“HD-A135 435  DERIVATIONS OF A PRIME RING WHICH SATISFY A POLYNOMIAL
IDENTITY(U)> RIR FORCE INST OF TECH WRIGHT-PATTERSON AFB
OH D W JENSEN 1983 AFIT/CI/NR-83-63D

UNCLASSIFIED F/G 1271 .

e




" bl RO vl . P UL A A N
AR AR SRR IR S Iy

o
EE

I
]y m

"EEEE
EEE

N
o

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

--v--v-"v- -,.. —_ v e

SO4TS ST S e e
LS «.;. "-~ *5"" " -P‘- -ﬂ- R Y
Z}ﬁ- ‘& \.’Q‘-‘l ‘h‘l‘ .ﬂ‘ e ¥ -&uﬂ?&.-‘_:.: PP A 2-.:" SO IO I AP




-

e - 5 . E - ) R OUN A v - R a7
2 il e sk A Al ORISR SNNININIS B YA TR & 7 R - DAL LW . g ot P A et A e D A NI S I 2 T

LR

UNCE ASS we R
SEZLRITY CLASSIFICATION OF THIS PAGE (When Dulﬂurred)‘
. : READ INS>TRUCTIONS
REPORT DOCUMENTAT'ON PAGE BEFOKE COMPLETING FORM
t. REPORT NUMBER 2. GOVY ACCESSION NO| 3 RECIPIENT'S CATALDG NUMBER

AFIT/CI/NR 83-69D

4. TITLE (and Subtitle)

Derivations of a Prime Ring Which Satisfy a !
Polynomial Identity 9

“w

TYPE OF REPORT & PERIOD COVERED
T59¥3/DISSERTATION

PERFORMING OG. REPORT NUMBER

Y o T S

/35 Y35

> I PC I

7. AUTHOR(s) ® CONTRACT OR GRANT NUMBER(s)
David Warren Jensen .
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS
AFIT STUDENT AT: North Carolina State University
1 1. CONTROLLING OFF|ICE NAME AND ADDRESS 12. REPORT DATE
AFIT/NR . 1983
WPAFB OH 45433 13. NUMBER OF PAGES
A 68
i T4. MONITORING AGENCY NAME & ADDRESS(I{ different from Controlling Oflice) | 15. SECURITY CLASS. (of thia report)
- UNCLASS
- 1Sa. DECLASSIFICATION DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED ELECTE
DEC7 1983

“ : g
LML IR S0, .

17. DISTRIBUTION STATEMENT (of the sbstract entered in Block 20, if different {rom Repoft)

B 6

RSN 4 PP

18. SUPPLEMENTARY NOTES 07’ w Q .
APPROVED FOR PUBLIC RELEASE: IAW AFR 190-17 Lm. WOLAVER
. Dean for Research and

o4 MV I3 Professional Development

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Ltttk

S

"] '

> gy

*

§ 20. ABSTRACT (Continue on reverse side If necessary and Identify by block number)
,3 ATTACHED

Py

g . DD 553", 1473  eo.rion oF 1 Hov 88 1s oBsOLETE UNCLASS

8 3 1 € O d 1 Oe RITY CLASSIFICATION OF THIS PAGE (When Date Entered

] ——
! A
1 e - [ T . [ .
Wy .- L L I S ST L VL SN "t oo -



ABSTRACT

JENSEN, DAVID WARREN. Derivations of a Prime Ring Which Satisfy a

Polynomial Identity. éEnder the direction of JIANG LUH).
jocumCr\T stetes

\ l
Let j=1,2,3,4, and 5 be derivations of a prime ring R, and
/&Jﬂ$l‘— : -
k su.b.‘ J. ) let Q(R) be'the generalized ring of quotients of R, Assume m and n
§ are positive integers, C is the center of Q(R), and A, is the unique
L4 : Sub 1 j .
s /A.MLJ"' Sw J . ]
derivation of QQR) satisfying I -'\35 Several identities involving
- Jambl & Sub T F\ s
3 the‘ﬂg’s are studied and the following results are establishede C—__
: 1. If A: = Az, n > 1, then
a) Al = 0 if R is commutative and char R is sufficiently large.
X b) Al is algebraic if n = 3,4,5, or 6, and char R is sufficiently
3 large.
2n-3 2
3 c) Al = 0 if 3 a € R such that Ala ¥ 0 and Ala =0,
d) A, s algebraic 1f A (C) = 0, char R = 0, and 1f g
3 O#a€Rand 0 ¥ ¢c € C such that Ala = ca,
} m k
4 2, If A A; = 0, then either A} = 0 or A, = 0 where k < 4n-1.
A
é 3. If A?Az = 0, then either A? = 0 or Ag = 0 where k < 12n-9.
- n.m
4, If Allz = 0 and A1A2 Azll, then either Al or 12 is nilpotent.
d 5. 1If AIAZ - A3A4 = AS’ AJ #0 for j = 1,2,3, and 4, and char R ¥ 2,
! then3d ¢ € C such that
' -1
. either a) Al cka and Az c Aa
i -1
, or b) Al cAA and AZ c A3.
3 -
A 6. If 3112 - A3 = A4 and char R ¥ 2, then either Al 0 or Az 0.
2k+1
g 7. 1f Allzll = 0 and neither Al nor Az is nilpotent, then Al is
) 2,2 2,2 2k+1 +
a derivation, Alxz - AZAI , and A1A2 Al 0, VkKkE Z ,
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ABSTRACT

JENSEN, DAVID WARREN. Derivations of a Prime Ring Which Satisfy a
Polynomial Identity. (Under the direction of JIANG LUH).

Let Aj, J=1,2,3,4, and 5 be derivations of a prime ring R, and
let Q(R) be the generalized ring of quotients of R. Assume m and n

are positive integers, C is the center of Q(R), and A, is the unique

]
derivation of Q(R) satisfying Ale = Aj. Several identities involving
the Aj's are studied and the following results are established:
1. 1If x'l‘ = Xy, 0 > 1, then

a) Al = 0 if R is commutative and char R is sufficiently large.

b) A, is algebraic if n = 3,4,5, or 6, and char R is sufficiently

1
large,
2n-3 2
c) Al = 0 1f 3 a € R such that Ala ¥ 0 and Ala =0,
d) Al is algebraic if Al(C) = 0, char R = 0, and if g
0O¥a€Rand 0% c€C such that Ala = ca,
2, If Alkz = (0, then either Al = 0 or Ag = 0 where k < 4m-1.
3. 1f A?Az = 0, then either Ai =0 or A§ = 0 where k < 12n-9.
n,m
4. If Alkz = 0 and 1112 AZAI’ then either Al or kz is nilpotent.
5. 1If Alkz - A3A4 = AS’ Aj ¥ 0 for j = 1,2,3, and 4, and char R ¥ 2,
then3 ¢ € C such that
-1
either a) Al cAa and 12 c Aa
-1
or b) Xl = cA4 and Az c A3.
6. If A1A2 - A; = Aa and char R ¥ 2, then either Al = () or AZ = 0,
7. 1If xlxle = 0 and neither Al nor Az is nilpotent, then Aik+1 is
2.2 2.2 2k+1 +
a dertivation, Alkz = Ale , and Alxz Al =0, VkE Z .,
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8. If Alkgkl = 0, char R ¥ 2, and R has no zero divisors, then either

Xl or 12 is nilpotent.
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1, INTRODUCTION

During the past thirty years there have been several milestones
in the study of algebraic derivations in prime rings. In 1957,
Amitsur {1] proved a famous theorem: in a simple ring with unity, any
derivation A which satisfies a polynomial identity £(A) = 0 must be
inner. In 1978, Kharchenko [21] generalized the above result to prime
rings: a derivation satisfying a polynomial identity in a prime ring R
with characteristic zero may be extended to an inner derivation of the
generalized ring of quotients of R. Chung, Kovacs, and Luh [4] have
recently sharpened Kharchenko's result and answered several major
questions, including what type of minimal polynomial a derivation can
have,

The major results by Amitsur, Kharchenko, Chung, Kovacs, and Luh
tell us a great deal when a derivation ) satisfies a polynomial
identity f(A) = 0, However, relatively little is known when more than
one derivation is involved, i.e., what can be said when derivations

»*1'-*2’ sy An of a prime ring R satisfy a polynomial identity of

the form f(Al,Az, PPN An) = 0? A general theory for this problem

appears to be beyond our current reach., The purpose of this report
is to establish a base of knowledge by investigating several specific
polynomials.

A natural starting point for the study of polynomial identities

of the form f(Al, 12) = 0 is a well-known result by Posner [26]:

if A, 4§, and y are derivations of a 2-torsion free, prime ring R such

that A§ = v, then either )} = 0 or § = 0. It follows trivially that




PG Ay
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£(A,8) = A" = 8§ = 0 implies A = O, and that £(A,8) = A6 = 0 implies

Y vor oY
PRy BER PR

either A = 0 or § = 0, From these observations two logical questions
} arise: what can be said when £(A,8) = A" -8=0forn>1 (i.e., the
:? - case where A and an iterate AR are both derivations), and what can be
said when f(1,68) = A%6™ = 0 for n,m € Z+? These two cases are studied

:: and several results given in Chapters 3 and 4, 1In Chapter 5 identities
involving more than two variables are considered. Here, among other
‘ things, we extend Posner's result by determining what happens when
‘3 A§ = Y2 and A6 = 73. In Chapter 6 we investigate the identities
. A6A = 0 and AGZA = 0, and in Chapter 7 we make some concluding remarks.
Chapter 2 introduces the generalized ring of quotients Q(R) of a prime
ring R, the unique derivation A of Q which satisfies A|R = )\, and other
A concepts which will be needed in the sequel. Throughout this paper Z
- is the ring of integers, Z+ is the set of positive integers, and
m,n EEZ+. Also G, C, and F denote the center of R, the center of Q(R),
and the algebraic closure of C, respectively.

The major results of Chapters 3, 4, S,.and 6 are summarized below.

Chapter 3. Assuming R is a prime ring and ) and An, n > 1, are

Tas, byt

derivations of R:
X 1. If R is commutative and characteristic R is sufficiently large,

then A = 0,

p.: 2, If n = 3 and characteristic R # 3, then A is algebraic and A3 = cA

for some ¢ € C,
3., If n=4 and characteristic R ¥ 2, then A is algebraic and

{A,A3,A4,A6} is linearly dependent over C,

i 4

If n = 5 and characteristic R # 5, then A is algebraic and A7 = cA

l"~
&»
.

for some c € C,

*EL

L I
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5. If n = 6 and characteristic R is sufficiently large, then ) is

algebraic,

6. If3 a€R such that Aa # 0 and A%a = 0, then A°®3 = 0, 1f, 1n
addition, sﬁaracteristic R ¥ 2, then A" = 0 1f n is odd and
A"l 2 0 1f n 1s even.

7. If A(C) =0, characteristic R=0, and 3 0 ¥ a€ Rand 0 $ c € C,
such that Aa = ca, then A is algebraic.

Chapter 4. Assuming R is a prime ring and A and 8 are derivations of R:

1. If A6® = 0, then either A = 0 or 6% = 0, k < 4m - 1.

2. If A" = 0, then either A* = 0 or &% = 0, k < 12n - 9.

3. If A"6™ =0 and A6 = 6\, then either A is nilpotemt or § is
nilpotent.

Chapter 5. Assuming R is a prime ring, characteristic R ¥ 2, and

A,8,v,e, and o are derivations of R:

1. If A,8,v,and € are nonzero and A6 - ye = ¢ , then ¥ ¢ € C such that

either a) A = cy and 6§ = c-ls

or b) A=ce and § = c-lv.

2, If 8y - 13 = ¢, then either § = 0 or v = 0,

Chapter 6. Assuming R is a prime ring and A and § are derivations of R:

1. If A6A = 0 and neither A nor § is nilpotent, then A2k4’1 is a

derivation, 1262 = 62A2, and AGZR*-I

2

A=0,V keEz,

2., If A6°A = 0, characteristic R¥ 2, and R has no zero divisors, then

either A is nilpotent or § is nilpotent.
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2, PRELIMINARIES

2.1 Definitions

A prime ring R is a ring with the property that for a,b € R,
if axb = 0 for all x € R, then either a = 0 or b = 0, Primitive rings,
integral domains, and simple rings with R2 ¥ 0, are all examples of
prime rings. A ring R is called a semi-prime ring if for a € R, axa =0
for all x € R implies a = 0, It follows that every prime ring must be
semi-prime. However, the converse need not be true. (For example,

Z @ 2, the direct sum of two copies of Z, is semi-prime but not
prime,) A derivation of a ring R is an additive mapping A: R+ R
satisfying A(xy) = Axy + xAy for all x,y € R. A derivation ) is called
an inner derivation if there exists an element a in R such that

Ax = ax - xa, for all x in R,

If R 1s a nonzero ring and there exists a positive integer n such
that na = 0, V a € R, we call the smallest such positive integer the
characteristic of R. If no such positive ’=»*eger exists, R is said to
have characteristic zero., If R is a prime ring then the characteristic
of R is either zero or a prime number. We say a ring R is n-torsion
free 1f nx = 0 implies x = 0, V x € R, If R is n-torsion free then
characteristic R ¥ n. If R 1s prime and characteristic R > n, then R
is m~torsion free, V m < n.

2,2 The Generalized Ring of Quotients of a Prime Ring

In Chapter 3, we will make extensive use of the notion of the
generalized ring of quotients of a prime ring R. Here we offer a brief
dévelopment of this notion, similar to the developments presented in

[4] and [16].
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Given a prime ring R, let L denote the set of all nongero, two-
sided ideals of R. Let Q(R) = {(U,f) [UE L and £ € Homg (Up,Rp) }, where
HomR(UR,RR) is the set of all right R-homomorphisms from UR into RR
We define a relation ~ on Q(R) by (U,f) ~ (V,g) iff f = g on a nonzero
ideal WC UN V. Since R is prime it is trivial to show that ~ is
indeed an equivalence relation on Q(R). Denote by [U,f] the equiva-
lence class containing (U,f) and by Q(R), or just Q, the set of equiva-
lence classes, Addition and multiplication are then defined by [U,f] +
[V,g] = [UNnV, f + g] and (U,f][V,g] = [VU, fg], where the product fg
is the composition of functions. With these operations it is a straight-
forward exercise to verify that Q is an associative ring. We call Q the
generalized ring of quotients of R.

