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=A vision systen is described which uses a

semantic network model and a distributed control
structure to accomplish the image analysis process.

The process of "understanding an image" leads
to the instantiation of a subset of the model, and
the identification of nodes in the instance of the
model with image features. The instantiated
nodes and the relations between them _
form another data structure called the sketchmap.
The sketchmap explicates the relation of the
model to the :I.ng, «this model-image mapping is
accomplished by ma cduroa vhich are part
of the procedural the model.

The procedures are accompanied by descrip-
tions which contain at least pre- and post-
conditions for the procedure and performance
measures for it. Nodes which have attached pro-
cedures may also have an executive procedure
attached. This executive Is responsible for
deciding which of several possidbly effective
procedures to run. Thus through the executive the
system does a very general kind of procedure in-
vocation based not only on what the executive
knows about global state, but on a rich dueri.p-
tion of the procedure's capabilities.

The user's program is generally responsible
for allocating effort at a level above that of the
individual executive procedure. Thus no single
domain-independent formulation or methodology is
imposed on all vision tasks. One facility provided
by the system is the use of Fomtric constraints -
between model objects to guide for the _ —
odbjects in the image.

~ The system is an attempt to bring together
many current ideas in artificial intelligence and
vision programming and thereby to cast some light
on fundamental problems of computer perception.
The semantic network facilitates the interplay be-.
tween geometric and other relational constraints

which are used to direct and limit somh.(mL”\
s a mix -

of attached procedures in the network give

of declarative and procedural knowledge, and the
executive provides an unusually powerful procedure
invocation scheme. The multiplicity of procedures
allows modelling objects under radically different
conditions and levels of detail. This tends to
make the system robust in that an object which
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could not be located initially may be found later
when knowledge about the image has increased.

The system is illustrated throughout the
chapter with illustrations from two particular
applications: the finding of ships in a dock scene
and the finding of ribs in a chest X-ray f£ilm.

1. Mnowl -Directed. . ¢ Analysis

Image analysis is the process of attaching
meaning to an image. One way to do this is to use
an explicit model of what the image can contain,
and then construct a ugging between the model and
the image. Since a particular image is only an
instance of the class of images that the model was
intended for, the model must be in some sense
"larger" than the image. That is, a useful model
of the domain of an image will typically contain
a large amount of inforwation on possible image
content. However, the mapping generated by the
analysis process (if we have a good model), will
typically use only a small portion of this model.

An even smaller portion of the model is used
in specialized analyses, for example, analysis
performed to look for particular objects in the
image. These processes typically require that only
a small portion of the image be mapped onto a
small relevant part of the model that explains
that image. For example, in analyzing a radiograph
for pneumoconiocsis, we might use only a small por-
tion of a radiograph model. We term a task which
instantiates a subset of the model a query, to
emphasize that only a portion of a large possible
mapping is generated, and that we expect the work-
ing envircnment to be one consisting of a sequence
of such tasks. Examples of a sequence of queries
would be:

. = returning to an aerial photo on

different days to perform different
tasks;

- different physicians requesting
different differential diagnoses
of a radiograph;

- generating different land use maps
for agricultural and sccial scien-
tists from ERTS data.
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Given this approach to image analysis, we have.
defined a representation that allows for extensions
of partial mappings which may be known a priori or

sequentially. Additionally, we have a way
of defining quantitatively when the query has been
satisfied so that we do not perform unnecessary
mappings (e.g., the system may or may not need to
know where all parts of an cbject are if it has
"found” the ocbject at some coarse level of detail).
Thus the concept of .a query is central to owr
approach to image analgsis. Given a richly
descriptive image model, our objective is to code
2 query to require mapping a minimum of model
structure onto the image.

