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FUNDAMENTALS OF NON~NEWTONIAN LIQUID FLOW ON SURFACES
1, INTRODUCT ION
Chemical agents are delivered to targets in a number of different
ways. A common feature of the delivery protocols is that the agents
originally constitute a large bulk of liquid, which is then somehow

fragmented or atomized, resulting in a cloud or array of small liquid

s

drops. In order to ensure that the drop slzes are large enough (imm to 3mm)
that evaporation is not dominant, relatively large amounts of polymer

are added to the bulk liquid. The presence of the polymer directly

e et it et

affects the process of break-up into droplets, and thus control the size
distribution of the drops. |

As the drops are propagated through the environment or fall under the
influence of gravity, they respond to change in the ambient temperature,
pick up contaminants from the atmosphere and lose m&sa due to evaporation,
Eventually they strike targets, generally solid surfaces, adhere to these
surfaces, begin to spread,

In order to devise a procedure for the protection from and clean-up
of these agents, one must understand what controls the spreading process
and in particular the parameters that govern the rate of spreading. In
effect, the clean-up process is a spreading process in reverse; the removal
of a drop depende on similar parameters to those which control spreading,

In the presentAwork we iqvestigate the spreading of non=Newtonian

“ drops on smooth surfaces. The spreading rate thus depends on the surface
tension of the liquid-air interface, the contact=-angle characteristics
of the solid-liquid=alr system and the material properties of thc lliquid,
In particular we assess the effects on spreading of viscoelastic properties

of the liquid and examine the ;nfluenca of gravity.
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The general features of the spreading-drop model are described in

S
27

the body of this report, together with a presentation and discussion of

the results of the calculations. The details of the calculations are

given in the Appendix.

AN S AN B J

2. MECHANICS OF SPREADING -
Drops that strike a smooth solid sprzad through two joint mechanisms,
contact-angle "pull" and capillary forces. Both contact-angle "pull":

and capillary spread are included in the present model,

2.1 Contact-Angle'"Pull"

Fizure 1 shows typical measurements of contact angle 6 versus contact
line speed Ve for liquid-gas gystems., When liquid displaces gas Yo, > 0

and angle increases with speed. The advancing angle 8, is the limiting

A
angle for Yer, + 0, Thus, a drop placed on a solid with initial angle
00 > GA corresponds to a contact line with positive (oﬁtward) speed and

the drop is pulled outward at the contact line.

2.2 illary Spread
| If the drop hits the solild and eo - eA, the drop will spread as long

as the drop does not have the shape of a stable meniscus. Surface tension

modifies the shape, steepens th¢ contact angle and spreading results., .

3. RHEOLOGY
There are three general features common to the motion of non=Newtonian i

fluids: stress relaxation, normal stresses and shear thinning. In the

present formulation we employ & one parameter family of generalized Maxwell

fluids, each having a single relaxation time 1, These models include all

thres non-Newtonian effects while limiting cases suppress either stress

relaxation or shear thinning.
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N 3.1 Stress Relaxation
W
( Stress relaxation is the time-dependent adjustment to rapid changes

d in stress, the time scale (scales) dependent on the relaxation time

(times) of the material.

3.2 Normal Stresses

'f Normal stresses are stresses that develop in, say, pure shear flows
; in directions orthogonal to the applied force and are generated by the
:*. nonlinear behavior of the material.,
s
3.3 shear hinning
:E The nonlinear behavior further allows the decrease of the apparent
)

shear viscosity j with shear rate Y.

& 4, THE MODEL OF THE DROP

The drops of immediate interest are ones that have small initial

B
_gg. angle 90 and spread indefinitely (to final angle zero), We thus use an )
Jé approximate theory valid for drops whose shapes always have small slopes,

”ﬁ . the so-called lubrication approximation. The method involves a systematic

§ asymptotic analysis which shows that inertial effects in the liquid are

\E? negligible. More importatly, it shows that if shear thinning behavior

(* is present, then it is more important than stress relaxation or normal

ﬁﬁ, stresses. Thus, in this case the main rheological data required is the

if‘ zero shear rate viscosity Ho and the changes of M with shear rate, On the

gm ~ other hand, i{f the model uses a constitutive relation for which shear

FJ thinning (and hence normal stresses) are absent, the stress relaxation

2? dominates,

ﬁ: The present model thus incorporates viscous, rheological and surface

f%} tension effects in thc spreading process. The result of lubrication

D
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analysis is & simpiified set of nonlinear partial differential equations
(plus initial aud boundary conditions) that require nume<ical mathods for

solution, This ¢ystem contaius six non-dimensional pa. reters. 1

5. PARAMETERS

. The dimensional quantities that enter the model are as follows:
p density of the liquid,

) "o _ zero-shear-rate viscosity of the liquid.
g surface tension of the liquid~-gas interface.,
K reciprocal of the slore at Ue ™ Q for the

characteristic 6 versus uCL as shown in

Figire 1, « has units of velocity.

SA advancing contact angle of ths drop.

T relaxation time.of the %iquid.

B magnitude of.the gravitational acceleration.
V* volume of the drop.

a, initial radius of the ArOp. :

90 initial contact angle of the drop.

The above ten dimensional quantities form into six non-dimensiuvnal groups

that characterize the spreading of drops. These arec us follows:

- C=~— capillary number

relaxation parameter #1

relaxation parameter #2




SN (R

&

& B = Bond number {
2 o

t{ op = BA/GO B final contact angle 1
‘. d |
Vi ]
IN v

' L3 volume of the (axisymmetric) drop
e 3,%9 ;
4:&1 V = i
1 v

:ﬂ N volume per unit depth of the (two-dimensional)

o a0 .

