Coherent anti-Stokes Raman scattering (CARS) spectroscopy was used to probe the nitramine LOVA flame, burning unconfined in the air. Several spectral regions were scanned in an attempt to document the transient species of the RDX combustion for use in determining decomposition mechanisms.
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Background</td>
<td>1</td>
</tr>
<tr>
<td>Results</td>
<td>2</td>
</tr>
<tr>
<td>Discussion</td>
<td>4</td>
</tr>
<tr>
<td>Conclusion</td>
<td>6</td>
</tr>
<tr>
<td>References</td>
<td>7</td>
</tr>
<tr>
<td>Distribution List</td>
<td>17</td>
</tr>
</tbody>
</table>
INTRODUCTION

Coherent anti-Stokes Raman scattering (CARS) spectroscopy has become one of the leading nonlinear spectroscopic techniques for non-intrusive probing of molecular species in high temperature or combustion systems (refs 1 and 2). It is particularly well suited to diagnostics in hostile environments, and is generally superior to conventional techniques since it can be used to probe systems which, like propellant flames, may be transient, incandescent, and particle-laden. To date, such systems as internal combustion engines (refs 3 and 4), jet engine afterburners (ref 5), intensely sooting flames (ref 6), and gun propellant flames (ref 7) have all been probed with CARS.

The main thrust of the CARS diagnostics in those studies has been an evaluation of the post-flame zone by measurement of temperature and concentration of the equilibrium products; i.e., N₂, CO, CO₂, H₂, and H₂O. Thus, these flames have been characterized through spatial temperature and concentration mapping which has resulted in a more complete understanding of macroscopic flame phenomena. CARS capabilities can be directed towards an alternative end; that is, for use as a tool for evaluating chemical mechanisms of combustion or molecular reaction pathways. Specifically, the mechanism of a chemical reaction during combustion decomposition can be developed from information derived from CARS experimentation over a wide spectral range through the use of several laser dyes and scanning of a 1500 cm⁻¹ range, the CARS spectral regions of almost every diatomic and triatomic molecule of interest in combustion reactions can be covered. In this way the transient species of the combustion decomposition reaction can be documented through a CARS probe of the reaction zone. A mechanism for RDX decomposition can, in turn, be developed—based on the transient species that can be seen with CARS and on their relative concentrations.

BACKGROUND

The theoretical background of CARS and its experimental applications have been extensively reviewed (refs 1 through 6). CARS is based on the nonlinear response of a homogeneous medium upon which waves ω₁ and ω₂ are incident and on an oscillating polarization generated by the response. The lowest order nonlinearity is the third order susceptibility χ(3) (ω₁, ω₂, ω₃) which generates a frequency component of the polarization at ω₃ = 2ω₁ - ω₂ by the process of three wave mixing (ref 8). Vibrational resonant enhancement of this three-wave mixing process occurs if the difference between the pump laser beam (ω₁) and the Stokes laser beam (ω₂) is equal to a Raman-active vibration of the molecule.
under study, thus generating the CARS signal. The observed CARS spectrum is proportional to the square of the modulus of the third order susceptibility, \(\chi^{(3)} \), which is the sum of a resonant term, \(\chi_r \), related to a nuclear displacement and a non-resonant term, \(\chi_{nr} \), related to electronic displacement:

\[
\chi^{(3)} = \chi_r + \chi_{nr}
\]

\(\chi_r \) is the sum of a real \(\chi' \), and an imaginary component, \(\chi'' \), such that,

\[
(\chi^{(3)})^2 = \chi'^2 + 2\chi'\chi_{nr} + \chi''^2 + \chi_{nr}^2
\]

\(\chi' \) and \(\chi'' \) display dispersive and resonant behavior, respectively, regarding the detuning frequency, \(\omega_i = \omega_j - (\omega_i - \omega_0) \), where \(\omega_j \) is the frequency of the Raman resonance. As the concentration of the resonant species is lowered, the cross term \(\chi'\chi_{nr} \), which is dispersive, modulates the shape of the spectrum.

The CARS signal at \(\omega = 2\omega_2 - \omega_1 \) reflects the rovibrational Boltzmann distribution of the molecule, from which the species temperature and concentration can be deduced. This requires a thorough knowledge of both the spectroscopic parameters of the species of interest (the contribution through \(\chi_r \)) and the species composition of the gas phase, which contributes through the non-resonant susceptibility.

