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SR NONPARAMETRIC SELECTION PROCEDURES FOR

N A TWO-WAY LAYOUT PROBLEM*

o

s Shanti S. Gupta and Lii-Yuh Leu

;- Purdue University

” Abstract

1.?":} his paper deals with a nonparametric subset selection procedure ]
LU

;‘;’-" for a two-way layout problem. The treatment effect with the largest

, unknown value is of interest to us. The block effect is a nuisance

-

t;;: parameter in this problem. The proposed procedure is based on the

:'5 Hodges-Lehmann estimators of location parameters. The asymptotic relative
P efficiency of the proposed procedure with the normal means procedure is

evaluated. It is shown that the proposed procedure has a high efficien%

Key words: Nonparametric procedure, subset selection, two-way layout,

treatment effect, nuisance parameter, asymptotic relative efficiency.

*This researc_tg:éﬁas supported by the Office of Naval Research contract
N00014-75-C-0#56 at Purdue University. Reproduction in whole or in
part "l's permitted for any purpose of the United States Government.
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NONPARAMETRIC SELECTION PROCEDURES FOR
A TWO-WAY LAYOUT PROBLEM*

by

Shanti S. Gupta and Lii-Yuh Leu
Purdue University

1. Introduction

Consider a two-factor complete block design with one observation per

cell. Let the observable random variables be xia’ i=1,2,...,k; a =1,2,...,N

and consider the linear model

k

(1.1) Kgg =M+ 05 +B, +egs igl 8, =0,

i
where X, is the observation under treatment i in the ath block, u is the
mean-effect, 6, is the effect of treatment i, 8 s the block effect for
the ath block (nuisance parameter), and the €iq® & = 1,2,...,n are error
components. It is assumed that the error components are independent and
identically distributed with a continuous cumulative distribution function
(cdf) F(e), e € !Rk (the real k-space), where F(e) is symmetric in its

k

arguments, that is,for any ¢ € R" and any permutation (i],...,ik) of

(1,...,k), we have
(1.2) F(e],...,ek) = F(ei],...,eik).

Let 1] <2 k3 be the ordered o,'s. Suppose that we are interested
in the treatment with the largest unknown parameter °[k] (if more treatments
than one have 8y equal to °[k]' then exactly one of these treatments is

"tagged" as the best treatment). Correct selection denotes the selection of
any subset containing the population with ork] (or the "tagged" population).

#This research was supported by the Office of Naval Research Contract
NO0014-75-C-0455 at Purdue University. Reproduction in whole or in part
is permitted for any purpose of the United States Government.
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For the nonparametric approach to the one-way layout problems, most previous
authors have considered procedures based on a class of rank order statistics.
It was pointed out by Rizvi and Woodworth (1970) that there are difficulties
associated with these procedures, mainly because the least favorable configura-
tion is usually not known. Randles (1970) and Ghosh (1973) have considered
the procedures for the one-way layout based on the Hodges-Lehmann estimators.
It was shown by them that the procedures based on the Hodges-Lehmann estimators
have high efficiency. In this paper we use the results of Puri and Sen

(1967) to derive a subset selection procedure for the largest unknown

parameter e[k].

2. Robust Compatible Estimation

In the model (1.1), for 1 < i <j <k, let Xijoa = Xig - xja,

eij,c = eia = Ejal a = ],2:---,“ and Aij = ei‘ejs then for a fixed [+ 29

the ath block, we can write

(2.1) xij’a = Aij + eij,a'

From Assumption (1.2), ®ii,a have common distribuytion, say G, which is
symmetric about zero. Hence xij.l"“’xij.n are i.i.d. with common
cdf G(x-Aij), for 1 <1 <J < k. We assume that G is continuous, but
otherwise unknown. Let R,y = Rank of Ixij,al among
|xij’,|,..,|xij,n| and let X5 = (xij,],...,xij’n)._ Consider the one-
sample signed rank statistic

1 N

Z] El’l .uzﬂ Py 3

a!

(2.2) hygon(yg) = 0

Where Zn . {s either one or zero as follows: i{f the ath smallest observation
among |x1j ll,...,lxij’nl.corresponds to xij,t (for some t), then
]

Y4 '] if Xij’t>00P01f X“’t<0. E

n,a a is the expected value of the

n,

VR ':.-‘. .'-.‘\..‘.\.'b'-\‘.“.' .‘- ,‘-"qu".n A A -‘.ﬁ:"‘. " \_.-._. .q:.- __:“ e *at
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3
3 ath order statistic of a sample of size n from a distribution np*(x) given
by
v(x) - 9(-x) if x>0
b (2.3) v*(x) =
0 ifx<0.