’ 00 drop.

iy

- The capillary number expresses the relative importance of contact~

LA _

‘?g ’ angle "pull", measured by speed neo, to capillary spread, measured by

b

uegluo. The relaxation parameter #1 measures the relaxacion time t versus
éb capillery effects., The relaxation parameter #2 measures the relaxation
l |

'jxf time T for shear thinning versus capillary effects. Notlce that A/e = 0

0
.. and since 80 is very small, stress relaxation effects are small compared

to those due to shear thinning except when the latter are absent. The

Bond number measures the effects of gravity (compared to surface temsion)
wvhen the plate is horizontal. We allow the possibility that the drop

ceases spreading at final angle OF. 1f GF = 0, the drop spreads indefinitely.

In order to see the ranges of values taken by the various parameters,

| Lo s

~we write down "typical" values for the dimensinonal quantities. We use

ag = 0.25 cm, 6 = 0.1 rad = 5.7%, V" = 1,5 x 1074 cm3, o = 30 dynes/cm,

Bo = 5 poise and p = 1 gm/cm3. We have no information on the contact angle

';z-z:nﬁ'-l:&-

constant x; we take x = 0.1 cm/sec, The relaxation time t can be obtained

s - .
! 2 ol

from data on apparent viscosity versus shear rate and equation (2.44) of
the Appendix if we rewrite it in dimensional form. The apparent viscosity

p of our model takes the form
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where Hg is the zero-shear-rate viscosity and ; is the shear rate. From
the CSL data given to us, we estimate for Diethylmalonate thickened with
2.1% Polymethylmethacrylate that T = 1,0 sec; for Diethylmalonate
thickened with £.27% Copolymer, t = 0,013 sec; for Diethylmalonate thickened
with 9.5% Elvacite 2041, vt = 0.0063 sa2c; for Methyl Salicylate thickened
with 4.5% Copolymer, t = 0.010 sec. . as, & practical upper limit for t is
about 1 sec.‘ With this estimate we find that "typical" values for the

parameters are as follows:

Cwx1,6

A R2.5 x 1072

e 82,5 x 107F ~ (2)

B 2.1

vei.0
Clearly, the estimates  (2) are crude and each parameter has a range of
possible values, We shall use ¢ = 5,0, a very large value for the calcu-

lations in order to exaggerate the effects of viscoelasticity,
6. RESULTS

We use the gpreading of a Newtonian liquid drop as the standard
against which to compare results for non-Hewtonian cases., We thus first
present results for this case, Since spreading rates depend explicitly
on time we shall define a non-dimensional time t in terms of the dimensional

*
time (sec) t as follows:

*
oegt
00

13




In terms of the typical values of parameters given in Section 5, t =1

. * .
corresponds to physical time t about 2.5 seconds,

'j 6.1 Two~-Dimensional Newtonian Drops

The discussion here relates to a Newtoniar constitutive morel in which

the viscosity Yo is constant, but o should be regarded for purposes of

r v .
PPy .

comparison as the zero-shear-rate viscosity of the real liquid,
Figures 2a and 2b show the shape of the drop at various instants of
time t for the case V= 0,75, C =1, A = ¢ = B = 0, In Figure 2a the

| final angle SF = 0.5 and so the drop shape approaches a static aquilibrium

"I

&g t > =, In Figure 2b, the final angle eF = 0 and so the drop spreads
indefinitely. These Figures refer to the early stages of the drop's spread.

By contrast we illustrate in Figures 3a and 3b the shape of the drop when

o

substantial spread has occurred, In these two Figures we have taken

eF =0,C=1, A =¢ =} =0, and we show the shape of the drop when t = Q
| and when t = t(z), where t(z) is the time for the drop to spread to a

‘-g size twice its initial radius. We shall call a(t) the radius of the drop
even though in two dimensions it is really the half-width of the drop.

b Note that a(O)/a0 = 1 by definition., In Figure 3a we have taken V = 0.75,

while V = 1,0 in Figure 3b,

. Graphs such as the above give qualitative information but quantitative
. predictions must be extracted,

First, we examine cases, GF = 0, for which the drop spreads indefinitely, “ 1
We set \ = c = B = 0 and examine t(z) as functions of both C and V,

Figure 4 shows c<2) versus V for several values of C. The spreading rate

depends strongly on the volume of the drop (for fixed initial ccntact

5

angle 90), large drops spread faster than smaller drops. Also, for a

fixed volume of liquid the time it takes to double the initial radius

14
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Figure 3a: Two-dimensional drop, shapes at t =~ 0 and t = t(z) for

Ve 3,75, Cwl, €Cm ) mpug
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Vwl, Cwl, e=im=B =0
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of the drop is larger the smaller the value of Cs C decreases with surface
tension ¢ and increases with zero;shear-rate'viscosity.

Figure 5 shows the doubling time t<2) as a funcfion of the capillary
number C in the case V = 1, Figure 6 gives the radius a(t) versus t for
various values of V, here for C = 1.‘ Figure 7 shows the radius a(t) versus
t for various values of c,'here for Vv~ 1. Thus, Figures 4 and 5 summarize
the data of Figures 6 and 7.

In Figure 8 we extend, on a different scale, the variation of a(t)

with t in the casea V = 1, C = 1,

We now examine the case for OF ¥ 0. Although the case eF = 0 is of
most interest for CSL, we used cases for OF % 0 as tests of the numerics
and wve present some of the r;sultu.here.

We confine our attention to A w ¢ = B = 0 and take eF = 0,5, Figure 9
shows the radius of the drop as & function of time for various V with
C= 1. The vertical linss are the asyuptotes valid for t + «, There seems

to be little qualie;tivc differance between cases 6., = 0 and eF $ 0 until

¥
one approaches times large enough that the finite equilibrium is closely

approachud.

