
 " ''- '' • • •_»'». I »'•.•>".

•BEDFORD OPERATIONS.

MTR-3449
ARPA Order Nos. 3338, 2223

An

a.
CD
C3

Design of a message Processing System
for a multilevel Secure Environment

S. R. Ames, Jr., MITRE
D. R. Oestreicher, USC/Information Sciences Institute

JUNE 1978

APPRCVfcü FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED

s
DTIC
ELECTE
N0V2 8 1983 D mm

...--.-•;. • - *'~«^« ^_*_ <*. • - •••. •_-_-.* ,*_' t^ •_• %_' •-' v" *. •v"*w '•"-•«'-'• M"i -* -'- -*»- »- * -• -***-* -» -- -•- -f--v- -. - »'-»- •-»-•--4

-T^T^T^-T-TWT7T»T- •--•-- .^ ' -/ •" " •.••-••." I •

MITRE Technical Report

MTR 3449

AR PA Order Nos. 3338,2223

Design of a Olessage Processing System
for a multilevel Secure Environment

S. R. Ames, Jr., MITRE
D. R. Oestreicher, USC/lnformation Sciences Institute

JUNE 1978

CONTRACT SPONSOR
CONTRACT NO.

PROJECT NO.
DEPT.

OARPA
F19628-78-C-0001
8010
D-75

Presented at 1978 National Computar Confarance.

THE:

MITRE
BEDFORD. MASSACHUSETTS

The view» and conclusions contained in this paper
are those of the author« and should not be inter-
preted as necessarily representing the official
policies, either expressed or implied of the Defense
Advanced Research Projects Agency or the United
States Government.

Approved for public release; distribution unlimited.

'«.-•• • « • . i . ; • - » » , i a »m - - - ' • - - - - • - - - - - • •

...... . ,. . ^ • . I

.-..

Ml

i

1

ABSTRACT

Is it possible to build a message processing system that not only
provides the user with a clean usable interface but is also multi-
level secure? To answer that question the Defense Advanced Research
Projects Agency and the Navy specified both of these as requirements
in their test of a military message processing system. We believe
that the SIGMA message service built by Information Sciences Institute
provides both.

This paper presents the security design of SIGMA, which includes:
a description of the user interface to security, a description of
how SIGMA provides that interface securely, and a description of what
a security kernel must provide in order to support SIGMA efficiently.

A t.'

• *

Accession For

~NTIS~~GRA&I
DTIC TAB
Unannounced
Justification.

Jt a
o

m

By
Distribution/

Availability Codo3_

Avail and/or
Special

iii

.».

- - - • i _. - •'---•'»-••. • 1

f^^ '*.' •'.*'.
• ii.i . I. •• m •_. _• i«_ .• „• v .• .- ,- ..•' .- .• t,- •.•.•,••-. ' •• • ,v—r.~ i -r-7*—«- • .- 1

TABLE OF CONTENTS

Section

I

II

III

IV

V

LIST OF ILLUSTRATIONS

INTRODUCTION

THE SIGMA MESSAGE PROCESSING SYSTEM

THE KERNEL APPROACH TO MULTILEVEL SECURITY

SECURITY PROBLEMS OF MESSAGE PROCESSING SYSTEMS

SECURE MESSAGE PROCESSING SYSTEM ARCHITECTURE

OVERVIEW OF THE DESIGN
MULTILEVEL TERMINAL
FORM OF COMMAND INPUT
TRUSTED PROCESS FUNCTIONS

Change Classification
Message Release
Command Completion Signals
Entry Lists

Page

vi

1

2

3

5

6

6
8
8
10

11
11
11
12

••'.'/
VI KERNEL REQUIREMENTS 13

-•/.• MULTILEVEL TERMINAL CERTIFICATION 13
1-' TERMINAL MULTIPLEXOR 13

PROCESS STRUCTURE 14
INTERPROCESS COMMUNICATION 15
FILE SYSTEM 15
SYSTEM INTEGRITY CONTROLS 15

>,"/ VII SUMMARY 16

m REFERENCES 17

r«

DISTRIBUTION LIST 19

1

V

'-:,

idi

•\ •
• • •: .' •;

i - • » i • »—»—«r-

LIST OF ILLUSTRATIONS

Figure

1 Sigma Process Structure

2 Multi Level Terminal

Page

7

9

vi

. • • . . - . - .--. •. -/•.\.- • ._ • - . • • •

- - * I - —

mimmmmmmirm•*-—*• I • I • I I'U.'.".'.' '•••.".'• ".>••."•"'.• • ••• • .•-»••»•»••»•.••••••••• ••*-"•—: -^ — - —•—» —*- -jr- 1