- One of the problems in generating the mapping
to satisfy a query is that the mapping is between
very different structures. The natural elements of
the model are objects which are represented sym-
bolically, whereas the naturel elements of the
image are "picture elements," or pixels. To bridge

. this gap, we have structured our vision system in

layers as shown in Figure 1. At the most abstract
end of the structure is a semantic network repre-
senting our model. The model contains generic
information encoded as idealized prototypes of
structures from low level (such as edges) to high
level (such as complex assemblages of cbjects in
the world). , -

In the middle we have a sketchmap. This is a
data structure that is synthomn%ing image
analysis and provides associations between the
model and the image, that is, the synthesized

~ sketchmap is a network of nodes which turn out to be

ingtantiations of a subset of model nodes. The
need to differentiate between generic objects and
instantiations of generic objects has been recog-
nized in natural language understanding work, e.g.
[(Hayes, 1977]. We believe that it is also
necessary for image analysis. Besides associations
with the model, sketchmap nodes contain associa-
tions with image structures, such as edges and
regions, specific to the particular image being
analyzed.
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‘% - At the other end of the vision system is a
: third structure termed the image data structure.
o) This consists of the original image at different

magnifications, spectra, resolutions, etc., to-
gether with various filtered versions of the image,

3 - texture images, edge images, etc. The parameters
&5 for generating all the image data structures are
= typically specialized to a particular model-image
e mapping context. o

RS M
: - This mlt:l-layord& structure is reminiscent
. of the VISIONS System [Hanson and Riseman, 1977].
of ' ' Both systems are designed to take advantage of
&

variable resolution, both have a knowledge base or

- model of the world, a subset of which is mapped
into the image. Perhaps the main difference is

P that in VISIONS, segmentation of the image into

iﬂz edges, regions, etc., is made to a level deter-

N mined by the model so that the image will be

w understood to the fullest possible extent, given

ny the knowledge in the model. In the system described

3 here, the user's query is responsidble for the level
iy _ of detail the system pursues.
’ : A successful analysis of an image contains

two parts: the generation of the proper links be- {
tween sketchmap nodes and image data structures

N and the generation of the proper links between

52 sketchmap nodes and model nodes. We describe a

Py ! procedure that generates the image-sketchmap link
as a mapping procedure. A mapping procedure is a
low-level procedure which is attached to a parti-
- cular node in the sense of [Bobrow, 1977] and
whose function is to refine the description of
that node. The need for these kinds of procedures
in image analysis has also been recognized by
(Sloman, 1977]. The construction of links between
the relational world model and the sketchmap is

- one of the functions of the executive procedure.

: The executive procedure embodles the overall stra-
& tegy for achieving the goal(s) and is programmed
o in a high-level language (currently SAIL).

: L
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: Since the best procedures for finding struc-
R tures in real-world images are special-purpose,
v we have avoided imposing a uniform problem-solving
® regime on the mapping procedures; instead they
- must be coded especially to take advantage of the
user's specialized knowledge of the domasin. How-

; ) ever, some progrem autonomy is allowed in the .

X choice of mapping procedures. Where different map-

o : ping procedures can generate the same links be-

Ery tween sketchmap nodes and image data atructures,
the executive procedure can select the most

. . appropriate based on a description attached to

% each mapping procedure. Also, the executive proce-

+ dure can use gensral geometric relational con-

- « straints to pin down the locntion of objects.
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‘2. The Structure of the Model

2.1 The Concept of Template Nodes

The model holds different kinds of knowledge
about the image domain. It includes a relational
network of nodes which are identifiable with
(primitive and complex) objects and concepts in
the domain from which the scene is taken. The
answer to a query is a synthesized sketchmap or
description; this is an instantiation of a subset
of the modsl. The wodel, therefore, contains know-
ledge in the form of al¥ potential instantiable
descriptions. An example of this kind of knowledge
is the assertion'

"the sternum is above the heart.”

This can be readily included in the nodcl network.
It is potentially part of the model-image mapping
("the sternum” and "the heart" could be instanti-
ated with pointers to regions of the picture). The
model also contains knowledge which is not in the
form of a synthesized description but which, for .
instance, could be used in generating a descrip-
tion. An example of this kind of knowledge is:’

"ships are about 6 times as long
as they are wide."