6,2 Axisymmetric Newtonian Drops
Plgures 10-14 give for the a:qinymét_r*n drop the information equivalent

_to Figures 4-8 of the cwo-diuehaionul drop. The same trends persist here

as in that case, Spreading is ﬁore rapid for large drops that have large
capillary numbers, ﬁawever, ve éo see that axisymmetric drops spread
more slowly than their two-dimensional counterparts. For example if
Cavyvml}, c(2) = 13,0 for the two-dimensional drop while t(2) -27.2

for the axisymmettic drop.
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6.3 Two-Dimensional Viscoelastic Drops

The constitutive model used here contains a single relaxation time

which enters the governing equations through two parameters, the

A G A0 AW AN WS A G

relaxation parameters A and e, Recall that ) is formally much smaller !
than € by a factor 90.
i } We now present spreading curves for non-Newtonian cases and compare
: . these with the corresponding Newtonian cases., Figure 15 shows the radius !
of the drop as a function of t for three cases with C= V=1, B = 0,
GF = 0,5, There is the Newtonian case ¢ = A = 0, a stress-relaxation
case ¢ = 0, A\ = 0,5 and a shear thinning case ¢ = 5,0, A = 0, Firstly,
we see that for equal values for the material relaxation time T and for,

say, 90 = 0,1 that € = 10\ and the effect of shear thinning is much larger

than that of stress relaxation. ghear thinning causes the drop to spread

faster than the corresponding Newtonian drop given that the two have

equal zero-shear-rate viscosities, For example in the present example
the viscoelastic drop reaches 1507 of its initial radius when t = 4.0

while the corresponding drop for A = 0 reaches this position at t = 6.4,

If stress relaxation only is considered, the drop spreads more slowly and
attains 1507 of its initial radius a4t t —~ 6.8, Rather than pursue ranges

of parameters here, we turn to the axisymmetric drop and confine our

only 1is present.

i
|
|
}
attention to the principal case, A = 0, ¢ ¥ 0, in which shear<thinning ‘
|
l
|
i
6.4 Axisymmetric Viscoelastic Drops !

Figures 16~18 give results for drops that have significant shear-

|
!
thinning effects ¢ = 5,0, vanishingly small stress relaxation A = 0 and }
final contact angle OF = 0 so spreading continues indefinitely. Cravity !
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is ifnored, B = 0, and a range of capillary numbers C and drop volumes
V 1is examined,
Flgure 16 gives the radius a(t) of the drop as a function of time

for B=) =0 and C =V =1, There are two cases shown, one for the

Newtonian drop with ¢ = 0 and one for the viscoelastic drops with € = 5,0.
We see that t(2) decreases by about 15% due to shear thinning.

We can compare the viscoelastic cases %o the Newtonian cases by

defining a ratio R(z),

t(z) )
g2 . \(Igcommsnc ' )
ENEWTONIAN

The quantity R(l‘s) is the similar ratio for a 50% increase in radius.
Figure 17 shows R(z) and R(l's) for the case B = 0, V = C = 1 where
the right side of the figure shows shear=thinning effects only e ¥ 0,
A = 0 and the left side shows stress relaxation effects only, ¢ = 0, ) % O,
On one hand we again see that shear thinning has a larger effect than does
stress relaxation, On the other hand there is a "catch~up" phenomenon
present, The largest effect on spreading of viscoelasticity occurs at
early times t, However, not only does viscoelasticity have weaker effects
later but the differences in spread rates bécome smaller as time passes,
Notice that R(z) is nearer to unity than is R(l's). Thus, viscoelastic
drops that have had a long time to spread have attained nearly the same
radil as their Newtonian counterparts. Figure 18 shows equivalent informa-
tion for the case B = Q, C = 0,1, V = 1, Notice that the effects of visco-
elasticity are much smaller hefe for ¢ = 0.1 than for the earlier case for

¢ = 1,0,
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o
Y, 6.5 Effects of Gravity on Newtonian Drops on Horizontal Planes
‘t When a drop spreads on a smooth horizontal plane, gravity modifies
" the shape and spreading characteristics of the drop.
‘.ﬂ‘ Figure 19 shows a two-dimensional Newtonian case for C = 1, V = 0,75
{ 'and B = 10 at various times t. A comparison of these curves'with those
. of Figure 2b for the equivalent case with B = 0 shows that gravity
steepens the interface ﬁear the contact line which leads to more rapid
) spreading. Similar behavior can be observed in Figures 20a and 20b, which
B are the direct analogs of Figures 3a and 3b respectively for the case B = 10,
'}:1 Figures 21 and 22, respectively, show a(t) versus (t) for various
"\::;1 ‘ values of B for two-dimensional and axisymmetric spread, Netice for
- B = 1.0 that R(z) = 0,76 for the two-dimensional drop and R(z) = 0,84 for )
the axisymmetric drop so that there are comparable accelerations of
spreading in both geometries due to gravity. Effects of gravity are also
o indicated in Figures B and 14, which give long-time spreading behavior, ‘
5-: and in Figures 5 and 11, which show how doubling«time varies with capillary
:: number, |
';:.'1 6,6 Effects of Gravity on Newtonian Drops on Tilted Surfaces
:: A drop sits on a plane tilted an angle B to the horizontal. The
, component gcos B of gravity normal to the plate leads to a Bond number
"J . B cos B whose effect was d:Leculased in Subsection 6,5. The component gsinB
1. of gravity 'slides" the drop bodily down the plate as discussed by Hocking*
L— ' for the two-dimensional case with C-»> w, '
“; The wetting properties for C < » shown in Figure 1 allow the drop to
5‘1[ make an initial adjustment in its shape to accommodate to a steady
2 ‘
:'« *Quart:. J. Mech, Appl, Math. 34, 37, 1981
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translation, This accommodation takes place as follows, Initially, the rear
BACK FRONT

contact angle is e and the forward contact angle is e . If
egRONT A (advancing) angle) and BBACK eR (receding angle) then both

contact lines move. If, according tc Figure 1, the corresponding contact;
- line speeds are equal, then the drop "slides'" down the plane with congtant

shape. 1If, for example, the front contact line initially moves faster

than the back one, the hydrodynamics causes the front angle to become more

shallow slowing that contact line and the back angle to become more shallow

speeding that contact line. The result tends toward the steady sliding
case. Clearly, other cases also '"rearrange' and approach the steady
sliding case as along as BR > 0.

