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NONPARAMETRIC SELECTION PROCEDURES FOR

A TWO-WAY LAYOUT PROBLEM*

by

Shanti S. Gupta and Lii-Yuh Leu

Purdue University

Abstract

his paper deals with a nonparametric subset selection procedure

*i for a two-way layout problem. The treatment effect with the largest

unknown value is of interest to us. The block effect is a nuisance

parameter in this problem. The proposed procedure is based on the

Hodges-Lehmann estimators of location parameters. The asymptotic relative

efficiency of the proposed procedure with the normal means procedure is

evaluated. It is shown that the proposed procedure has a high efficien

Key words: Nonparametric procedure, subset selection, two-way layout,

treatment effect, nuisance parameter, asymptotic relative efficiency.
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NONPARAMETRIC SELECTION PROCEDURES FOR
A TWO-WAY LAYOUT PROBLEM*

by

Shanti S. Gupta and Lii-Yuh Leu
Purdue University

1. Introduction

Consider a two-factor complete block design with one observation per

cell. Let the observable random variables be Xi = 1,2,... ,k; a = 1,2,...,n

and consider the linear model

k
(1.1) Xtc = + 0 + + e, e i = 0,

where Xi is the observation under treatment i in the ath block, u is the

mean-effect, 0t is the effect of treatment i, 8 a is the block effect for

the ath block (nuisance parameter), and the ,,,, a = 1,2,...,n are error

components. It is assumed that the error components are independent and

identically distributed with a continuous cumulative distribution function

(cdf) F(E), 5 e Ik (the real k-space), where F(c) is symmetric in its

arguments, that is,for any £ E ]Rk and any permutation (1 ... i k) Of

1,...,k), we have

(1.2) F(el,... k) = F(el "'*1  k

Let el ] < elk ] be the ordered ej's . Suppose that we are interested

in the treatment with the largest unknown parameter e[k] (if more treatments

than one have ei equal to e[k ], then exactly one of these treatments is

"tagged" as the best treatment). Correct selection denotes the selection of

any subset containing the population with 8[k] (or the "tagged" population).

*This research was supported by the Office of Naval Research Contract
N00014-75-C-0455 at Purdue University. Reproduction in whole or in part
is permitted for any purpose of the United States Government.
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For the nonparametric approach to the one-way layout problems, most previous

authors have considered procedures based on a class of rank order statistics.

It was pointed out by Rizvi and Woodworth (1970) that there are difficulties

associated with these procedures, mainly because the least favorable configura-

tion is usually not known. Randles (1970) and Ghosh (1973) have considered

the procedures for the one-way layout based on the Hodges-Lehmann estimators.

It was shown by them that the procedures based on the Hodges-Lehmann estimators

have high efficiency. In this paper we use the results of Puri and Sen

(1967) to derive a subset selection procedure for the largest unknown

parameter e[k ].

2. Robust Compatible Estimation

In the model (1.1), for 1 < i < j < k, let Xlj,,= Xia "ja

eij, = i(i - 6 aj a = 1,2,...,n and hij = ei-e j , then for a fixed a,

the ath block, we can write

(2.1) Xij,a = aij + eij,a.

From Assumption (1.2), ej,0 have common distribution, say G, which is

symmetric about zero. Hence Xi.l,*...,Xijn are i.i.d. with common

cdf G(x-aij), for 1 < I < j < k. We assume that G is continuous, but

otherwise unknown. Let Rij, = Rank of IXij, l among

Jxij ,l'ljxi,n and let Xij= (Xij, l...,Xij,n). Consider the one-

sample signed rank statistic

(2.2) hijn(ij) - n - n,azn,c

Where Z,, is either one or zero as follows: if the ath smallest observation

among lxijlI...*IXij,nI.corresponds to Xij,t (for some t), then

-Zn 1 if 1, t > 0 or 0 if Xtj't < 0. En,Q is the expected value of the

. . . ...I. ... , ., 4,j, ..,,, .., .., , .. . '
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ath order statistic of a samle of size n from a distribution **(x) given

by

*(x) - *(-x) if x > 0

(2.3) x)0 if x <0.

Throughout this paper, we shall assume that *(x) and G(x) satisfy the

following assumptions (see Purl (1964) and Purl and Sen (1967)):

(1) *(x) is symmetric about x = 0, that is *(x) + (-x= 1.