Since the gas composition is not known and, indeed, is one of the experimental goals, extensive iterative fitting procedures will be necessary to determine temperature and composition precisely. However, prior to full analysis, the information uncovered in this experiment (for those species seen) can be used to make qualitative and relative temperature and concentration judgments and can be related to prospective decomposition reaction mechanisms. An explanation must be made, as well, in terms of proposed mechanisms for those species for which no CARS signals were seen.

In this work, nitramine propellant was burned in open air. The nitramine propellant investigated was a CAB/NC/ATEC LOVA. Its formulation was 4% nitrocellulose, 57% RDX (NAVORDST fine grind), 19% RDX (class 5), 12% cellulose acetate butyrate, 7.6% acetyl triethyl citrate, and 0.4% ethyl centralite. The composite solid grain, a 14-mm by 14-mm cylinder of mass 3.2 gm, was probed at the surface as well as 6-mm above the surface. The CARS apparatus was identical to that reported earlier for model propellant flames (refs 9 and 10). Folded BOXCARS (ref 11), which allows for a spatial resolution of approximately 150 microns, with respect to the axis normal to the propellant surface, was carried through on both a single-shot and an averaged 10-shot basis.

RESULTS

Data from four spectral regions are shown in figures 1 through 4. A fifth region was also studied but no spectrum for this region is shown. Table 1 lists the most important combustion species predicted from nitramine decomposition, together with the theoretical or previously observed spectral frequency of the CARS signal and a summary of the observations of this work.
Briefly, CARS signals were obtained in the dark zone (the region between the nitramine surface and the beginning of the luminous zone, including the reaction zone) from CO, CO$_2$, H$_2$ (pure rotational CARS), HCN, and N$_2$. In addition, the CARS background modulation, typical of low concentration, was seen for NO, O$_2$, CH$_2$O, and CH$_4$. At a height of 6-mm above the propellant surface, only the former five species are seen.

It can empirically be stated that the dark zone, near the nitramine surface, is indeed the region being probed in this work. First, the vaporized carbohydrate matrix acts as a diluent gas, effectively creating an RDX vapor-phase solution and thereby extending the dark zone. Second, only low concentrations of N$_2$ and O$_2$ are seen at the surface in the CARS spectra, suggesting that interferences from the ambient atmosphere were small. Most important, the spectra seen at the surface for N$_2$, CO, and HCN all appear significantly cooler than thermochemical calculations would predict for final products (HCN is not a predicted final product). Such low temperatures—probably below 1000 K—would appear only in the dark zone near the solid surface, and not in the flame zone where the completed combustion products are present near the final flame temperature.

Figure 1, (A), shows the CARS spectrum near $\Delta \nu = 2100$ cm$^{-1}$ near the nitramine surface. Strong CARS signals are seen in that region from H$_2$ (pure rotational S-(11,9) line), CO, and HCN (ν_1), all overlapped within 100 cm$^{-1}$. This spectral congestion leads to extensive species-to-species interferences, severely complicating any analysis. Moreover, since the background non-resonant susceptibility is not known, a quantitative treatment cannot at this point be undertaken. It is clear from this spectrum, especially in comparison to figure 1, (B), at 6-mm height, that there exists near the solid surface, significant concentrations of H$_2$, CO, and HCN, all apparently below the thermochemically predicted burning temperature of 2064 K. At 6-mm height above the surface, the HCN signal has diminished, and CO and H$_2$ are enhanced with respect to the background. Moreover, the temperature appears hotter at this point as the CO (2,1) hot band seems to have gained intensity relative to the CO (1,0) vibrational band.

The single-shot CARS region near $\Delta \nu = 2350$ cm$^{-1}$ is shown in figure 2. In figure 2, (A), at the grain surface, it is apparent from the background modulation that N$_2$ is present at not more than a few percent concentration. The lack of any significant hot band intensity shows that the N$_2$ temperature is well below the equilibrium burning temperature. Figure 2, (B), at a height of 6-mm, clearly shows increased N$_2$ concentration and temperature, with the non-resonant background accordingly suppressed.

Several important species show CARS resonances near $\Delta \nu = 1500$ cm$^{-1}$ at the grain surface [fig. 3, (A)]. The H$_2$ S-rotational line (7,5) appears at 1446 cm$^{-1}$, CO$_2$ (ν_1 vibration) is seen at 1387 cm$^{-1}$, and background modulations appear from low concentrations of CH$_2$O (ν_3, $\Delta \nu = 1501$ cm$^{-1}$), CH$_4$ (ν_2, $\Delta \nu = 1533$ cm$^{-1}$) and O$_2$ ($\Delta \nu = 1560$ cm$^{-1}$). In addition, the two peaks at 1406 and 1421 cm$^{-1}$ would make an attractive HCN (03'0 01'10 and 02'0 000 transitions, respectively)
assignment, but these transitions have been assigned at 1401 cm\(^{-1}\) and 1411 cm\(^{-1}\), respectively (ref 12). We cannot at present account for this discrepancy. At 6-mm height, the only obvious CARS signal is the intense pure rotational \(\text{H}_2\)-S (7,5) line.

