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viinsysteui' is described which uses a
semantic network model and a distributed control
structure to accomplish the image analysis process.

The process of "understanding an image" leads
to the instantiation of a subset of the model, and
the identification of nodes in the instance of the
model with impa features. The instantiated
nodes and the relations between them
form another data structure .called the skethnap.
The sketchuap explicates the relation o Th
model to the im ag . :th model-image mapping is
accomplished by "4 rocedures which are part
of the procedura k ledge i he model.

The procedures are accompanied by descrip-
tions which contain at least pre- and post-

Ce- tiOs for the procedure and performance
meames for it. Nodes which have attached pro-

cedures may also have an executive procedure
attached. This executive Is responsible for
deciding which of several possibly effective
pr ocedure to run. Thus through the executive the
system does a very general kind of procedure In-
vocation based not only an what the executive
knows about global state, but on a rich descrip-
tion of the procedure's capabilities.

The user'a program Is genelly responsible
for allocating effort at a level above -that of the
individual executive procedure. Thus no single
domain-independent formulation or methodology is
Imposed on all vision tasks. One facility provided
by the system is the use of g constraints
between. model objects to gu1Ze-;ii;W er the
objects in the Imp.

The system is an attempt to bring together
many current ideas In artificial Intelligence and
vision prograing and thereby to cast some Light
on fundamental problems of computer perception.
The semantic network facilitates the interplay-be-.
tween geometric and other relational constraints
which are used to direct and limit search.,tne u
of attached procedures in the network gives a mix .... .
of declarative and procedural knowledge, and the
executive provides an unusually powerful procedure
invocation scheme. The multiplicity of procedures
allows modelling objects under radically different
conditions and levels of detail. This tends to
make the system robust in that an object which
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could not be located Initially may be found later
when knowledge about the image has increased.

The system is illustrated throughout the
chapter with illustrations from two particular
applications: the finding of ships in a dock scene
and the finding of ribs in a chest X-ray film.

1. knowled e-Directed-CPSZas Analysis

ime analysis is t process of attaching
meaning to an image. One way .to do this is to use
an explicit model of what the imap can contain,
and then construct a Maing between the model and
the imp. Since a particulr Iage is only an
instance of the class of images that the model was
intended for, the model must be in some sense
"largr" than the inage. That is, a useful model
of the domLin of an imap will typically contain
a lage amoMn of information On possible imge
content. lowver, the mapping generated by the
analysis process (if we have a good model), will
typically use only a small portion of this model.

An even smaller portion of the model is used
in specialized analyses, for example, analysis
performed to look for particular objects in the
image. These processes typically require that only
a small portion of the imp be mapped onto a
small relevant part of the model that explains
that- Imap. For example, In analyzing a radiograph
for pneumoconios s, we might use only a small por-
tion of a radiograph model. We term a task which
instantiates a subset of the model a que;, to

41 euphasise that only a portion of a large possible
mapping Is generated, and that we expect the work-
Ing environment to be one consisting of a sequence
of such tasks. Examples of a sequence of queries
would be:

- returning to an aerial photo on
* '.different days to perform different
-* tasks;

different physicians requesting
different differential diagnoses
of a radiograph;

- generating different land use maps
for agricultural and social scien-
tists from ERTS data.

dz



Given this approach to image analysis, we ave.
defined a representation that allows for extensins
of partial mappings which may be known a priori or
acquired sequentially. Additionally, we have a way
of defining quantitatively when the query has been
satisfied so that we do not perform unnecessary
mappings (e.g., the system may or may not need to
know where all parts of an object are if It has
"found" the object at some coarse level of detai).
Thus the concept ofa .quer is central to our
approach to image ' -is. Given a richly
descriptive image model, our objective is to code
a query to require mapping a minimum of model
structure onto the Image.