A very important property of Q which follows from the definition

is the following:

If Q€ Q, q ¥ 0, then I a nonzero ideal U C R such that qU C R and

qu ¥ 0. (2.1)

Using this property we can show that the generalized ring of quotients
is itself a prime ring. Assume quq2 = 0 where qy and q, are nonzero
elements of Q. Since q, ¥ 0 and q, # 0, 3 nonzero ideals U1 and v,
such that qlul ¢ 0 and qzuz #0., Let U= Uluz and note that U # 0
because R is prime. Then qu $ 0 and q2U # 0 since 9 and q, are
nonzero. However, quq2 = 0 implies ql(UR)qz(U) = (qu)R(qZU) = 0
and by the primeness of R we get either q1U = 0 or q2U = (), The con-
tradiction tells us that quq2 = () implies either q; = 0 or q, = 0

and we conclude that Q is a prime ring., It is also easy to show that

R S s R IR
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:}:‘ the characteristic of R is equal to the characteristic of Q, and that

é'f R is isomorphically embedded in Q via the map a + [R, azl, where a,
represents left multiplication by the element a.

If we let C represent the center of the generalized ring of quocients

% Q, then it is obvious that C has a unity since [R, 1] is a unity for the

b ring Q. Further we can prove that C is a field. Let c€ C, ¢ ¥ 0.

:‘ Using (2.1) we know there exists a nonzero ideal U C R such that cU # 0.

& Moreover cU is itself an ideal in R and we can define h : c¢U + R by

> h(cu) = u. Then h is a right R-homomorphism and by letting d = [cU,h]

.: ve get dc = cd = 1 on U.

..

Besides being a field, C is especially nice in that it is

‘ precisely the set of elements in Q which commute with all of R, To

-1 prove this, start with w€ Q, w ¥ 0, and q € Q, qx = xq, V x € R,

= Again by (2.1), w ¥ O implies 3 a nonzero ideal U C R such that

.';;.. wU CR and wU ¥ 0, Then for all u € U, (qw)u = q(wu) = (wu)q =w(uq)

3 = w(qu) = (wq)u and it follows that qw = wq. Therefore q € C and the

5 proof is completed.

; We have noted that R and Q are both prime rings with the same

'g characteristic value and that R is isomorphically embedded in Q. 1In

- addition C is a field and C = {q € Q] gx = xq,V x € R}. With this

: close relationshiop between R and Q one might hope that derivations of

-E‘ R would extend nicely to all of Q. This is indeed the case and we have

the following powerful result: If A : R + R is a derivation, then there

,. exists a unique extension A : Q + Q such that A is a derivation of Q

, and Al = A. Glven [U,f] € Q, A is defined by A ([U,£]) = w?,e'1,

. where £f'(u) = A(f(u)) - £(A(u)). Note that U2 is used to insure

A(u) € U so that £f(A(u)) makes sense., Also note f' is an element of
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HomR(Ui.RR) since for any r € R, f'(ur) = A(f(ur)) - £(A(ur))

= Aif(u))r + £(u)A(r) - £(A(u))r - £(u)A(r) = f'(u)r. Proving A is

a derivation of Q is a routine exercise. To see A]R = ), let x €R,
and use the definition of A to get A([R,xz]) = [RZ,‘x;], where

x;(r) = A(xx) - xAr = (AX)r = (Ax)zr. Therefore A([R, le) =
[Rz,(kx)zl = [R,(Ax)z]. To prove the uniqueness of A let q € Q, q ¥ 0,

and assume A is not unique, say A = AllR and A = AZIR’ where Al and A2

are derivations of Q. By (2.1), q ¥ 0 implies T an ideal UCR, U ¥ 0,

such that qU C R and qU ¥ 0. Then Al(qu) = A.qu + gA,u

19 1
- Az(qu) = Azqu + quu implies (A1 - Az)qu =0, Vu€U. It follows

that (A1 - Az)q = 0 and Alq = Azq.

A derivation A: R + R satisfies a polynomial identity over C if g

2 n
lt + azt +...+ ant » 8,

that p(A)x = (ao + alk + azxz +ooot anxn)x = (0, V x€ R. A derivation

which satisfies a polynomial identity over C is called algebraic over C,

a polynomial p(t) = a + a €¢C, a ¥ 0, such

As a final note, if the field C is not algebraically closed, let F
be the algebraic closure of C. As discussed in [11l] and [24]), we can
define S = RC + C, a closed priwe algebra over C, and P = S ® s 2
prime algebra over F, A derivation A of R can be extended uniquely
to P, We say A is algebraic over F 1f it satisfies a polynomial
identity with coefficients from F,

2.3 Propositions

We conclude this chapter with several propositions which will be
needed later, Theorem 2.9 is similar to Proposition 2.8 and may be of
some independent interest [3], For easy reference, we repeat the

results by Posner and Kharchenko mentioned in the Introduction.
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Proposition 2.1

(Posner) [26]. If A and & are derivations of a prime ring R
with characteristic R ¥ 2, and if the composition A8 is also a
derivation of R, then either A = 0 or § = 0,

Proposition 2.2

(Kharchenko) [21]. A derivation satisfying a polynomial identity
in a prime ring R with characteristic zero can be uniquely extended to
an inner derivation of the generalized ring of quotients of R.

Proposition 2.3

[4] . A derivation A satisfying a polynomial identity in a prime

ring R with characteristic zero must satisfy a minimal polynomial of
n t n n
the form y(x) = x ° I (x - ci) 1 (x + ci) 1 , where the ¢, are mutually
i=1 n_-1
o

distinct elements of F; no 3_n1, Vi; no is odd; and nj > 3 for

some j ¥ 0,

Proposition 2.4

[16] . Suppose a,,b, are nonzero elements in a prime ring R such
1’71

t
that Z a, x b1 = 0, for all x € R, Then the a, are linearly dependent
i=1

over C and the b1 are linearly dependent over C.

Proposition 2.5

[7] . Let R be a 2-torsion free, semi-prime ring and A be a
derivation of R, If A is nilpotent then the index of nilpotency is an
odd number,

Proposition 2.6

[5] [12]. 1If R is a semi-prime ring and A is a derivation of R

such that,(kx)n = 0 for fixed n € Z+ and for all x € R, then A = 0,
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Proposition 2,7

[14]). Let R be a prime ring, characteristic R ¥ 2, and suppose
a,b € R are such that axb + bxa = 0, V x € R, Then either a = 0 or
b =0,

Proposition 2.8

[4] [8]. Let R be a prime ring with characteristic zero and W be
a nonzero ideal of R. Suppose A is an algebraic derivation of R such
that AW C W and £(A) W= (0). Then £(2)R = (0).
Theorem 2.9 Let R be a prime ring with characteristic zero and W be
a noncentral Lie id?al of R. Suppose A is a derivation of R such that
A = (0). Then AR = (0) for some h € z*,

Proof: W is a Lie ideal iff W is an additive subgroup and

[u,x] = ux - XU EW YVu€Ew, x€R.
We know [knu,x] =0, Vu€W, x€R., Let j be the least such that
[Aju,x] =0, VYu€W, x€R, Clearly J > 0 since W is noncentral.

Then
A [u,x] = 0 Vu€EW, x€R

A" 1y x] = A®(\[u,x]) = A*[Au,x] =0 Vu€EW, x€R

- An4’1[lu,x] = An(l[ku,x]) = An[kzu,x] =0 VuEW Xx€R

- ABH102,0 00 = 220 2u,x]) = AP\ u,x]=0VuEW, xER
- ... = A3 1ly,x] =0 Vu€EW, x €R
(A= 1y,2%) =0 Vu€W, x €R.

Let m be the least such that
(A = 1y,0%) =0 VuE€EW x €R,

Notice that m > 1 since ] was chosen smallest,

--------
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Replacing x by xy yields

37 L, Py ] = 183 ", TP aka™

1m0 1

Replacing x by A"x and y by A"~ ly yields

(3 1y, 0% 51 = 0

- 2l Bl . Vu€EW,x,y€ R, (2.2)

Replacing x by (zlzm' lx) in (2.2) yields

Azmz A2m - lx'[ Xj - lu_, i 1y] = 0

Replacing x by (Az32®~ 2yx) in (2.2) yields

A2m+ 1zA2m- 2x“j - 1u, Am -~ ly] -0

2m -3

Replacing x by (Azzl x) in (2.2) yields

Em+2,,m-3 001 =10

Eventually we obtain

avm-1, o [Aj -lu,Am-ly] =0

By the primeness of R we may conclude m=1

complete,

Y1 =0 vuewx,y€Rr.

P e e St

10

Vu€EW,x,y €R

Vu€ W,x,y,z2€ R,

Vu€ w,x,y,z€ R,

Yu€ W,x,y,z€ R.

Vu€ W,x,y,z€ R.

= 0 and the theorem is
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e As encountered in the last proof, repeated use of the symbol V
becomes cumbersome when it is clear from the context that arbitrary
- elements are involved. Therefore in subsequent proofs, where no

) ambiguity exists, the repetitious use of VYV will be omitted.
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3. DERIVATIONS SATISFYING f(A,$) = AM-5=0

Consider the case where A and an iterate A" are both derivations
of a prime ring R. Proposition 2.1 tells us that 1f n = 2 and
characteristic R ¥ 2, then A = 0. For n > 2, Martindale and Miers [24]
have recently made several discoveries assuming A is an inner derivation.
In particular they have shown the following:

Proposition 3.1

If A and A" are inner derivations of a prime ring R and character-
istic R is sufficiently large, then A is algebraic, and
1) if n is odd, then either A" = 0 or the minimal
A polynomial of A is semisimple,
2) 1f n is even, then Al ao,
We say a polynomial f is semisimple if f is the product of distinct
irreducible linear factors over F. Note that if the miniﬁal polynomial

of A is semisimple, Proposition 2.3 implies it must be of the form

t .
¥, (x) = 8121 (x-ci)(x+ci), ¢, €F.

In this chapter we study the case where A and A" are both derivations

of a prime ring R, without the restriction that A must be inner. We

begin by assuming R is commutative. ?

3.1 Commutative Rings
Lemma 3,2 Let A be a derivation of a commutative ring R, let m,n€ Z+,

m < n, and let N denote the natural numbers, If 3 a function ¢ from

o
X N to Z+ such that Vv x,,x,, ..., x_ € R,
1=l 1°72 n
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K+l k,+l ko g+l k +1
I oelkpko,eenk DA XA © x) e A x, A x =0
o+l +
then 4 a function d from X N to Z such that V X)sXgsene X € R,
1=l mtl
k.+1 k41 k +1 k  +1
1 2 m mtl -
)} LIS SRR STD LU 3P Sl SARTRIE N X 41™ O
(kl+ k2+...+ km_._l-n-m- 1)

Proof. Using commutativity, label the ki so that km ¥ 0. Replacing

x by X Xl implies ¥ XyoXpseoesX X o € R,
k1+1 k2+1 k;ll km+1
Ioelkpky,enk) A7 xd % xy wen A% AT (x x )=0
(k1+k2 +'o.+km-n-m)
k1+1 k2+1 k;ll

- 3 clkyskyyeeerk ) A7 X AT Xy wee A T X )
(k1+k +.oo+km. n"m)

2
kol fk +1 k-1
jZO 3 A x A'x o =0
K+l ky+l ktl,
- 3 (k) kyyeannk ) AT XA S Xy wd Tk

(kl + k, +...+ k- n-m

2




- N pan g & i v - LS ~
3, AN g 34 Y pid g ' A Nl AT AN e T g Mg, L T N T e e e e e PR

.',it 14

j=1 \

kil ky+l kil
aD S SN L T T R e

1 2 m-1
(k1+k +ooot km.n-m)

L4~ 5 DOE 9% 5~

2

0
pisik

k-1 /k+1
m m

) j+1
3=0

km— |

(]

A < Aj+lx
m

w1 ) =0

£40
PR

Letting h = km-l-j yields

gt
U R AAN

1‘;14
‘ﬁbrb

ki+1 k4l kil,
) clkyokysensk JhHHDA T o x A T x, Lo A T

m-1
(kl +k, +...+ km- + h+j=n-m-1)

& av .

SEERE

2 1

..

141 1 )"0

) h+j+2) AP 341
m 1
(h+3 =k -1) f

]} "'.i'{:

1
A%

ktl k,+l kil
= 1 dlkky,eek B AT XA T xy e AT

m-1
(k1+k +ouot km__1+"I+j'n-m-1)

A

AL LA

2

.
©

(X ) =0

h+1l . j+1
me xm+1

O
LTS

h+j+2
j+1 '

ok
L)

where d(kl,kz,...,km_l,h,j) = c(kl,kz,...,km_l,h+j+l)

v
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R
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Theorem 3.3 If A and An, n > 1, are derivations of a commutative,

semi-prime ring R and characteristic R is sufficiently large, then A=0,

Proof. A" is a derivation implies Vx, y € R,

n

n -1 1
M) = L 0" Loty = A%y + xaly
i=0
n-1 n~2
- 2 ( )n -1 i - 2 (.0 ))\n-i-le:Hly =0
i+1
i=1 i=0

- 2 (j+i+2) )‘j+1 i+l

= (0, where j=n-2-1,
i+1 ’
j+i=n-2

Applying the last lemma n-2 times we get MAxl Ax Axn =0,

2 s e

Vxl,xz,...,xn € R, where M € Z+. If we let x = Xy fori1i=1,2,...,n,

then M(Ax)™ = 0, ¥V x € R. For characteristic R > M we have (xx)" = 0,

¥V x € R. The proof is completed by using Proposition 2.6,

Corollary 3.4 If A and An, n > 1, are derivations of a semi-prime

ring R with center G and characteristic R is sufficiently large, then

A(G) = 0.

