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The Program Complexity of Searching a Table

HARRY G. MAIRSON
Department of Computer Science /

Stanford University
Stanford, California 94305

ABSTRACT. Given a fixed set S of n keys, we would like to store them so that queries of the
form "Is z E S?" can be answered quickly. A commonly employed scheme to solve this problem
uses a table to store the keys, and a special purpose program depending on S which probes the
table. We analyze the tradeoff between the maximum number of probes allowable to answer
a query, and the information-theoretic complexity of the program to do so. Perfect hashing
(where the query must be answered in one probe) has a program complexity of nlOZ2 e(l + 0(1))
bits, and this lower bound can be achieved. Under a model combining perfecL hashing and
binary search methods, it is shown that for k probes to the table, nk/2k+l(l + o(l)) bits
are necessary and sufficient to describe a table searching algorithm. This model gives come
information-theoretic bounds on the complexity of searching an external memory. We examine
some schemes where pointers are allowed in the table, and show that for k probes to the
table, about O (j + o(l)) bits are necessary and sufficient to describe the search. Finally,

we prove some lower bounds on the worst case performance of hash fructions described by
bounded Boolean circuits, and worst case performance of universal classes of hash functions.

This paper will appear in the IEEE Symposium on Foundations of Computer
Science, November 1983.
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11 Introduction Chitf, Trhnooal I2orwitton V mvujdt

Given a fixed set S of n keys, we would like to store them so that membership queries
or the form "Is z E S?" can be answered quickly. This searching problem, particularly in the
static case, is clearly among the most fundamental of data structuring problems, as well as
being ubiquitous in computer science ipplications.

This simple information-retrieval problem has generated considerable interest in recent
years. The papers [Sprugnolil and [Jaeschkel suggest several ad hoc hashing schemes to imple-
ment a solution. Jaeschke recommends using a hash function or the form h(s) = +
(mod n), where the constants A, B, and C depend on S. This function is called "perfect" as
no keys in S collide under h, and h has a very reasonable unit-cost arithmetic complexity.
Its program complexity, on the other hand, is very large, as the number of bits needed to
write A, B, and C is 0l(n). By contrast, binary search has a program complexity of O(logs)
and answers queries in O(logn) probes. This relation between search time (measured in num-
ber of probes) and program complexity (measured in bits) suggests that there should be an
information-theoretic tradeoff between the two. The tradeoff intuitively corresponds to the
relationship of the performance of a search strategy to the inherent complexity of its descrip-
tion. The relationship has appeared in a variety of disguises, including the following:

1. Searching External Memories. Gonnet and Larson recently examined the problem
of searching an external memory with limited internal storage [Gonnet and Larson]. Since
accessing external memory is very time-consuming, methods which reduce the number of
accesses are very desirable, even if they increase internal processing. Gonnet and Larson
examine external hashing techniques assuming random probing, where a small amount of
internal storage (a directory) is used to help direct the search. How does the size of the
directory affect the efficiency of the search? If membership queries are answered by retrieving
pages of the external memory, our above described tradeoff represents the relationship between
the directory size and the number of uniform-size pages needed to store S. We determine this
tradeoff.

2. Internal Searching in a constant number of probes. Several investigations have been
made in this direction, including [Tarlan and Yao and more recently [Fredman et al.] Both
of their results show practical schemes for answering queries in 0(1) probes with a program
complexity of O(n log n) Another paper [Yao] demonstrates a "canonical 2-probe structure"
which always probes first to a table position containing a directory for the rest of the table, and
uses information in the directory to choose the next probe. Again, the size of the directory is the
program complexity of the search strategy. We analyze the worst case of hashing with separate
chains, and determine the truleoff between program complexity and chains of maximum length
k, so queries are answered in no more than k probes.

3. Probabilistic Hashing and Hash Circuits. Recent work on probabilistic hashing by
Carter and Wegman suggests choosing a hash function at random from a class of functions
X having a "universal" property [Carter and Wegmani. The property guarantees certain
desirable input independent expected bounds on search time (measured'in number of probes),
randomizing over the choice or function. The program complexity (roughly log s JXJ) of thee
hash functions was analysed in JMehlhorn. It is of Interest to minimize logs JXJ for several
reasons note that log, 21 is a measure or how many coin flips are. needed to randomly .
choose a function from 1J), which becomes important in same applications. We show that
for such minimal X, there are some worst-case input dependent lower bounds on search time

*. / ....