The net result of these observations is that the component of gravity
along the plate has only 1ndirectleffects on spreading characteristics
gince 1t merely adjusts the contact angles. The component of gravity

normal to the plate directly affects spreading as discussed in Subsection 6.5,

7. CONCL' ,TONS

The charactaeristics of Newtonian liquid drops spreading on smooth

horizontal solid planes can be characterized by the non-dimensional groups

V and C listed in Section 5. The intrinsic spreading and capillary effects
are contained in the capillary number C; C is large if the zero-shear-rate

viscosity 1s large or the surface tension is small. The bulk features

of the drop are contained in the volume V. The drop spreads more rapidly =

if C and V are increased.

The viscoelastic effects of the drop are characterized by the parameters
A and ¢ listed in Section 5. Both A and ¢ measure the (single) relaxation
time of the material though these are interpreted as stress relaxation

and ahear—thinﬁing measures, respectively. For small contact angles
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€ >> A so that shear thinning, if present, is much more important than
stress relaxation.
We find that shear thinning is the dominant viscoelastic effect in
thin drops. It has its greatest effects at small timees (the drop begins
spreading at t = 0). For example shear thinning can accelevate the spreading
rate by 50% after a few seconds if ¢ = 5.0. However, there is a "catch-up”
phenomenon that makes the spreading rate for long times very nearly that
appropriate.to the Newtonlan drop having the gggg zero-shear-rate viscosity.
The main conclusion one draws from the present sctudy is that the

principal rheological property of interest in the spreading mechanics of

drops on smooth surfaces is Ho? the zero-shear-rate viscosity., Thus for
large ranges of material of interest to CSL, pélymer additives greatly modify
Mo and apreading is controlled by Ko
The second most important rheological property is the variation u(?)

of shear'viscosity with shear rate Y. 1In the calculations presented we
used the estimate T = 1 sec for the maximum value of material relaxation
tim;. Under most practical circumstances for CSL ¢ o2 0.0l though it can

in extreme cases get as large as ¢ 5,0, Even for £ = 5.0 we found rather
modest acceleration in the spreading rate (compared to the case e = 0 with
the sanme uo); small vaelues of ¢ yield only minor accelerations. Heﬁce.
viscoelasticity affects spreading in a calculable way but its magnitude is
seenmingly small.

The effect of a vertical gravity on the spreading of a drop on a smooth
horizontal plate is characterized by the Bond number B defined in Section 5.
Vertical gravity distorts the shape of the liquid-ailr interface, steepens
the contact angle and thus accelerates the spreading process. The effect

is appreciable for large drops and negligible for small drops.
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A drop on an inclined plane tilted an angle B to the horizontal has
a component of gravity normal to the plate that affects spreading, as above,
through a Bond number B cos 3. The component of gravity down the plate will

result in the drop having steeper contact angles in front and shallower

i b Wty

angles in the rear. The relations between these changes affect the spreading
. somewhat but principally lead to the drop moving bodily down the plate but

not experiencing major changes in spreading rates.
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4, Solution Procedure
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1. Formilation

We consider a drop of viscous liquid on a smooth rigid horixontal
plane. We use a Cartesian coordinate system (x*,y*,z*) for a two-~dimensional
drop, and a cylindrical polar coordinate system (r*, ¢*,z*) for an axi-
symoet:ric drop. In both cases we take the rigid plane to coincide with
the plane z* = 0, with the i* axls pointing vertically upwards.
In the case of a two-dimensional drop we consider the motion to be in the
x*,:*-plane, with all quantities indgpendunt of y*. Equations gnd rela-

tions pertaining to the two-dimensional case are designated by the letter P,

For the axisymmetric drop all quantities are independent of the azimuthal

coordinate ¢*; this case will be designated by the letter A.

Initial Sthte

In the two~dimensional casa the initlal=-shape of the drop is taken

to have the form

z* - hg(x*) o = 8y < x* < ag (l1.1lp) |
with the end conditions

hy(-ag) = ho(ay) =0 . la2p)
The initial contact esngle 90 is given by |

dhg dhg

tan.eo - ;;; (-ao) " - ;;; (ao) . (1.3p) ]

The initial volume per unit length (in the y* direction ) is :
a |
v ’f ’ hy (< )dx" . (1.42)
T Ty |

In the axisymmetric case the above Initial data are raplaced by

¥ *, % * '
v om ho(r ) » V<r < 2, (1.14)
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&
-
"i with
.. *
R ~ hy(ay) =0 - (1.24)
i the contact angle 60 is given by
& dhg .
’ . tan 0 = = i (g ) (1.3A)
* L
. 0 dr 0
h and the volume is
é" " ﬂo
4 * . *, %, K
) vV o= 2t1~ r*ho(r*)dr . (1.44)
? \ 0
(‘I'
' oo Drop Dynamics

*, K
At time c* > 0 we denote by a (t ) the half-width of the drop in the
two-dimensional case and its radius Iin the axisymmetric cesa, Thus we

have the initisl condition

a’(0) w 8y . (L.5)

-

We take the shape of the drop at time e to have the form

' *
m* - h*(x*,t*) , -ak(t Y < x* < a*(t*) (1.6P)
. .-‘L A with

g R (=" (£, %) = ¥ (M), %y = 0 (1.7p)

in the two-dimsnsional case, and

" * *, Kk * * W
. 2z mh(v,t) , 0.2r <a(t) (1.6A)
\ with
Ok k4 .
h{a(t),t) =y (1.7A)
*
in the axisymmetric case. The contact angle at time t 1s denoted by
* * ok
g = 8 (t‘), and 18 given by \
A
N
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% X

X % % *
tan 6" = o a¥ee¥y,c%) = - P @), (1.8p)
x . 29X
or
* m*  x % %
tan 6 = = —= (a (t ),t ) (1.84)
ar

respectively., Conservation of the volume of the drop over time glves the

additional constraint

L3 B
a ()
v -f h*(x", ) ax” (1.99)
: %, % '
-a (t)
or
*
a (t*)
X
v o zTrf et et (1.9A)
0

