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The Program Complexity of Searching a Table

HARRY G. MAIRSON

! Department of Computcer Science ’/' '
Stanford University . ;
Stanford, California 94305 ‘
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l
ABSTRACT. Given a fixed sct § of n keys, we would like to store them so that queries of the . !
form “Is z € S?” can be answered quickly. A commonly employed scheme to solve this problem f
uses a table to store the keys, and a special purpose program depending on S which probes the
table. We analyze the tradeofl between the maximum number of probes allowable Lo answer i
a query, and the information-theoretic complexity of the program to do so. Ferfect hashing ;
) (where the query must be answered in onc probe) has a program complexity of nloz, {1 + o(1))
bits, and this lower bound can be achicved. Under a model combining perfec: hashing and
binary scarch methods, it is shown that for k probes to the table, nk/2%+1(1 + o(1}) bits
are necessary and sufficicnt to describe a table searching algorithm. This model gives tome
information-theoretic bounds on the complexity of searching an external memory. We examine
some schemes where pointers are allowed in the table, and show that for £ probes to the
table, about a‘ff}ﬁ(] + o(1)) bits are necessary and sufficient to describe the search. Finally,

we prove some lower bounds on the worst case performance of hash functions described by
bounded Boolean circuits, and worst case performance of universal classes of' hash functions.

This paper will appear in the IEEE Symposium on Foundations of Computer
Science, November 1983,
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§1 Introduction Chief, Techniga) Information Divisy 'V
: om V.

Given a fixed set S of n keys, we would like to store them so that membership queries
of the form “Is z € S can be answered quickly. This scarching problem, particularly in the
static case, is clearly among the most fundamental of data structuring problems, as wecll as
being ubiquitous in computer science dpplications.

This simple information-retrieval problem has gencrated considerable interest in recent
years. The papers [Sprugnoli] and [Jaeschke] suggest several ad hoc hashing schemes to imple-
ment a solution. Jaeschke recommends using a hash function of the form h(z) = | gAp]
(mod n), where the constants A, B, and C depend on S. This function is called “perfect” as
no keys in S collide under h, and h has a very reasonable unit-cost arithmetic complexity.
Its program complexity, on the other hand, is very large, as the number of bits needed to
write A, B, and C is {}(n). By contrast, binary search has a program complexity of O(logn)
and answers queries in O(log n) probes. This relation between scarch time (measured in num-
ber of probes) and program complexity (measured in bits) suggests that there should be an
information-thcoretic tradeofl between the two. The tradeoff intuitively corresponds to the
relationship of the performance of a search strategy to the inherent complexity of its deserip-
tion. The relationship has appeared in a variety of disguises, including the following:

1. Searching External Memories. Gonnet and Larson recently examined the problem
of searching an external memory with limited internal storage [Gonnet and Larson). Since
accessing exlernal memory is very time-consuming, methods which reduce the number of
accesses are very desirable, even if they increase internal processing. Gonnet and Larson
examine external hashing techniques assuming random probing, where a small amount of
internal storage (a directory) is used to help direct the search. How does the size of the
directory affect the cfficiency of the search? If membership queries are answered by retrieving
pages of the external memory, our above described tradeofl represents the relationship between
the directory size and the number of uniform-size pages nceded to store S. We determine this

tradeofl. .

2. Internal Searching in a constant number of probes. Scveral investigations have been
made in this direclion, including [Tarjan and Yao] and more recently [Fredman et al.] Both
of their results show practical schemes for answering queries in O(1) probes with a program
complexity of O(nlogn). Another paper [Yao] demonstrates a “canonical 2-probe structure”
which always probes first to a table position containing a dircctory for the rest of the table, and
uses information in the dircctory to choose the next probe. Again, the sizc of the directory is the
program complexity of the scarch strategy. We analyze the worst case of hashing with scparate
chains, and determine the tradeoll between program complexity and chains of maximum length
k, so querics are answered in no more Lhan k probes.