S. Hashing and Partitions: Combinatorial Preliminarie S

ofl( .Similar lower bounds can be derived for bounded-sze Boolean hash circuits.

Program complexity (see [Chaitin]) is a measure which has largely been applied to
problems in formal systems, "machine based" recursive function theory, and information'
theory. We intend to use it as a tool in concrete complexity, applying it to a particular infof-
mation retrieval problem. As long as we assume a basic random access machine (RAM) model,
this measure of program complexity is fundamentally indepeudent of language implementation,
so that it does not matter whether a search strategy to answer membership queries is described
in assembly language, PASCAL, or French.

2

§2 Model and Notation

The problem is formalized as follows. We construct a special purpose computer
program P depending on S and store the elements of s in a table, possibly with some associated
pointer structure. To answer "Is z E S?" P is allowed to probe the table in its search for z,
and make auxiliary computations (following pointers if they are permitted) between probes. If
P finds z in the table, it answers "yes." If it does not find z, but gathers sufficient information
to certify that z is not in the table, it answers "no." In addition, we use the following notation:

M = {O, I,...,m- 1). The key space.

M("). The subsets of M of cardinality n.

S E M("). The set in question. We assume that M is much larger than S, which is reasonable
in most applications.

N = {0, 1, ... ,n- 1}. The address space of the table.

P(M. The partitions of M into n parts (possibly empty parts).

P. We use P ambiguously to denote both partitions of M as well as program encodings of
search strategies, because there is a direct and significant correspondence between the two.
Which meaning of P is intended should be clear from context.

I

13 Hashing and Partitions: Combinatorial Preliminaries

Every hash function program P : M -, N induces a partition of the key space M
into parts M, where UjM = M and Mi = (z E MIP(z) = i}. We can examine a partition
property A(P, 8) of a program (partition) P and a set S, and determine whether or not the
property is satisfied. For example, "no two elements of S are found in the same part of the
partition defined by P" (the perfect hashing property), or "no more than k. elements of S are

J~ r ound in the sanme part of the partition defined by P." Given any set S EC M(s) we want
a program 11 such that A(I', S) holds. Define C(A) as the bit complexity of the program
(partition) 1' salisfying A(I', S).

We can then generate lower bounds through the following counting argument-

i 7



3 Hasdn and Partton: Combinatorial Prellminaries 4

Theorem 1. Let -

QA = max) j(S E M("-IA(P,S) holds) .

Then for any S E MM, the bit complexity of a program satisfying A(P, S) is bounded below
by

C(A) > log 2 l) •

The following probabilistic argument lets us construct upper bounds.

Theorem 2. Let A(P, S) be a partition property over the clas p() of partitions, where

Pr {A(P, S) holds) p(m, n).

Then there ex.ists a set M = {PI,P2,...,Pk) C p(t) of k partitions where k = i, and the

following is true: for any S E M(" ) there exists a P E X such that A(P, S) holds.

Proof. Suppose we choose the partitions in . independently at random. Let As, S E MN
be the event

A (A(P, S) does not hold).
PEN

Then

Pr {As} _< (1 -P.k,

and

Pr( V AS F Pr{As}--(rn) (1  P)k.

SEMi'f) sEM(%" )

Ir

(n)()k 1()

then it, is possible to deterministically choose an X making VsEMm.1 As raise, and

4A- A (3P E ))(A(P, S) holds),
sEMI-) SfM~f)

which would prove the theorem. Since kp = n In m, we know

kln(,-pF)+ lnM < -k,- !e +nlnm= - < ,

or Mr(I - p) < , which implie (), proving the theorem. 3
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4. Some Application.

We shall see that if P is chosen randomly from Pa), and Pr {A(P, S) holds)
p~inn), then Theorem 2 will let us show upper bounds of C(A) :5 log2 shJm + 0 (log n +
log log in).