*
The rate of change of the quantity a* at any instant t 4is taken, on
emplrical grounds, to be proportional to the difference between the angle
*
9 and the advancing contact angle eA. The latter is the static equilibrium

angle when the drop is on the point of spreading. The implied relation has

the form
da’ ¥
i k(8 = 8,) ~ (1.10)

where k > 0 1is an empirically determined constant, and where QA >0,

Equations and Boundary Conditions

The motlon 1g governed by the Navier-Stokes and continuity equations,

v

p(—-—;;-f-xo\?x)—-Vp + V8 - pgz (1.11)
ot

7oy = 0 (1.12)

* * * *
where p is the density, v = (u ,0,w ) 18 the velocity vector, p is the

*
pressure, 8 is the extra-stress tensor, g is acceleration due to gravity,

Appendix 50

L N Y o LI N TR
T ta et )




'and~é is unit vector in the upward vertical direction. A constitutive
relation between the stress and the deformation-rate will be glven
below.

The boundary conditions are:

(1) The normal velocity component is zero on the rigid plane,

Ww'=0 on z =0 | (1.13)

(i1) As explained by Dussan V. and Davis [1], the usual ﬁo-slip condition at
the rigid boundary needs to be modified to avoid the appearance of a
singularity at the contact line. Following Greenspan [2] we take the

condition to be

w L
(Fusyy =B on (1.14)

*
where pois the zero=-shear-rate viscosity, Y 1s a slip length (distance
*
from the contact line over which slip takes place) and 514 represents the
x*z*-component of extra stress in the two-dimensional case, and the

% %
r z =component in the axisymmetric case.

(i11) The kinematic condition at the free surface is

*
Qh; on z = h*(x*.t*) (1.15p)
X

*

' w
LA R WO (1.154)
or

(iv) The dynamic boundary condition at the free surface is
* * * * ok
=[P n+§°n=2Hon on zw=h (1.16)

* ,
where [p ] denotes the pressure difference across the interface, o is the
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1; surface tension, n is the outward unit normal to the surface, and 2H
-~ is the mean curvature of the interface.
Rheology
A constitutive equation that is suitable for polymer solutions is the
generalized Maxwell model, °
'?
X .
b * 98 * k. k1w Kk ok *
o £+t )%t @evIE +3 g -8 w)
' .::l at
. 1 % % sk % (X
-7 B( 'Y +7YL§ )} =y (1.17)
where
ok * W * % :
AT A LA (1.18)
* * % * kT
Q-V!-(Vx) . (1.19)

T is the relaxation time of the liquid and g i1s a number, which in practical

,f,{ situations can range between -1 and +l, (See, for example, Petrie [3],)

? ' S ' '

‘$3 Rather than analyze the whole range of values of 8, we shall consider only
g .

,.§§ two special cases, namely £ = 0 and B = 1. When B = 0 the model (1.17)

reduces to the well-known corotational Maxwell model., In steady uni-
directional shear flow this model yields shear thinning and both first
and second normal stress differences, and yields stress relaxation in
unsteady simple shear. When 8 = 1, (1,17) reduces to the upper convected
Maxwell model., Here there is no shear thinning in zimple shear, the vig-
cosity remaining constant at fits zero-shear-rate value, but first and

second normal stress differences, as well as stress relaxation, are

1,
5% present. Py studying these two models we have the possibility of assessing
E; the various rheological effects on spreading; in particular the differences
 ;; between the B = 0 and § = 1 case will distinguish the influence of shear
fﬁ thinning.,
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2, ZLubricatinon Approximation ‘3"
fﬁ We prozeed on the basis of the assumption that the initial angle 80
is very small. This euables us to use the lubricaticn approxi-
4
mation, in which all quantities are appropriately scaled, and then thsa
|
'}' equations and boundary conditions are expanded in powers of %Y ihe flrst-
‘- order problem is what 1s retained in the limit 00 + 0.
o
'% A dimensioitless time t is defined by
.ﬂl Lok 93/ \
I t=to 0 aO“O (2.1)
3!
1 and dimensionless coordinates (x,z) in the two-dimensional problem, and
. (r.z) in the axisyumetric problem, are defined by
. % * *
ﬁg X = X /ao y & mZ /(aoeo) y, T wr /ao . (2.2)
! The dimensionless shape of the drop becomes h(x,t) or h(r,z) respectively,
. where
5 h = b/ (a 0 2.3
g (ap%) - : 2-3)
1
! The half-width (radius) of the drop is a(t), given by
‘ %,k A
; a(t) = a (t :/a, (2.4) 4
4 . .
‘3 and the contact angle is
: * K
; 0Ce) = 8 (t)/1, (2.5) o
ot
ﬂs r
with the final equilibrium (advancing) contact angle given by
q
0
U - eF - eA/eo . (256)
We alsy define a dimensionless volume by
o) -
he: Vay /aoeo (2.7p)
or
-.'
o Appendix 53
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Dimensionless velocity components (u,w) and pressure p are given by
* ' * 2 ' *
u=u /(KGO) sy WE=W /(KBO) s P=DP (aOBO/uOK) . (2.8)
Finally we have a dimensionless stress tensor § defined by

§= g*(aoluon) . (2.9)

Initial State

Ncce that our non-dimensionalization gives that the drop has unit
halfw=width (radi.is) initially, and the initial contact angle B(b) is
also unity.

In the two~dimeasional case the initial shepe has the form

z = hy(x) , “lex<1 , (2,10P)

with the end conditions

hy(~1) = hy(1) = 0 (2.11P)

Using the lubrication approximation 90 + 0 we find the condition for the

initial contact angle to be

dhO dh

o
. -1) = - — D=1 . . (2.12p)

We also have the volume condition
1 ,
v -f ho(X)dx » (2. 13?)
-1

The analogous expressions in the axisymmetric case are

zZ = ho(r) sy 0<r<1 (2,104A)

Appendix 54

N SR TCRE S -

\ W g . IR
A A T TR R A )
T A Ty o TP O P SR S SR SN g ¥ Y

.,. ) - -
..;E.:.'.‘x': %

'y

Dok Tl L

SO Lt L O




LY
. with

% ho(l) =0, : (2.11A)
K % at the contact line

¥ dh, - , .

