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The time-dependent surface current density waveforms at various points on the
surface of a perfectly conducting sphere illuminated by a plane electromagnetic wave ar(
presented. The incident plane wave has an impulsive or shock-type time dependence.I
Currept density waveforms in the E-plane (strong creeping wave) and H-plane on both the
-*lit and shadowed sides of the sphere are shown. On the Illuminated side of the
sphere, removal of the Kirchhoff or physical optics approximation for the surface
current density permits a detailed examination of the deficiencies of this approximatil
for short times (high frequencies). From these results the form of a first order
correction to the Kirchhoff current is suggested. On the shadowed side of the sphere,
the changing character of the current waveform is noted.
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I. INTRODUCTION

Development of the impulse response concept in 3-dimensional

electromagnetic scattering problems [1,21 was materially aided by a

Fourier synthesis procedure whereby harmonically related complex

scattering data were used to synthesize approximate far-zone canonical

response waveforms (2,3,4,5]. The same procedure perm-its one to generate

the time-dependent surface current density waveforms on a scatterer or

radiator. A comparison of Fourier synthesis and space-time integral

equation calculations has been made[6]. Both procedures have an inherent

resolution limitation dictated either by a finite summation (Fourier

synthesis) or a Gaussian pulse excitation (space-time integral equation),

but it is not correct to suggest that an infinita summation [7) or

equivalently an impulsive excitation must be used. However, some care

must be exercised in interpreting singularities and/or jump

discontinuities particularly if they occur simultaneously.

Impetus for this report stems from a depolarization correction to

physical optics derived by Bennett [8] and utilized by Boerner [9]. we

show that even for an object where no depolarization occurs (the

conducting sphere), the form of a basic correction to the Kirchhoff

current can be deduced. It is suggested that similar first order

corrections will improve the Kirchhoff approximation for a number of

d4fferent object geometries.
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A. Surface Current Density Waveform

Hie series calculations of the tangential magnetic field and radial

electric field at the surface of a conducting sphere of radius a imersed

in an incident plane wave have been made for sphere circumferences in

wavelengths of 0.2 (0.2)20.0. Locations on the sphere surface in both

the E-plane and H-plane for theta angles of 0 (15) 180 degrees were used

with 0 degrees cn-responding to the specular point. The real,

time-dependent surface current density waveforms synthesized from these

%A ,a am shown in Figures 1, 2 and 3. Figure 1 combines the E-plane

(positive) and H-plane (negative) waveforms on the illuminated side of

the sphere. The abscissa scale is in units of transit time for the

sphere diameter. On the illuminated side of the sphere, the weighted

quasi-impulses at the origin of each waveform illustrate the resolution

obtained (approximately o,75a). On the illuminated side of the sphere,

the H-plane waveforms have a sign reversal. On the illuminated side of

the sphere, the current density is primarily impulsive; details for short

times are best seen after the Kirchhoff approximation for the current is

removed. There is clear evidence of the creeping wave contributions.

The surface current density waveforms on the shadowed side of the sphere

are shown in Figure 2 (E-plane) and Figure 3 (H-plane). Note that the

ordinate scales for H-plane are not constant. On the shadowed side of

the sphere note that the character of the current density at the onset of

the waveform is still apparently Impulsive near the shadow boundary

2
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gl(theta less than 120 degrees) in the H-plane but not in the E-plane.

There is a strong creeping wave contribution in the E-plane and some

evidence of a very weak creeping wave contribution in the H-plane.

In Figure 4 the surface current density waveforms on the illuminated

side of the sphere are shown after the Kirchhoff approximation to the

current density has been removed. The H-plane waveforms are dashed. It

is very evident that as the observation point progresses from the

specular point to the shadow boundary, the Kirchhoff approximation becomes

progressively too large in the E-plane and too small in the H-plane. At

a given angle, the magnitude of the errors in the E-plane and H-plane are

approximately equal. This would seem to imply that on a cut at 45

degrees from the E-plane and H-plane the Kirchhoff approximation to the

current may be quite good even near the shadow boundary. In the E-plane

at theta equal 60 degrees and 75 degrees one can also clearly discern two

distinct creeping wave contributions, both launched from the shadow

boundary and delayed from the waveform onset by different travel times on

the sphere surface.

B. Correction

Based on the results shown for the conducting sphere, the

following formulas for correcting the physical optics estimates for the

induced currents are suggested for smooth (no edge) scatterers. In the

E-plane modify the physical optics currents by the multiplicative factor

€3
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C1 -K sine] . (1)

In the H-plane modify the physical optics currents by the mltiplicative

factor

[l+Ksin e  
, (2)

where 0 Is the angle between the outward normal to the surface of

scatterer and the backscatter direction. The H-Plane correction becomes

infinite at the shadow boundary (8-90') but when multiplied by the

physical optics current estimate (cose factor) yields a finite current

estimate. The specular error (exact minus physical optics) before cor-

rection is shown in Figure 5. Figures 6 and 7 show the effect of the

correction term for values of the constant K of 0.2 and 0.1, respective-

ly. For the simple form of the correction suggested, a value K near

0.1 appears optimum. Other forms for the correction, possibly exponen-

tial, may suggest themselves to the reader. Our purpose here, however,

was to show that simple corrections are possible.

C. Conclusions

It has been demonstrated that relatively simple formulas can be -

developed for correcting the p sical optics estimates of the current

densities induced on a conducting spherical scatterer. It has also been

suggested that similar simple corrections could be made for oher

"smooth" scatterers. It is noted that the corrections Indicated here are

not related to depolarization properties of the scatterer.
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The surf dce current density waveforms on the shadowed side of the

sphere have been included here for the possible benefit of other

researchers. The physical optics estimate has long been a favorite

direct scattering solution for Inverse scattering because the estimate

can be generally related to a target cross sectional area function on the

illuptinated side of the scatterer. A similar relationship (general) for

the shadowed side of the scatterer would greatly improve imaging

techniques based on the physical optics estimate.
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Figure 6. E-plane (solid) and H-plane (dashed) error for specular
term (exact minus corrected physical optics, value of
K constant is 0.2) for surfate current density induced
by an impulsive plane wave on a perfectly conducting
sphere.
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term (exact minus corrected physical optics, value of
K constant is 0.2) for surface current density induced
by an impulsive plane wave on a perfectly conducting
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