§4 Some Applications

We first examine perfect hashing, where P may probe exactly one table location in
its search to answer the query, "Is X E S?" It x appears there, P answers "yes"; if z does not.
appear, P must be justified in its saying "no" without rear of the appearance of x somewhed(
else in the table. We would like to know exactly how many bits are needed to define such a
perfect hash function for every S E MM", denoted PIIF(m, n).

Theorem 3.

PHF(m, n) : nlog2 e -logz 21rn +0(n + M)

Proof. We use the counting argument of Theorem 1. Let P be a program which is a perfect.
bash function. Think of P as a function P : M - N which maps each key in the key- space onto
a particular address in the table. P then induces a partition of M into parts MO, M, ... I., -
where U1)i t = M and Mi = (z E MIP(:) = il. If P is a perfect hash function for S, clearly
no two keys in S can be in the same Mi, since P restricted to S gives the different addresses
of the elements of S in the table. Define

Per f(P) = 1(S E MW")P is a perfect hash function for S}I.

Let '?. be a set of ser'h programs sucl, that for any .S E M("), there exists a P E '1 whiv'.h is
perfect for S. Then by counting,

/M
(max Perf(P) I)I =number of sets of size n.

Ithis patitis Maimiozedt MO, Ml,. .. , M...1 then clearly Perr(P) = fl0!S<n,1 I,I, and
thi quntiy i maimiedwhen each Mi is of equal size, so that IMI = . Then

4 or

1+0

Applying Sterling's formula, taking logarithmsp, anti assuming n2- a(m), we obtain, the desired
lower bound: clearly log2 INI bits are necessary or else we cannot uniquely identify all the
program in XI.3



4. Some ApplicaUons

The counting argument of Theorem 3 shows that sets S E We ) exist with perfect
hash functions that have complexity or at least n log, e(1 + o(i)). or course, some sets, such
as (0, 1, 2,..., n - 1), have perfect hash functions of low complexity. However, the counting
argument, as in Chaitin-Kolmogorov complexity, is quite strong in the following sense: no more
than 2-k(.) of the sets S E MM can have perfect hash functions with program complexity
less than PIIF(m, n) - k. Therefore, both in Theorem 3 and in counting arguments we will
see later, a lower bound of C on program complexity for perfect hashing, or analogous search
properties, indicates that at least half of the sets S E M") have program complexity of at
least C - 1, etc.

Theorem 4.

3PHF(m, n) n Ilog2 e + Iog2 n + 2log2 log2 m + 0(1).

Proof. Let A(P, S) be the perfect hashing property. We know that

Pr A(P, S) holds) =R!n =! -

By Theorem 2, we know it is possible to choose a set M of partitions so that every S E M(S)
has a perfect hash function chosen from M, where

PINI T.n lnm,

so that

IM !e n I-+

To prove the theorem, it only remains to show that a program computing a partition in ) can
indeed be written in about log2 I)NI bits. This can be done using a variant of the algorithm
suggested in [Mehlhorn), which we now describe. The idea or the program is that every class of
hash functions can be specified by an m X IN I matrix M, where M1 j = hi(i), that is, the j-th
hash function in X applied to i. It turns out that very short programs can enumerate these
matrices, and check them for properties like perfect hashing.

I'ROGRAM Perfectg (z):

1. b 4- flog, ml written in binary;

2. j 4-- some number between I and INl depending on S;
3. Search through l 26 X 1, 2& X 2, e X 3,... matrices in some heicographie order

with entries In {,..., a - 1) until a 'perfect matrix3 M is found. Columnj of M represents
the perfect bash function For 8: probe address M.[j of the table. if appears there, return
"yMr," otherwie return "no.'