Throughout this paper, we shall assume that y(x) and G(x) satisfy the

A G
’

+ following assumptions (see Puri (1964) and Puri and Sen (1967)):
(1) v(x) is symmetric about x = 0, that is ¢(x) + y(-x) = 1.

1 ° -1, a - -3

(2 5 c’21[5"’& v G .t Op(n ).
" (3) J(u) = w'](u). 0 <u <1 is absolutely continuous and
% i
5 IJ(”(u)I = IdiJ(u)/duil < M[u(1-u)] i- * i =0,1,2, for some
M and some § > 0.

(4) G is a continuous cdf, differentiable in each of the open intervals
(-.,.1); (I«' ,Gz),...,(as_‘ sas): (ast")n for some a-l,...,as and the
4 derivative of G is bounded in each of these intervals.
N
' (5) The function %; J(G(x)) is bounded as x + 1w,
%
; It is easy to see that hu’“(x“’]ﬂ.....x”.nn) is a non-decreasing

function of a for fixed LT and when B4y = 0, the distribution of h,, . is
symmetric about a fixed point y, = ,l; Ew|VI, where V has cdf y.
Let

} . A"J = SW{A: hi:’ .n(!ij'Al) > u}s AC‘C.B_S~§10n For
. (2.4) NTIS GRA&I E
. . .. DTIC TAD

¥ila'a

1l 2
" a iy " inf{a: "1j.n(511'A1) < u} gnén?:3?ch'n 0
:Q . Usth il oot O e
5 and let - -
J By
deq * ] (af, + A”) Distribution/
13 = 7 (a7 * 844)- | Distri B

Availability Codgs
"7 |Avall and/or
Dist Special

o, B AR ¢

8
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Now from Hodges and Lehmann (1963), Aij is a translation invariant robust
estimator of AiJ and has a distribution which is symmetric about Aij’ Note
that the estimates Kij are incompatible (see Lehmann (1964)) in the sense
that they do not satisfy the linear relations satisfied by the differences
they estimate. This leads to certain ambiguities. To derive compatible
estimators, let

o 1 k

(2.5) & = zZI Bygr By44 = 0 for i =1,2,...,k.

Then by minimizing ;j(&ij-Aij)z with respect to s's, we obtain the
i

compatible or adjusted estimators of Aij as

(2.6) Z;5 * ai-zj. itj.

. k
Note that E(a;) = e, since 12101 = 0, hence E(Zij) = 4;4- Puri and Sen
(1967) have proved the following theorem:

Theorem 2.1. The joint distribution of {"é(zik'Aik); i=1,2,...,k-1} is
asymptotically normal with zero means and a covariance matrix

I = (vgy)sfsd = 1,2,...,k-1 where

2
(2.7) 'Y-ij =
o if 143

and o) = [A% + (k-2)2,(6)1/kBZ,

where
1 ®
A2 = | P(uydu, 8= L a(6(x))ds(x),
(2.8) -7 )
and  1,(6) = [ [ 9(6(x))I(6(y))d6*(x,y),
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6*(x,y) is the joint cdf of €ij.a and e“.a(j % 2) whose marginal cdf's
are 6(x) and G(y), respectively.

Moreover, using the translation invariant property of Ki :s we have

J
the following Temma:

Lemma 2.2.
(]) Ei(X]]-C],...,X]n-C]....,Xk]ka,...,an-Ck)
= ai(xll,...,xln,...,Xk],...,xkn) + E-Ci.
where ¢ = 'z(
ere Cc = C:.
k &y
(2) The distribution of 4,-¢, is independent of g.

3. A Nonparametric Procedure for Selecting the Best Treatment

Based on the estimators defined in (2.5), we propose a selection

procedure I!1 as follows:

(3.1)  Ry: Select treatment i {iff 81 > max Kj-d].
1<j<k

where dI > 0 is determined so as to satisfy the basic probability requirement.