3. Probabilistic Hashing and Hash Cirecuits. Recentl work on probabilistic hashing by
Carter and Wegman suggests choosing a hash function at random from a class of funclions
¥ having a “universal® property [Carter and Wegman]. The property guarantees certain
desirable input independent cxpected bounds on scarch tiine (measured in number of probes),
randomizing over the choice of function. The program complexity (roughly logg |¥]) of these
hash functions wns analyzed in [Mchihorn]. It is of interest to minimize logg || for several

reasons: nole that logy |¥| is a mensure of how many coin flipa arc nceded lo randomly .

choone a function from |X}, which becomes important in some applications. We show that
for such minimal ¥, there arc some worsl-case input dependent lower bounds on scarch time
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8. Hashing and Partitions: Combinatorial Preliminaries

of Q(EL—"%). Similar lower bounds can be derived for bounded-size Boolean hash circuits.

Program complexity (see [Chaitin]) is a mcasure which has largely been applied to
problems in formal systems, “machine based” rccursive function theory, and information”
theory. We intend to use it as a tool in concrete complexity, dpplying it to a particular infof-
mation retricval problem. As long as we assume a basic random access machine (RAM) model,
this measure of program complexity is fundamentally independent of language implementation,
so that it does nol matier whether a search strategy to answer membership queries is described
in assembly language, PASCAL, or French.

§2 Model and Notation

The problem is formalized as follows. We construct a special purpose computer
program P depending on § and store the elements of S in a table, possibly with some associated
pointer structure. To answer “Is £ € §?” P is allowed to probe the table in ils scarch for z,
and make auxiliary computations (following pointers if they are permitted) between probes. If
P finds z in the table, it answers “yes.” If it does not find z, but gathers sufficient information
to ceriify that z is not in the table, it answers “no.” In addition, we use the following notation:

M ={0,1,...,m—1}. The key space.

M®). The subsets of M of cardinality n.

S € M(™, The set in question. We assume that M is much larger than S, which is reasonable
in most applications.

N = {0,1,...,n —1}. The address space of the table.

P("). The partitions of M into n parts (possibly emnpty parts).
P. We use P ambiguously to denote both partitions of M as well as program encodings of
search strategies, because there is a direct and significant correspondence between the two.
Which meaning of P is intended should be clear from context.

§3 Hashing and Partitions: Combinatorial Preliminaries

Every hash function program P : M — N induces a partition of the key space M
into parts M;, where {J;M; = M and M; = {z € M|P(z) = 1}. We can examine a partition
property A(P,S) of a program (partition) P and a sct S, and determine whether or not the
property is satisfied. For example, “no two elements of S are found in the same part of the -
parlition defined by P (the perfect hashing property), or “no more than k elements of S are
found in the same part of the partition defined by P.” Given any sct S € A/(™ we want
a program P> such that A(P’, S) holds. Define C(4) as the bit complexity of the program
(partition) J* satislying A(1, S). .

We ean then generale lower bounda through the following counting argument:

R v




3. Hashing and Partitions: Combinatorial Preliminaries , y

Theorem 1. Let -
— (n)
Qu= max |ts € M™\4(P, 5) hotds}.

Then for any S € M™, the bit complexity of a program satislying A(P, S) is bounded below
by !

o) 2 osa (7 )/

The following probabilistic argument lets us construct upper bounds.
' . Theorem 2. Let A(P,S) be a partition property over the class P of partitions, where
‘ Pr {A(P, S) holds} > p(m,n).

Then there exists a set ¥ = {P;, Ps,..., P} C P® of k partitions where k = n.b;_m, and the
following is true: for any S € M™ there exists a P € ¥ such that A(P, S) holds.

f Proof. Suppose we choose the partitions in ¥ independently at random. Let Ag, S € M)

be the event
. N\ (A(P, S) does not hold).
. PeN
Then
‘ Pr {As} < (1 -p)%,
i}. and .
=) PV ars ¥ Priasr<(Tu-ot
H SeM™ SseM™ n
B Ir :
it ,
zi (-nt <
|

then it is possible to deterministically choose an ¥ making Vg ppn) As lalse, and

As= N\ (3P € X)(A(P,S) holds),
SEM™) seM™

which would prove the theorem. Since kp = ninm, we know

kp? kp?

kin{(t = p)+nlam < —kp- T+n'nm=-T <0,

or m*{1 — p)* < 1, which implics (*), proving the thcorem. §
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4. Some Applications ' 5

We shall see that if P is chosen randomly from P®), and Pr {A(P,S) holds} > o
p{m,n), then Theorem 2 will let us show upper bounds of C(4) < log, 2= + Oflogn + i #

log log m). P

’

§4 Some Applications

We first examine perfect hashing, where P may probe cxactly one table location in
its search to answer the query, “Is = € S?” If z appcars there, P answers “yes”; if z does no
appear, P must be justified in its saying “no” without fear of the appearance of z somew hef{ [
' else in the table. We would like to know exactly how many bits are nceded to define such a |
; perfect hash function for every S € M™), denoted PHF(m,n).