The length or the above program Islog lei, m rot stp 1, at most Iog, IN11 rot step
2, and log, n + 0(I) for step 3, which proves the theorem. Note the name perfect matrix is

.. .... /

.... /



4. Some Applications 7

always found, since the matrices are enumerated in the same lexicographic order thig is why
can in principle be determined beforehand. |

Theorems 3 and 4 give a 11(n + log2 log2 m) lower bound on the program complexity
of perfect hash functions. Whether n or log2 log 2 m is the significant term is dependent on

the relative asymptotic growth of n and m. We will assume throughout our discussion that m
asymptotically grows faster than n, but not too fast, so that the n dominates the asymptotics.
More specifically, we will assume n2 = o(m) and log 2 log2 m = o(n). These bounds allow for

analysis of "intermediate" values of m and n such as m = 2", suggested as an open problem
in [Yaol.

The lower and upper bounds described by Theorems 3 and 4 have separately and independently
appeared in various places, including [Mehlhorn], [Berman et al.), and [Fredman et al.].

Now let's look at searching an external memory. Suppose a page of external memory
stores exactly k keys. Decompose S into n/k pages Bi, I < i < n/k. Membership queries

will now be answered by examining a directory in the internal memory containing enough
information to determine in which page z is found if z is indeed in S. (If the keys in each B
are sorted, the relevant page can be pulled and binary searched in [log 2 (k + 1)1 probes.) Let

HF(m, n, t) denote the bit complexity of the most concise such directory, where t is the size
of the table.

Theorem 5.

HFk(m,n, n/k) 2 2 + --n+n2 + "

The above theorem has a corresponding upper bound:

Theorem G.
,l,(~n/, n log 2xk 3 'lg2r+ (n ti

F(mn,n/k) + 2 n + 2 log log 2  - og 2  + +

Proof. We proceed as in Theorem 4. Let A(P, 8) be the property "P partitions S into n/k
parts with exactly k elements of S in each part." Then for fixed S and randomly chosen P,

Pr {A(P,S) holds) -- G(k k... k)

j~~~ P atsyn.A hr

ii (-> C + 0(1)))""

By Theorem 2, we can choose a set X of partitions so that every S E M (*) has a partition
P E )I stisfying A, where

n In m

_ _ I -illl

PU



. Hashing with ,eparate Chains 1
The following program will satisfy A for S and takes log 2 M + log2 n + log2 log m + 0(I) bits
to encode.

PROGRAM AlmostPerfects (z): ,

1. b - [log2 ml written in binary;

2. j -- some number between 1 and J depending on S;

3. Search through all 26 X 1, 2' X 2,2' X 3, ... matrices in some lexicographic order
with entries in {0,1,.,., n/k - 11 until a matrix M is round satisfying property A. Mij gives
the block address B. of. /

4. Binary search block B. in log2(k + 1) probes, and return "yes" or "no" depending
on whether z is found in the block. I

By trading off binary search and perfect hashing, then, e(nt/2t) bits are necessary

and sufficient to encode a program P answering membership queries in t probes to the table.

§5 Hashing with Separate Chains

Now suppose each table slot is allowed to hold a pointer to another table address as
well as holding a key. We would like to know how this additional information in the table can
be used to optimize the worst-case number of probes to the table.

Let each search program P initially probe one table location to answer the query
"Is z E 5?" If z is round at that location, P answers "yes." Otherwise it follows a chain of
pointers until z is found on the chain, or the end of the chain is reached, answering "yes" or
"no" accordingly. This scheme is intended to model the static case of hashing with separate
chains. The static nature of the problem allows the folding of chains into the table, so no
additional memory i5 needed.

We assume that static table schemes always consist of separate chains of pointers,
where the program initially probes to the first key in the chain, and then follows pointers.
This assumption is not restrictive in terms of finding optimal search programs and associated
pointer structures.

To answer a query in k probes, it means that no chain in the table can be more
than k keys long. Each program and table structure for S E M() now corresponds to a
partition of M in which no more than k keys in S appear in any part. The analysis of this
model is considerably more difficult than the pointer-free models we have already examined,
as the counting problems involved are much more complicated, and we must asymptotically
approxinmte their solution.

Let Hk(mu) denote the number of bits required to define a search strategy as
described earlier, where no chain of pointers In the table has length greater than k.

Theorem 7.

,+ + + t-i+e .