This knowledge can be included in the model net- f
work and may help a program that is searching for f
a ship, but will not become part of the model-

image mapping. When it is meaningful to differen-
tiate between these two kinds of knowledge, we will
refer to the parts of the network that represent

the former kind as template nodes. Synthesized
descriptions will be directly related to these

nodes and their arcs.

Each template node has a substructure which
represents the sense in which that node is to be .
*understood.” Prior to a query, the meaning of a-
node is defined in terms of a substructure of

mapping procedures and constraint relations. After

a query has been satisfied, the template node is
represented by instantiated nodes with attached
specialized location descriptions, as shown in
Figure 2.1. Four basic types of links provide a
simple syntax to the network structure. A power-
ful advantage to this syntax is that the executive
procedure can direct the analysis in a more




general way, by using programs that function on
classes of links representing different kinds of
A concepts, rather than on some set of specific
links. The need for this organization in natural
4 language understanding has been recognized by

: Brachman [1976].

=y
Node

ONEE

P:lzm?]. Thckcxtunlofnetailinﬂodel-
Sketchmap Nodes

| ' 2.2 Constraints

© . Links to other model nodes encode (perhaps

s parametrized) constraint relations between model

& . nodes. Links can encode:

- the probability that the relationship
holds;

i - a quantifier representing the expected

‘o value of the relationship.

g
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For example, the relationship SHIP ADJACENT DOCK
might have a certain probability of being true, and
and an expected distance that the ship is from the
dock. We refer to the template nodes and tric
relations between them as the constraint network.
This network may be interpreted from two viewpoints. _
First, the existence of crucial constraint rela- *
tions may be checked. This may be done through the '
, matching features of the associative structures in
“ SAIL. Secondly, if particular parameters arising
from a constraint are needed, the network may be
‘ evaluated like a program:to find subsets of the
model or the image that sgtisfy the constraints.
Its results take account of partial or unspecified
information, and it may De updated upon receipt of
better data with a minimal amount of work. It is
much like the graph of variable dependencies in AL
(Feldman et al., 1975]. In brief, each node has a
"Constraint Operation," such as Intersection, '
Translation, Union, or indeed any function of up to
two arguments; it has two operand nodes; a father
node; a status that may be "Up-To-Date" or "Out-0f- -
Date”; and a value that is some data structure such
as a number, a list of linear objects, a region, -
- etc. Additionally, it may have information on how
o difficult the node is to evaluate, as a function
i : of the contents of its operand nodes. This last
5 feature allows some cost/benefit analysis of
A : evaluation of sections of constraint networks.

TR

s

The constraint network for the prose:

"The centroids of docked ships are on
lines parallel to the intersection of
coastlines with dock areas at a distance
of one-half a ship width" .

& - 1s shown in Figure 2.2.

De A
A‘.\-E‘:)'iv M

-




T v e
BN Frral

SN

Py,

el

3
?
:

PR At Sty

'

g e e

TS
i o

e

S

a Distance

Figure 2.2 A Portion of a Constraint Network
(I = Instance, LD = Location Descriptor)

: The network starts out with data (from the
model or from previous scene analysis) as the-:
values of the tip nodes, but no values at non-
terminal nodes and all nonterminals marked Out-Of-
Date. Data at a tip node can have one of three
statuses: it can be known that the object does not
exist in the scene (so the value of the node is
the null set), it can be known to some degree of
accuracy where objects are in the scene (so the
value of the node is a subset of image or world
points), or perhaps nothing is known (in which
case the object could be anywheres, and the value

- 1s implicitly the universe of image or world
points).