Proof. It is trivial to show that G is also a prime ring and that any

derivation of R is also a derivation of G. Therefore A and )\n are both

derivations of G and by Theorem 3.3 we may conclude that A(G) = O.




Proof. If A

3.2 General Rings

We now drop our assumptions that R is commutative and prime, and
present three minor but interesting results. We will see Lemma 3.5
again in Chapter 4. One should compare Lemmas 3.6 and 3.7 to Theorems

3.9 and 3.11, where the primeness of R is required.

Lemma 3.5 If A is a derivation of a ring R and A(AxAy) = 0 V¥x,y € R,

2n+1

then A is a derivation of R, ¥ n € Z+.

Proof. Observe that A(AxAy) = 0, ¥ x,y € R, implies Ah(AixAjy) =0,

+
Vx,y€Rand Vh,i,j € Z . We proceed by induction on n. Since

3 2 2 3 3 3

Axy) = Axy + 3820y + 3ady + xy = aAdxy + 3A0xAy) + ady

= A3xy + xxay, A3 is a derivation, Now assume 12n+1 is a derivation

forn = 1,2,...,k~1, Then

2k+l 2k+1

L P SRl I

2k+1-1 .1
X

A Ay

A2k+1-ix i

ATy

2k
+ x12k+1y + 2 ( 2k+1

)
=1 1

k
A2k+lxy + xA2k+1y + z ( 2§ﬁ-l) A2k+1-2i(kixkiy)
i=1

2k+lxy xA2k+1y

A +

Lemma 3.6 If A and A3 are derivations of a ring R, characteristic

2n+l

+
R ¥ 3, then A is a derivation of R, Yn € 2 .

3 is a derivation, then A3(xy) = A3xy + 3k2x y +

3AxA2y + xk3y - A3xy + xkay and we get 3A2x y + 3AxA2y = 3x(Ax)y) = O,

...............
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¥V x,y € R. Since characteristic R # 3, A(AxAy) = 0 and the proof is

concluded by our last lemma.
Lemma 3.7 If A and AS are derivations of a ring R, characteristic
R # 5, then A7 is a derivation of R,

Proof. AS is a derivation implies V x,y € R,

3 5
Ny =« ‘ W ialy « Pxy + 0%y

i=0

- sx'ay + 100302 + 100203y + sady = 0

3..2 2.3

- 530y - sdady- saZady =0

- s 30xy) - a2l =0

- 13(Axky) - A(kzxkzy) =0, (3.1)
A7 is a derivation iff V x,y €R,
7 o7 -4 .7 7
Ai(xy) =} (i JA TxATy = A'xy + x)\'y
; i=0
; 6 5,2 4 .3 3,4 2

= 2%y + 2170 % + 3504y + 35030y + 210200y + 7axaby = 0

5,2 4 .3 3

- ’0my) - 1670y - 35243y - 300y - 1400205y = 0

4 .3 2304

- 0xy) - 1302ty + 43y + 3ady = 0

- W Oxdy) - 16830202y + 1 3ady) = o, (3.2)

Since AS is a derivation, (3.1) implies

3,,2_.,2

(727 xay) - 23020291 + -130%0%) + 74 0303 =0+ 0 = o0,

Therefore (3.2) 1s satisfied and A7 is a derivation.

....................
...............

.t
.............
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.‘: 3.3 Results for n = 3, 4, 5, and 6.
{

Returning to prime rings, our next lemma is a powerful variation

of Proposition 2.4, giving us sufficient conditions for a derivation A
] of a prime ring R to be algebraic. We will use it to obtain results

X for £(1,8) = A" - § = 0, n = 3,4,5 and 6.

.,

s

% Lemma 3.8 Let f,,f,,...,f be functions of R into R, where R is

N prime, and let yl, Yos eoes ym be nonzero elements of R such that

)

\

. = €

-Q.: fl(x)zyl + fz(x)Zy2 +o..+ fm(x)zym 0, Vx, z€ R. Then 3

‘—vw‘- cee e L .

€1» Cy» s S C, not all zero, such that clfl + c2f2 +...+ cmfm =0

3 .

;: Proof. Note that form =1, fl(x)zyl =0, Vx, z€R, and Y1 40

.’~ implies f.1 = 0. Suppose the lemma is false and choose the least m.

2 We just noted that m > 2 and we proceed by defining Cy t RymR+ RykR,

!

A

? k=1,2,...,m, by N ( z uiymvi) = 2 U, YV We first show C is well
X i i

% defined. Assuming E wy v, = 0 implies E fm(x)zuiymv:l = 0, Letting
i.

\g

Y -

z z = zu, in our initial hypothesis yields fl(x)zuiyl +...+ i:'m(x)zuiym =0,
. m-1

e Therefore f.m(x)zuiym = -jzl fj (x)zuiyj

:i::

.:‘: 2 m‘il

ot - f.(x)zu,y,v, = 0

= AP e A

3 T fywa]

N - £, (x)z( )} u,y.v,) = 0.

1.'. g R

: Since m was chosen to be least we must have 2 uiiji =0, i=1,2,..,m1.
g i

N

W Therefore 4 is well defined. Also it is clear that C is a right

‘ L]

e

b

¥

.4
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,._\:
:'_:{ R~homomorphism and [RymR ,ck] € Q(R). To see that x € C, let
-.é:' [U,g] € Q(R) and consider .8 acting on URymR,
\{ e, 8lur y.r)) = ¢ lglur)y r,1 = glur,)y,r, = glur;y,r,) = ge, (uryy r,).
R m )
) By hypothesis we have 2 f j (%) zyj = 0, Picking r € R such that AR {0,
24X L
,\,-.: m
i:‘-\_: we get Z fj (x)zyjr = 0, Replacing zyjr by cj (zymr) yields
) j=1 |
b m m |
- X f.(x)c.,zy r = 0. By the primeness of R, z f.(x)c, = 0. |
=1 3 i m o7 3 3 !
% j=1 j=1 |
' Theorem 3.9 If X and A3 are derivations of a prime ring R,
b
characteristic R # 3, then A is algebraic and AB = cA for some c € C.
'}..‘ _
Y
.-3 Proof. A3(xy) = A3xy + 3A2x)\y + 3Ax12y + x)‘3y = )\3xy + xl3y, ¥x,y€R
Tod ’ !
® - 2%y + mly = 0
pedd 2 2
3 - ATxAy + AxA"y = 0. (3.3)
“:".
AR Replacing x by Ax in (3.3) yields A3x)‘y + Azxkzy =0,
3 . Replacing x by xz yields Asxz)‘y + xABsz + Azxzkzy + kakz}\zy +
%
. 2 .2
:4 XA zAy =0

- A3szy + Azxzkzy + 2Ax>\z)\2y = 0
S
A,"”E - A3szy + Azxzkzy - ZAx).zsz =0, (3.4)
)
M 2.2 3
- Replacing y by Ay in (3.3) yields AxA"y + AxA”y = 0,
32 2.2 2 2.2 3
- $~ Replacing y by zy yields A"xA"zy + 2A"xAzAy + A"xzA'y + AxA7zy +
¥
9 AxzAdy = 0
P »  axzddy + aZx2a?y + 22302y = 0
2
3
}:'. - szk:’y + Azxzkzy - 2Ax>\zz)\y = 0, (3.5)
Y
Xa'w
L and

e T e e e e e e e )
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Subtracting (3.4) from (3.5) gives szk3y - A3xzky = 0, This is the

desired form for Lemma 3.8 and the proof is complete.

Theorem 3.10 If X and 14 are derivations of a prime ring R,

characteristic R ¥ 2, then A is algebraic and {A,A3,A4,A6} is

linearly dependent over C.

Proof.  AY(xy) = Ay + 433xy + 60%Zy + aaxady + maly = Ay + Yy,

vV x,y€ R
w430y + 62%x0%y + 4xxA3y = 0
- 2a3ay + 3222y + 2203y = 0, (3.6)
4 3.2 2.3
Replacing x by Ax in (3.6) yields 2X 'xAy + 3A7"xA"y + 2A"xA"y = 0,
4 4 3 .2 2 2
Replacing x by xz yields 2X xzAy + 2xA zAy + 3A7xzA"y + 92"xAzA"y +
9axr2za%y + 3x0°22% + 202203y + aaxazady + 22203y = 0
= %2y + 3xaa?y + 20%22%y + aZaaly + 92ty
+ 4AxAzAly = 0 (3.7)
- 2A4xzky + 3A3lezy + 2A2xzk3y + 9A2xlzl2y - 6AxA3sz
3 3
- 6AxAzA y + 4AxAzA y = 0
- 2A4szy + 3A3sz2y + 2A2x2A3y + 9A2xAzA2y - 6Xxl3zky
- Zxxxzksy = 0, (3.8)
3.2 2 .3 4
Replacing y by Ay in (3.6) ylelds 2A"xA"y + 3A"xA"y + 2xxA 'y = 0.
3.2 3 3.2 2 .3
Replacing y by zy yields 2A7xA"zy + 4A7xAzAy + 2A7xzA"y + 3XA"xA"zy

+ 9A2xA22Ay + 9A2xkzkzy + 3A2xzk3y + 2Axxazy + ZszAAy =0

........
....................
-------------

:.J



= 2xza’y + 205222y + 3Zx2ndy + 9220202y + 0nZalay

+ 4A3xAsz =0 (3.9)

- 2axzr’y + 203x20%y + 3%k %y + 9 20azndy - 6axadzay

-6A3xAsz + 4A3xkzky =0

= 2axzd’ly + 203x20%y + 3 %x20dy + 9 Zanly - exxadzay

- 2A3xAsz =0, (3.10)
2

Subtracting (3.10) from (3.8) implies Zxaxzky - ZszAAy + A3le y

- 222223y - 2azdy + 203xzay = 0.

Replacing x by Ax and y by Ay yields 2A5sz2y - 2A2lesy + Aaxzk3y

- 3xaly - 220y + 2%y = 0

= 100%x22%y - 10A%x22%y + 5a%xzady - sadxzaty - 1022’y

+ 100%z2%y = 0. (3.11)

Replacing x by Ax in (3.7) yields ZAszAy + 3A4sz2y + 2A3xzx3y

+ 9A3xAzA2y + 912xxzzxzy + 412xxzx3y = 0,

Replacing y by Ay in (3.9) yields 2szksy + 213xzx3y + 3A2xz14y

+ 9A2xAzA3y + 9A2xA2zA2y + 4A3xAzA2y = 0,

Subtracting the last equation from the one preceeding it we get

; ZAszAy - 2szA5y + 3A4xzkzy - 3A2xzk4y + 5A3xsz2y

- szxkzx3y =0,

Taking A of both sides implies 2X6szy + ZAszAZy - Zkzxzksy

- 2szA6y + 3lsxzkzy + 3A4xzk3y - 3A3sz4y - 3A2sz5y + 5A4xsz2y

+ 5:3xazady - sadazady - a2y = 0

.......................

........................................
....................................................
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+ 53%xzady - saZaaady = 0
w 48x20y + 1007x20%y + 63%x2rdy - 623xzn%y - 1002x2)0y

- axxz2%y + 10040222y - 102020%y = 0. (3.12)

Subtracting (3.11) from (3.12) implies 4A%xzhy + 3%xzAdy - A3xaaly

- 4kxzk6y = 0, Now apply Lemma 3.8,

Theorem 3.11 If A and AS are derivations of a prime ring R,

characteristic R ¥ 5, then A is algebraic and A - ck for some c € C,

i 5

5
Proof. A (xy) = I ()2 haly = Kxy +xdy, vxyer

i=0

- 5A4xky + 10A3xA2y + lOAle3y + SAxxay =0

- Aéxky + 2A3xA2y + 2A2xA3y + Axkay = 0, (3.13)

2 3.3

Replacing x by Ax in (3.13) yields lsxxy + zx4xx y + 2X7x\7y

+A2xk4y = 0,
5 5 4 2 3 2
Replacing x by xz yields A"xzly + xA7zAdy + 2X xzA"y + 8A7xAzA"y

+ 12A2xAZzA2y + 8Axk3zA2y + 2xlazA2y + 2A3xzk3y + 6A2xkzk3y

2_.3 3

+ 6AxA"zA"y + 2xA zA3y + Azxzkay + ZAxAzkay + xAzzkay =0

- Asley + Zkaxzkzy + 2A3xzk3y + Azxzk4y + 2Axkzk4y

+ 6A2xAzA3y + 8A3xAzA2y + 6Axlzzk3y + 12A2xkzzkzy

R + 8axa xa?y = 0, (3.14)
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- lsxz)‘y + 214sz2y + 2)\3xz)\3y + Azxzkay + 2Axkzk4y

+ 622z dy + 8 dmandy + eaxalzady + 1222222y

- aaxatzay - saZaady - aaxaaaldy = 0

- Asxzky + Zlaxzkzy + 2A3xzk3y + Azxzkay - 2Axlzk4y + 6A2xAzA3y

+ 83 9xaza%y - 2aaaZzady + 120202202y - aaxalzay = 0. (3.15)

Replacing y by Ay in (3.13) yields A*xa%y + 2033y + 22Z0%y + axa’y =o0.