One of the problems in generating the mapping
to satisfy a query is that the mapping is between
very different structures. The natural elements of
the model are objects which are -represented sym-
bolically, whereas the natural elements of the
imp are "picture elements," or pixels. To bridge
this gap, we have structured our vision system in
layers as shown in Figure 1. At the most abstract
end of the structure is a semantic network repre-
senting our model. The model contains generic
information Z oded as idealized prototypes of
structures from low level (such as edges) to high
level (such as complex assemblages of objects in
the world).

In the middle we have a sketSn. This is a
data structure that is synthesized during image
analysis and provides associations between the
model and the image, that is, the synthesized
sketchmap is a network of nodes which turn out to be
instantiations of a subset of model nodes. The
need to differentiate between generic objects and
instantiations of generic objects has been recog-
nized in natural language understanding work, e.g.
[Hayes, 1977]. We believe that it is also
necessary for Image analysis. Besides associations
with the model, sketohmap nodes contain associa-
tions with imp structures, such as edges and
regions, specific to the particular image being
analyzed.
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At the other end of the vision system is a
third structure termed the is.dt structure.
This consists of the origina image at different
anifcations, spectra, resolutions, etc.*, to-

gether with various filtered versions of the imap,
texture Images, edge images, etc. The parameters
for generating .11 the image data structures are
typically specialized to a particular model-impa
mapping context.

This multi-lay ' structure is reminiscent
of the VISIONS System- tanson and Rlseman, 1977].
Both systems are designed to takce advantage of
variable resolution, both have a knowledge base or
model of the world, a subset of which is mapped
-into the Image. Perhaps the main difference is
that in VISIONS, segmentation of the image into
edges, regions, etc., is made to a level deter-
mined by the model so that the ima will be
uderstood to the fullest possible extent, given
the knowledge In the model. In the system described
her%, th. user's quer is responsible for tha level
of detail the system pursues.

A successful analysis of an Im contains
two parts: the generation of the proper links be-
t oe sketchuap nodes and im data structures
and the generation of the proper links between
sketohmap nodes and model nodes. We describe a
procedure that generates the image-sketohmap link
an a s procedure. A mapping procedure Is a
low-level procedure which is attached to a parti-
cula node In the sense of LBobro, 1977] and
whose function is to refine the description of
that node. The need for these kinds of procedures
in imp analysis has also been recognized by

Sleman, 1977]. The construction of links between
the relational world model and the sketchmap is
one of the functions of the executive procedure.
The executive procedure embodies the overall stra-
tey for achieving the goal(s) and is programmed
in a high-level language (currently SAIL).

•~ * ~ - - - * * W *



a- - aa--.'.

Imo Data Sketebmep Hodel
~Structures

Figure 1. Basic Layer Structure

Since the best procedues far finding struc-
turos, In real-orld isages are special-purpose,
we have avoided Imposing a uniform problem-solving
regime aS the mapping procedres-, Instead they
must be coded e ll y to take advantage of the
user's e knowledge of the domain. How-
ever, some progm autonomy is allowed in the
cboice of mapping procedures. here different map-
ping procedures can genezate the same links be-
tween sketchuap nodes and image data structures,
the executive pzocedure can select the most
appropriate based on a description attached to
each mapping procedure. Also, the executive proce-
duze can use general geometric relational con-
straints to pin down the location of objects.
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2. The Sruct re of the Model

2.1 The Concept of Template Nodes

The model holds different kinds of knowledge
about the Iage domain. It includes a relational
network of nodes which are identifiable with
(primitive and complex) objects and concepts in
the domain from which the scene is taken. The
answer to a query Is a synthesized sketcbmap or
description; this is an instantiation of a subset
of the model. Tje u6e1v therefore, contains know-
ledge In the form of aLk-potential instantiable
descriptions. An example of this kind of knowledge
is the assertion:

"the sternum is above the heart."

