaticn is concatenation of the two vectors, except that the
sum of the eiements of the left vector have to be added to the right vector. The sum of the eiements
in the left vector is always the left vector’s last element.

So Combsne must look like this, to update the right half of the concatenated string:

Combine(0,2) =0 " Yip| (5o X

where & adds a scalar to each element of a vector. & is, itself, not an atomic operation; it has to
be specified. We can define it as follows:

s@o= { if [9{=1 then ({(s + v1)}
" lotherwise s ¥ || e D
i1
— !
J

which is jtself a divide-and-conquer formulation.

where ¥’ || 9/=0 and !0'|=[

This formulation leads naturally to a tree structure. The time requirement is 2 1g /0| communication
times and lg |0} computation times (additions).

§6 Classification Problems

We are exploring some classifications problems. Specifically, we want fast concurrent solutions to
two problems in which there is defined an equivalence relationship on elements of a vector and it is
desired to mark a representative of each class induced by the partition implied by the equivalence
relationship.

There are two variations of this problem. In one variation, Ordered Classification, there is a total
ordering on the equivalence classes and any representative of one class can be compared with a
representative of the same or another class quickly. In this case, it is obviously correct to sort the
data and find the intervals. In the other variation, Unordered Classification, no such total ordering
exists or can be efficiently computed. It is therefore necessary to test the equivalence of every element
of the vector directly against every other element. This can still be done swiftly, but it requires
more processors to do these comparisons.

It is easy to see’ that a total ordering can be imposed whenever equivalence can be tested, but it
appears that the cost could be immense!.

‘Tho domain of the problem can be Godel-numbered. In fact, any internal representation scheme of elements
of the domain imposes such a numbering. Order elements of the domain by the smallest (under this
numbering) element equivalent to s given element under integer comparison (or lexicographic comparison
if a variable-length internal representation is being used).

tS\:;:optm the equivalence test costs §(F(J)) where I is the length of this representation. Clearly F(I) > O(!).
The minimal representation equivalent to a given item can be found by a search in O(F(1)2°*"). It is not
obvious how to do better.

e o

10

§§8.1 Ordered Classification

In this problem the desirable approach is to sort the input vector, ind adjacent clumps of equivalent
elements, and mark the first element of each clump. There are three significant tasks in this; the
discovery that sorting is desirable, the provision of a sorting paralle! structure, snd the marking of
first elements of clumps.

There :s a parallel structure that sorts in O(logn) using O(nlogn) processors, but the constants
are high [AKS-83]. There it another paralle] structure that sorts in O(log? n) on O(n) processors
[Bateher-88]. There is a parallel structure that usually sorts in O(logn) on O(n) processors, but it
bas a possibility of failure [ReifVal-82]. (This probability tends to sero rapidly ss the constants or
the problem size increase.)

It may be that there is a relation < such that s < yvVy Xz, thatz X yAy <ze2z2=y,
and that < may appear in the resuiting parallel structure. If TRANSCONS is presented such an
instance of Classification, it will explore synthesis paths consisting of a sort followed by a prefix
computation, and it will also explore a parallel structure similar to the one described ia the next
subsection. It will try to select the more efficient one, which will be the sort and prefix structure in
exactly those cases where there is an eficiently computable well ordering. There are therefore two
pieces of knowledge that are part of TRANSCONS:

» the knowledge that a sort should be considered if the data are well ordered, and
» knowledge of several ways to perform a sort, and the tradeoffs involved.

§§6.2 Unordered Classification

When there is no convenient ordering in a classification problem, TRANSCONS expiores two alter-
native parallel structures. One is fast but uses many processors; the other is siower but uses fewer
processors.

The first structure is based on Leighton’s Mesh of Trees [Leighton-81). In this arrangement a
rectangular set of processors exists anc each processor is responsible for comparing an element of
the problem array with a (generally) different element of the same array and deciding which nodes
it knows to be redundant on that basis.

One of the sets of trees, call it the horizontal set, is responsible for distributing the data properly to
rows of nodes. The data are then propagated to the roots of the vertical set of trees, and then to the
vertical nodes. The ¢*2 element is then in row i and in column 1, 10 element i, j of the rectangular
array of processors can determine whether elements ¢ and § are equivalent. This information is
propagated up one of the sets of trees and is used to mark the roots of such a set. The processor
count is ¢(n?) and the time is #(logn). Note that this is an example of a combination of the census
and broadcast techniques.