Replacing y by zy yields Aaxkzzy + ZxaxAsz + A4lezy + 2A3xk3zy

+ 63302y + 6030222y + 2%x20%y + 22%hzy + 82232y

+ 12220220% + aaZaazady + 202208y + Aaxddzy + AxzdPy = 0
- szASy + kaxzkzy + 2A3xzx3y + 2A2sz4y + 2A4xkzxy + 6A3xkzkzy
+ 8aZaazady + 613xaZzaay + 1222002222y + 83%xadzay = 0 (3.16)

= axz)y + A%xz2ly + 20%x203y + 2%x20%y + 22%0zy + 63%xazaly

+ 8A2xAzA3y + 6A3xkzzky + 12A2xxzzkzy - 4Axkazky - 8A3xkzzxy

- Axaxkzly =0

- szAsy + 2 %202y + 23x203y + 22%x20ty - 232y + 63xazly

+ 8A2xAzA3y - 2A3xAZsz + 12A2xlzzkzy -4Axk421y =0, (3.17)

Subtracting (3.17) from (3.15) implies Asley - szlsy + A4sz2y

- Azxzkéy - ZxxszAy + 2A4xAsz - ZAZxAzABy + 2A3xAzA2y - 2Axxzzk3y
+ 2A3x>\221)" 0.
N A L S L T R LRl
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Replacing x by Ax and y by Ay yields A6sz2y - Azsz6y + Asxzk3y

- 2%y - 22220y + 20%xaz0%y - 23zl + 2%y

- ZAZXAZZAAy + 2A4xkzzkzy = 0

- 3A6xzkzy - 3A2sz6y + 3lsxzx3y - 3A3sz5y - 6AZxXzA5

2

- adanty + eafazady - 632xZady + 6x%%za?y = 0. (3.18)

Replacing x by Ax in (3.14) yields A6ley + 2A5sz2y + 2X4x2A3y

+ xaxdy + 2%y + 633203y + sabazady + 6aZalady

3.,2..2 2.3

+ 12030%22% + 8223y = 0.

Replacing y by Ay in (3.16) yields szx6y + A4x2A3y + 2A3sz4y
+ ZAZxZASy + 2A4xxzxzy + 6A3xAzA3y + SAZxAzkay + 6A3xxzzA2y

+122%02203y + 8223208y = 0.

Subtracting the last equation from the one preceding it we get
A6xzky - szk6y + 2A5sz2y - 2A2sz5y + Aaxzk3y - A3sz4y

2.3

- 6A2xAzA4y + 6A4xAzA2y - 6A2xk zA"y + 6A3xkzzkzy = 0,

7
Taking A of both sides implies A7szy + A6sz2y - Azxzk6y - AxzA y
+ 2A6sz2y + 2A5xzk3y - 2A3sz5y - 2A2le6y + Asxzk3y + AaszAy

- Abxzkay - A3xzksy - 6A3xsz4y - 6X2xAzA5y + 6A5xAzA2y

+ 6A4xkzk3y - 6A3xkzzk3y - 6A2xA2214y + 6A4xkzzkzy + 6A3xlzzk3y =0

3sz5y - 3A2xzk6y - szl7y

3y - 6A2xkzzA4y

- A7xzxy + 3A6sz2y + 3A5xzk3y - 32X

- 6A3xAzA4y - 6A2xle5

+ 625002202y = 0, (3.19)

y + 6A5xlzkzy + 6A4xAzA

'''''

y + 60 xAzA%y
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Subtracting (3.18) from (3.19) implies A’xzAy - AxzA'y = 0.

Again apply Lemma 3.8 and the theorem is complete.

In Theorems 3.9, 3.10, and 3.11 we assumed that ) and A" were
3 derivations of a prime ring R for n = 3,4, and 5, respectively., For

n =6 we will need the following special lemma.

Lemma 3.12 Let X be a derivation of a ring R. Assume V x,y,z € R,

2 2

3 d, c, €2\ {0} such that d(A\"xaza™ 2y - A% xazaly)

i

t a b b a
+ 1 e e iy 2 Yxan 1) = 0, (3.20)
1=1

2.4 > b BN

+bi=2n+3, and

1’71 i i

+
where n > 2, a_,,b, € 2 > 8y distinet, a, < b >

= 1, Also assume Vx,y,2€R, 3 ¢, € Z\ {0} such that

a8 als gus"

i | i
: o a b b a t a b b a
T G S WP W U LIV I R 8
' ol 11
Al i=1 i=1
4 tx a b b a,
; teout Y oo, (0 Elakan Ky _ KLk Ky 20 (3.21)
ki
! 1=1
y where a.., b, €z¥ distinct for fixed j, a,, < b

) g2 Pyg %0 3y 31 5 P10

a,,+b,, =m~- j for some fixedm€Z+,m_>_k+3, and at least one

. i i

2 B ]

K * * % +

4 a4 <n. Then a c, €2 \ {0} and a, b, €2 such that V x,y,z € R,

‘ t* * b* b* *

i x @ a

i Y ci(k 1ezA 1y - ixza iy) =0,

H : i=1

b

: Proof. Assume & - m%n {aki} and let n - & ™ 2 >0,
L L

” Replacing x by A"x and y by A7y in (3.21) yields

o

¥

A

%

b

b3

“"o' - '_,'.\'\" e '-’;'l Y
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b' ] 1 ]
b a
2 f xljzk jiy - jixljzk jiy) = 0, (3.21') -
j=0 i=1
1] [ ]
where a,, =a, +Landb,, =b, + 2, V1i,j. Therefore a.,, b, > 2,

31 - 351 1 %31 31° Pye 2

| ] '
vV i,j, and a4 bki >n, Vi, except a, = 0

) L \J
Case 1: If bkh —ay = bkh -n =1, then t = 1. Therefore (3.21')

becomes

kl L ' b' ]

- a

) f ( jixAJzA My _aHnda gy 4 o Pkt
jm0qe1 H ki

n+1xkk Any) = 0.

Taking A of both sides implies

? L | 1 L L
a, . +1 b a b a b, .+1
f e I Tadan Iy 4 W3, 03 4 303, 3
j-O 1=1

] L] ] 1 1 4
b,,*+1 a b a b a, ,+1
a3 daa Iy L M3t i3 T,

+ ckl(An+1 Akzkn+1 + A Ak+1 n+l vy + APy Ak An+2
An+2xlkzxny - An+1xkk+1zkn - An+1xkkzkn+1y) -0
k-1 %3 a, +1 b ' b, 41 b, 41 )
- a a
= 1 1, I den Iy p Ml T, C I T30 3y
§=0 i1
L
TR IIT ke, \m2, +2_.k_.n
-adlndan ity ey (Pxaza™2y Lm0kt <o,

k-1

Now substitute A~ "z for z in (3.20) and use the resulting equation

(with the coefficients appropriately adjusted) to replace the term
k- 1

involving Akz in the last equation by terms involving A
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] ] 1
Case 2: If bkh -, bkh - n =2, then t, = 1. Therefore (3,21')
becomes
k 1 b' b' a'
f xAjzA jiy - A jixljzl jiy)
j=0 i=1

n+2 n+2 .k

+ Cx (A xl z2A" ‘y = AT " y) =0,

As in Case 1, use (3.20) to replace the last term with terms involving

Ak-lz.

. ] ] ] e 1]
Case 3: If bkh -, - bkh -n =1 > 2, then define Ay T g, i#h,

L ] ]

1t )
and‘bki = bki’ i ¥ h, and use (3.20) to replace an with & h = 4&n + 2

! e ]
and bkh with bkh = bkh - 2., We may do this since (3.20) implies
' ' 2 b' 2 |
+ - .
(ckhd)lakhxlkzk y = kh [dlakh xkkzk kh y - j
t b +r 2 b a,+r-2
) e, (A "x 1 P vy -2 kot o)
i=]1
and ' '
ben_ k% Pen~2_ k. fknt?

(ckhd)x xS zd My = ¢ [d) kh “ 2Kz y +

a, +r-2 b b, +r-2 a
2 ¢, ( i xxk'lzx iy -1 i xkk-lzk iy)]'
i=1

Notice that in all three cases we must introduce a Ak-lz term

k=1 ;b _ b k-1

of the form c(AxA zly). Moreover this term does not

cancel with any other term involving Ak 1z since a 2 >2Vvi,j. If

3

e "

we are dealing with case three, note that we now have aki’ ki > >n+1,

V 1. We continue using (3.20) to eliminate expressions with Akz.

.........
-----------
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ts "
Since aki’ bki >n+1, VYi, as we eliminate an expression involving

Akz, we can only get expressions involving Ak-lz of the form

bxkk—l

c(xaxxk'lszy - z2%y) where a, b > 2. The conclusion is that

after getting rid of all Az terms, there must still be a A1, term

k-leby - Abxkk-lzky). We now start the whole

of the form c(AxA
process over, eliminating all terms with Ak-lz. Eventually we must

arrive at the desired conclusion,

Theorem 3.13 If A and AG are derivations of a prime ring R and

characteristic R is sufficiently large, then A is algebraic.

6

Proof. A0Gxy) = §
i=0

g ) AG-ixkiy = Aexy + xAGy, VY x, y €ER,

5 4 2 3,3

= 6AxAy + 151 xA"y + 2007 x\"y + 15A2xk4y + 6Axxsy =0, (3.22)

5.2 4 .3

Replacing x by Ax in (3.22) yields 6A6xxy + 15A7xA"y + 202 'xA"y

+ 1513xA4y + 612x15y =0,

Replacing x by xz yields 6A6xzky + 6xx6sz + 15A5sz2y + 75A4xsz2y

+ 150)\3xX2zA2y + 150A2xl3z>\2y + 75>\x>\42)\2y + 15x)\szx2y + 20)\4xz7\3y

+ 80A3xlz13y + 120A2xxzzx3y + 80AxA3zA3y + 20xA42A3y + 15A3sz4y

+ 4512xAzA4y + ASAxAszay + 15xABzA4y + 6A2sz5y + 12Axkzk5y

+ 6xkzzksy =0
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3

= 62%%zhy + 150°x20%y + 200%z20dy + 153x20%y + 62220y

+ 753%023%y + 1500302202y + 1502003202y + 750 zady + 803xazady

3 3,3

+ 1200202203y + 80axa3zn 4 2,25

vy + 45320a20%y + 45202200y

+ 122xAz\%y = 0. (3.23)

By (3.22), 75MxA’za’y = - 30AxA’zdy - 100AxA3za%y - 75amaZanty

- 30AxAzA%y

o 46 5.2 4. .3

62:°xzdy + 150°xz0%y + 200%xz0y + 1503xza%y + 62%x2n’y

2 .2 2,3 .2

+ 152 %xz20%y + 15003002202y + 15022k 3

.
2%y = 30AxA°z0y + 80A%x\zA 3y

2 .3 3,3 2 4 2 .4

+ 1200202223y - 20003203y + 450Zazndy - 30axaZ20%y

AL

- 18\xAz)%y = 0. (3.24)

Replacing y by Ay in (3.22) yields 6A5xxgy + 15A4xx3y + 20A3xk4y

+ lSAZxASy + 6Axx6y = (0,

Replacing y by zy yilelds 6A5xA22y + 12A5xkzky + 615sz2y

+ 15A4xk3zy + 45A4xkzzky + 45A4xxzkzy + 15A4sz3y + 2013xkazy

2

+ 80A3xx3zxy + 120A3xl zAzy + 80A3xxzk3y + 20A3sz4y + ISAZxASzy

4 3,2 2..2_.3

zA"y + 15007xA"zA

y + 75A2xxzkay + 15A2sz5y

+ 75A2x1 zAy + 150A2xA

+ 6AxA6zy + 6szk6y =0

e R b AN
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g 6A5sz2y + 15A4xzk3y + 20A3xzx4y + 15A2sz5y + 6szA6y

2
+ IZXSxAsz + 45A4xAzsz + 45A4xAzA2y + 80A3xk3zky + 120A3xxzzx y

+ 80>\3x)\z)‘3y + 7512x)\42Ay + 150>\2x)\3z>\2y + 150)\2x)\zz>\3y
+ 7512xXzA4y = 0. (3.25)

By (3.22), 75>\2x>\42)‘y = - 30Ax>\sz>‘y - 100A3xl3z>\y - 75A4xkzz}\y

- BOASxAsz

= 6A5sz2y + 15A4xzx3y + 20A3xzk4y + 15A2xzxsy + 6szA6y

- 18A5xszy - 30A4xxzzxy + 45A4xkzkzy - 20A3xk3sz + 120A3xk22A2y

3 .2 2.2

+ 80A3xkzx3y - 3OAxASsz + 150A2xk zA"y + 1502“x) zA3y

+ 75A2xAzX4y =0, (3.26)

Subtracting (3.26) from (3.24) implies 6A6szy + 9A5sz2y

+ SAfsz3y - 5A3xzx4y - 9A2sz5y - 6szk6y + 30A4xAzA2y

+ 3002202 - 300202% - 20003223y + 203032y

2_.4 4 .2 S

- 30A2xAzA4y = 30AxA"zA'y + 30A xA"zAy - 18AxAzA’y + 18A5xAsz =0,

Replacing x by Ax and y by Ay and multiplying by 7 yields

42A7sz2y + 63A6le3y + 35A5xzk4y - 35A4xzxsy - 63A3xzk6y

- 4212xzk7y + ZIOASxAzksy + 210A4xA22A3y - 210A3xA22A4y

3 .4 4.3 .2 3

- 140A2xA zZA 'y + 1402 "xA7zA"y - 210X xAzASy - 210A2xA22A5y

+ 2100°x0 2202y - 1263200228 + 12626xa202y = 0. (3.27)

2

7
Replacing x by Ax in (3.23) yields 6\ xz\y + 15A6sz y + 20A5xzx3y

s VAT T

[N e LR I T e T . VS T e T N LT, PN o
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. 4 .4 3..,5 5 ,.,2 4,2 .2 3,3

+ 153 %22 %y + 63%x22%y + 750%x20%y + 1500%x0%20%y + 15003x03z20%y

3,3

+ 150200 % 202y + soa%aazady + 12003002203y + 80a%xa3203y

; + 4503020y + asnZalaly + 122%020% = 0,

Replacing y by Ay in (3.23) yields 6A°xzAly + 15A%xz2% + 2003xz2%y

+ lSAzsz6y + 6szk7y + 12A5xAzA2y + 4514xA22X2y + 45A4xkzl3y

3,2 3.,2.3 3 4

+ 80:%x 3202y + 1200302203y + 80A3xAz) 2 23203

y + 7502002202y + 15002003203y

, + 1500%x2 %204 + 752%xa20%y = 0.