The NO CARS modulation at \(\Delta\nu = 1876\) cm\(^{-1}\) can be seen in figure 4. That this is due to a signal from a low concentration of NO is apparent by careful calibration with room temperature NO. The modulation from the \(\text{H}_2\) (9,7) S-transition at \(\Delta\nu = 1809\) cm\(^{-1}\) is also apparent. This \(\text{H}_2\) line dominates the spectrum at 6-mm.

Also seen in this work was a broad shoulder near \(\Delta\nu = 1650\) cm\(^{-1}\) superimposed on the background non-resonant susceptibility signal. This could possibly be correlated with the N-O stretch in RDX, or with a fragment thereof.

DISCUSSION

The above data provides the first species documentation from non-intrusive, in-situ probing of the reaction zone of RDX composite combustion. Data of this sort and data from similar CARS experiments under alternative conditions, must be included in any future modelling attempts and in evaluating existing proposed RDX combustion mechanisms. To conform to the results of this work, these mechanisms must account for initial bond breaking leading to production of relatively high concentrations of HCN near the solid surface.

In an attempt to understand the mechanisms of decomposition, extensive studies were conducted of RDX decomposition under both thermal and combustion conditions. Most data to date have been derived from thermal decomposition studies. Experiments have been conducted with isotope labeling of RDX or HMX, with mass spectrometric analysis of thermal decomposition products, and with correlations of proposed reaction pathways with observed thermodynamic quantities. What has developed from these studies is a model (ref 13) whereby the burning of composite nitramine propellants is conceptualized into two distinct vapor-phase regions, a thin near-field region and an extended far-field region. Different reactions occur in each region. The primary RDX decomposition reactions are presumed to occur in the near-field, while the reactive products generated there (such as, it is thought, \(\text{CH}_2\text{O}, \text{NO}_2\), and \(\text{N}_2\text{O}\) undergo further second-order reactions to complete combustion products such as \(\text{H}_2\text{O}, \text{CO}, \text{CO}_2\), and \(\text{N}_2\) at final flame temperature. The heat from the near-field feeds back to drive the condensed phase processes and thus determines the burning rate. This feedback from the far-field reactions to the near-field and ultimately to the propellant surface results in a severe pressure dependence of the various reaction mechanisms.

Schroeder (ref 14) has reviewed HMX and RDX decomposition experiments and developed several critical conclusions based on thermal decomposition studies undertaken in several temperature ranges. In addition, he has discussed how decomposition mechanisms can change with changing temperature conditions, as a result of differences in activation energies of various reaction pathways. He postulates that two distinct decomposition reactions may be occurring, each with
its own temperature dependence. Specifically, at low temperatures (less than 600 K), the following gas phase reaction mechanism in which RDX initially decomposes to CH$_2$O + N$_2$O may be dominant:

$$(\text{CH}_2\text{NNO}_2)_3 + 3\text{CH}_2\text{O} + 3\text{N}_2\text{O}$$ \hspace{1cm} (3)

This may occur through HONO elimination and/or via the cyclic decomposition of the intermediate N-nitroformamine CH$_2$NNO$_2$.

Crossover to a high temperature reaction mechanism in the gas phase is thought to occur above about 600 K. Here cleavage of the initial N-N bond may be followed by the further decomposition of CH$_2$NNO$_2$ into H$_2$CN (and ultimately into HCN) and NO$_2$. Presumably this reaction becomes more important relative to formation of N$_2$O and H$_2$Cu as the temperature rises.

Price, et al (ref 15) also draw the conclusion of increased HCN production under more extreme temperature conditions, and offer two global reactions:

$$\text{RDX} + 4\text{CHN} + 4\text{HNO}_2$$ \hspace{1cm} (4)

$$\text{RDX} + 4\text{CHN} + 4\text{NO}_2 + 2\text{H}_2$$ \hspace{1cm} (5)

They conclude that competing condensed phase reactions must be treated in any successful model but that HCN production should be recognized as well in any combustion model.