This can be readily included In the model network.
It is potentially part of the model-image mapping
("the sternum" and "the heart" could be instanti-
ated with pointers to regions of the picture). The
model also contains knowledge which is not In the
form of a synthesized description but which, for
instance, could be used in generating a descrip-
tion. An example of this kind of knowledge is-

"ships are about 6 times as long
as they are wide."

This knowledge an be included in the model net-
work and may help a progp'a that is searching for
a ship, but will not become part of the model-
image mapping. When it is meaningful to differen-
tiate between these two kinds of knowledge, we will
refer to the parts of the network that represent
the former kind as template nodes. Synthesized
descriptions will be directly related to these
nodes and their arcs.

Each template node has a substructure which
represents the sense in which that node is to be
"understood." Prior to a query, the meaning of a-
node is defined in terms of a substructure of
mapping procedures and constraint relations. After
a query has been satisfied, the template node is
represented by instantiated nodes with attached
specialized location descriptions, as shown in
Figure 2.1. Four basic types of links provide a
simple syntax to the network structure. A power-
ful advantage to this syntax is that the executive
procedure cam direct the analysis in a more



general way, by using programs that function on
classes of links representing different kinds of
concepts, rather than on some set of specific
links. The need for' this organization in natural
language understanding has been recognized by
aracbman (1g7m3.

Figre2.ode NetLee o et nMdl
Sketobmp Node

2.2 Consttaint

node * Lnks caneno:
- the Raiiytthrelationsi

value f therelatinthip

U . . . . . . . . . . . . . . ..r
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For example, the relatio.ship SHIP ADJACENT DOCK
might have a certain probebility of being true, and
and an expected distance that the ship is from the
dock. We refer to the template nodes and geometric
relations between them as the constraint network.
This network may be InterpretdJ f -wTevtp0
First, the existence of crucial constraint rela-
ti s may be checked. This may be done through the
matching features of the associative structures In
SAIL. Secondly, if particular parameters arising
from a constraint are needed, the network may be
evaluated liMe a prop'jto find subsets of the
model or the Image t at sqtisfy the constraints.
Its results take account of partial or unspecified
information, and it may be updated upon receipt of
better data with a minimal amount of work. It is
much like the paph of variable dependencies in AL
[Feldman et al., 19753. In brief, each node has a
"Constraint Operation," such as Intersection,
Translation, Union, or Indeed any function of up to
two arguments; it has two operand nodes; a father
node; a status that may be "Up-To-Date" or "Out-Of-
Date"; and a value that is some data structure such
as a number, a list of linear objects, a region,
etc. Additionally, it may have information on how
difficult the node is to evaluates, as a function
of the contents of its operand nodes. This last
feature allows some cost/benefit analysis of
evaluation of sections of constraint networks.

The constraint netwok for the prose:

"The centroids of docked ships are on
lines parallel to the Intersection of
coastlines with dock areas at a distance
of one-half a ship width"

is shown In Figure 2.2.

F ' ' '
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Fig ue 2.2 A Portion of a Constraint Network
(In Instance, LD = Location Descriptor)

The network starts out with data (from the
model or from previous scene analysis) as the-
values of the tip nodes, but no values at non-
terminal nodes and all nonterminals marked Out-Of-
Date. Data at a tip node can have one of three
statuses: it can be known that the object does not
exist in the scene (so the value of the node is
the null et), it cin be known to some degree of
accuracy whee objects are in the scene (so the
value of the node is a subset of Image or world
points), or perhaps nothing is known (in which
case the object could be anywhere, and the value
is Implicitly the universe of image or world
points).