Theorem 3.

l
PHF(m,n) > nl —Liogg2an + 0 1+"—’ ' :
m,n) 2 nlogg e 2 82 n ooy N ) !

Proof. We use the counting argument of Theorem 1. Let P be a program which is a perfect - @
bash function. Think of P as a function P : M — N which maps cach key in the key space onto Co
a particular address in the table. P then induces a partition of M into parts Mg, M,..., Ma_1, !
where {J,M; = M and M; = {z € M|P(z) = i}. I P is a perfect hash function for S, clearly o
no two keys in S can be in the same M;, since P restricted to S gives the different addresses
of the elements of S in the table. Define

Perf(P) = |{S € M™|P is a perfect hash function for S}|.

Let > be a set of sezrh programs such that for any § € M(™), there exists a P € & which is
perfect for S. Then by counting,

(max Perl'(P)) ¥l 2 (m) = number of sets of size n.
PeN n

If P partitions M into parts My, M,,..., M,_, then clearly Perf(P) = ]'[o<‘ <n—1 |Mil, and §
this quantity is maximized when each M. is of equal size, so that |M,| = 2, Then

(@ymz ()=
M > ";':(n + o(";'))

or

'_j Applying Stirling’s formula, taking logarithins, and assuming n? = o{m), we obtain the desired .
lower bound: clearly logg [¥| bits are nccessary or clse we cannot uniquely identify all the
programsin X. §

o
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4. Some Applications . s

The counting argument of Theorem 3 shows that sets § € M(®) exist with perfect
hash functions that have complexity of at least nlogg (1 + o(1)). Of course, some sets, such
as {0,1,2,...,n — 1}, have perfect hash functions of low complexity. However, the counting
argument, as in Chaitin-Kolmogorov complexity, is quite strong in the following sense: no more
than 2=*(T) of the sets S € M™ can have perfect hash functions with program complexity
less than PIIF(m,n) — k. Thercfore, both in Theorem 3 and in counting arguments we will
see later, a lower bound of C on program complexity for perfect hashing, or analogous search
properties, indicates that at least half of the sets S € M™) have program complexity of at
least C ~ 1, ete.

Theorem 4.

PHF(m,n) < nlogge+ glogz n + 2log, loga m + O(1).

Proof. Let A(P,S) be the perfeet hashing property. We know that

Pr {A(P,S) holds} = za

n™ n"

By Theorem 2, we know it is posﬁible to choose a set ¥ of partitions so that every § € M(™
has a perfect hash function chosen from ¥, where

. nn
¥ = ;-!—nlnm,

=gz o(3))

To prove the theorem, it only remains to show that a program computing a partition in ¥ can
indeed be written in about log, |¥| bits. This can be done using a variant of the algorithm
suggested in [Mehlhorn], which we now describe. The idea of the program is that every class of
hash functions can be specified by an m X || matrix M, where M; ; = h,(1), that is, the j-th
hash function in ¥ applied to ¢. It turns out that very short programs can cnumerate these
matrices, and check them for properties like perfect hashing.

PROGRAM Perfects (z):
1. b+ [logg m] written in binary;

50 that

2. j +« some number between 1 and |}| depending on S;

3. Scarch through all 2% X 1,2% X 2,2* X 8,... matrices in some lexicographic order
with entries in {0,..., n — 1} until a “perfeet matrix” M is found. Column 3 of M represents
the perfect hash function for S: probe address M, ; of the table. Il z appears there, return
“yes,” olherwise return "no.”

The length of the above program is logy logy m for siep 1, al most Nogg [X[] for step

2, and lo;.n-r O(1) for step 3, which proves the theorem. Note the same perfoct matrix is

L

. g
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4. Some Applications 7

always found, since the matrices are cnumerated in the same lexicographic order: this is why
J can in principle be determined beforehand. §

Theorems 3 and 4 give a f)(n + log, logz m) lower bound on the program complexity
of perfect hash functions. Whether n or log, log, m is the significant term is dependent on
the relative asymptotic growth of n and m. We will assume throughout our discussion that m
asymptotically grows faster than n, but not too fast, so that the n dominates the asymptotics.
More specifically, we will assume n? = o(m) and log, log, m = o(n). These bounds allow for

analysis of “intermediate” values of m and n such as m = 2V™", suggested as an open problem
in [Yao. _

The lower and upper bounds described by Theorems 3 and 4 have separately and independently
appeared in various places, including [Mehlhorn], [Berman et al.], and [Fredman et al.).