Subtracting the last equation from the one preceding it we get

6A7szy + 15A6xzkzy + laksleay - 14A3xzksy - 15X2xzk6y - 6szA7y

2_,2 3.,3.,2

+ 63X5xkzlzy + 10514xl zA%y + 7037xA7zA%y + 35A4xkzk3y

- 70023203y = 353zt 2,34

y = 1052 20%20% - 632 %0022y = 6.

Taking A of both sides implies 6A8ley + 6l7lezy + 1517sz2y

6 6__.3 5,4 4 .5 3__,6

+ 1528203y + 142%%z203y + 140°x20%y - 143%%200y - 1433200y

\ 3_.,6 2

1503x2285 = 150%x207y - 622207y - 6ax2a8y + 63285020y

Ey Svgn

5 3 Aé 2 .2 4 .2 .3 4

+ 630°xAz0 %y + 1050°x0220%y + 1053 %xA%203y + 700%x03,02y

+ 700303203y + 350750203y + 3504ty - 70033203y 27002300y
- 353%aazady - 35235200y - 1050350220y - 10502502200y
- 63332200y - 633%xAz8y = 0,
8 7.2
Combining terms and multiplying by 2 we get 12X xzAy + 42)1'xz)"y
. + 5816xzk3y + 28A5sz4y - 2814szSy - 58A3xzk6y - 42A2xzx7y
l
L]
§
','.-,;.‘ P "'. i {a.’.r;.-;.- e e e, et - _L . ""-"".L-;;;;.Al‘:i.": : ‘_’.-.-.-L_.-:--
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- lZszAsy + 126A6xAzA2y + 196A5xkzk3y + 210A5xA22A2y

4 .2 .3 4 .3

+ 210002203y + 1200403202y - 14002a320%y - 196030200y

2 .4 2.2 .5

- 210:3x2%20% - 2100202225y - 1262%x2z10% = 0. (3.28)

Subtracting (3.27) from (3.28) implies 12A8szy - 5A6xzk3y
- 0xza%y + 1020y + 52%x208y - 12ax208y - 1407xazndy
+ 143352227y = 0.

This equation and (3,28) satisfy the hypotheses of Lemma 3.12.

* * % +
Therefore dey € 2\{0} and a, bi € Z such that
¥ x ok B ¥ *
x 8 a
} e, O xza iy - Ixza iy) =0,
1=1 1

By Lemma 3.8 we conclude that A is algebraic.

3.4 Results for Arbitrary n € Z+

The last two theorems of this chapter concern the situation
where A and A" are derivations of a prime ring R for general n € Zf.
Here and in Chapters 4 and 5 we will use the following simple but

versatile lemma,

Lemma 3,14 Assume A is a derivation of a prime ring R and 3

0 # a € R such that a(AnR) =0 or (AnR)a = 0, Then A2n—l =

0.
Proof. Assuming a(AnR) = 0 and X, y € R, we have aAn(xy) =0

$  n,,i,n1
= a( J({)xy)=0 (3.29)
1=0

........
-----
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n-1
Replacing x by A~ "x yields

a? a0 (3.30)

Replacing x by An-zx and y by Ay in (3.29) and using (3.30) yields

35 n=2_,n+l _
;izf aA “xA "y =0 (3.31)
= .
'}{ Replacing x by An-3x and y by Azy in (3.29) and using (3.30) and
. (3.31) yields
22N
"N
T -
i a3 2, L o
e d
".'\,‘
e Continuing this process we eventually obtain axkzn-ly = 0. Since
2; this is true ¥ x, y € R, by the primeness of R we conclude that
3 .
S 221 L 0. similarly, if 0 % a € R and (\™R)a = 0 then 221 < 0,
Ry n
] Theorem 3.15 If A and A are derivations of a prime ring R and &
Py -
b a € R such that Aa # 0 and A%a = 0, then 22"3 = 0., If in addition
. characteristic R ¥ 2, then A" = 0 4f n is odd and An-l =0 1if n is
\y
13X even,
N
i
X
= Proof. A" is a derivation implies An(xy) = Anxy + xAny
:fl n _
7 - (D ™ haly, vxyenr
N 1=0
Y
o nsl n n-i .1
~ Therefore ) ( 7 ) A" xa'y =0, ¥ x,y €R,
-" i
R i=1
A
“4 n-1
JQ Letting v = a implies AT xAa=0, Yx€R (3.32)
v
25. Letting x = a implies Aakn—ly =0, Vy€R (3.33)
e
\iti
oy
-9
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2n-3

In either case, A = 0 by Lemma 3,14, If characteristic R ¥ 2,

then by Posner's Proposition 3.1, (kn)2 =0=2" =0, Proposition 2.5

says the index of nilpotency must be an odd number and we have

A%l 2 0 1f n is even. If characteristic R = 0, then an alternative

proof is available by noting that (3.,32) and (3.33) together imply

2n 3 2n-3

(RAaR) = 0, Therefore by Proposition 2.8, A =0,

Theorem 3.16 Assume A and A" are derivations of a prime ring R,

A annihilates C, and characteristic R=0, If 3 0 # a € R and

0 # ¢ € C such that Aa = ca, then A\ is algebraic.

n=-1
Proof. A" is a derivation implies 2 (" ) n-i Aiy =0, Vx,y €ER.
i=1
n-l n-1,1
Letting x = a and using A(C) = 0 1implies a 2 " ) y =0,
i=]
Vy€ER,
ol Ayt
Letting y = a and using A(C) = 0 implies [( 2 ( A7)x]a=0,
i=1
Vx€ER,
ncl n-id _ & "y
Assume ) ( e A= I (A=c¢c,)”, where the c, are mutually
i i
i=1 i=1
t ni
distinct elements of F. Then{ I (A - ci) x Ja=0
i=1
t ni
= a I (- ci) x], VX€ER,
i=1
t n
Since n{-c ) , J=1,2, ..., t, are relatively prime as
i=1,14]

polynomials of A, g polynomials fl’fz’ .+.ey £, such that

t
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t n, t n,
1= fl(k) I - ci) + fz(l) n (a- ci)
i=2 i=1,142
t-1 n,
+...t+ ft(k) - ci) .
i=]

If we define ﬁc = {x €R I[(A - ci)mx] a =0 for some m} and

i
R ={x€R|a(A-c,) x=0 for some m}, thenR= )} R and
c 3 c
3 i=1 i
t t t _
R= ) ic . Consider RaR = ( ) Rc )a( IR ), Poral1zeR
j=1 €y i=1 €1 j=1 €3 et

. 2N
and for all w € Rc . d Nij € Z+ such that (A - (ci +c, +¢)) ij(za.w)

1 h |
2N
1] 2N 2N, .-k
= Z ( kij Y (- ci) 1 za (A - ¢ )kw = 0, Therefore
k=0 J

t 2N,
D=t +e +0) YY) @ar) = o0,

1,j=1 .

By Proposition 2.8, A is algebraic.
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o 4, DERIVATIONS SATISFYING £(1,8) = A"6™ = 0
N
X Let A and § be derivations of a prime ring R. In this chapter
§$” we investigate what can be said when A"s™ = 0 for n,m € Z+. If
" characteristic R ¥ 2, we know by Posner's Proposition 2.1 that
0 A6 = 0 implies A = 0 or § = 0. Without the characteristic restriction
.éf we can still say the following:
353 Lemma 4.1 If A6 = 0, then either A = 0 or 62 = 0,
Qe
22
= Proof. For any_ x,y € R, we have A6(xy) = Axéy + Sxiy = O,
.
j§ Replacing x by 8x we get GZxAy = 0, Now use Lemma 3.14 to obtain
- d
Rz either A = 0 or 62 =0,
) The distinction between Posner's result and Lemma 4.1 is made
b .
ﬂ clear by a simple example. Consider the 2 x 2 matrix ring over the
257 Galois field GF(22) - {0,1,w,w2}, with A and § defined by
5
!3 0o 1 0 w 2
N AX) = » X] and &8(X) = » X] , V X €GF(29))
N 0 O 0 0 2x 2
b3

2
The characteristic of GF(2 ) = 2 and we have A6 = 0, A ¥ 0, § £ 0,

*; and 52 - 0.

B

»;; Given A6 = 0, Lemma 4.1 tells us that while we cannot insure
4

15 either A or § is identically zero, we do know at least one of them is
t, !

@3 nilpotent, This leads us to conjecture that ¥ n,m € Z*+, ATs™ = 0

T

implies either A is nilpotent or § is nilpotent, We show that if

prRN

7"“@‘ w

n=1orm=1, or if A6 =8, then this is indeed the case.

A L.

N
o
7!
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4,1 Forn =1l orm=1
Theorem 4.2  If A8" = 0, then either A = 0 or & = 0 where r < 4m-1.

Proof. Proceeding by induction, Lemma 4.1 implies that the result

is true for m = 1. Assume the statement is true for m = 1,2,...,k-1.

k

If 26" = 0, then AGk(xy) =0, YV x,y€R,

k
~aC] (%) sty ) =0,
1=0

k-leZky

Replacing x by Gk-lx and y by ka yields A(S ) =0

k-1_.2k k-1_,.2
X0 ¥y

- 265" 1gs2ky 4 KL%y = 0

- AGk-leZRy = 0.

Applying Lemma 3.14 gives the desired conclusion.

Theorem 4,3 If A" = 0, then either 62 = 0 or AT = 0 where r<i2n-9.

Proof. We know that the derivations of R from a Lie ring under

commutation [20], Therefore [8§,A] = A= A8 1s a derivation

= [6A=28,1] = 612 - 208X + A28 is a derivation

- (62 - a6 +226,07 = 613 - ar? + nZara-23s 1

a derivation, Continuing we get

2n-1
1« 22-1 ) (-1)1 asa®-1-1 o 4 derivation.

i=0

o e A it S TR P O e T T T O A O T Y N S N AP L I S S O G
o5 LT a0 6% ("’». .'l' . A ‘.'.~~ LI "_-',-'.»'.-',.-'_-'_.' PR "-'v'-'-‘-\ ............... ‘.-.\\-‘}‘J-\\"-‘.":'\j

ST
e e e e . .
e mu it e Ll Ny e e e e N e et T LIRS SO ST WL L . PN S P L A o I S R ™,




AR AR

o

RNy

i

e, s
KRSERS

%

:-'d‘ .-‘_ [4

AN R

LR

[
15

' _,-l..
N '_- Fadl

ry

T Tea s

)
+
v
£
P
=
B

-
!
1

Supressing the coefficients and using A"8 = 0 we

2n-1 2n-2 n-1l..n
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get

S + Ad8A ‘oot A S is a derivation.

2n-1 2n-2

Then applying Lemma 4,1 to ( 8X + A8A +,

we have 62 = (Q or

APl s =0

2™l a2 4+l P o, (4.1)
If &2 # 0, then we premultiply (4.1) by AL get ALl g,
Premultiplying (4.1) by An—Z it follows that
An-26A2n-l + An—ls)‘Zn-Z -0
- (An-ZGAZn-l + An—lGAZn-Z)A -0
- P25t .,
Premultiplying (4.1) by An-3 it follows that
An-36A2n-l + An-26>‘2n-2 + An—IGAZn-3 -0
- (kn-36A2n-1 + An-ZSAZn-Z + An-IGAZn-3)12 -0
- An-36>‘2n+1 -0.
Eventually we arrive at 6A3n_2 = 0, Applying Theorem 4.2 completes
the proof.
4,2 In Case A and § Commute

Theorem 4.4 If A"6™ = 0 and [A,8] = 0, then either )\ is nilpotent

or § is nilpotent,
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Proof. V x,y €R, Ansm(xy) = Q

- 0 = AT IA%aa" L)

- An ¢ 6m-l Anx 6m+1 )‘n-ly

- Gm-l )‘an 6m+1 )‘n-ly

m-2 Aan mtl AP ly)

- 0= A"s"(s 8

= 0 ( 6m—2 )\an 62m-l-1 }‘n-ly)

- 6m—2 )‘an 62m+1 )\n-ly

- 0= Anam(am-3l3nx62m+l>‘n—1y)

- )‘n ( 6m—3 A3nx 63m+1 )\n-ly)

- 6m-3 A4nx 63m+1 An-ly

- 0= xnam(“(m-l)nxs(m-Z)m-i-lAn—-ly)

}\n(‘”‘(m-l)nms (m -1)m+1>‘n-1y)

AT s (m=-1)mr+l )‘n-ly

§

)‘n‘smo‘mnmS (m—l)m-l-l}‘n-ly)

3
o
]

: 2
An ( Amx 5m +1 A0 ly)

2
- (m+1)nx6m +1)\n-1y

2
By Lemma 3.14, either A" 16® ™1 a Av1s

m
1 . op A2(mn=1 _

If A2(m+1)n-l ¥ 0, we apply the above argument to )\n-lc 1. 0 to get
2
o +1 m 2

25 17 2 3m25 2 L g or 32@+2)(n=1)-1 _ 5 1¢ ) is not nilpotent

m
we continue this process to eventually get § " a0,

....................
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One should observe that if Al,kz, and A3 are derivations of a

w

prime ring R and A;A;A = 0, it does not follow that A, is nilpotent

i
for at least one i, For example, let D be a division ring and consider

D Assume A,,)\,, and A3 are the inner derivations defined by the

3 x3° 1°72
unit matrices Ell’ E22, and E33,respective1y. Then Ai is obviously

= A A, for i,j = 1,2,3., For fixed i,

not nilpotent and xixj 1M

AX =

Y x.E. - Y x,E,,, YX=(x,.)€D
i oy tkotk T L Fadtag i

] 3 x3°

Therefore Alx = x13E13 + xle12 - x21E21 - x31E31

= A (A X) = =x; 5By = Xp,Epy

A3(12(A1X)) = 0,
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- f(x)zg(y) - g(x)zf(y) = 0, V x,z,y € R, implies f = cg for some c € C,
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S. DERIVATIONS SATISFYING A POLYNOMIAL IDENTITY

IN MORE THAN TWO VARIABLES

In this chapter we assume R is a prime ring, characteristic R ¥ 2,
and A,8,v,e, and o are derivations of R, From Posner's Proposition
(2.1) we know A& = y implies either A = 0 or§ = 0, What happens if
Al = YZ? More generally, what happens if A§=vye? Answers to these
questions are given in Theorems 5.4 and 5.5. We also investigate the
case where A§ = 73, and show in Theorem 5.7 that A§ = 73 implies

either A = 0 or § = 0, We begin with a few lemmas.