III ' 0) is IOU-ail mmm-- -mmmmiIo:Bnn unnmmm



. Hashing with Separate Chains 0

Proof. (sketch) Let A(P, S) be the property "P partitions M into n parts with at most 2
elements of S found in any part." If P partitions M into parts or size pi, 1 < i < n, then

Qp = {S E M(")IA(P, S) holds) /
= () i +

and it is not difficult to show that

QA = max {S E M(")IA(P,S) holds)

") I+Z
5=(" + 2 + 1)
22

where (z")g(z)n denotes the coefficient of z" in g(z)". The function g(z) is a probability mass
function, so that the coefficients of g(z)" represent the distribution of sums resulting from
n trials of the random variable described by g(z). The coefficient of interest may then be
recovered by use of the Local Limit Theorem for lattice distributions, a discrete and local form
of the Central Limit Theorem (see [Feller], [Pctrov]):

1 f-r2 "

(z")&"= 2-exp 202I ~n13)

where p and 02 are the mean and variance of g(z), and c is some small constant greater than
zero. Since 3 r2 and p and 02 are both constant, the above approximation is useless except
very close to the mean (i.e., for small r); otherwise the O(n - '+3c) term swamps everything.
However, this situation can be remedied by .the technique of shifting the mean, described in.
[Greene and Knuth]. We introduce a parameter a, and note

{Zg)g(Z)" ( .) ( , ( z) f

a at

If we let a -v/, then mean(G) = 1, and the Local Limit Theorem will provide the required

asymptotic information, since we will be asking about the distribution precisely at the mean,
in which case

("')g(V2- + , 2 v/" +  O l -'+ 3) "

Inserting this value into the inequality QAI)I > () gives the lower bound.
r 4

* -_- - -

i :'" " il i



5. llashing with Separate Chains 10

A tight upper bound can be proven using the nonconstructive argument, which we
give without proof:

Theorem 8. /

H2(m, n) -5n19
HsA-)& + ~ 2109 2 n+lo092 109 2 M+ 0(0-.

Probability, information, and combinatorial theory share a variety of asymptotic
counting techniques. To prove Theorems 7 and 8, we use the Local Limit Theorem for countHg,
and not because of its relation to anything probabilistic. Given a combinatorial generating
function f(z) = E fza which is free of singularities, the Residue Theorem from complex

variable theory can be used to determine particular coefficients: (zk)f(z) = ! 4dz. On
proof of the Local Limit Theorem uses precisely this technique: we assume f(z) = g(z)" where
g(z) is a probability mass function, and the path or integration is the unit circle on the complex
plane. Intuitively, the unit circle path tends to "focus" the value or the integral at the mean
of g(z)". The method or shifting the mean is a heuristic which allows the saddle point of the
integrand to be "moved" to an advantageous place on the path.

We now generalize the above methods to prove a tradeoff for arbitrary k.

Theorem 9.

= n) no12 e1 + 0 k + 0(logn + loglogm ).
>k+1 3

Proof. (sketch) Let A(P, S) be the property "P partitions M into n parts with no m.rc tlu~n
k elements of S found in any part." The quantity QA defined in Theorem I (and needed to
determine a lower bound) can be bounded as

QA I (n)(z)(+z+ 2+... +

In showing an upper bound, we find that ror randomly chosen P E p("),

Pr {A(P, S) holds) - (Z I + Z + =. + + v

Surprisingly, the same generating function, given different combinatorial interpretations, ap-
jY pears in both the upper and lower bounds. The appearance of the above generating function

in the lower bound is related to the fact that QA is maximized by partitions of the key space
into tqual sized parts. This equipartition property, which gives a bound on the entropy of
the search program, is analogous to the equipartition property of infornmation theory which
maximises entropy in souree coding.



6. The Effect of Table Expansion 11

To recover the coefficient of interest in the above truncated exponential, denoted as
G(z), we proceed as follows:

" (z")G(z)" is replaced by G(l)"(z")g(z)", where g(z) = G(z)/G(l) is now a probabity

mass function. (z' t )g(z)" is then rewritten as (z")g(z)" )(z")(z)" where (z) -

g(az)/gO).