The data of this work support a mechanism in which HCN is produced. In addition, no significant concentrations of N$_2$O have been seen in this work although its CARS spectrum has previously been seen in CH$_4$/N$_2$O flames (refs 16 and 17). Its presence is predicted by many of the models in which HCN is not proposed as a product. Only a low concentration of NO is seen, and no NO$_2$ at all was seen in the region of the 2v$_2$ vibration near 1500 cm$^{-1}$. In the NO$_2$ case, however, though the 2v$_2$ CARS signal was reported (ref 18), no CARS spectrum has been obtained in our laboratory even in a bulb filled with from 50 to 500 torr NO$_2$. For this reason, we cannot say that no NO$_2$ is present in the burning propellant. NO$_2$ has a visible absorption which might serve to enhance an alternative multiphoton process and overwhelm CARS. Schroeder (ref 14) has pointed out that NO reacts immediately upon formation, which would also interfere with CARS detection. In summary, NO was observed at low concentration and N$_2$O, if produced at all, would be present only at very low concentration. No judgment concerning NO$_2$ can be made at this time. HCN is present in relatively high concentration near the solid surface but decreases with distance above the surface. H$_2$Cu, CH$_4$, and O$_2$ are seen only at the solid surface (their concentrations are low). N$_2$ and H$_2$ are seen at low concentration and temperature near the propellant surface with both concentration and temperature increasing with distance above the surface. These results are consistent with mechanisms proposing HCN as a first or early product of RDX decomposition in the composite solid flame.

It should not be overlooked that most models stress the point that reaction mechanisms are highly pressure- and temperature-dependent. Whereas this experiment offers data derived from an actual combustion, these data are nonetheless
based on the moderately low pressure of 1 atmosphere. Higher pressures would compress the dark zone and make even a CARS probe substantially more difficult as a result of the spatial compression. Work is currently underway to attempt CARS measurements on propellants at higher pressures.

It is interesting to compare experimentally-derived temperature/concentration measurements with theoretical predictions. Using the Hirschfelder thermo-chemical data (ref 19) on the post-flame product gases of the propellant tested, a N\textsubscript{2} CARS spectrum (at a height of 20-mm above the propellant surface, in the post-flame region) can be compared to the theoretical temperature 2064 K and N\textsubscript{2} concentration of 21.6%. Whereas this work is still being carried through and the fit shown in figure 5 needs obvious refinement, it is nonetheless evident that there is substantial agreement between the theoretically-derived and CARS-derived temperatures and concentrations.

CONCLUSION

CARS has been used to probe the dark zone of a nitramine composite propellant. Several species were seen, most notably HCN, CO, N\textsubscript{2}, and H\textsubscript{2}. No N\textsubscript{2}O was seen in this work, although the CARS spectrum had been seen in model flames. These data are consistent with those models which propose HCN as a decomposition product. This information must be considered in future decomposition models.
REFERENCES

17. L. E. Harris, *Combustion and Flame*, to be published.

Table 1. Species of interest in nitramine decomposition

<table>
<thead>
<tr>
<th>Species</th>
<th>Standard Raman frequency (cm⁻¹)ᵃᵇ</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>N₂</td>
<td>2330</td>
<td>Low concentration observed at surface</td>
</tr>
<tr>
<td>N₂O (v₁)</td>
<td>2223</td>
<td>Not observed in this work</td>
</tr>
<tr>
<td>CO</td>
<td>2137</td>
<td>Strong CARS signal at surface</td>
</tr>
<tr>
<td>H₂ (S-11,9)</td>
<td>2131ᶜ</td>
<td>Strong CARS signal</td>
</tr>
<tr>
<td>HCN (v₁)</td>
<td>2087</td>
<td>Strong signal diminishes with probe height</td>
</tr>
<tr>
<td>NO</td>
<td>1876</td>
<td>Low concentration modulation observed</td>
</tr>
<tr>
<td>H₂ (S-9,7)</td>
<td>1809ᵈ</td>
<td>Strong CARS signal at 6-mm height</td>
</tr>
<tr>
<td>v₂</td>
<td>1556</td>
<td>Low concentration modulation observedᵉ</td>
</tr>
<tr>
<td>CH₄ (v₂)</td>
<td>1533</td>
<td>Low concentration modulation observed</td>
</tr>
<tr>
<td>CH₂O (v₃)</td>
<td>1503</td>
<td>Low concentration modulation observed</td>
</tr>
<tr>
<td>NO₂ (2v₂)</td>
<td>1500</td>
<td>Not observed in this work</td>
</tr>
<tr>
<td>H₂ (S-7,5)</td>
<td>1446ᶠ</td>
<td>Strong CARS signal</td>
</tr>
<tr>
<td>HCN (02¹0-000)</td>
<td>1411</td>
<td>Moderately strong at surfaceᵉ</td>
</tr>
<tr>
<td>HCN (03¹0-01¹0)</td>
<td>1401</td>
<td>Moderately strong at surfaceᵉ</td>
</tr>
<tr>
<td>CO₂ (v₁)</td>
<td>1388</td>
<td>Moderately strong at surface</td>
</tr>
</tbody>
</table>