A trick is available to reduce the number of processors to #(n2/logn), clearly the best available
in that time because of the number of comparisons that have to be made. Instead of n columns,
n/ logn columns can be provided. Each node is responsible for performing log n comparisons instead
of just one, but this only siows the process by a constant factor.

The other structure is slower but uses fewer processors. It can be synthesized by straightforward
use of aggregation on the larger structure (where the larger structure uses chains instead of trees).

§7 String and Pattern Matching

The iast problem we investigate is the string sesrch problem. In this problem, we are trying to
determine the position of the first occurrence of ope of its argumaents, s string (called the paitern), in
the second argument, a longer string (called the text). TRANSCONS can handie a string matching
problem using a double application of a broadcast tree synthesis followed by double application of
8 census tree synthesis.

8. ConcLusIONS 14

It is clear that if the length of the pattern is [and that of the text is m, then the simple method of
trying every possible position of the pattern within the text will use mi comparisons.

The base form of the problem is

result — ViE(l,..., 8" }Sigj—1=5%

min
{€{1,...|SI=—|8)
This form requires O((|S)(]S'])) time. TRANSCONS requires O((}S!)(|S')) processors to solve the
problem in O{log((!S!)(|S"))) time.

Replacing a Vv ... used as a boolean by an A, we get

result — min A Siqjmy =8

§€{1md SI—15"1) [,-eu,..m} e ’]

Virtualisation around both the A and the V... yields the two-dimensional array which we wiil
call equal.

ARRAY equal;;,j€{1,...,18']},4€{j,...,IS|—|S" + j}
VJ E{lr ey ‘S'I}: i E{J: ey ls'—'s”l + J} do
equal; — S; =5}

result — min A equal; 4

1€{1,....|SI—|8"} [j €(1,....{8'I} "’]
produces a parallel structure in which chains will be created in two mutually orthogonal directions
corresponding to the two dimensions of equal (to distribute § and S’ characters), and along eack
45° diagonal (to collect information for the A ... operation).

There will be three collections of trees. One will be “borisontal” and a second “vertical” in the
lattice of leaf processors. These sets derive from the distribution problem inherent in this approach
to pattern matching. A third collection of trees is diagonal. Its source is one of the census problem
represented by the A of the specification. There is another tree conpecting the root nodes of the
diagonal trees; it derives from the min census function.

§8 Conclusions

In this paper we have explored the problem of communication among s large number of processors
when the nature of the problem is such that either large amounts of dats must be summarized in
a single processor, small amounts of data must be distributed among many processors. We have
also explored combinations of these techniques. By design, TRANSCONS is able to combine these
techniques and others to produce efficient parallel structures {from high-level specifications.

We have also explored some of the efficiency issues that must be considered. A systolic array can
be the best parallel structure for one of these problems. Advanced versions of TRANSCONS detect
these cases and synthesise that better implementation.

We conclude that the probiem of producing efficient paraliel structures for the class of problems
discussed in this paper is amenable to automation through the use of a transformational system.
We are now completing the design of and implementing TRANSCONS, a testbed for these techniques
and (hopefully) a practical result when completed.

Technical Appendix

§A.1 Description of the PROCESSORS Statement

The concurrent V language includes s PROCESSORS statement to specify concurrency.

Apy part of the PROCESSORS statement except the processors definition clause can be made
conditional (evaluable at “compile time®). The HAS clause describes data that a given processor is
responsible for. The HEARS clause defines “wires® that can be used to receive signals from other
processors. The USES clauses stiached to a given HEARS clause define data that are expected to
arrive on the corresponding wire. This is usefu! to detect groups of wires that allow a signal to
propagate from one processor to another one that is pot directly connected to it, and it heips to

define the internal program of that processor by defining an allocation of space in an internal table
associated with that wire.

The exampie below is 3 PROCESSORS statement. It describes a family of processors named P
that comprises half of a square array, cut along a main diagonal. Each processor P, ,, in this family
HAS (is responsible for computing) an array element A;,,. The processors along one of the edges
of the original square HEAR (receive a connection from) a processor named Q@ (which is a family
containing one element) because the /*® element of that edge USES (needs the value of) array element
vi. Similarly, P, ., HEARS P; m—~3 because it USES 4; ; forany 1 € k < m—1. We call the USES
clause(s) attached to a HEARS clause the motivetien(s) for that EEARS claugse.