When the constraint network is evaluated to
determine what is known about the location of its
object, each node recursively evaluates its Out-
Of-Date operand nodes, performs its operation, and
stores the result in its value. It marks its status
Up-To-Date. Intersection and Union work properly
with the definitions of partial information of the
last paragraph. When new (or better) information
about an object at a tip of the network comes in,
all nodes on a path from the tip to the root are
marked Out-Of-Date. Then when the network is next
evaluated, (only) the necessary partial results
are re-computed. In keeping with our philosophy,
the network is not self-activating, but is run on
explicit user command.
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2.3 Location Descriptors

A location descriptor provides information
about were to find an entity. The part of the
location descriptor which specifies a point set
enclosing the region has been referred to as a
tolerance region [Bolles, 19753. A shape location
descriptor might have the structivr shown in
Figure 2.3.

( Shape LocationDescriptor
nodetype: specialization prototype
instance-of: a LocatiionDescriptor
locates: OneOf ((a Shapebject),

(a ShapeFeature)}
coordsystem: a CoordinateSystem
centroid: a PointSet

//allows for "fuzziness"
orientation: an AngleRange

//... ditto
tol. region: a PointSet 3

• similarly for Point, Linear, and
AreaLocationDescriptors

C CoordinateSystem
nodetype: abstract prototype
units: a LengthUnitSpecification
scale: a NumberRange

//length units / system unit
transforms: SetOf ((a Coordinate Transform)

(a Coordinate Syse)),
... }r

Figure 2.3 Example of a Shape Locati~on Descri~ptor,
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This organization is suggestive of a frame-
like structure [ insky, 19753. However, not all the
entries need exist; Just the syntax is necessary
to allow the entries to be found. In practice only
the properties relevant to a particular query will
be generated. Such partial instantiations are easy
In the SAIL associative structures [Fe.dman and
Rovner, 19693.

Our examples of gecyptrical constraints, loca-
tions, etc., are wo-dinensional. There is a large
class of interesting images that are inherently
two-dimensional (ERTS images, light or transmission
electron microphotographs, CAT scanner images,
bio-ultrsound images) as well as some that for
som purposes may be treated as two-dimensional
(aerial reconnaisance imagery, medical X-ray
imagery, natural scenes, etc.). Of course it is
often helpful to know about 3-D when processing
natural scenes [Garvey, 1976], and it has been
demonstrated that a 3-D model of the world is
necessary to accomplish some tasks with aerial."
uapping photographs taken from 35,000 feet [Barrow,
1977). Within the framework of the system described
here, 3-D world coordinate systems would be linked
through camera-transformation coordinate trans-
forms to ima coordinate systems. The location
descriptors would be In terms of the relevant co-
ordinate systems.

There are many advantages to having a stand-
ard representation for object locations:

a. If such descriptions are data types, their
computations can be separated from the
procedures that use them. If they can be
passed as arguments, they provide a certain
"comon currency" between procedures, thus
simplifying and modularizing the proce-
dures that use them.

b. Location descriptors can represent approxi-
mate locations, which is useful for queries
unconcerned with exact answers.

"' . w
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c. Constraints between locations can propa-
gate knowledge throughout the model. Loca-
tion descriptors can be computed from
other location descriptors via relations,
or by union and intersection of the
described point sets. A system which
applied linear programming techniques to
the problem of locating regions through
constraints placed on their boundaries was
developed in [Taylor, 1976).

d. Use of lo7 ii descriptors is geared to
an abandonmn tf the exhaustive segmentsa-
tion paradigm wherein every region must
correspond to some object. Different
location descriptors may refer to disjoint
point sets or may overlap on the image.

a. control

3.1 General Philosophy

Generally a query results in the synthesis of
a sketchmap with Instance nodes whose location
descriptors are accurate enough for the purxoses
of the query. A query might also result in further
refinement of location descriptors of the extension
of an existing sketchmap to account for more image
structure. A query-directed vision system should
thus be able to use relevant information (i.e.,
the state of the analysis) generated in successive
queries. Most queries will take the form of user-
written executive programs, since nontrivial tasks
usually require fairly rigid recounendations about
how the system should So about solving them.
Initially the system will not attack the problem
of automatically translating queries in some com-
mand language into executive programs.
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I

Figure 3.1 shows the SAIL code used in a very
simple executive procedure for selecting mapping
procedures which identify instances of rib nodes
in chest radiograph images. Each mapping procedure
has pre-conditions, including an associated
accuracy measure, which can depend on its neigh-
bors, as well as a cost measure. The cheapest rib
procedure which satisfies the pre-conditions is
selected. Each rib node is searched for once and
there is no fkciliy. for dealing with failures or
mistakes. But the fportant point here is that
the executive can have a relatively simple struc-
ture. This facilitates experimentation with
various control strategies other than the depth-
first strategy shown in the example.