SECTION I

INTRODUCTION

The Department of Defense Advanced Research Projects Agency
(DARPA) and the Navy are currently conducting an experiment to
evaluate the operational use and organizational impact of a computer-
aided message handling system. An important aspect of this ex-
periment was to design a system with sufficient security controls to
enable it to process messages at multiple levels of classification.
An equally important aspect of the experiment was for the system to
exhibit a rich user interface that was judged easy to learn and use.
Herein we present the security aspects of the design for the SIGMA
Message Processing System, the system chosen for the experiment,tl)~V

n ... t,.v a, 3
In the following section, a description of the SIGMA Message

Processing System is given. Section -l£T provides background and "^^ ; *" '
discusses the kernel approach to multilevel security. -We describe
in Section -1Y several security problems encountered in the design.
Section V presents the design of the SIGMA message service. The
additional features that the kernel must provide to support SIGMA
efficiently are documented in Section VIr Finally, a summary is
provided to highlight the paper's main points.

\

S

k The SIGMA message service is one of three services developed
during this experiment. The other two are the HERMES system
built by Bolt, Beranek and Newman, Inc. [l] and DMS built by
Massachusetts Institute of Technology [2J.

•

-:.-•...-•- •'_.'...--•->... ... - •%••--. •-.•..-.•••-•.•-•. '-•.-A-, ••..•..-. .1 V.V V, -." V V V ^' * v^»

,• l.iif ,. i» ..« Jl ti « \m i.i .• . • ,. . .,• .• .-',• .• .•, .• .' •' • •>',

SECTION II

THE SIGMA MESSAGE PROCESSING SYSTEM

Information Sciences Institute of the University of Southern
\ California developed SIGMA specifically to meet the message handling
/•' needs of a military command. SIGMA is a secure interactive message

handling system providing computer-aided message handling services
| for the receipt, filing, retrieval, creation, and coordination of

military (AUTODIN) messages. We consider it secure in that it pre-
'•• sents an interface to the user constrained to abide by the DoD
f-, security policy. It is an interactive system since all user-system

communications occur via an on-line terminal with a CRT display.
Finally, it is a message handling system because it supports the

£ typical message processing functions needed by any formal organiza-
tion's operation.

£

I

SIGMA supports the full cycle for processing incoming and out-
going messages in a military operation. It provides flexible filing
capabilities for on-line storage of all messages. Easy access to
messages and files is provided by se -ective search and retrieval
functions. Incoming AUTODIN messages move through the system by
informal forwarding or by formal action assignment. Outgoing
messages are processed by a set of functions supporting message
creation, editing, coordination, release, and post-transmission
comeback copies.

SIGMA operates on a DEC PDP-10 computer with the TENEX opera-
ting system. AUTODIN messages enter through the local AUTODIN
message exchange. SIGMA distributes these messages to all pertinent
addressees on the vstem where each user can access them through his
SIGMA display termi al.

•^^^ L'. I !'••'• •••.•• •_ •. »^. • n *. _ i * -»'••: ••••i".'i m,r ' ;• '„•' ,•; ,*j -p—•-•.«.•.*.•.•-• J ••• •. •.. *7~ - • -- .•» •. •-

«

a
SECTION III

THE KERNEL APPROACH TO MULTILEVEL SECURITY

«5 The need to process multiple levels of classified data led the
(•' Air Force Electronic Systems Division to sponsor several research
ji and development efforts to build an operating system that could
£ satisfy by technical verification that DoD security requirements
•"-. had been met [3]. Many of the results of the ESD work have been
'/.• borrowed in the design of SIGMA, specifically adherence to a mathe-
•]'. matical model based on the concept of a reference monitor—an ab-

stract mechanism that controls the flow of information within a
computer system by mediating every attempt by a subject (active

•<Q system element) to access an object (information container) . (2) [4]
The hardware/software mechanism that implements the reference monitor
is called a security kernel. The kernel uses the rules of the