Observe that the processors as nodes and the HEARS ciauses as edges constitute a graph. If »
processor HEARS another processor for a USE of a value there must be a path from the processor
that HAS that value to the processor that USES it, and the last edge of that path must be the
HEARS clause attached to the USES clause.

PROCESSORS Pyl < m < 1,1 <! £ n—m -+ 1HAS A/
if m==1 then HEARS @ (USES v;)
2 < m < nthen HEARS P,y (USES Ajp,i < & € m—1)
2 < m < nthen HEARS P m—) (USES Ajypm—si,1 < k < m—1);

§A.2 Transformations

Suppose we start with the following specification of a broadcast problem:

A.2. TRANSFORMATIONS 13

INPUT ARRAY a,,7€{1,...,[}
INPUT ARRAY b,k €{1,...,n}
OUTPUT ARRAY ¢, ke{l,...,n}
ARRAY sinternaly, b E{L,...,n}
VkeE{l,...,n} do

internaly, ~— b
vke(l,...,n} do

VIE(l,...,1) do

tnternaly — internaly + 4,

Vk€E{l,...,n} do

¢ — internal,

To apply section 3 we have to know:

» that we indeed bave a chain, i.e. that there is a first processor, s last processor, and a unique path
from the drst to the last that includes all of the processors that we claim are in the chain.

» That we have a function, F:processorindices — integers, that linearizes the collection of proces-
sors properly. F(ig)==0 where ¢p is the index of the first processor in the chain, and F(a)=F(b)-+1
if processor & directly HEARS processor b in the chain. !f there are many coexisting non-
overlapping (parallel) chains F must produce muitiple linearisations, i.e. F: processor indices —
integer X vector so that F(ig)={((0, vector)) if ig is the index of the first processor in any
chain, F(a)=((s,V)) and F(d)={(7,V)) is true iff processors @ and b are in the same chain, and
Fla)={((s,V)) and F(d)==({s 4+ 1, V)} is true iff processor a directly HEARS processor b in the
chain.

* F has an inverse. (This allows us to compute the processors given their places in named chains.)

®» We can enumerste the chains, i.e. we can write an enumeration that gets all V such that
F={(0, V) exists.

» Given V, it’s possible to determine how high ¢ gets such that {{s, v}) is in the range of F for valid
processor id's.

In terms of the notation we use for parallel structures, this is performed using the following steps:

» Build a new PROCESSORS statement declaring that family P/ mentioned below. It needs to use
the domain fAnding function described in the last group of items. It HAS the values desired by
the chain.

» Provide this new PROCESSORS statement with a chain connecting the nodes in linear order.
This will certainly be possible; the first part of the processor index exposes the linearity explicitly.

» Cut the chain between n-sized clusters of nodes in the chain, unless there is another need for these
links. This can be accomplished in the following manner:

» The HEARS clause of the chain has a USES clause or clauses referring to the values that
are being passed down the chain. If we need a parallel structure that uses fewer nodes (see
discussion below) attach a condition to the uses clause(s) for these values that inhibits them for
processors with index s for which F(a)==((s, V'}) and i is s multiple of n. If a straight balanced
tres is acceptabdle, eliminate the uses clause(s) completaly. It is only reasonable to use the “fewer
nodes® parallel structure when n==2.

» Fabricate s new HEARS clause that hesrs a processor P, /n,v for all processors meeting the
above condition. P’ is s new family. Let this HEARS clause have s USES clause that uses the
value(s) described above.

» Attach conditions to the chain’s HEARS clause that inhibits HEARing if none of the conditions
on any of its USES clauses is active. (This will eliminate a wire if the only purpose of the chain
was its bucket brigade function.)

* The first processor of each chain has to HEAR the same processor that was formerly HEARd by
the first processor of the original chain.

P repest a3 NecesIary.