Now let’s look at searching an external memory. Suppose a page of external memory
stores exactly k keys. Decompose S into n/k pages B;, 1 < i < n/k. Membership queries
will now be answered by examining a directory in the internal memory containing enough
information to determine in which page z is found if z is indeed in S. (If the keys in each B;
are sorted, the relevant page can be pulled and binary searched in [logy(k + 1)] probes.) Let
H Fy(m,n,t) denote the bit complexity of the most concise such directory, where ¢ is the size
of the table.

Theorem 5.
nlogy 27k 1 n n? 1
HFy(m,n,n/k) 2> - 2% 2|ogg2wn+ O(k2+m +-n .

The above theorem has a corresponding upper bound:

Theorem 6.

nlog, 27k 3 1, . LA
HF(m,n,nfk) < ok + Eloggn+ 2log, logy m — Elog, 27 + O(E; + ;)

Proof. We proceed as in Theorem 4. Let A(P,S) be the property “P parlitions S into n/k
parts with exactly k elements of § in each _part." Then for fixed S and randomly chosen P,

Pr {A(P, S) holds} = (%)ﬂ(k kn. .. k)

5 _Vam(1+0(d) _ ,

" (vama o)™

By Theorem 2, we can choose a sct ¥ of partitions so that every § € M) has a partition
P € ¥ satisfying A, where ’

ninm

¥l =

- Vzne{ o o)+ (2)
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1. b « [logy m] written in binary;

2. j « some number between 1 and |¥| depending on S; B

s —
o T T . . e
i . :
} é; 5. Hashing with Ccparate Chains ) 8
; g The following program will satisfy 4 for S and takes logg |¥| + logs n + log, logy m + O(1) bits
‘ ¥ to encode. ' ?
% PROGRAM AlmostPerfects (z): s

3. Search through all 2® X 1,2% X 2,2% X 3,... matrices in some lexicographic order
with entries in {0,1,..., n/k— 1} until a matrix M is found satisfying property A. M, j gives
the block address B; of z. /

4. Binary search block B, in logz(k+ 1) probes, and return “yes” or “no” dependmg
on whether z is found in the block. 1

3 and sufficient to encode a program P answering membership queries in ¢ probes to the table.

|

|

By trading off binary search and perfect hashing, then, ©(nt/2¢) bits are necessary J
!

§5 Hashing with Separate Chains

Al

well as holding a key. We would like to know how this additional information in the table can

!
Now suppose each table slot is allowed to hold a pointer to another table address as - : @ -
1}
!
be used to optimize the worst-case number of probes to the table.

Let each scarch program P initially probe one table locatlion to answer the query
“Is z € S If z is found at that location, P answers “yes.” Otherwise it follows a chain of
pointers until z is found on the chain, or the end of the chain is reached, answering “ycs” or
“no” accordingly. This scheme is intended to model the static case of hashing with separate
chains. The static nature of the problem allows the folding of chains into the table, so no

; additional memory is needed.

PR Y R

AL e T

We assume that stalic table schemes always consist of separale chains of pointers,
where the program initially probes to the first key in the chain, and then follows pointers.
This assumption is not restrictive in terms of finding optimal search programs and associated
pointer structures.

e o N P R

To answer a query in k probes, it means that no chain in the table can be more
than k keys long. Each program and table structure for S € M™ now corresponds to a
partition of M in which no more tlian k keys in S appear in any part. The analysis ol Lhis
model is considerably more difficult than the peinter-free models we have already examined,
as Lhe counling problems involved are much more wmplmicd and we must asymplotically
approximate their solution.

Let Hy(m,n) denote the number of bits required to define a search stralegy as
described earlier, where no chain of pointers in the table has length greater than k.