I» « mathematical model [5] [ö] as a specific policy for mediating access
C"; requests. This incorporation of policy into the kernel allows for

a proof that verifies that the kernel correctly applies the policy
flj , to the information it protects. [7] [8]

The mathematical model establishes an "inductive nature" of
security by demonstrating that security is preserved from one state
to another. Security is defined with two rules: the simple security
condition and the *-property [9]. The former states that a subject

jg (active entity) cannot observe the contents of an object (information
container) unless its security level is greater than or equal to
the security level of the object.(3) The latter further restricts
possible access by stipulating that a subject may only modify an
object if that object's security level is greater than or equal to

1
. -1 -1 -

the security level of the subject.

(2)
In a computer system, subjects are users and processors, and
objects include programs, data files, and peripheral devices.

(3)
Currently the security levels used in SIGMA are only the four
standard DoD classifications, i.e., Unclassified, Confidential,
Secret, and Top Secret.

"!«l"

I

I

I
The purpose of the simple security condition is to prohibit

p users from obtaining data that they are not entitled to see. The
"-. *-property is designed to prohibit a program operating on behalf of
if a user from reducing the classification of any information.

i
When a user is given a clearance, he is charged with responsi-

bility for maintaining the classification of classified information.
A computer utility cannot necessarily be given this same trust.
This is due to: the amount of information that may be compromised;
the speed with which the compromise may occur; and the difficulty
in detecting or apprehending the violating program. By enforcing
the *-property on computer programs, a program will not be able to
either accidentally or maliciously compromise information. Designers
of computer utilities constrained by the *-property must ensure that
•-property enforcement does not unnecessarily restrict the capabil-
ities of the user.

The enforcement of the *-property allows us to reduce the
volume of code that needs to be trusted to a central section of the
operating system. This central section of the operating system is
the software component of the security kernel. To provide security,
a kernel must 1) mediate every access by a subject to an object,
2) be protected from unauthorized modification, and 3) correctly
perform its functions. A kernel satisfies the first requirement by
creating an environment within which all non-kernel software is
constrained to operate and by maintaining control over it.

The requirement to protect against unauthorized modification is
satisfied by isolating the security kernel software in one or more
protection domains, for example, by a ring mechanism [lOJ. Finally,
the requirement that the kernel correctly perform its functions is
satisfied by using a formal methodology. A suitable methodology
was introduced by Bell and Burke [7]. It includes: 1) a proof that
the kernel behavior enforces the desired policy [ll]; and 2) a proof
that the kernel is correctly implemented with respect to the des-
cription of its behavior used in the first step [l2].

We designed SIGMA with security kernel technology in mind.
However, due to the absence of a kernel on the PDP-10 (the machine
we used), the current implementation was done without a kernel. We
have rigorously scrutinized the SIGMA design to ensure that the user
interface provided would remain unchanged should SIGMA be reimple-
mented on a security kernel. In addition, the security primitives
have been evaluated to ensure that their usefulness warrants their
being included in a kernel.

I

I
i
V

:

.' '. V_ -1 . - - - ----_- _ - •_ L. I • -V-'-".*»'- « ', ^ „._ ..-. , . . .

^^^^P-*l V, V • L» "!•':'»" • »•minji.n'.'n

I
--

.*.

SECTION IV

SECURITY PROBLEMS OF MESSAGE PROCESSING SYSTEMS

A kernel supporting the current mathematical model of the DoD
security policy is well suited for certain environments, such as a
programming environment in which users operate at a single security
level for long periods of time. [l3] A message processing environ-
ment presents several problems not found in previous environments,
including 1) the dynamic nature of the user's "working security
level"; 2) the desire to present to the user information at more
than a single security level; 3) the desire to accurately inform
the user of the security level of all information he is reading or
writing; and 4) the ability of users to extract text information
and place it in a message of a lower classification then ths source.

The user's "working security level" in a message system en-
vironment is considerably more dynamic than in the programming en-
vironment. Each time that a user performs an action on a.different
message, his working security level may have to change; for example,
a user reading a Secret message may generate an Unclassified reply.
While we could require the user to process messages at a single
security level at a time, the resulting user interface would be
clearly unacceptable to the user. [14]

To deal with these problems a new approach is needed that in-
cludes: a terminal that will allow users to process information at
more than one security level at a time; and trusted processes that
are able to violate the security rules in a controlled manner. The
next section describes the security architecture of the SIGMA
message processing system.