B i XX

TBCHNICAL APPENDIX 14

The implementation of this transformation in TRANSCONS rules is as follows:

(rale Halve-Chain () transform
so’PROGRAM
A Old-Ps:'PROCESSORS PP(bounds) vary sters has AA(bounds?) iters?2 ;
it P(bounds) then HEARS PP(F(bounds))(USES BB(yy));

Old-Ps € »»
(THEOREM ((F(A)=F(B)) = A=B)) ; 1-1
{THEOREM ((F(A)=B) = A=F'(B))) ; has inverse
(THEGREM ((G(i,V)=A) = G(s + 1,V)=F(A))) ; linearizable
(THEOREM ((G(i,V)=G(j,W)) =2 i=5 A V=W)) ; linearisationisl-1
{TREOREM (P(A) & 3VI|G(0,V)=A)) ; sad startsfrom 0
(THEOREM ((P(G(0,V)) = P(G(1,V)))) ; thechains each have
; two nodes
(THEOREM (A=G(H(A)))) ; linearization has inverse
var € bounds = ~(FREEIN var j5) ; diflerent processors all
; want the same info
Newnodes = (GENSYM 'NODE) ; we'll want to create the new chain
New-Ps:'PROCESSORS PP(bounds) vary iters has 4A(bounds2) itera2;
i P(bounds) then HEARS Newnodes(|(H(BOUNDS)(1}/2), H{BOUNDS)(2..)})
(USES BB(55));
. ; lets cut the links in the old chain and
; forge links from the new one to the old
; one’s nodes
A Newer-Ps:'PROCESSORS Newnodes(nbounds) vary
sters[boundsmathrel\G(nbounds)|&ODDP(nbounds(l))
HASO;
if nbounds(l) > 0
then HEARS Newnodes(ndounds(l)—2, nbounds(2:...))
(USES BB(j5))’ ; aund build the pew chain

>>>>2>>>

> > > >

-
Old-Ps g »»
A New-Pag e
A Newer-Ps€os
)

The conditions on correctness are checked by the THEOREM assertions.

The other option discussed in that section, the use of the next-to-the-leaves nodes to pass data and
compute simuitaneousiy, requires different rules, shown below:

Rules for THIS changse have been omitted for brevity.

§A.3 Creation of a Systolic Structure for Broadcast

We can synthesise a systolic paralle]l structure from the base form of the broadcast specification
by assigning a single processor to each recipient of the broadcast, for each such processor assigning
a column of processors so one is svailable for each stage of the broadcasting, and then combining
disgonal sets of processors into new, single processors ip a manner that will be detailed below. We
start with:

INPUT ARRAY a,5 €(1,...,1}
INPUT ARRAY by, k€{L,...,n}
OUTPUT ARRAY ¢, k€{1,...,n}
ARRAY internaly, kE(1,...,n}
VEE(L,...,n} de

e =

A-3. CREATION OF A SYSTOLIC STRUCTURS FOR BROADCAST 15

internaly — b,
VEE(], . ..,n} do
viell,...,0) do
internal, «— internal; + a;
Vke{l,...,n} do
2y ~ internaly

as the virtualization step, we perform a processor expansion, create a chain along the k axis of C'
using rule A6, and we have:

INPUT ARRAY a;,5€{1,..., 1}
PROCESSORS PA...
INPUT ARRAY b, k€(1,...,n}
PROCESSORS PB...
OUTPUT ARRAY ¢;, k€{l,...,n}
PROCESSORS PC...
PROCESSORS Pinternal, ,k€{1,...,n},v€{0,...,{} HAS internal), ,
¥k < nthen HEARS Pinternal},,,(USES 1,,
ffk=n A v < !then HEARS Pinternal, , _,(USES a))
ffk=n A v=|then HEARS PA(USES a;)
fv=0 A k > 1then EEARS Pinternal)_, o(USES b,)
¥ v==0 A k=1 then HEARS PB(USES },)
fv > 0then HEARS Pinternal} ,_,(USES internal, ,_,)
ARRAY internal) k€{(1,...,n},v€{0,..., 1}
(inelude in Pinternal} o:)
internall, o — by
(5 > Oineclude in Pinternal) ;)
internal, ; «— internal} ;_, — o
(include in Pinternal) ;)
¢ — internal), |

We applied certain techniques of [King-88] once more than necessary to achieve the “countercurrent”
effect in which the values fiow in opposite directions. This is necessary to make the virtualisation
and aggregation work. It also shows the importance of user guidance.