(2) _I n - -= 0 (n-).
(2) f [E-n0 ("*-T)]Zn,,m= 0 "P

(3) J(u) = *-1 (u), 0 <_ u <_ 1 is absolutely continuous and

I 1)(u)I - 1d13(u)/du1 I _ M[u(1-u)J " '  +8, i = 0,1,2, for some

N and som > 0.

(4) G is a contimous cdf, differentiable in each of the open intervals

(-",a,); (al,a 2 ),...,(asl,as), (as,0), for some a ,...,a s and the

derivative of G is bounded in each of these intervals.

(5) The function 5 J(G(x)) is bounded as x - ±.

It is easy to see that htj,n(xtj,l+a,...,xij,n+a) is a non-decreasing

function of a for fixed xii an wn aii -0, the distribution of hijn is

Syinitric Aut a fixed point y -7 E*IVI, where V has cdf 0.

Let

.* i (a: ijn(-ij-' > Accession For

(2.4) NTIS -- AO
- DTIC TAI!

ii a Inf(A: hij,n(Nij-a!) < M}) nuMannm,:w 0l

and let

t+ a**). Distribution/
ij T AvailabilltY Codes

Avail and/or
D s p ecial

'a.-'. !

l lll m ll li i li l li lli ll *. .. . .. " " - "" """": ' -" ,
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Now from Hodges and Lehmann (1963), ^ij is a translation invariant robust

estimator of atj and has a dittribution which is symmetric about Atj. Note

that the estimates i are incompatible (see Lehmann (1964)) in the sense

that they do not satisfy the linear relations satisfied by the differences

they estimate. This leads to certain ambiguities. To derive compatible

estimators, let

1 k
(2.5) A = j - 0 for i = 1,2,...,k.

Then by minimizing 13 (ij-"ij) 2 with respect to 91s, we obtain the

compatible or adjusted estimators of a i as

(2.6) Z ij i-Aj i t j.

k
Note that E( i) = 6i since e = 0, hence E(Z ) = Aij. Purl and Sen1=1

(1967) have proved the following theorem:

Theorem 2.1. The joint distribution of {n(Zik-Aik); i = 1,2,...,k-1} is

asymptotically normal with zero means and a covariance matrix

r = (yij),ij = 1,2,...,k-1 where

(2.7) Yij2 if i j

00 if i

and 2  [A2 + (k-2)xj(G)]/kB2 ,

where

4 
2  2 C = d
A J (u)du, B - f J(G(x))dG(x),

(2.8)

and xj(G) = f , J(G(x))J(G(y))dG*(x,y),

* .,. ..*.
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G*(x,y) is the Joint cdf of eij,, and eip,.(j # z) whose marginal cdf's

are G(x) and G(y), respectively.

Moreover, using the translation invariant property of we have

the following lemm:

Lemm 2.2.

"+(1) .At(X Ic 9 9 n-Cl- -- k k . .$ n- Ck)

= (x11,...,9Xln, ...9,Xk1,...,Xkn ) + E-ci ,

C.,.where E c

(2) The distribution of i1-ei is independent of e.

3. A Nonparametric Procedure for Selecting the Best Treatment

Based on the estimators defined in (2.5), we propose a selection

procedure R1 as follows:

(3.1) R,: Select treatment i 1ff i> max Z-A

where d, > 0 is determined so as to satisfy the basic probability requirement.

Let a = {e (el,...,ek)) be the parameter space and CS stand for a

correct selection which means that the selected subset contains the best

treatment. For a given constant P*(k "  P* < 1), the basic probability

requirement is

tnf P (CSIR 1 ) P*.

Let &[1] <- -[ denote the ordered it's and a(t) denote the

unknown estimator associated with the parameter e[t ] , 1 < i < k. If

P (9IR1 ) denotes the probability that the treatment (J) is selected

(treatment (J) is associated with parameter e[j]). We have the following

leum:

* d* * C
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Lemma 3.1. P (eR1) is increasing in e[j] when all other components of

e are fixed, and is decreasing in e[i], i j j, when all other components

of e are fixed.

Proof. P (.IRI) = Pe(a(j) 1 k )

= Pe(z(i)-e[i]- ()+e[j] < d1 + e[jl-Ei ] , i f j, i = 1,...,k).