" By the Residue Theorem, (z")#(z)" = f 1-,dz. We select as a contour of integration
the path z = eft around the pole at z = 0. We now choose a so that ag'(a) = g(a), which
shifts the mean of g to 1, and thus the saddle point or tht. contour integral to z = I./To
choose a satisfying these constraints, we must find the positive real zero of a polynomal of
degree k, which (unless Galois was wrong) cannot in general be done. In this case, though,
we can compute an asymptotic approximation for the solution or a = 1 + I + 0( -

* Since k may depend on n, the Local Limit Theorem cannot be used as in Theorem 5.
Instead, we use the saddle-point method of complex variables [deBruijn]. We show the
existence of a neighborhood around z = 1 where lnU(z) converges, so that exp(ln P(z)) can
be expanded in a convergent power series, and derive

WMz!" - exp ((u- 1)itn - 2 3! +"" dt + 0(fl"),

where b > 0 is a small constant, 0 < 0 < 1 is a constant, and (IL,O, K3 ,...) are the
semi-invariants of g(z). Since A = g'(1) = 1, the first term (A - 1)itn is zero. The proof is
completed by use of Laplace's method for integrals around the saddle point. I

We note that similar asymptotic analysis has been used by Philippe Flajolet to analyze
the expected behavior of extendible hashing and trie searching [Flajoleti.

Corollary 10. If k = 0(1), so that we insist or answering queries in a constant numbcr of
probes, then Hk(m, n) = fl(n).

Theorem 9 demonstrates that when n w (k + 1)!, or equivalently k ; - the size
of N' is about a constant. Then for a fixed set S E M , and randomly chosen P E P("), the
probability that no more than elements of S are found in any part in P is large. This
fact is not altogether surprising, since it is closely related to the following classical problem
in random allocations: when throwing n balls at random into n boxes, what is the expected
value of the maximum number or balls in any box? [Kolchin et al.JfDiaconis and Freedmani.
It turns out that the expected value is about I in terms of hashing with separate chains,
this statistic can be interpreted as the expected length of the longest probe sequence, which
has been closely analyzed in [Gonnet].

§6 The Effect of Table Expansion

We have thus rar aiialyzed two kinds or tradeoffs. In Theorem 6, a tradeoff was
i effected by synthesizing binary search and perfect hashing. Using tiils "paged hashing" scheme,

we can answer membership queries in i probes with a program complexity of ( + 0(1))

-• - . - - -- - - , a, - - m ' " m l l n I , I •
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bits. Another tradeoff scheme was analyzed in Theorem 9, where we considered hashing with
separate chains of length at most t, and a consequent maximum search time of t probes. This
"chained hashing" method has a program complexity of + o(1)) bits, which is smaller

than the complexity of paged hashing, though 0(nlogn) bits are needed to store pointers for
the chains.

What differences between these schemes could cause their differing program com-
plexities? The paged hashing method has an address space of n/k, with exactly k keys stored
at each address (page). The chained hashing method has an address space of n, with at most
k keys stored at any address.

Suppose we modified paged hashing so that its address space was expanded, say,
from n/k to n, and maintained the constraint that exactly k keys are stored at some n/k of
the n addresses. How would this modification alter the lower bound on program complexity?
Mehlhorn has shown that perfect hashing with a load average of P has a program complexity
of 19(fin + loglogm). However, when the paged hashing method is used with similar table
expansion, and k grows asymptotically large, no such similar reduction occurs in the program
complexity. Ifi particular, we can show the following theorem:

Theorem 11. Let HFk(m, n,t) be the program complexity of the paged hashing method.

Then for increasing k, HF(m,n, t)_ =i4(l + o(1)).

Theorem 11 demonstrates that the program complexity of the paging method is not
significantly reduced by an expansion of the address space, since the lower bound is asymptoti-
cally equivalent to the lower bound found in Theorem 5, i.e., HFk(m, n, t) = 1l(HFk(m, n, n/k))
for all t > n/k.

§7 Probabilistic Hashing and Hash Circuits

We now give an application of the above analysis to showing a lower bound on the

worst-case behavior of universal classes of hash functions (see [Carter and Wegmanj).

