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I. INTRODUCTION

Development of the impulse response concept in 3-dimensional
electromagnetic scattering problems [1,2] was materfally afded by a
rourier synthesis procedure whereby harmonically related complex
scattering data were used to synthesize approximate far-zone canontcal
response waveforms [2,3,4,5]. The same procedure peraits one to generate
the time-dependent surface current density waveforms on a scatterer o
radiator. A comparison of Fourier synthesis and space-time integral
equation calculaticns has been mad2[6]. Both procedures have an inherent
resolution Timitation dictated either by & finite summation (Fourier
synthesis) or a Gaussfan pulse excitation (space-time integral equation),
but it is not correct to suggest that an infinita summation [7] or
equivalently an impulsive excitation must be used. However, some care
must be exercised in interpreting singularities and/or jump
discontinuities particularly if they occur simultaneously.

Impetus for this report stems from a depolarization correction to
physical optics derived by Bennett [8] and utilized by Boerner [9]. We
show that even for an object where no depolarization occurs (the
conducting sphere), the form of a basic correction to the Kirchhoff
current can be deduced. 1t is suggested that similar first order
corrections will improve the Kirchhoff approximation for a number of

cifferent object geomatries.
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A. Surface Current Density Waveforms

Mie series calculations of the tangential magnetic field and radial
electric field at the surface of a conducting sphere of radius a immersed
in an incident plane wave have been made for sphere circumferences in
wavelengths of 0.2 (0.2)20.0. Locatfons on the sphere surface in both
the E-plane and H-plane for theta angles of 0 (15) 180 degrees were used
with O degrees cn-responding to the specular point. The real,
time-dependent ;urface current density waveforms synthesized from these
Gaid are shown in Figures 1, 2 and 3. Figure 1 combines the E-plane
(positive) and H-plane (negative) waveforms on the illuminated side of
the sphere. The abscissa scale is in units of transit time for the
sphere diameter. On the {lluminated side of the sphere, the weighted
quasi-impulses at the origin of each waveform illustrate the resolution
obtained (approximately o0.75a). On the i{lluminated side of the sphere,
the H-plane waveforms have a sign reversal. On the illuminated side of
the sphere, the current density is primarily impulsive; details for short
times are best seen after the Kirchhoff approximation for the current is
removed. There is clear evidence of the creeping wave contributions.
The surface current density waveforms on the shadowed side of the sphere
are shown in Figure 2 (E-plane) and Figure 3 (H-plane). Note that the
ordinate scales for H-plane are not constant. On the shadowed side of
the sphere note that the character of the current density at the onset of

the waveform is still apparently i{mpulsive near the shadow boundary
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(theta less than 120 degrees) in the H-plane but not in the E-plane.
There is a strong creeping wave contribution in the E-plane and sowme
evidence of a very weak creeping wave contribution in the H-plane.

In Figure 4 the surface current density waveforms on the {1luminated
stde of the sphere are shown after the Xirchhoff approximation to the
current density has been removed. The H-plane waveforms are dashed. It
is very evident that as the observation point progresses from the
specular point to the shadow boundary, the Kirchhoff approximation becomes
progressively too large in the E-plane and too small in the H-plane. At
a3 given angle, the magnitude of the errors in the E-plane and H-plane are
approximately equal. This would seem to imply that on a cut at 45
degrees from the E-plane and H-plane the Kirchhoff approximation to the
current may be quite good even near the shadow boundary. In the E-plane
at theta equal 60 degrees and 75 degrees one can also clearly discern two
distinct creeping wave contributions, both launched from the shadow
boundary and delayed from the waveform onset by different travel times on

the sphere surface.
B. Correction

Based on the results shown for the conducting sphere, the
following formulas for correcting the physical optics estimates for the
induced currents are suggested for smooth {no edge) scatterers. In the

E-plane modify the physical optics currents by the multiplicative factor

Sim e r i s e s — - . _—— ————— -
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L

{1 -« sin8] . (1)

In the H-plane modify the physical optics currents by the multiplicative
factor

1 +x ;%;;_] , (2)
where 8 is the angle between the outward normal to the surface of
scatterer and the backscatter direction. The H-plane correction becomes
infinite at the shadow boundary (6=90°) but when multiplied by the
physical optics current estimate (cosé factor) yields a finite current
estimate. The specular error (exact minus physical optics) before cor-
rection is shown in Figure 5. Figures 6 and 7 show the effect of the
correction term for values of the constant K of 0.2 and 0.1, respective-
1ly. For the simple form of the correction suggested, a value K near
0.1 appears optimum. Other forms for the correction, possibly exponen-
tial, may suggest themselves to the reader. Our purpose here, however,

was to show that simple corrections are possible.
C. Conclusions

It has been demonstrated that relatively simple formulas can be
developed for correcting the pt sical optics estimates bf the current
densities induced on a conducting spherical scatterer. It has also been

suggested that similar simple corrections could be made for c.her

not related to depolarization properties of the scatterer.

“smooth" scatterers. It is noted that the corrections indicated here are
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The surface current density waveforms on the shadowed side of the
sphere have been included here for the possible benefit of other
researchers. The physical optics estimate has long been a favorite
direct scattering solution for 1nverse‘scatter1ng because the estimate
can be generally related to a target cross sectional area function on the
{Mluminated side of the scatterer. A similar relationship (general) for

the shadowed side of the scatterer would greatly i{mprove imaging

techniques based on the physical optics estimate.
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Figure 1. E-plane (positive) and H-plane (negative) surface current
density waveforms induced by an impulsive plane wave on
a perfectly conducting sphere. Illuminated side of sphere.
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E-plane (positive) and H-plane (negative) surface current

density waveforms induced by an impulsive plane wave on a

INuminated side of sphere.

perfectly conducting sphere.

Figure 1.
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{mpulsive plane wave on a perfectly conducting sphere.
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impulsive plane wave on 2 perfectly conducting sphere.
Shadowed side of sphere.
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Figure 4. E-plane (solid) and H-plane (dashed) surface current density
waveforms induced by an impulsive plane wave on a perfectly
conducting sphere arfter the physical optics approximation
for the surface current density has been removed.

ITiuminated side of sphere. J
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E-plane (solid) and H-plane (dashed) surface current density
waveforms induced by an impulsive plane wave on a perfectly
conducting sphere after the physical optics approximation
for the surface current density has been removed.
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Figure 4,
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E-plane (solid) and H-plane (dashed) surface current density
waveforms induced by an impulsive plane wave on a perfectly
conducting sphere after the physical optics approximation
for the surface current density has been removed.
INluminated side of sphere.
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Figure 4.
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E-plane (solid) and H-plane (dashed) surface current density
waveforms induced by an impulsive plane wave on a perfectly
conducting sphere after the physical optics approximation
for the surface current density has been removed.
IMuminated side of sphere.
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Figure 4. E-plane (solid) and H-plane (dashed) surface current density :-
waveforms induced by an impulsive plane wave on a perfectly Y
conducting sphere after the physical optics approximation
for the surface current density has been removed.
ITluminated side of sphere.
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