:• .

•. .- -. t .-

.j^r- . . - _-.. _ LV - » - *'^» - •> - *'-

-7—8-

a
SECTION V

SECURE MESSAGE PROCESSING SYSTEM ARCHITECTURE

The SIGMA security design has two goals: to produce a certifiably
secure service, and to present the user with an agreeable user inter-
face. In many situations these goals are at cross-purposes. Our
general approach has been to present the user with a true picture of
what is happening, maintain the user's data at the proper level (or
higher if this is not possible), and make it convenient for the user
to do the right thing. [14]

r
OVERVIEW OF THE DESIGN

When using SIGMA, a user is actually interacting with a collection
of up to five processes (see Figure 1). These are the trusted pro-
cess, an unclassified control process, and one process for each
classified level that the user/terminal is cleared to operate. Each
process (except the trusted process) can write data only at its- own
level and can read data at its level or lower.

i SIGMA attempts to be as helpful to the user as it can, organizing
the user's session and cleaning up the user's state (current context)
as necessary. The service also attempts to understand the user's
current context and conform its behavior to the situation. For this
reason the context information must be available to all user pro-
cesses; thus, it must be unclassified.

The user's state in SIGfrIA is divided into two parts. The first
part contains the current list of objects being accessed and functions
being performed by the user. This portion of the state is maintained
at the unclassified level by the unclassified control process. The
second part contains the current list of message entries (from the
open message file) in which the user has expressed an interest. The
entry list information is potentially classified at the level of the
file and is thus maintained at this classification level by the
appropriate classified process.

This dichotomy of state is reflected directly into the security
design. Commands are divided into those which access the unclassified
state (unclassified commands) and those which access the entry list
(classified commands). The latter group includes both commands that
use the entry list for input and those that allow the user to enter
classified information as part of the command.

- \ . . - . - - • -

 • • 1 c . . - . - •" '

CO
H CO

g u
U o
^ (X co ßj

a (/)
s CO

w co o
Ö o
I« a
H s

M

CO

(8
0)
<D
U
o

CO

I

L'^/,.*.:,-»..' <h.

•.. .

• -•-•-•-• • • • • - • - • i - - .—«-

•
•

^v» '«-•.".•

MULTILEVEL TERMINAL

We designed the terminal, used by SIGMA, to enable the user to
interact with data at more than one security level at a time. The
screen of this "multilevel terminal" is divided into "windows" (see
Figure 2), each of which is logically an independent terminal. Each
window scrolls independently and may have a different security level.
Windows are further divided into domains that have various attributes
(e.g., enterable, editable, underlined, etc.). The domain's se-
curity level is the same as that of the window.

To keep the user appraised of the level of information he is
viewing and entering, we added two sets of lights to the terminal.
Each set consists of four lights (one for each security level); one
and only one light of each set is on at any time. The first set is
mounted on the keyboard; it specifies the classification of the
window in which the cursor currently resides. If the user wishes
to know the level of any particular piece of information on the
screen, he may move his cursor to the information. The second set
of lights is mounted next to the screen and specifies the maximum
level of information displayed on the screen.

FORM OF COMMAND INPUT

We designed command input so that it could be done through a
separate window that is normally at the unclassified level in order
to keep the majority of the user's state information at unclassified.
Certain commands, such as the "find text string" command, have
potentially classified arguments. For these commands the security
level of the command window is raised to the level of the object
that the command is affecting before the user enters the parameters.

Strict enforcement of the security model eliminates any
possibility of a security compromise: a write-down path through the
system that could be used to release information of a higher security
level to a lower security level. [l5; However, even with the en-
forcement of the model, there are several situations in a message
system where the user, by following instructions given by the system,
can inadvertently compromise small amounts of information.