By Lemma 2.2, the distribution of (1)-[-(j) + e i j, i = 1,2 k

is independent of e. Hence P (eIRl ) is increasing in em and is decreasing

in e(i], i t' j. Note the above property is usually called strong monotonicity

property.

Corollary 3.2. inf P (CSIRI) = inf PO(CSIRI) which is independent of
.EQ -810 -

e ... =e k = e, where 10 = {e E aJ 1 =...= 0k1.

Proof. The proof follows from Lemna 3.1.

For large sample we can define d1 as in Theorem 3.3 given below.

Theorem 3.3. For given P*(k"l < P* < 1). If G2 < -, we have0

(3.2) dl(n) = ni do0 + 00-1) as n

where d is the solution to the equation

(3.3) Q(d//2,...,dM = P*,

Q is the joint cdf of a normally distributed vector (Vl,...,Vk-l) with

(3.4) E(VI) = 0, Var(VI) - 1 and Cov(Vi.V J) = 1/2, 1 + j.

- r- *-
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Proof. 1rm inf Pe(CSIRI) - 1rm Po(A(i)-,(k) < d1(n), i = 1,2,...,k-I)

= P(V< 11m nd 1 (n)/I2 ao , i = 1,2,...,k-1), by Theorem 2.1,

where PO denotes the probability is computed under e =...= 0k' If d

is the solution of (3.3), then

dl(n) = n'ida0 + o(n4 ) as n -.

Remark: The solution of (3.3) is also a solution of f* k-l (x+d) do(x) =P*,

where * is the cdf of standard normal. This has been shown by many authors

(see for example, Gupta (1963)).

Determination of the Minimum Common Sample Size

Let E(SIR1 ) denote the expected size of the selected subset using
k

rule R1 , then E(SR 1) Z P (eR1). Having determined d,(n) from (3.2),

one may determine the common sample size n by imposing the additional

requirement that E(SIR 1 ) <_ l+, for some r > 0, whenever e lies in a given

proper subset of a, for example, the subset defined by

(3.5) 1] a...a ek-1] = e[k ] - 6* 6* > 0.

It will be convenient in the sequel to replace (3.5), when the sample size

is n, by

- .6(n)
(3.6) 6[1] -.. 6 [k-1 ]  e[k]  .

(See Bartlett and Govindarajulu (1968)).

Theorem 3.4. For given€ > 0, with di(n) given by (3.2) and n determined

by E(SIR1) < l+e for . satisfying (3.6). Then as n -,

(3.7) _- c  Igo + °(n').

+ + ! +*, +, ,, ,- , ,% ,:+ . . *+ **., +, ..- . , . ,,..,. - , ,+. .- +,.. ,. ,-
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where c(c) is the solution to the equation

(3.8) Q((c+d)/,2,...,(c+d)/M2 + (k-l)Q(d/~v,...,d/,2,(d-c)/) =l+,

where Q is defined as in Theorem 3.3.

Proof. E(SIR 1) = Pk(- o <ndl(n)/~oO, i = 1,...,k-l*

.. ; "':' ~ ~ t o 4( , (k)-i (j..^)-,)/'O_ ni(dl(n)-s()/ O

+ P6 (ni(a (i)-n(k) )//2 _,0 n (d(n )/ O, +=1,2,...,k-1).

If e satisfies (3.6), then

k-i
lir E(SIR l) = I P(Vi I lim Adl(n)/2aoO, i = 1,...,k-l, ijj,

n-),-j=l

Vk.l lim nf(dl(n)-6 (n))//ao)+P(Vi rn lim n(dl(n)+n

i = 1,29,...,qk-l)

= (k-l)Q(d/v,...,d//2, (d-c)//)+Q((d+c)/v,...,(d+c)/v2 ) = l+c.

Hence c(c) is the solution of (3.8) iff

6(n) = n-c()o 0 + o(n4) as n-'.

Remark: The common sample size n required to satisfy

inf Pe(CSIR l) = P* and E(SjRl) < l+c for e satisfying (3.5) is

(c(c)O/*) 2. Note that n is a function of k, P*, 6*, and e.