Lemma 5.1 Assume f and g are functions of R into R. Then

f(x)zg(y) + g(x)zf(y) = 0, V x,z,y € R, f‘mplies either f = 0 or g = O.

Proof, We have f(x)zg(x) + g(x)2f(x) = 0, V x,z € R, Assume f # 0.

Then f(xl) ¥ 0 for some Xy € R implies g(xl) = 0 by Proposition 2.7.

Therefore f(xl)zg(y) =0, Vz,y€R, and since R is prime, g = O.

Similarly g ¥ O implies £ = O,

Lemma 5.2 Assume f and g are nonzero functions of R into R. Then

Proof. If 9 y € R such that g(y) ¥ 0 and f£(y) # 0, then by Lemma
3.8 we are done, Assume no such y exists, Thus Vy € R, g(y) = 0 or
f(y) = 0. However, g ¥ 0 implies ¥ w € R such that g(w) ¥ 0 and

therefore £f(w) = 0. Then f(x)zg(w) - g(x)zf(w) = f(x)zg(w) = 0,

V x,z € R, By the primeness of R, f = 0, a contradiction.




RS

PN

e ey

42

Lemma 5.3 If A6-yA=g, then either A = 0 or 6§ = vy,

Proof. Note that A(8-y) =A8§ - Ay = 0 +yA=-Ay= 0 + [y,A].
Since the commutator of two derivations is again a derivation, we use

Proposition 2.1 to conclude that either A = 0 or § -y = 0,

Theorem 5.4 If X,8, and Yy are nonzero and Aé-yz-o, then

A=cy and 6 = c-ly for some c € C,

Proof. Vx,y €R, (A6 - 72) (xy) = o(xy)

= A8xy + Axdy + SxAy + xAdy - yzxz - 2yxyy - xyzy = gxy + xO0y

=  2yxyy = AxSy - 8x\Ay = 0, (5.1)

Replacing x by xz yields

2yxzyy - Axz8y - 8xziy = 0. (5.2)

We now fix y € R and use (5.2) to show Ay = 0 e §y = Qe yy = 0,

Note that

Ay =0or 8y=0 = 2yyzyy =0, V 2€ R= yy =0 (5.3)
Also note that

Yy = 0 » )xz8y + 6xzAy = 0O V x,z €R

» \yzdy + 8yzay = 0 VzeR
=» either Ay = 0 or &y = O by Proposition 2.7,
However,
Ay # 0 and 6y = O=»¢gxz\y = 0 V x,z€ R= § = 0, a contradiction,

and

Ay = 0 and §y # 0 » Axzfy =0 V x,z€ R= ) =0, a contradiction.
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Thus, Yy = 0= Ay = 0 and 8§y = 0. (5.4)

Together (5.3) and (5.4) imply Ay = 0 = 8y = 0 * yy = 0, There~
fore, 3 y € R such that 2yy # 0, 8y # 0, and Ay # 0, Applying
Lemma 3.8 to (5.2) we obtain vy = aA + bé§ for some a,b € C,

Replacing z by yz in (5.2) yields, V x,z,y €R,

2yxyzyy = Axyzdy - Sxyzly = 0,
Using (5.1) we get

AxSzyy + 8§xAzyy - Axyzly - 6xyzAy = 0,
Replacing x by xs and y by ty yields, ¥ x,s,z,t,y € R,

Axsdztyy + Sxsiztyy - Axsyztdy - Sxsyztdy = 0

= Axs(Sztyy - yztéy) + Sxs(Aztyy - yztdy) = 0. (5.5)

Case 1: Assume 3 z,t,y € R such that (Sztyy - yztéy) # 0 and,

(Aztyy - yztly) ¥ O, By Lemma 3.8, A = d§ for some d € C. Therefore,
Y =al + b8 = a(dd) + bé = (ad + b)d§ and letting ¢ = ad + b we get

Yy = c§. Using (5.2) we get

2c6xzcdx - déxzdx -~ Oxzdéx = 0
= (2c% - 2d)6xzéx = 0

w c2edor cdla c-l.

Therefore, y = cé = (cd-l)l - c-ll, as we desired.

Case 2: A~sume 4 z,t,y € R such that (8ztyy - yztdy) # 0 and

(Aztyy = yztly) # 0. This implies for each fixed z,t,y € R,

82tyy - yztdy = 0 or Aztyy - yztdy = 0, If 3 some z,t,y€R, such that

8ztyy - yztdy = 0 (¥ 0) and Aztyy - yztly ¥ O (= 0), then using (5.5)
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we get § = 0, a contradiction (A = 0, a contradiction), Therefore

Sztyy - yztéy = 0, V¥ z,t,y € R, or Aztyy - yztAy = 0, V z,t,y € R,

R T
e
R S

o =1
e LR
PR ..

Case 2.1: If Sztyy - yztdy = 0, V z,t,y € R, then Lemma 5.2 implies

-

Yy =c§ for some ¢ € C, Using vy = ¢é in (5.5) we get

%&i Sxs(Aztcdy - cbztdy) = 0

BN

Ahe = Aztdy - Sztiy = 0

§: » A =dS for some d € C by Lemma 5.2.
%: The proof is completed as in Case 1.

Case 2.2: If Aztyy - yztAy = 0, V 2,t,y € R, then by Lemma 5.2,

1

Yy =c ~A for some clec, Using y = ¢~ tn (5.5) we get

SELRARRE

Axs(Gztc-1Xy - c-llztGy) = Q

."}‘
. = Sztly - Aztéy = 0
.‘.l
- - A = d§ for some d € C by Lemma 5,2.
\i Again the proof is completed as in Case 1,
)
':I-": Theorem 5.5 If A,8,Y, and ¢ are nonzero and A8~ ye =0, then 3
¢ € C such that
T
B -1
B 1) A=cyand § =c ¢
‘\:‘
- -1
; or 2) A=ceand § =c "y.
.<f
5
s
A
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YV x,y € R, (A6-ve)(xy) = o(xy)

45

= Adxy + AxSy + SxAy + xA8y - yexy - YXEY =~ EXYY = XYEY = OXy + xOy

-»

Replacing

Axzdy + 6xzAy ~ yxzey - exzyy = 0,

Replacing z by Az yields

Ax8y + 8xAy - yxey - exyy = 0,

X by xz yields

AxXAz8y + 8xAzdy - yxizey - exizyy = 0.

Using (5.6) we get

Axezyy + Axyzey - Ax6zdy + 8xlzly - yxizey - exizyy = 0,

Replacing x by xs and y by ty yields

Axseztyy + Axsyztey - AxsSztly

+ dxsiztly - yxsiztey -~ exsiztyy = 0

= (8xsAz - Axséz)tdy + (Axsyz - Yxsiz)tey

Case 1:

+

(5.6)

(5.7)

(Axsez = exsAz)tyy = O, (5.8)

Assume ¥ x,8,z € R such that éxsiz - Axséz # 0,

Axsyz - yxsiz ¥ 0, and Axsez - exs\z ¥ O, This implies for each

fixed x,s,z2 € R, q, = 8xsAz - Axséz = 0, q, = AXsyz - yxsiz = 0,
1 2

or q, = Axsez - exsiz = 0, We now use (5.8) and investigate the

following possibilities:

Case 1.1; If 3 x,8,z € R such that q; # 0 and 4y = 95 = 0, then

Case 1.2:

ARRLR

A = 0, a contradiction,

If Ix,8,z € R such that q, ¥ 0 and q; =95 = 0, then

e = 0, a contradiction,

nnnnnnn
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5-: f
iy Case 1.3: If 3 x,s,z € R such that q, # 0 and q =q, = 0, then
‘i.,

v y = 0, a contradiction.

i
Aig Case 1.4 If 3 x,s,z € R such that 9 #0, 9, # 0, and q = 0, then
i

N A = ce for some ¢ € C by the left-right symmetry of Lemma 3.8.

; Therefore A§ -~ ye= o implies €§ - (c-ly)e = c-lc and we conclude

=
;# § = c'ly by Lemma 5.3.

W

i Case 1.5: If 3 x,s,z € R such that q #0, q, ¢ 0, and q, = 0, then
'ﬁz A =cy for some ¢ € C by Lemma 3.8. Using A = cy in (5.7) we get

'-!

35
G cyxzdy + 8xzcyy - yxzey - exzyy = 0
-5 » yxz(cb-¢€)y+ (c6§-¢€)xzyy =0

}\

A 1

DY » ¢c§d-e=0o0ord§=c ¢ by Lemma (5.1).

;ﬁ Case 1,6: If 4 x,s,z € R such that q, $0, dq # 0, and q = 0, then
»23 , y = be for some b € C by Lemma 3.8. Therefore A§ - be = o implies

' (b-lk) é - ez = b-IO. By Theorem 5.4, b-lk =cec and 6 = c-le for

;3 some ¢ € C. Note that b-ll = ce yields A = bce = cv.

Case 1.7: If q = 8xsAz - Axsfz = 0, V x,s,z € R, then A = b§ for

some b € C by Lemma 5.2, Therefore b62 - vy¢ = 0 implies

'2 (b'ly)g - 62 - -b-lo. By Theorem 5.4, b-ly = c‘ls and € = ¢ § for
.‘.
;S gome ¢ € C, Notice that A = b§ = b(cb-ly) = cy.
ﬁ; Case 1.8: If q, = Axsyz - yxsiz = 0, ¥ x,s,z € R, then A = cy, for
N
w" -
2y gome ¢ € C by Lemma 5.2, We have as in Case 1.5, § = ¢ le.
5
b,
%]
A
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Case 1.9: If q3 = Axsez - €xsAz = 0, ¥ x,s,2 € R, then X = ce for

some ¢ € C by Lemma 5.2. We have as in Case 1.4, § = c-lY.

gggg_gz Assume ¥ x,8,z € R such that 6xsiz - Axséz ¥ 0,

Axsyz - Yﬁsxz # 0, and Axsez -~ exsiz ¥ O, By Lemma 3.8, y = aX + de¢
for some a,d € C, If a = 0, then vy = de (Case 1.6). If d = 0 then

Yy = al (Case 1.5). Therefore assume a # 0 and d ¥ 0. Using (5.8)

we get
(6xsAz - Axséz)tAy + (arxsAz + dixsez - aixsiz - dexsiz)tey
+ a(ixsez - exsAz)tly + d(Axsez - exsAz)tey = 0

= [(8xsAz - Axsdz) + a(Axsez - exsiz)]tly

+ 2d(Axsez - exsAz)tey = Q. (5.9)

Case 2,1: Assume 3 x,s,z € R such that

P, = [(6xsAz = Axs6z) + a(lxsez - exsiz)] # 0

and

P, = 2d(Axsez - exsiz) # 0.

Then A = ce for some ¢ € C by Lemma 3.8 and as in Case 1,4, § = c-ly.

Case 2,2: -Assume ¥ x,s,z € R such that P, # 0 and P, # 0. Then for

each fixed x,s,z € R, either P, " 0 or P, = 0. If94 x,s,z € R such

that P, ™ 0 (# 0) and P, #0 (= 0), then ¢ = 0, a contradiction

(A = 0, a contradiction). We conclude therefore that V x,s,z € R,
(6xsAz - Axs86z) + a(Axsez - exs)iz) = 0

(8§ - ae)xsiz - Axs(§ - ae)z = 0. (5.10)
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If § = ag, then (5.9) becomes

[a(exsAz - Axsez) + a(ixsez - e€xsAz)]tAy
+ 2d(Axsez - exsiz)tey = 0

nd 2d(Axsez - exsiz)tey = 0

=» Axsez - exsAz = 0, a contradiction,
Therefore 6§ ¥ ac¢ and we may apply Lemma 5.2 to (5.10) to conclude
that § - ae= el for some e € C, e # 0. We now have y = a) + de
and § = eA+ ac. Using (5.7) we obtain
Axzely + Axzaey + eAxzly + acxzly - alxzey - dexzey

= ¢xzaly - exzdey = 0

» 2elxzly - 2dexzey = 0

- eixzly - dexzey = Q,

Then 3 y € R such that exy # 0 and dey ¥ 0. (If not then ) = 0 or
¢ = 0, a contradiction). Therefore A = ce for some ¢ € C by Lemma

3.8 and as in Case 1.4 we have § = c-ly.

Lemma 5.6 If cAz + 63 = g where c € C, ¢ # 0, then A =0,

Proof. V x,y €R, (cA2 + 53)(xy) = g(xy)

3

48

- cAzxy + 2caxAy + cxxzy + §xy + 362x6y + 35x62y + x63y = gXy + Xoy

- 2cAx)y + 362x6y + 36x62y =0, (5.11)
Replacing x by xz yields

2¢cAxzAy + 2cxAz)y + 362xz6y + 66x6z8y + 3x6225y

+ 36xz8%y + 3xbz82y = 0
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s X028

AL S

=  2cAxzly + 362x26y + 66x626y + 36x262y = Q.