Consider the following example: A user asks for a list of all
his messages with a subject having word "x" in them. To perform
this operation, the user must be at the security level of the file
that he is looking at—greater than or equal to the security level
of all the messages within that file. The enforcement of the *-
property forces the result of this examination to be at the level

8

• • ' -. -"••... . . ' üii

"•-••'"• T»¥»y»T"M.' . i '..•!•'•• •'• .'"-'.*,'•'.'' L.'<"'.' '.'•'•*'*,''..' "• n -.- -. -. .-. •

tl

1

<s

-* -r - . • - - fc 1|

— . i . L ,i m i, i.| • • ... •» • i. • ; »m . n. •'••••-.»•••. •» • i. •> '.- •——•;—--. •.-.-.-.-••_.•.- .--._.-.- ^

at which the examination was performed—the security level of the
file. Should the user then decide to perform any modification to
a message returned by this examination that has a security level
lower than the file security level, the *-property would require
him to: issue commands at the security level of the message that he
desired to modify, and tell the system the unique identification
of the message told to him by the classified process. (The unique
identification is required here because the system is unable to
pass the desired identifier "down" due to the enforcement of the
•-property.) However, this transmission through the user of the
message-id from the higher process to the lower process is, itself,
a violation of the *-property. Although it is conceivable that a
maliciously written program could use this *-property violation to
compromise information, we assume that the user serves as an effec-
tive filter in this write-down path (both in "bandwidth" and in
checking for reasonableness), thereby precluding any reasonable
software means of making use of this path.

Because of the hardships that strict enforcement of the *-
property imposes on the user and because of the existence of *-
property violations, a case can be made to ease the user interface
in situations where this type of violation exists. The improvement
takes the form of allowing SIGMA, in violation of the *-property
rule of the security model, but with user concurrence, to write-
down the unique identifier of the message that the user wants to
modify. We limit the bandwidth of this type of *-property violation,
so that it is no larger than the path that otherwise occurs through
actions of the user, by allowing only a specific amount of fixed-
format information to be transmitted to a lower security level and
then only if the user has depressed an appropriate function key that
is linked directly to the security kernel. Allowing the system to
transmit this information greatly simplifies the user interface.

TRUSTED PROCESS FUNCTIONS

Certain functions need special capabilities to operate (such
as the passing of message identifiers) but are relatively message-
system dependent and thus are not included in the security kernel.
We group these functions together in a "trusted process" that has
the ability to transfer information in a controlled fashion in
violation of the *-property.

The trusted process in SIGMA performs four functions: change
classification; message release; command completion signals; and
entry list transmission.

10

•_ »..**» »*«- ^- ^*J »•••'• •'• • . •.'. . . > ^_J . .__.—.

^»

Change Classification

SIGMA allows users to change the classification of text that
they are allowed to access. When this happens, the trusted process
clears the screen and presents the text in a simple fashion (19
lines at a time) for confirmation. When the user has confirmed the
entire object, the trusted process logs this action and passes the
text to a process at the new security level for refiling.

Message Release

In the military, formal messages are released with the
commander's signature, or the signature of his designee. Therefore,
we consider the act of releasing a message a security event. To con-
trol message release, we require that the trusted process insure that
the user requesting the release is authorized to release and that
this user is making the request from an authorized terminal.

An additional security consideration with message release is
that some AUTODIN terminals (ours in particular) treat the message
header as unclassified. In SIGMA this header is created in the
same window as the message text. Therefore, releasing a message
implicitly lowers the classification of the header information.
During message release the trusted process requires the user to
confirm that all of the header information is actually unclassified.
The trusted process logs this action before releasing the message.

Command Completion Signals

We have based the SIGMA design on the concept of an unclassified
process that receives the majority of the commands, determines the
proper security level needed to execute these commands, and then
activates a process at that security level to perform, the execution.
The disadvantage of this approach is that, should an error occur
between the unclassified control process and the classified opera-
tional process, the classified process cannot ask for clarification.
Thus error recovery is difficult. This problem is referred to as
the open loop problem.

Presently we believe that the best solution to the open loop
problem is to allow the trusted process to close the loop when an
error of this type is encountered, provided the user has depressed
a function key since the last such request. Closing the loop im-
proves recovery but has an impact on security, since a *-property
violation exists when the loop is closed. As in command input,
requiring a user action between successive writedowns restricts the
bandwidth of this operation.