Theorem 7.

l"(mv"’ Z 'm(;';y‘:)- 7" \I + ﬁ) 0(-- +n“‘"‘)
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5. Hashing with Scparate Chains

Proof. (sketch) Let A(P,S) be the property “P partitions M into n parts with at most 2
elements of S found in any part.” If P partitions M into parts of size p;, 1 < 1 < n, then

Qp = {S € M™|4(P, S) holds} e
= (2"} 1<.]:[<.. (1 + piz + (2 )zz),
and it is not difficult to show that
Qs = max, {8 € M™|4(P, S) holds} /

= (@) (}z")(l +z4 ?)ﬂ ,.
(T3

< ("’"‘) (™gl2)",

where (z")g(2)" denotes the cocfficient of 2™ in g(z)". The function g(z) is a probability mass
function, so that the coefficients of g(z)™ rcpresent the distribution of sums resulting from
n trials of the random variable described by g(z). The coefficient of interest may then be
recovered by use of the Local Limit Theorem for latlice distributions, a discrete and local form

. of the Central Limit Theorem (see [Feller], [Petrov]):

1 —r? .
o = ()

where p and ¢? are the mean and variance of g(2), and ¢ is some small constant greater than
zero. Since p 5% 02 and p and o? are both constant, the above approximation is uscless except
very close to the mean (i.e., for small 7); otherwise the O(n='*3¢) terim swamps everything.
However, this situation can be remedied by .the technique of shifting the mean, described in.

|Greene and Knuth]. We introduce a parameter a, and note

(et = (2) (Y
= (ﬁ:—)) (2")G(2)".

3

If we let a = /2, then mean(G) = 1, and the Local Limit Theorem will provide the required
asymptotic information, since we will be asking about the distribution precisely at the mean,

in which case
(zf+2) [\/2+7‘+o( -.+,,)]

{z")ol2)" =

Inscrting this value into the inequality Qq¥| 2 ("') gives the lower bound 1

"
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5. Hashing with Separate Chains ; 10

A tight upper bound can be proven using the nonconstructive argument, which we
give without proof:

Theorem 8.

Hy(m,n) < nlogz( ° ) + 2logs n + log, log, m + O(1).
1+v2

Probablhty, 1nformatlon, and combinatorial theory share a varicty of asymptot\c
counting techniques. To prove Theorems 7 and 8, we use the Local Limit Theorem for countr‘ig,
and not because of its relation to anything probabilistic. Given a combinatorial generating
function f(2) = 3 fn2™ which is free of singularities, the Residue Theorem from complex

-variable theory can be used to determine particular coefficients: {z*)f(z) = 5L; § —;(fldz Onc
proof of the Local Limit Theorem uses precisely this technique: we assume f(z) = g(z)" where
g(z) is a probability mass function, and Lhe path of integration is the unit circle on the complex
plane. Intuitively, the unit circle path tends to “focus” the value of the integral at the mean
of g(z)*. The method of shifting the mean is a heuristic which allows the saddle point of the
integrand to be “moved” to an advantagcous place on the path.

We now generalize the above methods to prove a tradeofl for arbitrary k.

Theorem 9.

Hafm,n) = nlog, e( E ) (,Sz )) + O(log n + loglog m).

>k+l

Proof. (sketch) Let 4(P, S) be the property “P partitions M into n parts with no mcre thun
k elements of S found in any part.” The quantity Q4 defined in Theorem 1 (and nceded to
determine a lower bound) can be bounded as

. 2 k n
my®, . z z
Q,g(n) (= )(1+z+2!+ +k!).
In showing an upper bound, we find that for randomly chosen P € P("),

2

Pr {A(P,S) holds} = ;":%(2")(1 + 2-.{- 52; et ;l!:)n'

Surprisingly, the same gencrating function, given different combinatorial interpretations, ap-
pears in both the upper and lower bounds. The appearance of the above gencrating function
in the lower bound is related Lo the Mact thal Q‘ is maximized by partitions of the key space

into equal sized parts. This cquipartilion property, which gives a bound on the entropy of .

the scarch program, is analogous Lo the equipartition properly of information theory which
maximises entropy in source coding.