Llet o = (o = (e,....,ek)} be the parameter space and CS stand for a
correct selection which means that the selected subset contains the best
treatment. For a given constant P*(k'] < P* < 1), the basic probability
requirement is

inf P,(CS|R,) > P*.
gen °

Let Apyy 2+-5 8y denote the ordered 4,'s and A(1) denote the
unknown estimator associated with the parameter oryye 1<i<k. If
PJ(QI"]) denotes the probability that the treatment (j) is selected
(treatment (j) fs associated with parameter e[j]). We have the following

Tenma:
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Lemma 3.1. Pj(9|R]) is increasing in o] when all other components of

6 are fixed, and is decreasing in e[i], i ¥ j, when all other components

of 9 are fixed.
Proof. Py(elRy) = Pola(5) 2 max A(y)-dy)

= PolBi)eriTBg)*orgy < 4t epyopiyy T I 1= Taelik)
By Lemma 2.2, the distribution of a(i)-e[i]-a(j) + o) | $d,1=1,2,....k
is independent of 6. Hence Pj(glR]) is increasing in O;7 and 1s decreasing

in 9[i]’ i ¥J. Note the above property is usually called strong monotonicity

property.

Corollary 3.2. inf P_(CS|R,) = inf P_(CS|R,) which is independent of
0 1 6 1
gER © pERy -

8y =...= 0, = 0, where 0, = {0 € a[6; =...= ¢ }.

Proof. The proof follows from Lemma 3.1.
For large sample we can define d] as in Theorem 3.3 given below.
Theorem 3.3. For given P*(k'] <P*<1). If cg < =, we have
(3.2) dy(n) = n doj + o(n'%) as n + =,
where d is the solution to the equation

(3.3) Q(d//2,...,d//2) = p*,

Q is the joint cdf of a normally distributed vector (V]....,Vk_]) with

(3.4) E(vi) = 0, Var(vi) = 1 and Cov(vi. j) = 1/2, 1 % j.
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Proof. 1lim inf P_(CS R = lim P - <d » 1 =1,2,...,k-1
roo n_:egn ’( IR;) III O(A(i) A(k) (n) )

= P(V; < Vim n%d](n)/Jf'co, i=1,2,...,k-1), by Theorem 2.1,
neo

where Po denotes the prbbability is computed under By =...= 8. Ifd
is the solution of (3.3), then

dl(n) = n'%do0 + o(n'é) as n -+ o,

Remark: The solution of (3.3) is also a solution of [ ¢k'](x+d) do(x) =

where ¢ is the cdf of standard normal. This has been shown by many authors

(see for example, Gupta (1963)).

Determination of the Minimum Common Sample Size

Let E(S!R]) denote t:e expected size of the selected subset using
rule Ry, then E(S!R]) = Z P (elR] Having determined d, (n) from (3.2),
one may determine the common sample size n by imposing the additional
requirement that E(S|R,) < T+e, for some ¢ > 0, whenever § lies in a given

proper subset of Q, for example, the subset defined by
= = = - &% *
(3.5) 0[]] ses e[k_~'] e[k] §*, §* > 0.

It will be convenient in the sequel to replace (3.5), when the sample size

is n, by

(3.6) o[1] e+ Oka1] " Opi] M,

(See Bartlett and Govindarajulu (1968)).

Theorem 3.4. For given ¢ > 0, with d](n) given by (3.2) and n determined

by E(S|R1).5 1+¢ for ¢ satisfying (3.6). Then as n + =,

(3.7) AL Y 9y * O(n'i),

o '- - -._‘ .f_ o . ‘f.‘ .
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where c{e) is the solution to the equation
(3.8) Q{(c+d)/V2,...,(c+d)/V2) + (k-1)Q(d/V2,...,d//2,(d-c}/V2) = T+e,

where Q is defined as in Theorem 3.3.
k-1 . 3 _
Proof. E(S|R) = j;l PQ(IP(A(i)-A(j))//fco <fdy(n)/ Y2y, 1= 1,000k,
i3, Blagbig)-s ™y < rBldy(m-st™)//2s)
+ Pe(n%(Z(i)-Z\(k)w("))//foo < B(dy ()M /By, 11,2, k1),
If g satisfies (3.6), then

k-1
Tim E(S|R) = ] P(Vy < Hm tédy(n)/VZog, 1 = 1,... k-1, 14,
Mo j=1 oo

Vo o < tim B (dy(n)-6 ™)1/ )ep(V, < Tim B (d (My,v2s,
k-1 < Tim (dy(n)-6"77)/ 00)"'(1_":2 (,(n)+6.)/1<;0 »
1 = lylyeesgK=

= (k-1)Q(d/v2,...,d/V/2, (d-¢c)/V2)+Q((d+c)/V2,...,(d+c)/V2) = l+e.

Hence c(e) is the solution of (3.8) iff

LY n'%c(e)o0 +o(n?) as n o+ .