ᵉ Observed frequency in this work differs by more than 5 cm⁻¹ with standard frequencies.

Figure 1. (A) The single-shot CARS spectrum at the nitramine surface and (B) the averaged CARS spectrum at a height of 6-mm above the nitramine surface in the region $\nu = 2100 \text{ cm}^{-1}$. At the surface, strong signals are seen from H$_2$, CO, and HCN whereas the HCN signal is diminished at 6-mm with respect to the CO or H$_2$.
Figure 2. (A) The single-shot CARS spectrum at the nitramine surface and (b) the averaged CARS spectrum at a height of 6-mm above the nitramine surface in the region $\Delta \nu = 2300$ cm$^{-1}$. At the surface, the low concentration N_2 signal is superimposed on the non-resonant background, but the N_2 signal increases as the probe position is raised.
Figure 3. (A) The single-shot CARS spectrum at the nitramine surface and (B) the averaged CARS spectrum at a height of 6-mm above the nitramine surface at the region $\Delta \nu = 1500$ cm$^{-1}$. Superimposed on the non-resonant background are CARS signals from CO$_2$, HCN, H$_2$, CH$_2$O, CH$_4$, and O$_2$. As the probe height is raised, only the pure rotational H$_2$ CARS signal is apparent.
Figure 4. The CARS signal in the $\Delta \nu = 1750 \text{ cm}^{-1}$ region at the nitramine surface. A background modulation due to NO is apparent near 1876 cm^{-1}.
Figure 5. N_2 CARS spectrum of LOVA nitramine propellant at a height of 20-mm above the propellant surface. The dots represent the experimental points while the solid line is the computed spectrum using the Hirschfelder values of temperature (2064 K) and N_2 concentration (21.6%) and species composition of post-flame gas.
DISTRIBUTION LIST

Commander
Armament Research and Development Center
U.S. Army Armament, Munitions and
Chemical Command
ATTN: DRSMC-TSS(D) (5)
 DRSMC-TDC(D), D. A. Gyorog
 DRSMC-GCL(D)
 DRSMC-LC(D), J. Frasier
 J. P. Picard
 DRSMC-LCA(D), T. Davidson
 DRSMC-LCA-G(D), J. Lannon
 D. Downs
 L. Harris (10)
 T. Vladimiroff
 A. Beardell
 Y. Carignon
 J. Fendell
 K. Aron (10)
 E. Petro
 DRSMC-LCE(D), R. Walker
 P. Marinkas
 C. Capellos
 F. Owens
 S. Bulusu
 F. Gilbert

Dover, NJ 07801

Administrator
Defense Technical Information Center
ATTN: Accessions Division (12)
Cameron Station
Alexandria, VA 22314

Director
U.S. Army Materiel Systems
 Analysis Activity
ATTN: DRXSY-MP
Aberdeen Proving Ground, MD 21005

Commander
Chemical Research and Development Center
U.S. Army Armament, Munitions and
Chemical Command
ATTN: DRSMC-CLJ-L(A)
 DRSMC-CLB-PA(A)
APG, Edgewood Area, MD 21010
Superintendent
Naval Postgraduate School
ATTN: Technical Library
 D. Netzer
 A. Fuhs
Monterey, CA 93940

Commander
Naval Ordnance Station
ATTN: Dr. Charles Dale
 Technical Library
Indian Head, MD 20b40

AFOSR
ATTN: J. F. Masi
 B. T. Wolfson
 D. Ball
 L. Caveny
Bolling AFB, DC 20332

AFRL (DYSC)
ATTN: D. George
 J. N. Levine
Edwards AFB, CA 93523

National Bureau of Standards
ATTN: J. Hastie
 T. Kashiwagi
 H. Semerjian
 M. Jacox
 K. Smyth
 J. Stevenson
Washington, DC 20234