When the constraint network is evaluated to

determine what is known about the location of its
object, each node recursively evaluates its Out-
Of-Date operand nodes, performs its operation, and
stores the result in its value. It marks its status
Up-To-Date. Intersection and Union work properly
with the definitions of partial information of the
last paragraph. When new (or better) information
about an object at a tip of the network comes in,
all nodes on a path from the tip to the root are
marked Out-Of-Date. Then when the network is next
evaluated, (only) the necessary partial results
are re-computed. In keeping with our philosophy,
the network is not gelf-activating, but is run on
explicit user command. )
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2.3 Location Descriptors

A location descriptor provides information
X about where to find an entity. The part of the
location descriptor which specifies a point set
enclosing the region has been referred to as a

¥ . tolerance region [Bolles, 1975]. A shape location
j descriptor might have the structire shown in

e , Figure 2.3.

]
T
kg

54

[ shapeLlocationDescriptor
nodetype: specialization prototype
instance-of: a LocationDescriptor
locates: OneOf {(a ShapeObject), ...
(a ShapeFeature)}

coordsystem: a CoordinateSystem
centroid: a PointSet

//allows for "fuzziness"
orientation: an AngleRange

/ / ) oditto
tol. region: a PointSet ]

Lidsta .

oy

B A bt ks

5 ...similarly for Point, Linear, and
s ArealocationDescriptors
4 [ CoordinateSystem
_«;f nodetype: abstract prototype
X units: a LengthUnitSpecification
5 scale: a NumberRange
//length units / system unit
, transforms: SetOf {((a Coordinate Transform)
& (a Coordinate System)),
; soe } ]
3
Figure 2.3 Example of a Shape Location Descriptor
% “‘F\J ’ '-.? o ‘1 Ny . }, e T ',1'_" ::::: Rt T "-. BRI .;‘ AT
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This organization is suggestive of a frame-
like structure [Minsky, 1975]. However, not all the
entries need exist; just the syntax is necessary
to allow the entries to be found. In practice only
the properties relevant to a particular query will
be generated. Such partial instantiations are easy
in the SAIL associative structures [Fe.dman and
Rovner, 1969].

atal o bl
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Our examples of "g‘o’dptrical constraints, loca-
tions, etc., are two-dimensional. There is a large
class of interesting images that are inherently
two-dimensional (ERTS images, light or transmission
electron microphotographs, CAT scanner images,
bio~-ultrasound images) as well as some that for
some purposes may be treated as two-dimensional
(aerial reconnaisance imagery, medical X-ray
imagery, natural scenes, etc.). Of course it is
often helpful to know about 3-D when processing
natural scenes [Garvey, 1976], and it has been
demonstrated that a 3-D model of the world is
necessary to accomplish some tasks with aerial:

3 mapping photographs taken from 35,000 feet [Barrow,

' 1977]. Within the framework of the system described

! ' here, 3-D world coordinate systems would be linked

g through camera-transformation coordinate trans-

> forms to image coordinate systems. The location
descriptors would be in terms of the relevant co-

. ordinate systems.
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There are many admtages to having a stand-
ard representation for object locations:

¥

a. If such descriptions are data types, their
computations can be separated from the
procedures that use them. If they can be .
passed as arguments, they provide acertain ;
"common currency" between procedures, thus :
simplifying and modularizing the proce-
dures that use them.

r W WEOECD w

N b. Location descriptors can represent approxi-
ﬁ . mate locations, which is useful for queries
i unconcerned with exact answers.
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c. Constraints between locations can propa-
gate knowledge throughout the model. Loca-
tion descriptors can be computed from
other location descriptors via relations,
or by union and intersection of the
described point sets. A system which
applied linear programming techniques to
the problem of locating regions through
constraints placed on their boundaries was
developed in [Taylor, 1976]

d. Use of locaﬂbn . descriptors is geared to
an abandonment “of the exhaustive segmenta-
tion paradigm wherein every region must
correspond to some object. Different
location descriptors may refer to disjoint
point sets or may overlap on the image.