.. i (1) = -1, . . ) (2.12A)

k. ' and

}g! : .

V - z"frh(r)dr . (2.13A)

Drop Dynawics |
. The shape of the drop at time t in the twoe-dimensionel case is

:{ ' , |

o :
z = h(x,t) , =a(t) < x < a(t) (2.14P)
vith

3

h(-a(t),t) = h(a(t),t) =0 : (2.15p)
\." while in the axisymmetric case it is
C A z = h(r,t) , 0<x< a(t) ' - (2.144)
\,“':‘
I,\' “" with
0
\ “\“

‘:: v In the lubrication approximation the contact angle 8(t) is given by

)
3 ,
‘ . 0lt) = yx(-a(t),t) - hx(a(t;,t) | (2.,16P)
"". '\ or

:. 8(t) = - h_(a(t),t) ' (2.164)

B
-

l'.'\'\

- Appendix: by

R,

1.& " - . . B . . P » - -

R e T T '"?u-'f""ﬂ‘l“-"‘;\éw}"f*'\' e ; .{‘nﬁfi':“..f-.‘f:'v'{'ﬁ:’a"'.'ri,'-‘.v",",:', . h v T e """



“?;""1 The volume conservation condition (1.9) becomes

e

f?] a(t)

s vV = h(x,t)dx (2.17P)
U -

:‘»ﬁ a(t)

ﬁzu or
) a(t) ‘

b ' V =21 rh(r,t)dr . (2.174)
% .

RN Equations (1.10) and (2.16) combine to give the following differential

equation for the dynamics of the drop:

S X 2

";
T g i
e lata®y

t
28€8) o o[-h (a(t),€) - 0 g) (2.18P)

o or

"tv" d—‘-—(—)— - .- -
:33 Tt cl-h_(a(t),t) 85l (2.18A)
.3{ where C is the capillary defined by

. UK
T c=— . (2.19)
J %

N
" Equation (2.18) is subject to the initial conditions

~

a(e) =1 (2.20)

P A
4.; .gqﬁ-.(

Equations and Boundary Conditions

{

‘ In the lubrication limit 99 * 0 the Navier-Stokes and continuity equa- -
!‘ .
'%t tions in the two-dimensional case reduce to
Pyt Sy, =0 (2.21P)
t&ﬁ - p, - B/C = 0 (2.22p)
g
L)
i
) u +w =0 (2.23p)
%p x z

<

where 813 is the x,z component of the stress tensor, and where B is the

f;;
f Bend number defined by
. Appendix 56
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s I

pgal
0

}.- B = o . (2.24)

B

‘“. » A

Note that 813, which is associated with shear thinning in viscoelastic
materials, 1s the only stress component that remains in the reduced system

(2421)~(2.23). Components such as 8119 822, 833, associated, with normal

stress differences, are not explicitly present in the equation of motion

in the lubrication limit.

ot heppEs e

. The corresponding ecuations in the axisymmetyic case are
g "Ppt 83,70 (2.214)
: -p, - B/C=0 (24224)
£ () + (o =0 (2230
u The boundary conditions are:
¥
' (1)  zero normal velocity at the rigid plane
» w=0 on zm=0 (2.25) ‘
Q (11) modified slip condition at the rigid plane
Y5, " on z =0 (2.26)
where
2 * 2
Y= (e (2.27)

(ii1) kinematic interfacifal condition

} G et 4 i-m;v}—‘..

ht + c(uhx-w) =0 on z = h(x,t) (2.28p)
[

 § or

‘% ht + C(uhr_-w) =0 on z =h(r,t) (2.284)

g

‘é

9“

§
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(iv) dynamic boundary conditions on the interface are

h,+0 =0 on =z =h(x,t) ’ (2.29p)
or |
b + -:‘-:hr +Cp =0 on =z =h(r,t) (2.29A) ]
and :
S13 =0 on zm=h . (2.30) |
Rheology

Using the scalings indicated above we find that the constitutilve
relation (l.17) becomes, in dimensionless form,

aﬁ * U [ J
8+ 5+ eC{ Vg + 7 Qos-5w -3 BT+ I-g)} =¥ (2.31)

!
i
|
1
\
|
|
where in the lubvication approximation i
0 u 0 =u '
Z'( “] , u- ? (2.32) |
|

|

|

1

[

l

J

l

|

|

1

|

u G u 0

z Z

Mmoo (2.33)

. (2.34)

Note that

|
!
Ae = By - (2435) |

The form of (2.31) shows that A is a measure of stress relaxation while ¢
ls a measure of shear thinning, Hence (2.,35) implies that stress relaxation

only becomes important when shear thinning is absent.
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The components of equation (2,31) are

3311 .
N Y c[ (Syy %5.4) = (é +8 )}- (237
S13 A Tt 7 SO U8y “8gy) " Bu (S 85y, (26
3844 .
833 A —B-td + eC { 13 - Buzsm)} = 0 . | (2.38)

When B = 1 (upper convected Maxwell model) we obtain 533 = 0 from (2.,38)

and then (2.37) reduces to

S13 + A e T Y e o : (2.39)
In this model only stress relaxation is reievanc. ah& there 1s no shear

thinning.