11

.•:•>. •:": >: -..•'•. •. >;•::- .•:. .-..•. .-, ./,:• •-. .••_: _ ; . . ::-;V..'V:V.-.-;VA-A-:

H^p»^>^»TT' ••' •!•.!••. -• . • J • -'Hi • i • • •—-.-•-- -• ---- '--•-• »TI«V --"1

Entry Lists

When a user process needs to write down a list of message
identifiers, "entry lists", it passes this list to the trusted
process for user confirmation directly. The trusted process checks
the format and bounds of the entry numbers, and asks the user to
directly confirm the number of entries being processed at each
security level. Thus, the user has the ability to directly monitor
(and control) the bandwidth of the writedown channel. This
separate step is reasonable even from the user interface side, for
if the number is too high or too low. the user can see that he
specified his request incorrectly. "3

(4)
If the entry list has only one element, then the appropriate
function key is sufficient and the further "confirm 1 entry"
step is omitted. This operation allows the user to point to a
single entry or mention it by number or context (CURRENT, NEXT)
for a display, reply, file, etc., without being required to do
more than use the proper function key to enter or confirm the
command•

12

-

• _..•__..' ... Vi. I'.'I.'; •'• .'• *'-> •*' -• '«.« «' «• •—•- »- "'—•—•—•—*—*J*"

f1'.-':*1" '.''•' *.*- **'- "- *"- **• "- —• "- ' •"• *.'•' * • "* * • **>' • * •* I *> * ' •'•fi'i'iMi ^i'i-i •!» -» ••»•»-.•» » .» •.- .• .- .»

U*

<!

SECTION VI

KERNEL REQUIREMENTS

In order to be able to support the SIGMA architecture, the
security kernel must provide certain additional features not found
in kernels designed to date, including a terminal multiplexor for
the multilevel terminal, a variety of object sizes, the ability to
support large numbers of processes, an efficient inter-process com-
munication facility, and a policy that can support "trusted" pro-
cesses.

MULTILEVEL TERMINAL CERTIFICATION

Since the terminal supports the simultaneous display and editing
of data at different classifications, we must demonstrate that the
terminal 1) maintains the proper levels for all information it con-
tains (possibly 20,000 characters) and 2) marks all information re-
turned to the computer with the proper security level. It is the
terminal's responsibility to assure that no information entered in
a window by either the user (doing local editing) or the application
computer is transferred to any other window. While at first pass
the certification of the terminal may seem trivial, one must consider
that the terminal code is currently produced for a single INTEL 8080
and occupies 32K bytes of PROM. Eventually multiple 8080's, appli-
cation of Denning's flow control [lö], or the introduction of a
kernel in the terminal will be necessary to guarantee separation of
the windows.

TERMINAL MULTIPLEXOR

A significant problem is the method for attaching the multilevel
terminal to a secure system. We have identified two alternatives:
each window could have a unique connection to the system or the
kernel could multiplex all information to a terminal over the same
communication line. We have chosen the multiplexing approach in
order to minimize the number of terminal lines.

13

- •
•
• «

'•'• '• •' •'.•'.' *•'-.•' - - ' • ' -. • ' •••.-••.•. •;„• ,-;

^—T.'.-. ". ". -.—-. • t • ".

Communication between the system and the terminal is in the
form of NOTICES and DISPATCHES.(*) The terminal multiplexor must
assure that each NOTICE received from the terminal is directed to
a user process whose security level is the same as the security
level of the window. The multiplexor must also forward Function
Key Notices to the trusted process to provide for the capability
for a controlled write-down of message identifiers.

The terminal multiplexor must insure the correctness of all
DISPATCHES to the terminal. With the exception of "window alloca-
tion" DISPATCHES, the terminal multiplexor need only check the
window identifier and length to assure that the user process is
communicating with a window to which it has access. All requests
for terminal window allocations and deallocations must be done by
the unclassified user control process. This process provides the
terminal multiplexor with the security level for all newly created
windows. The unclassified process can, at a later time, request a
change in a window classification by notifying the multiplexor. If
this new security level is lower than the current window security
level, the multiplexor must erase the information currently in the
window.

PROCESS STRUCTURE

The design of the kernel's process structure will have signifi-
cant implications for the performance of SIGMA. On traditional
timesharing systems, such as TENEX, process creation is expensive,
and process swapping is lengthy. In order for SIGMA to operate
efficiently the kernel must be able to 1) support large number of
processes; 2) allow for fast process creation and deletion; and
3) swap processes with little overhead. Large numbers of processes
are required because SIGMA requires several active processes per
user. If SIGMA is extended to handle compartmented intelligence,
fast process creation and deletion would be required. Finally,
because large numbers of processes are doing small amounts of pro-
cessing, process swapping occurs often. To expect a kernel to pro-
vide this type of support may require significant hardware support.