3. Control

3.1 General Philosophy

Generally a query results in the synthesis of
a sketchmap with instance nodes whose location
descriptors are accurate enocugh for the purposes
of the query. A query might also result in further
‘refinement of location descriptors of the extension
of an existing sketchmap to account for more image
structure. A query-directed vision system should
thus be able to use relevant information (i.e.,
the state of the analysis) generated in successive
queries. Most queries will take the form of user-
written executive programs, since nontrivial tasks
usually require fairly rigid recommendations about
how the system should go about solving them.
Initially the system will not attack the problem
of automatically translating queries in some com-
mand language into executive programs.
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Figure 3.1 shows the SAIL code used in a very
simple executive procedure for selecting mapping
procedures which identify instances of rib nodes
in chest radiograph images. Each mapping procedure
has pre-conditions, including an associated
accuracy measure, which can depend on its neigh-
bors, as well as a cost measure. The caeapest rib
procedure which satisfies the pre-conditions is ‘
selected. Each rib node is searched for once and
there is no facility for dealing with failures or
mistakes. But the hportant point here is that
the executive can have a relatively simple struc-
ture. This facilitates experimentation with
various control strategies other than the depth-
first strategy shown in the example.

3.2 Characterizations of Mapping Procedures

Mapping procedures have associated descri;-
tions which are used by executive procedures. The
descriptions contain the following:
- the slots in the data object which--
must be filled for the procedure
to run;
- the slots the procedure can fill in;
- the cost and accuracy of the proce-
dure in some meaningful units;
- the a priori reliability of the
procedure. :

Some rib mapping procedure descriptions are shown
in Table 4.1, but these do not tax our representa-
tion scheme. More difficult examples of the kinds
of facts we expect to be able to encode in this
structure are (for a straight-line structure) that
a Hough transform [Duda and Hart, 1972] cannot
find the endpoints of a line but is more reliable
than the cheaper Shirai tracker [Shirai, 19751,
which itself needs to know the direction of a line
before it can track it, and that a Heuckel operator
[Heuckel, 1971] is more expensive, but can furnish
many facts about the line with little known

a priori, and can rate itself on reliability of
its result.

------
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There are several advantages to separating
the executive procedure from the mapping proce-
dures and their descriptions:

a. The executive procedure can be written
more easily without counsidering the imple-
mentation, details of mapping procedures in

mat dcpth’.“‘ ¢ \;

b. Mapping procedures are similarly simpli-
fied without the burden of determining an
appropriate context for their applicat:lon
[Sloman, 1977].

¢. The executive procedure can automatically
select alternative procedures in the event
of mapping procedure failures. ‘

d. Descriptions allow a choice between methods
(if several are available) based on capa-
bility, resource requirements, and a priori
reliability. (Also, recovery from failure
of individual routines can be automated
throggl; planning [Feldman and Sproull
. 1978

e. If the mapping procedures can produce
reliable a priori estimates of their success
the analytical vesults of [Bolles, 1975]
and [Taylor, 1976] could be extended to
select the procedure which produces suffi-
clently exact data objects.
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Recursive Procedm MatchRib(itemvar Node);

begin
itemvar x, v; integer Var;
if INSTANCE of Node is ANY
then

begin
Print("rid ", Node, " already matched");
return;

end ’ o _-;“.ﬁo"_;'f.

| £ind and run procedure to do job at min cost;

itemvar TempProc; integer MinCost, TempCost;
‘BinCost := Verylarge; i
foreach x such that ',
RIB!PROCEDURE of Node is x do ' '
begin 1.
Var := GetConstraintsAndVariance(Node, x);
if Var < Tolerance A
then Ce
begin
, TempCost := FindCost(Node, x);
if TempCost < MinCost :
then

TempProc := X3
MinCost := TempCost;

Print("No proc. can do job for ridb ", Node)
else ApplyProc(TempProc, Node);
foreach v gsuch that NEIGHBOR of Node is v
and TYPE of v is RIB
do MatchRib(v);

Figure 3.1 Executive Procedure for Ribs
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4. Amllg_ations

4.1 Finding Docked Ships

Finding ships in a dock scene illustrates how
high-level metrical knowledge about the image (such
as provided by a topographic map) can make certain
scene analysis problems easy.