When B = 0 (corotational Maxwell model) we megléct A by virtue of (2.35)
and the system (2,36)-(2,38) reduces to

§1p = BCu 83 =0 (2.40)
1 ] |

513 + '2" eCuz(Su - 333) uz ‘ (2.41)

839 + €Cu 5,5 = 0 ' (2.42)

From these we obtain

u
z
137,222

which implies that the effective viscosity for simple shear is

1

N . (2.44)
1+ ezczu:
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3. EVOLUTION EQUATION

In the two-dimensioﬁal case we integraté (2,23) and use the boundary

conditions (2.25) and (2.28) to obtain the equation

oh ] !
5¢ T.C e (hQ) =0 (3.1P) i
where ' :
h(x,t)
hqQ = v(x,z,t)dz .« , (3.2P)
.0

From integration of (2.22P) we obtain

P = p(x,t) = Bz/C (3.3P)

so that the boundary condition (2,29P) gives

h, + Cp(x,t) =Bh =0 (3.4P)
Substituting into (2.21P),we obtain

hxxx - th + (15‘:13.z -0 . ' (3.5P)
Integrating this with respect to z and using (2.30) we obtain

An analogous procedure for the axisymmetric case leads to the analog
of equation (3.1P), namely

h(r,t)
ru(r,z,t)dz = 0 (3.1A)

Q>
=
'a’

l

c
+T.'

[~

t

Q-

r
0

1

|

while the analog of (3.5P) is found to be |
|

|

'y : 3

1 :
8T (hrr + r - Bh) + 0313’2 0 . (3.5A)

Integration of this gives

L - a— l‘- L1 ‘
CS13 ¢h ~z) 5T (hrr + - hr Bh) . (3.6A)
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‘:r": X,
ﬁ% The next steps depend on which of the constitutive relations (B =

B

}i or B = 1) is being used,

f%

:iﬁ Upper Convected Maxwell Model (B = 1)
. E We substitute (3.,6P) into the constitutive relation (2.39) to obtain
? ) . = (Gh)(h- z)+\ = { (ch) (h - ) (3.7p)
'gi whete
.0 P

%’ o - '

W 6h ='h = Bh . (3.8p)
ff? Integrating (3,7) with respect to z and using the boundary condition

(24206) we cbtain
ou = (@ (vF + e - 32 ¥ 2 T { () bz - F D) b (3.9p)

We integrate again with rvespect to z over 0 to h, This gives, in the

notation of (3.2P),

chq = (ch) (vh + £ 1% + 2 [(amn’l, + 2ndlcamnl, . (3.10P)

We now substitute this into (3.1P), which becomes

R - S e o
Nt

b +--{(Gh)('¥2h+ Lad) 4 & tenn®), + 2 w2 KGhyh] e}= 0 L@

%
¥
'-ﬁ This 18 to be solved subject,to the initial condition

bl'

'*ﬁ .

- h(x,0) = ho(x) » (3.12p)
f%; . the boundary conditions (2.15P) and the constraint (2.,17P)., In addition
ulbl I
(%@ we assume that hy(x) and h(x,t) are symmetric about x = 0.

" The axisymmetric analog of (3.7P) is
&
- 3J
S Cu, = (Dh)(h=2) + 2 3= { (Dh) (h = 2) | (3.7A)
by

™
'ag where
S ph~ L (h, +Ln -mn) (3.84)

g ( r T * : : *
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After two integrations and application of the boundary condition (2,26)

we obtain
h(r,t)
cf rudz= r@R) (v?h + 3 0% + & r (m)R3) + 2 enf[(mIn],
0 |

(3.104)
and then (3,1A) becomes

b + oyt + 2oy + 3 r[(Dh)h] +3en? (o)} =0 .-

ar
(3.11A)
The initial condition 1s
h(r,0) = ho(r) , (3.124)

and we have the boundary condition (2,15A) and the constraint (2.17A).

Wa &ssume also the symmetry condition

dh
0 ,
5= (0) = %% (0,£) =0 (3.13A)

Corotational Maxwell Model (B = 0)

We combine (3.6P) and (2.43) to obtain

Cu,,

== m (Gh)(h = - F |, (3.14P)
1 4 azczu: ) & e

from which we deduce that

_/ 32
Cu, = Lo le ¥ (3.15P)
2¢ F

As 18 usual in flows with shear thinning a solution ceases to exist if
£ 18 too large, We assume £ to be sufficiently small that an expansion

of (3.15) is possible, whereupon we obtain

_. Gu, = (Gh)(h-2) +e2[(eh) (h=2)] + (™) . (3.162)

e ~

\,,-

g

vk
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Integrating and using the boundary condition (2,26) we obtain

1

Cu = (Gh) {yz +3H -1 -z)2}+ ; e2<ch)3{ h® . (h-z)“} . (3.17P)

Integrating again over 0 to h, we obtain

thg = (e (r’n + 30 + §Fam®® . " @ase)
Substituting into (3.l1P) we now obtain
* h, + §_;{(ch>(yzh +indy e b’} -0 (3.199)

For the axisymmetric case an exactly analogous procedure leads to the
equation
13 1.3 1 35
h: + =z ﬁ{r(Dh)(Yzh + s-h ) + 3 ezr(Dh) h } = 0 (3,19A)
with conditions (3.12A) and (3.13A).

It is convenient to transform to a moving frame in which the position

of the contact line is fixed, We sat
£ = x/a(t) (3.20P)

in the two«dimensional case, and

g = r/a(t)  (3.204)

in the axisymmetiic case, In both cases the interfacial shape is given by

=B | (3.21)

defined on

<<l (3.22P)

0<E<l (3.224)

respectivaly,
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1

“f For the motion of the drop the equations (2.18) and (2.20) become
48 () = ¢ [ ~h (L,t)/a(t) = 6] (3.23)
dt. gLee F e
with |
a) =1 . (3.24)

The various forms of the evolution equation are transformed as follows:

Equation (3.11P) becomes

Y iz- @ ot + 5y + dr cr@n’y + ulerEnnn} - o

L | | (3.258)
whare
- 9
£ 250 = b(e)E 3;;- (3.26)
,,g b(t) = o= tna(t) (3.27)
{u "Gh = hEEE - BuzhE . ' (3.282)
9 gimilarly equation (3.11A) becomes
i
¥ + -};; e {edm o+ $ o + B erdmnd + Enercmng} - o0
:.{’ ‘ . .
(3.25A)
%. vwhere
; REI(VS R Y
bﬁ Equation (3.19P) for the corotational model becomes
U
o2
o 3 3.5
g £h + -Z--E-{(Gh)(Yzh + = h’) + (Gh) h } =0 (3.29P)