» TS e ol T e ——
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6. The Effect of Table Expansion 11

To recover the coefficient of interest in the above truncated exponential, denoted as
G(z), we proceed as follows:

o (z")G(z)" is replaced by G(1)*(2")g(z)", where g(z) = G(2)/G(1) is now a probability
mass function. (z"}g(z)" is then rewritten as (z")g(z)" = (?) (z")a(z)" where y(zf) =
glaz)/ga).

e By the Residue Theorem, (2")g(z)" = 3; § ?Q,-;dz. We sclect as a contour of integration
the path z = €* around the pole at z = 0. We now choose a so that ag’(a) = g{a), which
shifts the mean of g to 1, and thus the saddle point of the contour integral to z = 1. /To
choose a satis{lying thesc constraints, we must find the positive real zero of a polynomi’a] of
degree k, which (unless Galois was wrong) cannot in general be done. In this case, though,
we can compute an asymptotic approximation for the solution of a =1+ ;{1 + O(%)

s Since k may depend on n, the Local Limit Theorem cannot be used as in Theorem 5.
Instead, we use the saddle-point method of complex variables [deBruijn]. We show the
existence of a neighborhood around z = 1 where Ing(2) converges, so that exp(ing(z)) can

- be expanded in a convergent power series, and derive

4 242 ;. 43
(zM)g(z)* = %/;6 exp ((p,-— 1)itn — %:— —-st!t- + ---)dt + C(8%),

where § > 0 is a small constant, 0 < § < 1 is a constant, and (02, x3,...) are the
semi-invariants of g(2). Since p = g’(1) = 1, the first term (u — 1)ttn is zcro. The proof is
completed by use of Laplace’s method for integrals around the saddle point. @

We note that similar asymptotic analysis has been used by Philippe Flajolet to analyse
the expected behavior of extendible hashing and trie searching [Flajolet].

Corollary 10. Ifk = 0O(1), so that we insist or answering queries in a constant number of
probes, then Hi(m,n) = Q(n).

Theorem 9 demonstrates that when n == (k + 1)!, or equivalently k =~ 3%, the size
of % is about a constant. Then for a fixed set S € M(™), and randomly chosen P € P(™), the
probability that no more than ,nl',‘-;,"—n clements of S are found in any part in P is large. This
fact is not altogether surprising, since it is closely related to the following classical problem
in random allocations: when throwing n balls at random into n boxes, what is the expected
value of the maximum number of balls in any box? [Kolchin ct al.[[Diaconis and Freedmanj.
It turns out thal the expected value is about EHT."'-‘. In terms of hashing with scparatle chains,

this statistic can be interpreted as the expected length of the longest probe sequence, which
has been closely analyzed in [Gonnet). .

§6 The Effect of Table Expansion

. We have thus far analyzed two kinds of tradeofls. In Theorem 6, a tradcofl was
cffccted by synthesizing binary search and perfect hashing. Using this “paged: hashing” scheme,
we can answer membership querics in ¢ probes with a program complexity of ;M:(1 + o(1))
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bits. Another tradeoff scheme was analyzed in Theorem 9, where we considered hashing with
separate chains of length at most ¢, and a consequent maximum search time of ¢ probes. This
“chained hashing” mecthod has a program eomplexity of :ﬁ'&“fy’((l + o(1)) bits, which is smaller
than the complexity of paged hashing, though O(nlogn) bits are nceded to store pointers for

the chains. ,

What differences between these schemes could cause their differing program com-
plexities? The paged hashing method has an address space of nfk, with exactly k keys stored
at each address (page). The chained hashing method has an address space of n, with ai most
k keys stored at any address.

Suppose we modified paged hashing so that its address space was expanded, say,
from n/k to n, and maintained the constraint that exactly k keys are stored at some n/k of
the n addresses. How would this modification alter the lower bound on program complexity?
Mechlhorn has shown that perfect hashing with a load average of 8 has a program complexity
of 8(fn + loglogm). However, when the paged hashing method is used with similar table
expansion, and k grows asymptotically large, no such similar reduction occurs in the program
complexity. Il particular, we can show the following theorem:

Theorem 11. Let HF\(m,n,t) be the program complexity of the paged hashing method.
Then for increasing k, H Fy(m,n,t) > %%‘ﬁ(l + o(1)).

Theorem 11 demonstrates that the program complexity of the paging method is not
significantly reduced by an expansion of the address space, since the lower bound is asymptoti-
cally equivalent to the lower bound found in Theorem 5, i.e., H Fi(m, n,t) = Q(H Fi(m, n,n/k))
for all t > n/fk.