(^NOTICES and DISPATCHES are packets of information to and from
the host computer respectively.

14

'-•'•-••

••^•'^ '••-<."<•-.'-•..'•.-- •»!••- •-•'•<-•"-'-• - - - mttLk - - -------••• .-»•'• it •*^'"» nr>i>M

• V I"

INTERPROCESS COMMUNICATION

Equally Important to the efficient operation of SIGMA, are the
speed and types of interprocess communication provided for by the
kernel. SIGMA will require the kernel to support both preemptive
(interrupt-like) and non-preemptive (message-like) types of inter-
process communication. In addition, the latter mechanisms must
support small messages for passing message-ids and large messages
for transmitting entire command strings.

FILE SYSTEM

The file system is often one of the most complex portions of
the kernel, a quality which can cause unnecessary overhead. For
example, SIGMA does not require the kernel to provide a file
organization such as a directory hierarchy. A "flat file" system
is entirely adequate and can be used more efficiently. The only
special requirements for SIGMA are that the kernel should support
both small files (512 bytes) and large files (10K bytes).

SYSTEM INTEGRITY CONTROLS

To support SIGMA the security kernel must provide a mechanism
that implements the notion of least privilege. This mechanism has
been given the name "System Integrity" [l7j. SIGMA uses three
separate privileges: a secure write-down privilege used by the
trusted process to reclassify text; a release privilege used to re-
strict the releasing of messages to a select group; and a system
security officer privilege used to initiate and set the security
level of new users.

The primary rule that the system integrity control must obey
is: to modify an object or execute a kernel call a subject's system
integrity level must be greater than or equal to the system integrity
level of the object or kernel call. [l8j There are no rules on
reading or executing programs (programs in execution use the system
integrity level of the process that they are executing under). We
must therefore demonstrate that each subsystem with a system integ-
rity level greater than system low (non-kernel, no privileges) does
not execute any programs other than ones that we know execute
properly.

15

-**»-"•-' •-*•••«"- --.*-•• '-'• -'• -'• ."•••.'*. I »*• <h >—j>_^.:,,- V *-T 'j> '..- rf '.' m V ttmrn'. m.*~M.—* •'•«»«•».»

F,.,ii,nt.i,ii.|ii *m •« •' Tu • » »T* — ,"•• ".* '-*—• •*"•* • •-'"-" " .-"-.-'" • ••'--••"

I

SECTION VII

SUMMARY

;.;' The design of SIGMA demonstrates that it is possible to build
-; a secure message processing system based on the kernel approach to

multilevel security. We have shown the refinements to the approach
j> that are needed to achieve a usable interface and have documented
M the features that a security kernel must provide to support a secure
• message processing system efficiently. The techniques used in

designing SIGMA should be directly applicable to other transaction-
oriented or data base management systems.

i

16

i . n • :-m ' m '['1 1 ' ^ ^ '^. • - •, •• •». • » ' • '. • • • •••••- •—• -.-.-. • '

LIST OF REFERENCES

1. Bolt, Beranek and Newman Inc., "HERMES Message System
Information Package: MME-HERMES an Introduction," draft
in preparation, Bolt, Beranek and Newman Inc.,
February 1977.

2. A. Vezza, M. S. Broos, "An Electronic Message System:
Where Does It Fit?" Trends and Applications 1976:
Computer Networks, Gaithersburg, Maryland, November 1976,
pp. 89, 97.

3. "ESD 1974 Computer Security Developments Summary,"
MCI-75-1, Electronic Systems Division (AFSC),
L. G. Hanscom Field, Bedford, Massachusetts, December 1974.

4. J. P. Anderson, "Computer Security Technology Planning
Study," ESD-TR-73-51, Volume I and II, James P. Anderson
& Co., Fort Washington, Pennsylvania, October 1972.

5. D. E. Bell and L. J. LaPadula, "Secure Computer Systems:
Mathematical Foundations and Model," M74-244, The MITRE
Corporation, Bedford, Massachusetts, October 1974.