The model contains, in a Constraint Graph
forn (see Sectign:2.2), the knowledge that docked
ships are in the ogean adjacent to dock areas,
parallel to the dock and with a centroid a dis-
tance away related to the width of the ship. In a
Shape Object Descriptor, some facts about the
sorts of ships we are trying to find are stored,
viz., a template for matching them (in our case, a
rectangle of 1l's in an array for template-
matching), their width, length, average bright-
ness, etc. Template-matching is among the simplest
vision primitives. Only in a context having a great
deal of structure could it be expected to work in
scenes as complex as Figure 4.la.

Figure 4.l1a is from a USGS mapping photograph.
It roughly corresponds to the topographic map of
Figure 4.1b. Included in the map are such linear
features as coastlines and dock areas. From the
digitized photo, a small (196 x 164) window is
extracted and stored on disk. A half-toned version
of this window is shown in Figure 4.lc. From the
map, the coastline and a dock area are extracted
and stored on disk; this information is shown in
Figure 4.1d. Map information may be automatically
registered with photographic images to high
accuracies by techniques developed at SRI [Barrow
et al., 1977]. For our study the registration was
performed manually.

The system, under direction of the user-~
written query, begins by deciding where to look by
satisfying a constraint network; the more informa-
tion provided, the narrower the focus of attention.
In the case illustrated in this section, the con-
straint network looks as it does-in Section 2.2.
Presupposition of "perfect" registration leads to
sharp lines of search specifying loci of ship
centers. Imperfect registration would give fuzzier
loci.
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_ The linear loci and the orientational con-

straint on the ships means a simple template-

matching technique will suffice to do the ship-

finding job efficiently. (In this exercise it was

the only technique, but an executive procedure

might well have chosen it as applicable.) The ship
templats is rotated to de parallel to the midline

as given by the coastraint graph, and template-
matching is done along the line; note is taken of

where the score for the match goes over threshold,

and when it comes back down under threshold. The
average of these .two positions is taken as the lo-
cation of a ship. The"black squares in Figure 4.1d .
show the results. e ;

Our USGS mapping photograph is digitized to .
256 grey levels on a .007" grid. The image is i
stored on disk with comprehensive and expandable f
header information. The image may be windowed and !
sampled at integral size reductions into an inte-
ger array in core for processing. _ ‘

The system has representations for linear
objects and regions. Linear objects are SAIL
records making linked lists of (x,y) points. They
can have three types at present: a list of points
to be connected in order; a list of segments, i.e.,
pairs of endpoints to be connected pairwise; and
logically circular lists of points representing
boundaries. A robust and general routine based on
merging was written to compute the intsrsection
of such linear features. Other useful geometric
! routines find the distance of a point from a seg-

merit (not a line), and compute a segment parallel .
to and some distance from another segment.

Regions (except for templates, which are
arrays) are SAIL list items. A region is a list of
y-lists; a y-list has a y-value followed by an '
even number of x-values. The first x-value is an
T Tentering region" boundary point, the second is a
"leaving region" boundary point, and so on alter-
nately. The region:

ool
101
01l

would be represented as
((123)(21133)(333)).
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Routines were written, again based on merging, to
-create the union and intersection of such regions,
and to convert (via an asymmetric DDA algorithm
[(Newvman and Sproull, 1973]) linear objects to
regions. We f£ind multiple representations of ob-
jects simplifies the work of routines such as the
constraint primitives.

Template-matchipng.utilities can produce an
array containing a’ rotgted and scaled version of a
template and can compute the correlation of a tem-
plate (at some rotation and translation) with the
image array.

8.2 'Pindirixg. Ribs 1n Chest Radiographs

The problem of finding ribs in chest radio-
graphs illustrates the use of multiple procedures
attached to the same template node (cf. Section
3.1). It uses the less precise geometric con-
straints arising from anatomy rather than carte-
graphy.