§7 Probabilistic Hashing and Hash Circuits

We now give an application of the above analysis to showing a lower bound on the
worsi-case behavior of universal classes of hash functions (see [Carter and Wegmanl]).

A class ¥ of hash functions is called universaly if for any z,y € M, no more than
|¥]/n of the functions h € X satislfy k(z) = h(y). Carter and Wegman essentially showed that
by choosing an h € ¥ randomly, we can answer “Is z € S? in O(1) probes on the average.
More specifically, they showed that for any z € M and randomly chosen k € ¥, the expected
number of y € S colliding with z under h is 1. In various applications it is advantageous to
minimize the size of the class of hash functions: in [Mchlhorn] it is shown that the smallest
universal class of hash functions has size ©(n log,, m). We can then show the lollowing theorem:

Theorem 12. Let ) be a class of universal hash functions of minimal size. Then there exists
a set S € M™ depending on X such that the following is true: for any h € X there exists a
set 8’ C S where z,y € S’ implies h(z) = h(y), and |S’| = Q(log n/ log log n).

This theorem implies that il we use a “minimal” class of universal hash functions,
where we choose any function from the class and construct an accompanying table structure,

there will always be queties that take ﬂ(,;:f%) probes to answer, far worse that the O(1)
expected time derived from choosing randomly. Probabilistic algorithms arc designed to give
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a good expected time behavior independent of the input by randomization in the algorithm.
Theorem 12 shows how in some sense the randomization can be “beat,” since the proof gives a
lower bound on choosing the best function as opposed to a random one, and choosing randomly
cannot do any better than choosing the best function. It also suggests that a “minima)}’
program cannot do much better than binary search, which was shown by [Yao] for a very lgrge

keyspace.

The Jower bound of Theorem 12 is on a very worst case measure of the performance of
universal classes of hash functions, but docs show that their expected behavior is not completely
input independent. These functions still can perform well in an amortized sense (say over a
sequence of queries over all z in S), but this is just a hidden form of averaging over an input

sequence. 2

A similar bound can be proven about certain classes of hash circuits. Define a
computation-bounded hash circuit as a directed acyclic graph where the vertices of the graph
represent Boolean operations with fan-in bounded by a constant, and fan-out of 1. The
computation is additionally bounded by requiring that the circuit can use an input bit (i.e., a
bit from the key z) no more than a constant number of times. We envision the latter condition
by providing a constant number of copies of each input bit to the circuit, which may be “used”
or “ignored” by the circuit. The outputs of some fixed log, n of the vertices are chosen as the

bits of the hash address.

Theorem 13. Let ¥ be 2 class of computation-bounded hash circuits, and assume that
logg mlog; log, m = ofn). Then there exists a set S € M™) depending on ¥ such that the
following is true: for any h € X there exists a set S' C S where z,y € S’ implies h(z) = h(y),

and |S'| = Q(logn/loglogn}.

§8 Open Problems

We conjecture that an easy-to-compuie hask function with small program complexity
can be constructed for any fixed set S € M(") which has no more than _** gn) collisions to

any address,

Another topic that merits further investigation is adaptive tradeoffs. The tradeofl
schemes we have considered have mostly been nonadaptive. For example, in hashing with
separate chains, the information stored in the search program P is used Lo choose the right
chain, but subsequent probes do not adapt to information gained by carlier, failed probes
(except that they failed). The lower bound in [Yao] analyzes some adaptive search models. :
These models do not allow the search program to have knowledge in advance about the table it |
searches, and o the analysis is incompatible with the approach taken here. What can be done Lo
to unify these two approaches? One promising line of attack might be to extend the approach :
of Gonnet and Larson: consider an algorithm used for insertion, and show some entropic bound
on its behavior which indicates how much information must be passed to the search algorithm.

The analysis of adaptive search leads naturally to more dynamic considerations. What
can be said about the program complexity of search strategics that modily themselves as keys
are inserted and deleted from the table? This question is probably very dilficult.

Ilash circuits is an additional arca where open problems remain. Tlow strong is the.
lower bound of Theorem 5.17 If our above conjecture about casy to compute number-theoretic
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functions is true, the lower bound should be quite strong. However, VLSI models suggest chip
arca and time, rather than gate complexity, as measures of the performance of circuits. Can
an AT? lower bound be shown for, say, a circuit which is a perfect hash function? What kind
of information transfer must occur in a hash circuit?
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