3.2 Characterizations of Mapping Procedures

Mapping procedures have associated descrip-
tions which are used by executive procedut-es. The
de-scriptions contain the following:

- the slots in the data object which-
must be filled for the procedure
to run;

- the slots the procedure can fill in;
- the cost and accuracy of the proce-

duwe in some meaningful units;
- the a priori reliability of the
procedure.

Same rib mapping procedure descriptions are shown
in Table 4.1, but these do not tax our representa-
tion scheme. More difficult examples of the kinds
of facts we expect to be able to encode in this
structure are (for a straight-line structure) that
a Hough transform [lDuda and Hart., 1972J cannot
find the endpoints of a line but is more reliable
than the cheaper Shirai tracker [Shirai, 1975J,
which itself needs to know the direction of a line
before it can track it, and that a Heuckel operator
[Heuckel, 19713 is more expensive, but can furnish
many facts about the line with little known
a priori, and can rate itself on reliability of
its result.



There are several advantages to separating
the executive procedure from the mapping proce-
dures; and their descriptions:

a. The executive procedure can be written
more easily without cons idering the iiuple-
mentat ion, details of mapping procedures in
great deptir.

b. Napping procedures *are similarly simpli-
fied without the burden of determining an

apprpriae context for their application

a. The executive procedure can automatically
select alternative procedures in the event
of mapping procedure failures.

d. Descriptions allow a choice between methods
(if several awe available) based on capa-
bility, resource requirements, and a'jpLrior
reliability. (Also, recovery from failure
of Individual routines can be automated
throufgh Planning E(Feldmain and Sproll,
.19753.)

e. If the mapping procedures can produce
reliable a priori estimates of their success
the analytical results of CBolles, 1975]
and fTaylor, 19753 could be extended to
select the procedure which produces suffi-
ciently exact data objects.

i.I. A L% -1 *. . . . . .
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R csive Procedure MatchRib(ituenma Node);

begin
itemva' x, v; integer Var;
if INSTANCE of Node is MhY
then

begin
Pz'It("z'Ib ", Node, " already matched");
return.;

and

else
I find and run procedure to do job at min cost;

begin
iteavaz TeupProc; Integer KinCost, Tempost;

inCost 3 VeryLarge;
fozeach x such that

RIBIPROCEDUIRE of Node is x do

begin
Vaz' := GetConsaftintsAndVariance(Node, x);
if Var 4 Toleramce
then

begin
TempCost := FindCost(Node, x);
if TempCost -'KinCost
then

begin
TempProc := x;
KinCost :a TempCost;

end;
end;

md;

if MinCost a VeryLarge
then

Pzint("No proc. can do job for rib ", Node)
else ApplyProc(TempProc, Node);
foreach v such tha& NEIGHBOR of Node is v

and TYPE of v is RIB
do KatchRib(v);

end;

end;

Figure 3.1 Executive Procedure for Ribs
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4. ApplicAtions

'4.1 Finding Docked Ships

Finding ships in a dock scene illustrates how
high-level metrical kmnowledge about the image (such
as provided by a topographic map) can make certain
scene analysis problem easy.