Remark: The common sample size n required to satisfy

inf P (CS|R,) = P* and E(S|Ry) < M+e for ¢ satisfying (3.5) is
gEQ -
(C(e)oo/G*)z. Note that n is a function of k, P*, §*, and ¢.

4, A Selection Procedure for the Normal Case

If we assume that (e1a""’sku) are]jointly normally distributed with

o]
zero means and the covariance matrix 02( ‘. ]). a=1,2,...,n where
o ¢

-1/(k-1) < p < 1 is known and 02 < », may be known or unknown. The usual




........

n
least square estimator of 6, would be X,-X where X, = %— ! X;, and
a=1

k
X = %-12121. It is easy to show that the vector (X]-X,,.,,Xk-X) has a
joint normal distribution with mean vector (e],...,ek) and the covariance

matrix

1 - 1 1

02 1- F. k
(4.1) m A ..] 1
k "k

and hence the vector (X] - Xk""’xk-)'xk) has a joint normal distribution

with mean vector (e]—ek,...,ek_]-ek) and the covariance matrix

1
20%(1-p) [ V. 2

(4.2) 0_’('_9_)_ i )
7

We assume that 02 is known and propose a selection procedure R2 by

(4.3) Ry: Select treatment i iff X, > max X. - d,.
1<j<k I

It is easy to see that inf PG(CS!Rz) = inf P (CS|R,) and is independent
fee - 8€qy -

of e] =, .= ek = g, Thus, similar to Theorem 3.3 and Theorem 3.4, we

have the following theorems:

Theorem 4.1. For given P* (k'] < P* < 1), if we let

-

inf Pe(cs|R2) = P*, then
€N

(4.8)  dy(n) = nFdT o,

where d is the solution of (3.3).

Theorem 4.2. For given ¢ > 0 and dz(n) = n'%dJl-p o, if n is determined by

E(S|R2) < 14¢ for g satisfying (3.6), then as n + «
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(4.5) 6(") = n'%c(e)JT:B'o.

where c(e) is the solution of (3.8).

Suppose that the joint distribution F of (e]a""’eka) is unknown,
but the variance of €1 is finite. By the central limit theorem, the joint
distribution of {"%(Xi'xk'ei+ek); i=1,2,...,k-1} is asymptotically normal
with zero means and the covariance matrix (4.2). We can still use the
procedure R2 given by (4.3). For largc samples we have
dy(n) = n'%dJT:B'o + o(n'%) and 6(") = n'%c(e)JT:E'o + o(n'%), where d is
the solution of (3.3) and c(e) is the solution of (3.8).

For any two procedures R] and R2 satisfying the basic P*~condition, let
us define the asymptotic relative efficiency, say

ARE(R,,R,) = 1im n, (e)/n, (e) for the given parametric configuration (3.5),
1720 0 R TRy

where "R.(e)’ i = 1,2 are the sample sizes required to achieve the same
i

expected size, 1+c. Then we have the following theorem:

Theorem 4.3. ARE(R;.R,) = {202(l-p)BZ/Az{[kA2/2[A2+(k-2)AJ(G)]},where

2

A®, B and AJ(G) are defined in (2.8).

Proof. For procedure Ry putting 6(") = &*, from (3.7) we have
ng (&) = (c(e)og/s*)?
R] 0 *

where c(c) is the solution of (3.8). (Note that ¢ + 0, then n + =),

Similarly, for procedure R2’ we have
g, (€) = (c(e)/T=5 o/6%)%.

Hence

ARE(R; Ry) = (1-p)o?/od

- . .
............
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; "

b = (22%01-0)82/A21 (kA2 20A% (k-2)24(6) 1.

Po

N Remarks :

: (1) Barlow and Gupta (1969) define ARE(R;,R,) = lltg nRZ(e)/nR](e) for the
i3 given parametric configuration (3.5), where nRi(e), i =1,2 are the
sample sizes required to achieve the same expected size (say ) of non-
: : best populations selected. If we consider the case where expected size
; refers only to the number of non-best populations in the selected subset,
n we have nR'l(e) = (c'(e)cols*)z, where c'(c) is the solution to the

o equation

(k-1)Q(d/VZ,. .. ,d/ /2, (d-c')/V2) = e.

§ Similarly, we have nRz(e) = (c'(e)/Tp 0/6*_)2, and hence

‘- ARE(R, \R,) = (1-p)o?/s?

:. which is the same as in Theorem 4.3.