4. A Selection Procedure for the Normal Case

If we assume that (ll ""'eka) are jointly normally distributed with

zero means and the covarlance matrix o2( ', ), a = l,2,...,n where

-1/(k-l) I p < 1 is known and a2 <m may be known or unknown. The usual
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least square estimator of ei would be X-X where R. X

k
k It is easy to show that the vector k-R) has a

joint normal distribution with mean vector (el,...,ok) and the covariance

matrix

(4.1) 92(-P) 
V

k " I -)

and hence the vector (X1 - Xk...,)kl-Xk) has a joint normal distribution

with mean vector (el-ek... ,ekl-ek) and the covariance matrix

(4.2) 2o2(I-P) (iI'.T1)I
n

( 4 .).

We assume that a 2 is known and propose a selection procedure R2 by

(4.3) R2: Select treatment i iff Xi > max X. - d
l<j<_k I "

It is easy to see that inf PA(CSIR 2 ) = inf Pe(CSIR 2 ) and is independent.OEQ - BESo, -

of e = k = e. Thus, similar to Theorem 3.3 and Theorem 3.4, we

have the following theorems:

Theorem 4.1. For given P* (k-l < P* < 1), if we let

Inf P (CSIR 2) - P*, then

* (4.4) d2 (n) = n'id-a,

where d is the solution of (3.3).

Theorem 4.2. For given £ > 0 and d2(n) = n 4 dA'-p a, if n is determined by

E(SJR 2 ) < 1+c for e satisfying (3.6), then as n -
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(4.5) ,S~ n) = n(c(e) Ap o,

where c(c) is the solution of (3.8).

Suppose that the joint distribution F of (el,""'Cka) is unknown,

but the variance of cl is finite. By the central limit theorem, the joint

distribution of {ni(Xi-Xk-ei+ek); I = 1,2,...,k-1} is asymptotically normal

with zero means and the covariance matrix (4.2). We can still use the

procedure R2 given by (4.3). For largL samples we have

d2(n) = n d-Io-p a + o(n 2) and 6(n) = n'kc(c)/- a + o(n-i), where d is

the solution of (3.3) and c(c) is the solution of (3.8).

For any two procedures R1 and R2 satisfying the basic P*-condition, let

us define the asymptotic relative efficiency, say

ARE(R1,R2) = lim nR (e)/nR (E) for the given parametric configuration (3.5),
C+0 2 1

where nRi(E), i = 1,2 are the sample sizes required to achieve the same

expected size, l+e. Then we have the following theorem:

Theorem 4.3. ARE(Rl R2) = {2a 2(-)B 2/A2{[kA 2 /2[A 2+(k-2)x (G)]},where

A2, B and xi(G) are defined in (2.8).

Proof. For procedure R,, putting 6(n) = 6*, from (3.7) we have

nRl (E) = ( OO/) 2

where c(c) is the solution of (3.8). (Note that c + 0, then n - .

Similarly, for procedure R2, we have

R2(c) = (c(c)o0/6*)2.
n2

Hence

ARE(R1,R2) 2 (-p)o/a 2

20

. - .
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= 2a 2 )0 2 /A2}{kA2/2[A 2+ (k-2)Aj(G)1

Remarks:

(1) Barlow and Gupta (1969) define ARE(RIR 2) = lim nR (e)/nR (E) for the

C+O 2 1

*given parametric configuration (3.5), where nR.(e), i = 1,2 are the
i

S'.sample sizes required to achieve the same expected size (say c) of non-

} best populations selected. If we consider the case where expected size

refers only to the number of non-best populations in the selected subset,

we have nRl () = (C')C 0  ) , where c'(e) is the solution to the

equationi eqution(k-l)Q(d//r ,.-- ,d//2Z, (d-c')I//2) = e.

Similarly, we have n() = (c'(e)/Tpo16")2, and hence

R2

ARE(RI,R 2) = (1-P)a 2 0,

which is the same as in Theorem 4.3.

(2) Purl and Sen (1967) proved that xj(G) < 1 A2, hence

kA2/2[A2+(k-2)x (G)] > I and ARE(RI,R2) > 2(l-p)a 2B2/A2. The variance

of G is 2(1-P)a2, hence 2(1-p)a 2B2/A2 is the ARE of the one-sample rank

order tests (for location) with respect to the Student's t-test when the

parent distribution is G(x). If we use the normal scores estimator, we

have ARE(R IR2) > . If we use the Wilcoxon scores estimator, then for

any F, we have ARE(R1,R2) > 0.864 and ARE(R1,R2) = 3/r when F is normal.