Replacing z by §z yields

2cAxbzhy + 362x8z8y + 66x86°z6y + 36x6z6%y = 0.

Using (5.11) we get

2¢Ax8zAy - 2cAxAzdy - 2céxliziy = 0

4 LG £ Aot

= Ax§zly = AxAz8y - 6xAzAy = 0,

Replacing x by xs and y by yt yields

ol 7

AxsdzyAt - AxsAzySt - Sxsizyit = Q

4 = Axs(Sxyit - Axydt) - Sxs(dxyAt) = Q, (5.12)

Case 1: Assume 3 z,y,t € R such that &zyit - Azydét # 0 and

e e a1

§ AxyAt # 0, Then § ma) for some a € C by Lemma 3.8, Using (5.12)

we get

A AW AD

Axs(adzyAt = Azyait) - aixs(Azyit) = 0
= Axsizyit = O

X nd A =0,

Case 2: Assume 7 z,y,t € R such that §zyit - Azyst # O and

! AzyAt ¥ Q. This implies for each fixed z,y,t € R, either

» e

8zyit - Azyét = Q0 or Axyrt = 0, If 3 x,y,t € R such that
$zyAt = Azyét = 0 (# 0) and rzyit ¥ 0 (= Q), then using (5.12) we get
§ =0 (A =0), Notice that § = 0 implies A= 0. Therefore assume

AzyAt = 0, V z,y,t € R, or &§xyit - Azyét = 0, ¥ 2,y,t € R, If
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AxyAt = 0, then obviously A = 0, If 6xyAt - Axyét = 0, then from
(5.12) we obtain Sxs(AzyAt) = 0, This implies § = 0 or A = 0 and

again we must have A = 0,

Theorem 5.7 If A8 - y3 = o, then either A = 0 or § = 0,
Proof. ¥ x,y € R, (A8 - v (xy) = o(xy)

= Adxy + AxSy+ 6xAy + xA8y - Y3xy - 372xyy - 3yxyzy - xy3y

= oxy + X0y

= Axdy + 6x\y - 372xyy - 3yx72y =0, (5.13)

Replacing x by xz yields
AxXz8y + xXAz8y + 6xzZAy + x6zZ)y - 372xzyy - 6yxyzyy
- 3xyzzyy - 3yxzyzy - 3szY2y = 0
2 2
= Axzdy + 6x2)Ay - 3y x2yy - 6yxyzyy - 3yxzy'y = 0,
Replacing 2z by yz yields

Axyz8y + Sxyziy - 3YZXYZYY - 6YxY22YY - 3YxY2Y2Y = 0.

Using (5.13) we get
Axyzdy + Sxyzdy - Axézyy - SxAzyy = yxizdy - yx8ziy = O,

Replacing x by xs and y by ty ylelds
Axsyztdy + Sxsyztly - Axslztyy = 6xsiztyy
- yx8iztdy - yxsSztiy = 0,

= Axs(yztdy - 8ztyy) + 6xs(yztdy - Aztyy)

- yxs(Aztdy + SztAy) = O, (5.14)
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-, Case 1: Assume Z% z,t,y € R such that yztdy - Sztyy # 0,
Yztly - Aztyy # O, and Aztdy + 6ztdy # O. This implies that for each

fixed z,t,y € R, q, = yztdy = 0, q, = yztly - Aztyy = 0,

or q, = Azt8y - Sztly = 0. Now use (5.14) and consider the following:

Case 1.1: If 4 z,t,y € R such that q; # 0 and q2=q3=0, then A = 0,
Case 1.2: If3 z,t,y € R such that q,#0 and q,=q_=0, then § = 0,
2298 2.4 2 1 73
Case 1,3: If 3 z,t,y € R such that q,#0 and q,=q,=0, then y = 0,
2278 ~o2 3 1 72

Notice that vy = 0 implies A§ = o and by Posner's result, either ) = 0

or § =0,

Case 1.4: If 7 z,t,y € R such that q,¥0, q,#¥0, and q, =0, then
—_—_— 1 2 3

A = cé for some c € C by Lemma 3.8. Applying Lemma 5.6 to
c62- 73- owe get 6§ =0,

= Case 1.5: If 4 z,t,y € R such that 9 #0, qZ-O, and q3#0, then
Y = cA for some ¢ €C by Lemma 3.8, Use (5,14) to obtain

¥V x,8,z,t,y € R,

Axs(cAztsy - Sztchy) - caxs(Azt§y + sztry) = O
®  cixs(Aztdy - 8ztdy - Aztfy - Sztiy) = 0O
- Axsdztiy = 0

nd either A=0 or § = 0,

Case 1.6: If d 2,t,y € R such that ql-O, q, % 0, and q3#0, then
Y = c¢§ for some ¢ € C by Lemma 3.8, Use (5.14) to obtain
Vv x,s8,2,t,y € R,

Sxs(clztAy - Aztcly) - céxs(rztdy + sztary) = O

= céxs(8ztry - Aztdy - Aztdy - Sztdy) = 0
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- SxsAztdy = 0

= either § = Q or A = Q.

Case 1.7: If q = yztdy - dztyy = 0, ¥ z,t,y € R, then y=0, 6§ =0, or

6 = cy for some c € C by Lemma 5.2, This is Case 1.6.

Case 1.8: If q, = Yztly - Aztyy =0, Vz,t,y € R, then y = 0, A = 0,

or vy = cA for some c € C by Lemma 5.2, This is Case 1.5.

Case 1.9: 1If qq = Azt8y + 8ztiy = 0, V z,t,y € R, then by Lemma 5.1,

either A = 0 or 6 = Q.

Case 2: Assume I z,t,y € R suca that q, $0, q, ¢ 0, and q, ¥ 0.

By Lemma 3.8, A = ¢6 + dy for some ¢,d € C, c ¥ 0 or d $0, Ifcs= 0,
then A = dy and we have Case 1.5. If d = 0, then A = ¢§ and we have
Case 1.4, If c ¥ 0 and d # 0, then substitute c§ + dy for A in (5.14)

to get VY x,s,z,t,y €R,

cOxs(yztdy - Sztyy) + dyxs(yztdy - Sztyy)
+ 8xs(yztcdy + yztdyy - céztyy - dyztyy)

- yxs(cdztdy + dyztdy + Sztcdy + Sztdyy) = 0

= 28xs(cyztdy - cdztyy) - 2yxs(cdztdy + déztyy) = O

= $xs(eyztdy - cdztyy) - yxs(clztdy + déztyy) = O, (5.15)

Case 2,1: Assume ¥ z,t,y € R such that cyztdy - céztyy # 0, and

céztdy + déztyy # 0. Then for each fixed z,t,y € R, either
P = cyztdy - cdztyy = 0 or Py = cdztdy + déztyy = 0, Ifygz,t,y €ER
such that P - 0 (# 0) and P, ¥ 0 (= 0), then y =0 (8§ = 0). Therefore

assume cdztdy + déztyy = 0, V z,t,y € R, Using this and (5.15) we get
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6xs(cyxtdy - céztvy), V¥ x,s,z,t,y € R, Since 3 z,t,y € R such that

q; # 0, we conclude that § = 0,

Case 2,2: Assume d z,t,y € R such that Py ¥ 0 and P, ¥ 0, Then

by applying Lemma 3.8 to (5.15) we obtain y = a§ for some a € C,

This is just Case 1.6.
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6. DERIVATIONS SATISFYING OTHER IDENTITIES

6.1 Identity AdA = 0O

Assume A and 6 are derivations of a prime ring R, By Lemma 4.1,
A§ = 0 implies A = 0 or 62 = 0, What happens if A6)A = 0? A simple
example indicates that we cannot conclude that either A or § is

nilpotent,

Example 1: Let R be the 2 x 2 matrix ring over a division ring and

let A and § be defined by

%) % 10N /xp % 0 x
A = . =

X1 Xy 0 0/ \x; = X5 O

X1 %12 0 1\ /%7 = r¥e X%
§ - , .

X1  ¥22 1 0/ \x,; x, C(%pp = %) 51— %))

It follows easily that neither A nor § is nilpotent., However,

%12 0 =, "X =%y 0 0 0

AA - 28 -2 -
X1 Xy %y 0 0 o1t/ \0 O

Example 2: Let R be the ring of real quaternions. If we define A

and § by Ax = [1,x] and 8x = [j,x], then ASA=68A6=0, However,

A and § are not nilpotent since in R, any derivation which

annihilates the center is inner and any nilpotent inner derivation

is induced by a nilpotent element,
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Although A6\ = Q does not imply the nilpotency of A or § ,
several interesting statements can still be made. We first need two

detailed lemmas.

Lemma 6.1 If A6\ = 0, then either sz = 0 or Az(kxky)k(kzlw) =0,

VI X,y,2,w € R,

Proof. For all x,y € R, A8A(xy) = 0

=» §ixiy + Aszy + AxASy + AdxAy + lezy + Ax8Ay = 0,

Replacing x by 8ix yields A82xhy + 82AxA’y = 0 (6.1)

or
Aaly + aAzy = 0 where a = szx.

Replacing y by yz yields Aa(iyz + yAz) + a(Azyz + 2AyAz + ylzz) =0
or
Aa(yAz) + a(2iyiz + y)\zz) = 0,
Replacing y by Ay yields Aa(Ayiz) + a(ZAZyAz + AyAzz) =0

or
a(AzyAz + )\y)‘zz) = Q,

Replacing z by zw yields a(AzyAzw + AzyzAw + Aykzzw + 2AyAziw

+ AyzAzw) =0,

Replacing z by Az yields a(AzyAzAw + ZAyAZzAw + AyAzAzw) =0

or
ary(A2zdw + AzA%w) = 0,

Replacing y by yv yields a(Ayv + yiv) A (AzAw) = O,
Replacing v by A(AsAt) yields a(AyA(Asat) + ylz(AsAt))A(AzAw) =0

or

N

eI

T T A W ” . AN - N N W AL AT 37 0 T A R i R St T Do E 0 Y I L L DL
ORI A 2yt T O P e o, T, N D e, 2 S N R 1 S I R 0 L S N ey




B 4, 1’

__{ipag

G

El avatnd-a 57

AR v

W

3% Sy ]

N

o

et

fo.s v, 2
- ‘&‘..A-A..-.l"» “

2ok’ a5l e
~TRE PRIV ¥

KA

"

AP Tt
A

4

e P

56

aylz(ksxt)k(xzxw) =0,

Thus, either 62Ax =0, YX€E€Ror Az(xsxt)k(xzxw) =0, Vs,t,z,w €R,

Lemma 6,2 If AZ(AXAY)A(AZAW) =0, Vx,y,z,w €R, then either

x> = 0 or A(xxiy) = 0, V x,y €R.

Proof. Assuming b = A(Axly) we have AbA(Azxw) = 0.
2 2 2
Replacing w by wv yields Ab(A"ziwv + A"zwiv + Az)A wv + 2Az)wav

+ Azwxzv) =0,
Replacing w by Aw yields Ab(AzzAwAv + szxzwxv + Azxwxzv) =0

or
AbAazA(AwAv) = O,

Replacing z by zu yields Ab(Azu + ziu)A(Awaiv) = O, (6.2)
Replacing z by Azt in (6.2) yields Abizitaur(iwiv) = O,

Replacing u by auit in (6.2) yields 'Abza(Auir)r(iwav) = 0.

" Thus either Az(kxxy) =0 or A(Auar)a(pwirv) = 0,

3 2

Case 1: Az(xxxy) =0 " A"xAy + 22 xkzy +‘Ax13y =0,

Replacing x by xs yields (A3xs + 3A2xks + 3Axkzs + xA3s)Ay

+ 2(A2xs + 2AxA8 + xxzs)kzy + (Axs + xAs)A3y =0
or
_A3xsky + 3AzxAsAy + 3AxA23Ay + ZAzstZy
2 3
+ 42AxAs)”y + AxsA”y = 0.

Replacing s by Azs yields Azxkasxi + 2Axk4sxy + szxxzskzy
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e + 4Axk33X2y + Axkzsl3y =0
. = AZxlaiy + atsay + 22%aZaaly + 2302y = 0

o = Zaday + 22020y - aalady = 0

% - -Azxksk3y - Axlzsk3y =0
3
- A(AxAs)A0y = 0,

Using Lemma 3.14 we obtain that either AS = 0 or A(Ax2s) = 0,

W) ' YV x,s € R,

Case 2: AQUAT) A(AwAV) = 0 = A(Auxr)(lzwlv + Awkzv) =0, (6.3)

o
ol e 3,

Replacing w by wp in (6.3) yields

A(AuAr)(AZWpAv + 2)wApAv + wkszv + Awpxzv + wxpxzv) =0, |

: |

P‘.‘. |

A Replacing w by AwAq yields  A(Auir)Awigr(Apiv) = 0. i

N |
Replacing v by vg in (6.3) yields ‘

¢ 2 2 2 2 |

& AQAudr) (A"wavg + A"wvag + awa“vg + 2Xwivag + AwvA“g) = 0 |

s |

i or

- A(Auxr)(kzwvxg + 2 wAvig + vang) =0, 1

4 %4 :

Eg Replacing v by Av yields AQAurr) awa(Avag) = 0,

¥t

G Replacing w by wih yields A(Auir) (Awah + wxzh)k(lvkg) = 0 ‘

d;, or |

%

* A(Auxr)wxzhx(xvxg) =0,

ke Thus, either AQQuar) = 0 or A“ha(Avag) = 0.
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> As a final note, applying Lemma 3.14 to AZhA(AvAg) = 0 ylelds

320 or A(\WAg) =0 ¥ v,gE€R.

b

" Theorem 6.3 If A8A = 0 and if neither A nor § is nilpotent, then

:’ A2k o a derivation, ¥V k € A

"?I

5,

Wy Proof. Combining Lemmas 6,1 and 6.2 we have either 62)\ = 0,

. )«5 = 0, or A(AxAy) = 0, ¥ x,y € R, Considering the hypotheses and
Theorem 4.3, we must have A(Ax)y) = 0, ¥ x,y € R. The proof is

- complete by using Lemma 3.5,

L\:

'.‘-'

e Theorem 6.4 If A8A = 0 and if neither A nor § is nilpotent, then

3 2282 = 622,

% Proof. ASA(xly) = 0, ¥ x,y € R = A6(AxAy + xA%y) = 0

’34 = A(SAxAy + Axé)y + kazy + xGAzy) =0

;\_.g » 6)\x)t2y + AszAy + Aéxkzy + 6x)\3y + Axs)‘zy =0, (6.4)

- 2 2

X A6a(xy) =0, Yx,yER = 2A°§(xxy +xAy) =0

24 : = A2(8xxy + AxSy + 6xAy + X8Ay) = O

' » ékxkzy + k3x6y + )‘zxkéy + >\6x)\2y + 6x)\3y + Azxd)\y = 0, (6.5)

) 3 2 2

¥ Subtracting (6.4) from (6.5) gives A"x8y + A"x\8y - Ax8A"y = 0,

)

1 Replacing y by Ay yields A3xGXy - Ax6A3y =0, (6.6)

Ay

> ' 3 3 3 3

) Replacing x by xz yields ATxz8Ay + xXAT28Ay - Ax28\"y - xAzéAy = 0,

5

w2
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- Replacing z by §Az yields A"x8Az8Ay - Ax8Az6A "y = 0
or
e 3 3
o Ax8A"28Ay - Ax6Az8)17y = 0.
:E:".’ By Lemma 3.14 we have 6)\326Ay - 67\z6>\3y = 0,
" F 3 3
A rom (6.6) we know S(A"x8Ay - Axx8)7y) =0

N
:'é] nd 6)\3x6>\y + A3x62Ay - 6Ax6A3y - Axé‘z)\3y =0
- = a3xelay - as?ady = o,
)
N 2...2 2.3
&N Using (6.1) we have =A"xA8"Ay = Ax8"\7y = 0.