The model contains nine right and left ridbs
(the maximum amount normally visible on a chest
£ilm). Presently only the lower edge of each rib
is detected. Each rid is modelled as a template
‘node with offset parameters from itself to each
immediate neighbor (above, below, opposite). Addi-
tionally, three different mapping procedures are
attached to each rib node as shown in Table 4.1.

LookForARLid uses the Wechsler parabolic model
[(Wechsler and Sklansky, 1975] to f£ind a rid seg-
ment. AffirmAR{D translates that segment using the
offset parameters and attempts to verify the pres-
ence of a rid by a correlation technique. Halluci-
nateARid instantiates a ridb by translating a
neighbor with no verification.
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Table 4.1 RibFinding Mapping Procedures

Procedure : Precondi- | Cost | Var. | Postcondi-
tions tions
LookForARiDb none 20 0 instance
of rib
AffirmARLDd instance 4 1l instance
. of neigh- of rib
bor in
ooF ,a::.tclmp
HallucinateARib | instance 1 S instance
of neigh- : of rid
bor in
sketchmap

‘Figure 4.2 shows a trace of the display
during the rib-finding process. For this trace a
slightly more complex executive than the one
shown in Figure 3.1 was used. If a mapping proce-
dure failed, another was chosen from the remain-
ing applicable set. In Figure U4.2a large rec-
tangles enclosing the lung fields have been found
(by a lung query executive) and the smaller
rectangles are plans for LookForARib, which is
. the only mapping procedure that can be applied.
The horizontally-oriented rectangle defines an
area to look for rib edges for the model node
- RIGHTRIB4 and the vertically-oriented rectangle
defines an area for foci of a parabola represent-
ing the rib border. Figure 4.2b shows the
resultant rid found. Figure 4.2c shows the plan
derived from the constraints for the opposite
rib, LEFTRIB4. Note that the plan now has the
shape of RIGHTRIB4. Figure 4.2d shows the instan-
tiation of LEFTRIB4 found by AffirmARid. Figure
&.2¢ shows the next two ribs found and Figure 4.2f
shows the entire set of ribs. The ribs marked with
the box () are found by HallucinateARib, due to
the failure of AffirmARib. AffirmARibD fails when
the edge data is extremely poor.

To appreciate that the ribs found by the rib
executive actually match the edge data, compare
Figure 4,.3a with 4.3b, which shows the results
from another chest radiograph. Figure u4.3a shows
the principal edges in the image and the latter
has the ribs overlaid on top of those edges.

LA R S T |
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o2l

S. .Sm

. The semantic network is a kind of lumped
parameter model in the spirit of [Fischler and
Eschlager, 1973]. The geometric constraints in the
network relate template nodes whose descriptions
(the "lumped parameters!) are generated by attached
: napping procedures.’ ‘l'hca'koy difference is that in-
¥ formation found during the analysis can change the
way template nodes are located.

it R N B

o a i

In'ana.‘l.yzi.nz an image it is crucial that the .
' generating of abstract descriptions of parts of
. the image (i.e.,.segmentation) be intimately

el

¥ comected with the interpretation of those parts.

4 In our system the former operation corresponds to

3 ‘ generating sketchmap-image links whereas the latter
K corresponds to generating model-sketchmap links.

' Interpretation and segmentation are united through

i : multiple mapping procedures and the executive;-:

which can efficiently change the way a part of the
image is analyzed as new information about the
rest of the image develops.

e, T

P

Finally, we want the image analysis process

to do as little work as possible to satisfy a

- given task or query. This is attempted through the
specialization of all parameters to the given task,
the inclusion of performance and accuracy measures
in the mapping procedure descriptions, and the use
of the constraint network. All of this is just the
beginning of a long-term effort to study what can
be done in a general way for goal-directed image

. upderstanding tasks.
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Figure 4.1a Aerial Mapping Photograph
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Figure 4.2b RIGHTRIB4 Found
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