The model contains, In a Constraint Graph
for (see Se.ti£qp2.2), the knowledge that docked
ships are in the aeean adjacent to dock areas,
parallel to the dock and with a centroid a dis-
tance away related to the width of the ship. In a
Shape Object Descriptor, some facts about the
sorts of ships we are trying to find are stored,
viz., a template for matching them (in our case, a
rectangle of l's in an array for template-
matching), their width, length, average bright-
ness, etc. Teplate-matching is among the simplest
vision primitives. Only in a context having a great
deal of structure could it be expected to work in
scenes as complex as Figure 4.la.

Figure 4.la is from a USGS mapping photograph.
It roughly corresponds to the topographic map of
Figure 4. lb. Included in the map are such linear
features as coastlines and dock areas. From the
digitized photo, a small (196 x 164) window is
extracted and stored on disk. A half-toned version
of this window is shown in Figure 4.lc. From the
map, the coastline and a dock area are extracted
and stored on disk; this information is shown in
Figure 4.ld. Map Information may be automatically
registered with photographic images to high
accuracies by techniques developed at SRI [Barrow
et al., 19773. For our study the registration was
performed manually.

The system,, under direction of the user-
written query, begins by deciding where to look by
satisfying a constraint network; the more Informa-
tion provided, the narrower the focus of attention.
In the case illustrated in this section, the con-
straint network looks as it does-in Section 2.2.
Presupposition of "perfect" registration leads to
sharp lines of search specifying loci of ship
centers. Imperfect registration would give fuzzier
loci.

....... .- '. -..- ' , .
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The linear loci and the orientational con-

straint on the ships means a simple template-
matching technique will suffice to do the ship-
finding job efficiently. (In this exercise it was
the only technique, but an executive procedure
might well have chosen it as applicable.) The ship
template is rotated to be parallel to the midline
as given by the constraint graph, and template-
matching is done along the line; note is taken of
where the sore for the match gos over threshold,,
and when it comes back down under threshold. The
average of these two psitions is taken as the lo-
cation of a ship. T squares in Figure 4 .2
show the results.

Our USGS mapping photograph is digitized to
256 grey levels on a .007" grid. The image is
stored on disk with comprehensive and expandable
header information. The image may be windowed and
sampled at integral size reductions into an inte-
ger array in core for processing.

The system has representations for linear
objects and regions. Linear objects are SAIL
records making linked lists of (x,y) points. They
can have three types at present: a list of points
to be connected in order; a list of segments, i.e.,
pairs of endpoints to be connected pairwise; and
logically circular lists of points representing
boundaries. A robust and general routine based on
merging was written to compute the intersection
of such linear features. Other useful geometric
routines find the distance of a point from a seg-
ment (not a line), and compute a segment parallel
to and some distance frau another segment.

egions (except for templates, which are
arrays) are SAIL list items. A region is a list of
y-lists; a y-list has a y-value followed by an
eve number of x-values. The first x-value is an
."entering region" boundary point, the second is a
"leaving region" boundary point, and so on alter-
nately. The region:

001
101
011

would be represented as

( 23)(2 13 3)(3 3 3)).



Routines were written, again based on merging, to
-create the union and Intersection of such regions,
and to conver't (via an symmetric DDA algorithm
CNeman and Sprou.U., 19731) linear objects to
regions. We find multiple representations of ob-
jects simplifies the work of routines such an the
constraInt primitives.

Templat*-match~pg.utillties can produce an
array containing i rotqted and scaled version of a
template and can compute 'the correlation of a tem-
plate (at'some rotation and translation) wi~th the
image array.

44 .2Finding Ribs In Chest Radiographs

The problem of finding ribs in chest radio-
graphs illustrates the mse of multiple procedures
attached to the same template node (cf. Section
3.1). It- uses the less precise geometric con-
straints arising from anatomy rather than carto-
graphy.

The model contains nine right and left ribs
(the maximm amount normally visible on a chest
film). Presently only the lover edge of each rib
is detected.- Each rib Is mode11ed as a template
node with offset parameters from itself to each
immaediate neighbor (above, below, opposite). Addi-
tionally, three different mapping procedures are
attached to each rib node as shown In Table L4.*1.