(2) Puri and Sen (1967) proved that AJ(G) 5_%—A2, hence

’ kAZ/2[A%+(k-2),(6)] > 1 and ARE(R),R,) > 2(1-p)o’B%/AZ. The variance
; of G is 2(]-9)02, hence Z(I-p)asz/A2 is the ARE of the one-sample rank
order tests (for location) with respect to the Student's t-test when the
parent distribution is G{x). If we use the normal scores estimator, we
_, have ARE(R],RZ) > 1. If we use the Wilcoxon scores estimator, then for
“ . any F, we have ARE(R,,R,) > 0.864 and ARE(R;,R,) = 3/x when F is normal.
? Hence the procedure given by (3.1) has "high" efficiency.

:3 5. Relative Performance of R, and R,

In Section 4, we consider the parameter points satisfying (3.6). When

the condition (3.6) s not satisfied, but the ratio of sample sizes, m for R,
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and n for RZ’ satisfies lim % = (]-o)cz/og, then, for large n, the procedures
now

W R] and R2 have approximately the same probability of a correct selection and
! expected size.

Theorem 5.1. Let n and m = g(n) satisfy 1im % = (1-9)02/03. then the procedures
N

R2 and R] have the same asymptotic probability of a correct selection and the

same expected size for any parametric configuration.

Proof. For procedure R2’ consider any sequence of parameter points satisfying

-1 21
% =8;p =M E o8; + o(n2),

i=1,...,k-1 and for some i,j, &, $ 6%, 8 $ 0. Then

Tim P, (CS|R,) = P(V, < Vim ¥ (d,(n)+s, )/¥Z(T=p) G, i = 1,...,k-1)
n—m_@(") IR, i (dy in p) 0
= P(Vy < (#6)/Y2, 1= 1,2,...,k1)
= Q((d+89)/V2,... ,(d+s,_1)/V2)
and for 1 < j < k-1,
Tin Pi(ol™ IR)) = P(V; < (@¥8;-8,)/V2, 1 = 1.2,c0ky 1 4 4)
= Q((d+c]-sj)//2,...,(d+5k-aj)//2').
For procedure Ry, m'%a0 " n'%/'l-_p os SO

8} - ) oty + oo = 0

m® 1,2,...,k-1.

Hence

1M P, (CS[Ry) = P(Vs < (d#6)/VE, 1 = 1,2,....k-1)
}im o) Ry j < (d+sy

= Q((d+8,)/VZ,...,(d+s, 1)/ 72).

and for 1 < j < k-1,

*. ~ - - - ~ . . . - . - R
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13
lin (e ™ R) = Q(dsy-84)//2,... o (d46,-8)/V2).

In the above parameter points, we assume that eéz% - eé?% tend to zero

at the n'% rate. If any difference tends to zero more rapidly, we replace
8 by 0, and if it tends to zero more slowly, or tends to a finite limit,
then we replace 84 by », and still obtain the same asymptotic behavior. This

completes the proof of the above theorem.

6. Estimation of B and A,{G)

In practical application, for large n, the procedure R] can be

rewritten as
~ - do'0
(6.1) Ry: Select treatment i iff A, > max A, - —,
1<j<k b /n
where d is the solution of (3.3) or [ @k'](x+d)do(x) = P*. However, o

is still unknown. We need to find a consistent estimator of og. Since

2 .2 2 2 12
on ® {A“+(k-2)2,(G)}/kB“, where A° = [J(u)du is known, but
0 J

B = | 4 9(60x))da(x) and Ay(6) = |/ I(6(x))I(G(y))de(x.y) are

unknown. Our problem is to find consistent estimator of B and AJ(G).
The consistent estimators of B and AJ(G) can be found from (4.7)

and Theorem 4.2 of Puri and Sen (1967); let these be B, and L , respectively.

Then Gg = [A2+(k-2)£n]/k§ﬁ is a consistent estimator of og. Hence, for
large n, the procedure R‘ is defined by

. do
(6.2)  Ry: Select treatment 1 1ff 4, > max 4, - 2,
: 1<j<k /n

Remark: If y(x) is the cdf of U(-1,1), then J(u) = 2u-1, 0 < u < 1, hence
A2 = 1/3. 1 6'(x) = g(x) exists, then B = 2/g%(x)dx and

hY -

'''''''''''''''''''
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2,(6) = 4f [ G(x)G(y)dG*(x,y)-1. It has been shown by Doksum (1967) that

I f G(x)G(y)dG*(x.y) can be estimated by mr_-m {number of

sixtuples (i,j,2,a,8,y) with i,j,2 distinct; a,8,y distinct, and
xia'xju < xia'xjs’ Xia’xza < xiy - xzy}‘
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