Lockheed Palo Alto Research Laboratories
ATTN: Technical Information Center
3521 Hanover Street
Palo Alto, CA 94304

Aerojet Solid Propulsion Co.
ATTN: P. Micheli
Sacramento, CA 95813

ARO Incorporated
ATTN: N. Dougherty
Arnold AFS, TN 37389

Atlantic Research Corporation
ATTN: M. K. King
5390 Cherokee Avenue
Alexandria, VA 22314
Olin Corporation
New Haven Plant
ATTN: R. L. Cook
D. W. Riefler
275 Winchester Avenue
New Haven, CT 06504

Paul Gough Associates, Inc.
ATTN: P. S. Gough
P.O. Box 1614
Portsmouth, NH 03801

Physics International Company
2700 Merced Street
Leandro, CA 94577

Pulsepower Systems, Inc.
ATTN: L. C. Elmore
815 American Street
San Carlos, CA 94070

Rockwell International Corp.
Rocketdyne Division
ATTN: C. Obert
J. E. Flanagan
A. Axeworthy
6633 Canoga Avenue
Canoga Park, CA 91304

Rockwell International Corp.
Rocketdyne Division
ATTN: W. Haymes
Technical Library
McGregor, TX 76657

Science Applications, Inc.
ATTN: R. B. Edelman
Combustion Dynamics and Propulsion Division
23146 Cumorah Crest
Woodland Hills, CA 91364

Shock Hydrodynamics, Inc.
ATTN: W. H. Anderson
4710-16 Vineland Avenue
N. Hollywood, CA 91602

Thiokol Corporation
Elkton Division
ATTN: E. Sutton
Elkton, MD 21921
Thiokol Corporation
Huntsville Division
ATTN: D. Flanigan
 R. Glick
Technical Library
Huntsville, AL 35807

Thiokol Corporation
Wasatch Division
ATTN: J. Peterson
Technical Library
P.O. Box 524
Brigham City, UT 84302

TRW Systems Group
ATTN: H. Korman
One Space Park
Redondo Beach, CA 90278

United Technologies
Chemical Systems Division
ATTN: R. Brown
Technical Library
P.O. Box 358
Sunnyvale, CA 94086

 Battelle Memorial Institute
ATTN: Technical Library
 R. Bartlett
505 King Avenue
Columbus, OH 43201

Brigham Young University
Department of Chemical Engineering
ATTN: M. W. Beckstead
Provo, UT 84601

California Institute of Technology
Division of Aerospace Sciences
404 Karmar Lab
Mail Stop 301-40
ATTN: F. E. C. Culick
1201 E. California Street
Pasadena, CA 91125

Case Western Reserve University
Division of Aerospace Sciences
ATTN: J. Tien
Cleveland, OH 44106
Exxon Research and Engineering
ATTN: A. Dean
 M. Chou
P.O. Box 45
Linden, NJ 07036

Ford Motor Company
Research Staff
ATTN: K. Marko
 L. Rimai
Dearborn, Michigan 48120

Sandia Laboratories
Applied Physics Division I
ATTN: L. Rahn
 D. Stephenson
Livermore, CA 94550

Rensselaer Polytechnic Institute
Dept. of Chem. Engineering
ATTN: A. Fontijn
Troy, NY 12181

University of California,
San Diego
Ames Department
ATTN: F. Williams
P.O. Box 109
La Jolla, CA 92037

University of California
Dept. of Mechanical Eng.
ATTN: J. W. Daily
Berkeley, CA 94720

University of Dayton
University of Dayton Research Inst.
Dayton, OH 45406

University of Florida
Dept. of Chemistry
ATTN: J. Winefordner
Gainesville, Florida 32601

University of Illinois
Dept. of Mechanical Eng.
ATTN: H. Krier
144 MEB, 1206 W. Green St.
Urbana, IL 61801
University of Minnesota
Dept. of Mechanical Eng.
ATTN: E. Fletcher
Minneapolis, MN 55455

University of California,
Santa Barbara
Quantum Institute
ATTN: K. Schofield
M. Steinberg
Santa Barbara, CA 93106

University of Southern California
Department of Chemistry
ATTN: S. Benson
Los Angeles, CA 90007

Stanford University
Department of Mech. Eng.
ATTN: K. Hanson
Stanford, CA 93106

University of Texas
Department of Chemistry
ATTN: W. Gardiner
H. Schaefer
Austin, TX 78712

University of Utah
Dept. of Chemical Engineering
ATTN: A. Baer
G. Flandro
Salt Lake City, UT 84112