A class N of hash functions is callbi universal2 if for any z,p E M, no more than
I)N/n of the functions h E N satisfy h(s) = h(p). Carter and Wegman essentially showed that
by choosing an h E )? randomly, we can answer "Is z E S!" in 0(1) probes on the average.
More specifically, they showed that for any z E M and randomly chosen h E N, the expected
number of Y E S colliding with z under h is 1. In various applications it is advantageous to
minimize the size of the cl.ss.-or hash functions: in [Mehlhorni it is shown that the smallest
universal class or hash functions has size O(n log.i m). We can then show the rollowing theorem:

Theorem 12. Let X be a class of universal hash functions of minimal size. Then there exists
a set S E M(W) depending on N such that the following is true: for any h E Y there exists a
set S' CS where z, y E S' implies h(z) = h(p), and IS'l = fl(log n/log log n).

This theorem implies that if we use a "minimal" class or universal hash functions,

where we choose any function froin the class and construct an accompanying table structure,

there will always be queries that take probes to answer, far wore that Lte 0(,)

expected time derived from choosing randomly. Probabilistic algorithms are designed to give
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a good expected time behavior independent of the input by randomization in the algorithm.
Theorem 12 shows how in some sense the randomization can be "beat," since the proof gives a
lower bound on choosing the best function as opposed to a random one, and choosing randomly
cannot do any better than choosing the best function. It also suggests that a "minim j"
program cannot do much better than binary search, which was shown by [Yaol for a very lrge
keyspace.

The lower bound of Theorem 12 is on a very worst case measure of the performance of
universal classes of hash functions, but does show that their expected behavior is not completely
input independent. These functions still can perform well in an amortized sense (say over a
sequence of queries over all z in S), but this is just a hidden form of averaging over an input
sequence. 

,.ut

A similar bound can be proven about certain classes of hash circuits. Define a
eomputation-bounded hash circuit as a directed acyclic graph where the vertices of the graph
represent Boolean operations with fan-in bounded by a constant, and fan-out of 1. The
computation is additionally bounded by requiring that the circuit can use an input bit (i.e., a
bit from the key z) no more than a constant number of times. We envision the latter condition
by providing a constant number of copies of each input bit to the circuit, which may be "used"
or "ignored" by the circuit. The outputs of some fixed log 2 n of the vertices are chosen as the
bits of the hash address.

Theorem 13. Let ) be a class of computation-bounded hash circuits, and assume that
log 2 m log og)2 m = o(n). Then there exists a set S E M (") depending on M such that the
following is true: for any h E M there exists a set S' C S where z, Y E S' implies h(z) = h(/),
and IS'I = (1(logn/ log log n).

§8 Open Problems

We conjecture that an easy-to-compu-e hash function with small program complexity
can be constructed for any fixed set S E MH") which has no more than .s n) collisions to
any address.

Another topic that merits further investigation is adaptive tradeoffs. The tradeoff
schemes we have considered have mostly been nonadaptive. For example, in hashing with
separate chains, the information stored in the search program P is used to choose the right
chain, but subsequent probes do not adapt to information gained by earlier, failed probes
(except that they failed). The lower bound in (Yaoj analyzes some adaptive search models.
These models do not allow the search program to have knowledge in advance about the table it
searches, and so the analysis is incompatible with the approach taken here. What can be done
to unify these two approaches? One promising line of attack might be to extend the approach
of Gonnet and Larson: consider an algorithm used for Insertion, and show some entropic bound
on its behavior which indicates how much information must be passed to the search algorithm.

The analysis or adaptive search leads naturally to more dynamic considerations. What
can be said about the program complexity of search strategies that modify themselves as keys
are inserted and deleted from the table? This question is probably very difficult.

llash circuits is an additional area where open problems rema3in. hlow strong Is the
lower bound of Theorem 5.1? If our above conjecture about easy to compute number-theoret
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functions is true, the lower bound should be quite strong. However, VLSI models suggest chip
area and time, rather than gate complexity, as measures of the performance of circuits. Can
an AT 2 lower bound be shown for, say, a circuit which is a perfect hash function? What kind
of information transfer must occur in a hash circuit?
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