Hence the procedure given by (3.1) has "high" efficiency.

5. Relative Performance of RI an

In Section 4, we consider the parameter points satisfying (3.6). When

the condition (3.6) is not satisfied, but the ratio of sample sizes, m for R1

I A . . °°=
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.2 2and n for R2, satisfies lim = (1-p)a2/ao, then, for large n, the procedures

R, and R2 have approximately the same probability of a correct selection and

expected size.

Theorem 5.1. Let n and m = g(n) satisfy lim R = (l-p)a /a , then the procedures

R2 and R1 have the same asymptotic probability of a correct selection and the

same expected size for any parametric configuration.

Proof. For procedure R2, consider any sequence of parameter points satisfying

(n) _ (n) = .n-,:-1a~ ~ -),

E, (k] - [i] = 6in *a +

i = l,...,k-I and for some ij, i 1 6*' 6. 0. Then

lim P (n)(CSIR 2) = P(Vi < lim n(d 2(n)+6in)/v7D7 a, i = l,...,k-l)

= P(Vi <_(d+6j)/v7, i = 1,2,...,k-1)

and for I < j < k-I,

lim P j(e(n) jR2) = P(Vi _< (d+6i-6j)//, i = 1,2,...,k, i )

~~~Q((d+61-6 )/Vf,..., (d+6k-6jv)

For procedure R m"a +, on-b a, so

e[1 0k " m[iJ i om = 6ira' "" "2..,kl

Hence
.'."Pe (CS

,i. 11 ( R1) = P(Vi < (d+61)/v., i = 1,2,...,k-1)

,,.:; = ~Q((d+61,?"..,d+ k. )/ •

and for I < J < k-l,

5, ,..'.,,.- -,:.'.:.'.',.-.'.'._ ..-. ',v .'."-',:.:.2..; .. . -, :. -: ;:.:. i-" " ' "•' "
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i lira P(qlM)II)- Q((d+61-6 )v ... 9(d4 -6 a v 1

In the above parameter points, we assume that e (n) (n) tend to zero

at the n rate. If any difference tends to zero more rapidly, we replace

6i by 0, and if it tends to zero more slowly, or tends to a finite limit,

then we replace 6i by -, and still obtain the same asymptotic behavior. This

completes the proof of the above theorem.

6. Estimation of B and x GI

In practical application, for large n, the procedure R1 can be

rewritten as

(6.1) R,: Select treatment i iff Ai> max A. do

k-l j <k n

where d is the solution of (3.3) or f (x+d)do(x) = P*. However, 0

is still unknown. We need to find a consistent estimator of a Since

2 (A2 ' 2 w 2
o +(k-2)(G)/kB where A (u)du is known, but

djx J(G(x))dG(x) and A3(G) = f f J(G(x))J(G(y))dG*(x,y) are
-W -0 -00

unknown. Our problem is to find consistent estimator of B and x3 (G).

The consistent estimators of B and x(G) can be found from (4.7)

and Theorem 4.2 of Purl and Sen (1967); let these be Bn and n., respectively.

Then 0 [A2+(k-2)1 n/kBn2 is a consistent estimator of a Hence, for

large n, the procedure R1 is defined by

(6.2) R1 : Select treatment i 1ff a> -  x -

Remrk: If *(x) is the cdf of U(-1,1), then J(u) = 2u-1, 0 < u < 1, hence

A2 * 1/3. If G'(x) u g(x) exists, then B = 2fg2(x)dx and

,m • • , . o . -. -o -~ ~ ' . q • 
o

- .*- -•
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,x A(G) = 4f f G(x)G(y)dG*(x,y)-l. It has been shown by Doksum (1967) that

f " G(x)G(y)dG*(xy) can be estimated by 1 {number ofJ -m xxen(n-1)(n-Z)k(k-1)(k-2)

sixtuples (i,J,1,a,B,y) with i,j,z distinct; a,o,y distinct, and

x X ,-Xjoa < X i08 x ,0 x ,- x ot < 'i-f - XtY 1.
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