LookrhlibM uses the Wchaler parabolic model
EVecsler and Sklansky, 19753 to find a rib seg-
ment. AffIrUAIAb translates that segment using the
offset parameters and attempts to verify the pres-
ence of a rib by a correlation technique. Halluci-
nateARib instantiates a rib by translating a
neighbor with no verification.
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Table 4.1 RibFinding Napping Procedures

Procedure Precondi- Cost Var. Postcondi-
tions tions

LookForAib none 20 0 instance
of rib

AffLUAlib instance 4 1 instance
of neigh- of rib
bor in
sketchmap

HallucinateARM iitance 1 S instance
of neigh- of rib
borIn
sket bmap

Figure 4.2 shows a trace of the display
during the rib-finding process. For this trace a
slightly more complex executive than the one
shown in Figure 3.1 was used. If a mapping proce-
dure failed, another was chosen from the remain-
ing applicable set. In Figure 4.2a large rec-
tangles enclosing the lung fields have been found
(by a lung query executive) and the smaler
rectangles are plans for LookForARlb, which is
the only mapping procedure that can be applied.
The hriztaly-oriented rectangle defines an
area to look fbr rib edges for the model node
RIGUTRD4 and the vertically-oriented rectangle
defines an area for foci of a parabola represent-
Ing the rib border. Figure 4.2b shows the
resultant rib found. Tigure 4.2c shows the plan
derived from the constraints for the opposite
rib, LEFTXB4. Note that the plan now has the
shape of RIGHTRID4. Figure 4.2d shows the Instan-
tiation of LEFTRID4 found by AffirmAM. Figure
4.2e shows the next two rib& found and Figure 4.2f
shows the entire set of ribs. The ribs marked with
the box (93) are found by HallucinateRib, due to
the failure of AffirmARib. AffirmnARib fails when
the edge data is extremely poor.

To appreciate that the ribs found by the rib
executive actually match the edge data, compare
Figure 4.3a with 4.3b, which shows the results
from another chest radiograph. Figure 4.3a shows
the principal edges in the image and the latter
has the ribs overlaid on top of those edges.
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The semantic network is a kind of lumped
parameter model in the spirit of [Fischler and
Eschlager, 1973J. The geometric constraints in the
network relate template nodes whose descriptions
(the "lumped p ._et .'.) are generated by attached
mapping procedures Th.eey difference is that in-
formation found during the analysis can change the
way template nodes are located.

In analyzing an Image it is crucial that the
generating of abstract descriptions of parts of
the image (i.e.,.segiomntation) be intimately
connected with the Interpretation of those parts.
In our system the former operation corresponds to
generating sketchmap-image links whereas the latter
corresponds to generating model-sketchmap links.
Interet ation and segmentation are united through
multiple mapping procedures and the executive -
which can efficiently change the way a part of the
imp is analyzed as new information about the
rest of the Image develops.

Finally, we want the Image analysis process
to do as little work as possible to satisfy a
given task or query. Th is i attempted through the
specialization of all parameters to the given task,
the Inclusion of performance and accuracy measures
In the mapping procedure descriptions, and the use
of the constraint network. All of this is just the
beginning of a long-term effort to study what can
be done in a general way for goal-directed image
upderstandIng tasks.

.. N~~ ~ W,-* -. . .



Figure 4.1a Aerial Mapping Photograph
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Figure 4.1b Topographic Map of Area in 4.la.
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Figure 4.1c Haiftoned Representation of Window
from Digitized Version of 4.1a.
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Figure 4.1d Coastline, Dock Area, Loci of Possible
Ship Centers, Pbints of Application of
Ship Template and Location of Ships.
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*: Figure 4.2a Lung Boundaries and Plan for RIGHRIB4
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Figure 4.2? Final Result
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