2.2 2.3
Using A(AsAt) = 0, it follows that AXAT8 Ay = Axé“ATy = 0,

M By Lemma 3.14 we have  A26%A = 62A° = 0
:,: or
| (252 - 2% = 0.
o
":q' We know that [[[6,A],A],8] = X262 - 62>\2 is a derivation. Therefore
.
- by Lemma 4.1, 128> - §222 = 0.
%)
y Theorem 6,5- 1If ASA = 0 and if neither A nor § is nilpotent, then
5
LS A6y a0, vie .
L
,::5 Proof. Theorem 6.4 implies (7\262 - GZAZ)GA = A263x =0, In
A
;é Theorem 6.3 we saw that A(AxAy) = 0, V¥ x,y € R, Substituting
o
; 63Ax for x we get A(A63Ax)‘y) = )\263>\xxy + A&akxxzy = 163)\x>‘2y =0,
‘N Using Lemma 3.14 and the fact that ) is not nilpotent we conclude
)

>
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A63A = 0, Starting with (AZG

2 2.5

- 62A2)63A = A"6"A = 0, we repeat

the same argument to obtain AGSA = 0, We continue this process to

2k,

arrive at A$ 0, ¥k€ Z+.

6.2 Identity AGZA = ()
Theorem 6,5 If AGZA = 0, characteristic R # 2, and R has no zero

divisors, then either A or § is nilpotent.

Proof. Aszx(xy) =0, Yx,yE€ER, = AGZ(Axy + xAy) =0

ind A[&zkxy + 26xx8y + AXGzy + 62xky + 26x8xy + xézky] =0

= §2xxAy + 2M6AxSY + 26AxAdy + A2x&Zy + AxASZy

+ AGZxAy + szxzy + 2A8x8Ay + 26xA8)\y + Axszxy = 0.

Replacing x by szx yields A64xxky + 64AxA2y + 2A63Ax6Ay

+ 263axA8dy = O.

Replacing y by yz yields Asakxkyz + Aéakxykz + 64AxA2yz

+ 26Mamayaz + 62z + 2260 xéayz + 208 AxAydz

+ 2A63Ax6yxz + 2163Axydlz + 263Axxsxyz + 263Ax6Ayxz

+ 263Axkzyéz + 263Axxyxsz + 263Axk6ykz + 263Ax6ykzz

+ 263Axkyéxz + 263AxyA6Az =0,

Replacing z by 6312 yields 2A63Axxy63Az + 263Axkzy63kz

+ 263Axkyk63kz =0

or
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3
: 3 3 3..2. 3 3
A
" ASTAXAYS Az + §AxA Y6 Az + § Ax)\ykés)\z = 0.
. 3 2
5 Letting & M = a we obtain Jarya + a) ya + axyza = 0, (6.7)
A
‘ which by replacing y by yt yields
».
lda)yta + )ayita + axzyta + 2ajyita + ayxzta
E
: + alytia + ayatia = 0,
i

Letting y = a we obtain )a)ata + Jaaxta + axzata + a)a)ta
:
;’ + a)latlxa =0
!
%)
14 which by replacing t by ta yields

Aaatlaa + alatala = Q, (6.8)
j Replacing t by tlaawla in (6.8) yields
: Aaa(tlaawla)laa + ala(tlaawla)ala = 0
=» —alatalawlalaa + alat)laawlaala = 0

[ .
; = a)at[-a)awlalaa + )aaw)aa)a] = 0
7
. =» a)a=0 or -ajraw)raiaa + )aaw)aa)a = 0
3 )
: = ala=0 or -a)rawla)aa - a)awa)ara = 0
N = a)a=0 or ajxaw[iraraa + a)a)a] = O
¥ = ala=0 or iaraa + a)ra)a = 0.

Replacing t by t)aawa in (6.8) yields
{
! Aaa(tiaawa)iaa + ala(traawa)ala = 0
4
) g -alatalawa)raa + alat)aawaa)a = 0
1 - alat[-arawaraa + Aaawaara] = 0

. _'._'.;Q. *'- N .',\ \.'4. o) .',.':‘; :‘L -.L‘ _\“_; : Lo ) . ...‘.:_‘




¥4
ke 62
3
i
» ala=0 or =-a)rawaraa + laawaaia = 0
é
? = ala =0 or Alaawlaaa + laawaala = 0
P
. = ala=0 or Aaaw[laaa + aala] =0
% = ala=0, laa=0, or Aaaa + aada =0,
i)
& Assume a)la ¥ 0 and 2Aaa ¥ 0. Then lAalaa + alala = 0 and
1 Aaaa + aala = 0.
'g Therefore
A(Aaaa + aala) = 0
3
3 g Azaaa + Aalaa + laala + jaala + ala)a + aaxza = 0
¢ 2 2
» )\"aaa + 2)\aala + aax’'a =0
2 2
;3 = a(A"aaa + 2)aa)a + aa)"a)a = 0,
3
o
! Notice that JXalaa + alala = 0 implies aAzaa = 0 by (6.7).
% Thus
5 2alaalaa = 0
Y
- or
' alaalaa = 0.
;i : We have shown that either bic = 0, V b,c, € 63AR; Abc = 0,
»
- ¥V b,c € 63AR; or bicdlef = 0, V b,c,d,e,f € 63AR. If A and § are
ﬁ not nilpotent then 63AR ¥ 0 by Theorem 4.3. Hence A63AR = 0, But

? (6.7) implies Ab)yc + bxzyc + biyrc = 0, ¥V b,c, € 63AR and YV y € R,

It follows that Azy = (0, Yye€R, a contradiction, We conclude that

o wa -

either A or § must be nilpotent.

¥
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_‘Q: 7. OPEN QUESTIONS AND REMARKS

lg* Conjecture 7.1: (Chapter 3) Assume R is a prime ring and ) is a

vjj derivation of R, We say A is algebraic over C if I a polynomial

;i p(t) = <, + clt +oeot cmtm, cy € C, ch + 0, such that p(}) x =

=Y

§§ (co +c A ot cmkm)x = 0,¥ xE€ R, If A and A" are both derivations |
5 of R, then we saw in Section 3.3 that, with appropriate characteristic
{j restrictions, A is algebraic for n = 3,4,5, and 6, An obvious

j& question is whether or not the techniques used in Section 3.3 can be

fﬁ modified or extended for n > 7, We conjecture that if A and An, n>1,

f; are both derivations of a prime ring R, with characteristic

i?g sufficiently large, then A is algebraic,

& Conjecture 7,2 (Chapter 3) Martindale and Miers [24] have recently
ia proven Conjecture 7.1 to be true if A and AR are inner derivations.

3? As stated in Proposition 3.1, they have not only shown that A is

W algebraic, but also the following:

fﬁ (1) either A" = 0 or the minimal polynomial P(x) of A

g; is semisimple 1if n is odd.

o and (2) An—l = 0 1f n is even.

-té Assume for a moment that the characteristic of R is 0, & and &" are

g: both derivations of R, and Conjecture 7.1 is true for outer as well as

Z; inner derivations. Then § is algebraic. We would also like to conclude,

ﬁﬁ as in Proposition 3,1, that

(1) either 8" = 0 or the minimal polynomial Y(x) of §

éé ' is semisimple if n is odd.
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n-1

o and (2) s = 0 if n is even.

Indeed, this is the case 1if A" is a derivation of Q, where A is the

unique extension of 6§ to all of Q. For if A" is a derivation, then

L WO

by Kharchenko's Proposition 2.2, A and A" are both inner derivations.

Thus we can apply Proposition 3.1 to A and An, and since Chung,

-

Kovacs, and Luh [4] have recently shown that ¢6-=WA, we have the

T desired conclusion. Note that the above depends on At being a
derivation. Therefore we conjecture the following:

% if § and 6" are both derivations of a prime ring R, then A" is a

derivation of Q, where A is the unique extension of § to all of Q.

i Conjecture 7.3: (Chapter 4) 1If X and § are derivations of a prime

i ring R and A"s™ = 0 for n,m € Z+, then either A or §.is nilpotent.

Conjecture 7.4: (Chapter 5) 1If A,§, and y are derivations of a

L prime ring R, characteristic of R is not 2, and 16==Yn, where n is
! odd, then either A = Q or § = O,

Conjecture 7.5¢ (Chapter 6) If A and 6 are derivations of a prime

g ring R and AGZA = 0, then either A or 6§ is nilpotent,

Conjecture 7.6: (Chapters 3,4,5,and 6) Assume Ai’ Gj are

derivations of a torsion-free, prime ring R and
t ' t
1 2
I A, =T 6§, where t, is even and t, is odd. Then
e i jul 3 1 2

R4

€ kM

either A, is nilpotent for some i or §

i 3

As a final note, assume R is a prime ring and A is a derivation

is nilpotent for some j.

oy g

of R. Let C[t] be the ring of all polynomials in t with coefficients |

in C, and let Z[y] be the ring of all polynomials in y with

EL LR A A BN

w' . J
Y




coefficients in Z.- We wonder what can be said if I polynomials
f € Z[y] and p € C[t] such that p(A)x = xf(x), V x € R. Obviously,
if £ = 0, then we simply have the case where A is algebraic. The

following Theorem addresses the special situation where p(t) = t,

Theorem 7.7 Assume R is a torsion-free ring and A:R + R is defined

xn-l +.,..+ a

-1 x2 + a,x, where a

n
by A(x) = a x + a 2 1

iEZ, an#O.

If X(zlzz)-kz +2z.22,, ¥z

1%2 12259 1 € R, then R is nil,

’zz

Proof. If n=1, then V x € R, A(x) = a.x

1

g alxz = A(xz) = AXX + XAx = .'Zalx

2

If n > 2, then V x € R, then A(xz) = Axx + XAx = 2x)X

2n 2n~-2 4 2
» anx + an_lx +...F azx + alx

= 2a xn+1 + 2a b +...+ 2a x3 + 2a x2
n n-1 2 1

- anxzu = xz(g(x))

where g(x) = b < +b k-1 o .+b

1

Note that if all b, = 0, then x2n

3

bj $ 0. Multiplying (7.1) by 2

= 0, Therefore assume at least one

R L ields

k-1
k-lx +c . ¢+ b

a 22nx2n = 22nx2(b xk +b
n k

1'x + bo)'

By T N T N
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4
:t
% Replacing x by 2x in (7.1) yields
2n_2n 2.2 k k k=1 k-1
an2 x = 2°x (bk2 x + bk_12 X +o.0.t b12x + bo)
) .
Subtracting the last equation from the previous one yields

3 '
a2 (22n - 2k+2)b xk+2 + (22n_2k+1)b xk+1 +.. .+ (2211_22)b x2 -0,
f.. k k-1 o
' k+2 k+1 2

. or we may write X +c 1% +oobc x = 0, where not all ¢ i
i

are zero, say c:.1 ¢ 0.
; Replacing x by 2x,3x,...,kx, and (k + 1)x we obtain A |
b -
¥ i 1 1 1 ckxk""2 !
; I
k+2 k+l 2 k+l

2 2 ese 2 Ce1*
3
4 k+2 k+1 2 k -
; 3 3 cee 3 Cp—2* 0.
-
i : : : :
3
4
| | (k+ 1t a+ 0t L e+ 1)j e %’
;3 Since the Vandermonde determinant is not zero in Z, we have xj *2, 0.
In [14], it is shown that if R is a ring, P ¥ (0) is a right ideal
| of R, and 2 n ¢ Z+ such that a® = 0, V a € P, then R contains a nonzero
: nilpotent ideal., Therefore in Theorem 7.7, if R ¢ O and we comnsider

<

R itself as a right ideal, then not only is R nil, but R contains a
nonzero nilpotent ideal. Such an R cannot be prime, We conclude that

the only prime ring satisfying the hypotheses of Theorem 7.7,must be {0).

A T A" At AT AT o Y e A e N N o v A o h N a e e
BRI  B W, e At v, 90, 30 e L A T A el g T, e LS CRLRA S .s‘.sj
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