We then aggregate by identifying Pinternal, j = Pinternal +4,j=~5 Where both exist.
We get

INPUT ARRAY a,,5€{1,...,1}
PROCESSORS PA...
INPUT ARRAY b, k€{1,...,n}
PROCESSORS PB...
OUTPUT ARRAY ¢, k€{l,...,n}
PROCESSORS PC...
PROCESSORS Pinternall,, 3v€{0,...,[}ik'=v + kVEkE(l,...,n}
HAS internaly . k€{1,...,n},
”E{ol"'l"}l
M=k + v
& < n -+ (then HEARS Pinternall, . ,(USES ay,v€(1,...,{})
£k > —Ithen HEARS Pinternall, _,,(USES 3y, k€{l,...,n})
(USES internal), ,

ke{l,...,n},
"E{°:'~'v"}l
M—la=k + v

ARRAY internal} ,k€{1,...,n},v€E{C,..., 1}
(Imelude in Pinternall, |k’ €{1,...,k):)

TBCHNICAL APPENDIX

internally o — by,

(include in Pinternalll, Ik'=k + vik€{1,...,n},vE{},...

internall, ;, —tnternal) ;_, —a;
(include in Pinternallik'=k + llk€’l,...,n})
cx — internal),

. This is the systolic array given in the section.

[AKS-83]
(Bateher-88]
[Fieb-83)
(GalPaul-83]

[HAMS-83]

(Kant-79]

[King-83]

[KingBrown-83]

[KungLel-76)
(LadFish-80)

[Leighton-81)

{LipVal-81]

[Paige-79!
[ReifVal-82]

[Sehwarts-80;

a1

e e bt a5 5 e SR S8

references

M. Ajtai, J. Komlés and E. Szemerédi “An O(niogn) Sorting Network”
Proceedings of the 15 ACM Symposium on Theory of Computing, pp. 1-9, 1983

K. Batcher *Sorting Networks and their Applications® AFJIPS Spring Joint
Computer Conference, pp. 307-814, 1968

Faith E. Fich “New Bounds for Parsllel Prefix Circuits® Proceedings of the 15tb
ACM Symposium on Theory of Computing, pp. 100-109, 1983

Z. Galil and W. Paul “An Efficient General-Purpose Parallel Computer® Journal
of the ACM, vol. 30 #2, pp. 360-387, April 1983

P. Hochschild, E. W. Mayr, and A. Siegel “Techniques for Solving Graph
Problems in Parallel Environments® Proceedings of the 2{*® Symposium on
Foundations of Computer Science to appear November 1983

Elaine Kant “Efficiency Considerations in Program Synthesis: A Knowledge-
Based Approach” , Ph. D. Thesss, Department of Computer Science, Stanford
Unsveraity, 1979

R. King “Research on Synthesit of Concurrent Computing Systems”®
Proceedings of the 10*® Symposium on Computer Architecture, pp. 39-46, 1983

R. King and T. Brown “Proposal for Research On Automatic Synthesis
of Tree-Structured Concurrent Computing Systems® , Kestrel Tech Report
#KES.L.83.1, 1983

H. T. Kung and Charles E. Leiserson “Systolic Arrays for VLSI® Sparse Matrsz
Proceedings, 1978

R. Ladner and M. Fischer “Paralle] Prefix Computation® Journal of the ACM,
vol. 87 #4, pp. 891-838, 1980

F. T. Leighton “A Layout Strategy for VLSI Which is Provably Good"

Proceedings of the 14** ACM Symposium on Theory of Computing, pp. 85-97,
1982

R. J. Lipton and J. Vaides “Census Functions: an Approach to VLSI Upper
Bounds® , Proceedings of the 218 [EEE Symposium on the Foundations of
Computer Science, pp. 13-22, 1981

R. Paige “Expression Continuity and the Formal Differentiation of Algorithms®
Technical Report # 15, Courant Institute, New York, pp. £69-658, 1979

J. Reif and L. Valiant “A Logarithmic Time Sort for Linear Sise Networks” ,
Harvard Tech Report # TR-13-88, 1982

J. Schwartz “Ultracomputers” ACM TOPLAS, vol. £ #4 pp. 484-521, October
1980