6. K. G. Walter, W. F. Ogden, W. C. Rounds, F. T. Bradshaw,
S. R. Ames, Jr., and D. G. Shumway, "Primitive Models for
Computer Security," ESD-TR-74-117, Case Western Reserve
University, Cleveland, Ohio, January 1974.

7. D. E. Bell and E. L. Burke, "A Software Validation
Technique for Certification, Part 1: The Methodology,"
ESD-TR-75-54, Volume I, The MITRE Corporation, Bedford,
Massachusetts, April 1975 (AD 009849).

8. S. R. Ames, Jr., J. K. Millen, "Interface Verification
for a Security Kernel," System Reliability and Integrity.
Volume 2: Invited Papers, Infotech International, 1978,
pp. 1-21.

9. D. E. Bell and L. J. LaPadula, "Secure Computer System,"
ESD-TR-73-278, Volume I-III, The MITRE Corporation,
Bedford, Massachusetts, November 1973-June 1974.

17

,. • . . • • • .yv.« .• .-. ... - '

' • '
'•,•' •,•"! • • -m

K

r

10. R. M. Graham, "Protection in an Information Processing
Utility," Communications of the ACM, Volume 11,
Number 5, May 1968, pp. 365-369.

11. J. K. Millen, "Security Kernel Validation in Practice,"
Communications of the ACM, Volume 19, Number 5,
May 1976, pp. 243-250.

12. L. Robinson, P. G. Neumann, K. N. Levitt, and A. R.
Saxena, "On Attaining Reliable Software for a Secure
Operating System," 1975 International Conference on
Reliable Software, Lös Angeles, California, April 1975,
pp. 267-284.

13. S. R. Ames, "A Security Compliance Study of the Air Force
Data Services Center Multics System," MTR-3065, The
MITRE Corporation, June 1975.

14. S. R. Ames, Jr., "User Interface Multilevel Security
Issues in a Transaction-Oriented Data Base Management
System," MTP-178, The MITRE Corporation, Bedford,
Massachusetts, December 1976.

15. S. B. Lipner, "Comment on the Confinement Problem,"
ACM Operating Systems Review, Volume 9, Number 5,
May 1975, pp. 192-196.

16. D. E. Denning and P. J. Denning, "Certification of
Programs for Secure Information Flow," Communications
of the ACM, Volume 20, Number 7, July 1977, pp. 504-513.

17. S. R. Ames and W. W. Plummer, "TENEX Security Enhancements,"
MTR-3217, The MITRE Corporation, Bedford, Massachusetts
and Bolt, Beranek and Newman, Inc., Cambridge,
Massachusetts, April 1976.

18. K. J. Biba, "Integrity Considerations for Secure Computer
Systems," ESD-TR-76-372, The MITRE Corporation, Bedford,
Massachusetts, December 1976.

18

•

...... ._• .
 «>» . •._.-•.-.—» »•»••<

« •T"^?*r^" .• .-. ." . • i." • .- r -- - . ".- 7- —

f

DISTRIBUTION LIST

»

&

I

INTERNAL

D-70

J. J. Croke
W. S. Melahn
J. W. Shay

D-73

S. B. Lipner

D-74

R. S. Gardella

D-75

S. R. Ames (10)
E. H. Bensley
E. L. Burke (5)
J. A. Clapp
M. Ferdman
F. C. Furtek
A. G. Gann
N. C. Goodwin
S. W. Hosmer
J. L. Mack
J. K. Mlllen
D. G. Miller
G. H. Nlbaldi
M. A. Padlipsky
CM. Sheehan
S. L. Smith
S. A. Swernofsky
J. D. Tangney
P. S. Tasker (5)
B. N. Wagner
P. T. Withington
J. P. L. Woodward

W-31

S. Bergman
S. I. Schaen
D. C. Wood

W-37

T. J. Leso

EXTERNAL

Defense Advanced Research Projects
Agency

Information Processing Techniques
Office

1400 Wilson Blvd.
Arlington, Virginia 22209

D. Adams (10)
W. Carlson (10)

Naval Research Laboratory
45 15 Overlook Ave., S.W.
Washington D.C.

S. Wilson (2)

r •

19

».*. .,-... .«•,» j

. - *-.

-"-A-"-a -•..-•»-~-4-.- - .,.-*.-•-•..*._--•--.-- ^• .-.^ _. _ i.a.J