P

while (3.19A) becomes

k_4

i
=

ﬂh+-—£‘:az{ £ (Bh) (v2h + & h)+5L-E.(Dh) }-o . (3.29A)

B i
Y ﬂ‘bg

oy

-‘?E;;‘
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The initial conditions are

b(E,0) = hy(E) (3.30)
where
bo(6) = hg(®) , ~l<x<l | (3.31P)
or
ho(®) = hg(®) 5 O <<l (3.314)

and the constraints (2.11)=(2.13) apply to the initial shape. The boundary

conditions (2,15) become

h(=1,t) = h(l,t) = 0 (3.32p)
or
h(l,t) =0 (3.324)

The volume conservation condition (2.17) becomes

1
3"("?;')' -l h(E,t)dE (3.339)
L1

in the two-dimensional case, and

1
—g—-‘-— - ZTfEh(E,C)dE (3.334)
a“(t) 0

in the axisymmetric case. We impcse also symmetry conditions at E =0,
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4. SOLUT{ON PROCEDURE

The problem posed in the previous Section is solved by transforming
the evolution equation (3.1l) or (3.19) into a system of ordinary differ=-
ential equations in the time t. This is done by use of the Galerkin method,

In the two=dimensional case we define functions

1-£)" , n=0,1,2,00s
h_(5) = (4a1)
0 s, n<0
for integer values of n., Correspondingly we define

1

0 = fhn(g)dg , n>0 . (4.2P)
-1

These are then given by

ag 2, o = 2n

n 2n+ 1 ¢

el ¢ B2 1 . (4.3P)

Next we introduce the Galerkin expansion

N+1
h(g,t) = k21¢k<t)hk(s) (4+4)

where the ¢, are unknown functions of t. We refer to (4.4) as an N-term
Galerkin expansion, since ome of the ¢'s, namely ¢N+1’ 1s fixed in terms
of ¢1.---.¢N through the volume conservation condition (3.33), In fact,
substituting (4.4) 1into (3.33P) we obtain
N
bt (8) = V/a(t) - kryllak¢k(t) . (4.5P)

All the boundary conditions and constraints on h are satisfied by the
representation (4.4)=(4.5).

With the aid of (4.4) we construct a system of N + 2 ordinary differ-
ential equations for the functions ¢1(t),---,¢N+1(t),a(t). First we have
that (3.23)~(3.24) become
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a=c¢]J 26,/8 = 8] (4.6)
with .
a(O) =1 . (407)

Next we have from diffarentiation of (4.5) the equation

. N » vb
b BT Ry kZ]“k?k *a "0 (4.8P)

where b is defined by (3.27). Then we substitute (4.4) intc the appropriate

evolution equation, multiply by hn(e) for n = 1,2,°++,N and integrate over
(~1,+1) with respect to £, In the case of the upper conveccted iexwell
model evolution equation (3.25P) this gives the following system of N

ordinary diffevential equatiouns:

3461n£1> +<1n 2 { @+ 0 + 35 cr@Enn’] &h%[(&h)h]D

(4.9P)

-

nw=j, 2,°¢.N, vhere < > denotes the inner product

1 .
<hnf> "Jr h-n(E)f(E)dE . ' (4.10)
-1

We aow have N + 2 equations, namely (4.6), (4.8P) and {4.9P); they are
evidently highly nonlinear, The ~ondition (2.12P) on the initial slope

gives the initial condition
b.(0) = % | (4.11)
1 2 1] L]

The fact that we wish to allow for the drop to have arbitrary initial shape

is expressed through the initial data

¢2(0),-°‘,¢N(0) atbitrary . (4.12)
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ﬁ Finally we have from (4.5P) that
s N
| 141 (0) = V kzluk¢k(0) . (4.13p)
:i‘. '
: Thus we have a total of N + 2 initial conditions: (4e7), (4.11), (4.12)
and (4,13p), ‘
3 In the case of the corotational Maxwell model (3.29P) we follow the .
X same procedure and obtain in place of (4.9P) the system
6, >+, T {@motn + Ladye _; (Gh)3h5}> , mm LN,
' g (4.14P)
. -¥ The other equations and the initial conditions are as before,
. In the axisymnetric case we again use the system of basic functions
::1 (4.1). We also define
l'l
&
-. o EXGT N (4.28)
g o
i) which gives
4 1
Bn L m > n> 0 . (‘0.3A)

The Galerkin expansion (4.4) is again used. The volume constraint (3,33)

BTG K

now takes the form

- 4]
¥ BgqP g CE) = - ¢, (t) . (4.54)
!” N+1" N+L zﬂaz(t) Kei Bby |
| .l Equution (4.b) ard the accowpanying condition (4.7) remain applicable. :
L)
‘ '
T In place of (4.8P) we differcatiate (4.5A) to obtain
l':’ N
. . Vb
B, .6 + ) Bpy + =0 (4.84)
3 N+LY N+L k=1 k'k “2
.
B
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The evolution equation (3.25A), ailer integratior, becomes

4 ' ? ~ 2 1.3 AL PR
a <ghn£§>+<1n SE{ E(Dh) (Yh + 3 h°) + 7% LI(Bh)R°]

45 2£[(Dh)h]}> ] y N = 1,""N (409A)

where the inner product is defined by (4.10). The evolution equation

(3.29A) becomes

2
al‘éhnﬂ> + Qn -g-g{ £(Dh) (Y2h + §h3) + ':‘fa“ (Dh)3h5}> -0

n = 1".“.N . (4.14A)
The initial conditions (4.7), (4.11) and (4.12) continue to apply, while

{4.13P) is replaced by

Brartys1 ©) = 3= Xak:bkcm . - (4-134)

The respective systems are soived numerically using a modified

standard package called DGEAR.
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