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I. INTRODUCTION

A line by line calculation is the most accurate and general means for
computing the atmospheric transmission of radiant energy. With the aid of a
modern computer and the recent convenlent availability of tables of line para-

1

meters stored on magnetic tape,” such calculations can now be routinely

carried out.

For many applications, the quantity of interest is the mean value of the

transmittance over a band interval Av

T==2 [, TV dv Qb

The total mumerical effort required to compute ] using the 1line by line method
is quite large and any extensive calculation of mean transmittance values can

be quite time consuming, even on a fast computer.

Band model theory, on the other hand, provides a simple parameterized
formula for computing the mean band transmittance, which is much more effi-
cient than the 1line by 1line calculations. However, since it 1is based on
certain simplifying assumptions it must be tested for accuracy. Previous

studie52

comparing the statistical band model with 1ine by 1line calculations
have shown a reasonable agreement between the two methods. This comparison,
however, was carried out for small to moderate optical path distances where
the transmittances were in the range T = > O.1. Comparisons have not been
made in the very long path length regime where T < 0.1. 1In this report, we
present the results of such a comparison. The details are given 1in

Section II.

We will conclude from this comparison that the band model does not, in

general, give very good results in the regime where T = < 0O.1. 1In fact, as

lL. S. Rothmon, Appl. Opt. 20, 791 (1981).
25, Goldman and T. Kyle, Appl. Opt. 7, 1167 (1968).
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will be seen, the transmittance can be in error by several orders of magnitude
ﬂ_ and 1s shown to have the wrong asymptotic behavior as the optical path length
: approaches infinity.
:::: In Section III, we derive new parameterized formulas for computing the
E mean band transmittance T(x). These formulas are accurate for all values of
optical distance x, including the limit as x approaches infinity. The results
:‘_' of comparisons with both the precise line by line calculations and statistical
- band model calculations will also be presented.
. Section IV is a summary and discussion.
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I1. COMPARISON OF STATISTICAL BAND MODEL AND LINE BY LINE TRANSMITTANCE

The line parameter data for these calculations were obtained from the Air
Force Geophysics Laboratory (AFGL) line atlas.l This compilation provides
data for seven gas species: Hy0, CO,, O3, N0, CH4, CO, and O;. The data
given for each line include the line position Ai (cm-l), the line strength S?
(em™!/molecule - cm™? at 296°K), the line half-width Y? (cm~! for air broaden-
ing at 296°K and 1 atm pressure), and the energy of the lower level of the
transition Ey (cm-l). The subscript i labels the line, while the superscript
0 on the strength Sg and the half-width Yg indicate that these quantities are
taken directly from the atlas and are, therefore, appropriate for a pressure
of 1 atm and temperature of 296°K.

The line strength Sy and the width parameter Y4 at any other temperature
and pressure are computed from Sg and Yg using the same formulas employed by
C. M. Randall in his general line by line computer program, INHOM. A discus-

sion of these formulas is given in Ref. 3.

All calculations have been carried out assuming a Lorentz pressure broad-

ened line shape function. The spectral absorption coefficient is given by

1
k(v) = = i oo )2 Em 7 (2)

The quantity njy is the density of the gas for which S; and Yy characterize a
line. The units of ny used in this study are molecules/(cm2 - km), i.e., the

number of molecules in a column 1 km long and 1 cm?

in cross sectional area.
By including the density factor ny in the definition, k(v) has the convenient

dimension 1/km. The transmittance at wave number v is given by

T(v, x) = exp [-k(v) x] (3)

3% Young, Band Model Parameters for the 2.7-ym Bands of H,0 and CO, in the

100 to 3000°K Temperature Range, TR-0076(6970)-4, The Aerospace Corp.
(31 July 1975).
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where x is the distance measured in kilometers. The mean band transmittance

is then computed by averaging T(vy,x) over the band interval Ay I[see Eq. (1)]

T(x) = Z% {v exp [-k(y) xjdv (4)

In the statistical band model with exponential-tailed inverse line

strength distribution,“ the mean band transmittance is given by3’4
& D3 k 5e
T(x) = exp [-?1(1+ == )] €59
e Y

where E, ae’ and ; are the three band model parameters. The band model para-
meters can be expressed as certain averages of the line parameters over the

spectral interval Avy. The parameter k is defined by the expression

- 1 L
k=— f n S (6)
dv jo, 14

where L is the number of lines in the interval Av. The parameter ; is the

average line width

1 L
Y=t I v (7)
and 6e is a measure of the effective average distance between lines in vy

1

2

s Yy

A. H,0 LINE PARAMETERS

The model system used for the calculations in this report has the follow-
ing specifications: pressure, 1013 mbar; temperature, 300°K; concentration of
Hy0, 0.026; concentration of 0,, 0.21. The wave number range in which the

calculations are carried out is 2800 to 3400 cm-l. (Only the H,0 molecules

4. Malkmus, J. Opt. Soc. Am. 57, 323 (1967).
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have absorption lines in this range; the 02 concentration is specified because
of its influence on the width parameters of the Hy0 lines.) The density n of
Hy0 molecules in this model system is

n = 6.36 x 1022 molecules (9) '

an- km ‘

The spectral band interval 1is chosen to be Av = 20 em~ !, A band will be
identified by its mean wave number. Thus, the 3040 cm-l band is the band that

extends from 3030 to 3050 cm !. i

Figure 1 shows our 1initial comparison of line by 1line and band model
transmittances in the interval from 2800 to 3400 cm L, The optical path |
length in this calculation is 30 km. A convenient measure of the band model |

'I error is the logarithm of the ratio of the band model transmittance TB to the J
*

mean line by line transmittance TL

E = LoglO(TB/TL) (10)

This quantity 1is plotted in Fig., 1lb. For transmittances generally in the
range B3 0.1, we see that the band model does quite well. However, when
T < 0.1 the band model can be in error by several orders of magnitude. In

| particular, the errors in the bands centered at 3040 and 3060 cm-1

are large
and opposite 1n direction, These two are taken as representative of 1low
transmittance bands and will be examined in detail in the remainder of this
report.

1

| The band model and line by line transmittances in the 3040 and 3060 cm
bands are plotted as a function of distance in Figs. 2a and 3a with the
corresponding error curves plotted in Figs. 2b and 3b. In the 3040 ! band,
the error is less than unity, decreases to a minimum, and then begins to

! increase, whereas for the 3060 an~! band the error increases monotonically.

*In this report the unit of error is called an “"order of magnitude.” Thus,
' E = 2 is8 a two order-of-magnitude error. :
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tances for 3040 cm

Band. Error = Loglo(T /T ).
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. i These two examples are representative of the two basic shapes for error

a! curves. The reasons for these two basic shapes will be discussed in more

5 detail in Section III-C.

é:: B. H,0 LINE PARAMETER DISTRIBUTIONS

E The first question that must be answered concerns the line parameter

E; distributions. Are the line parameters actually distributed in reasonable

- agreement with the assumptions of statistical band theory? In order to answer
this, we have plotted the distributions.

Figure 4 1s a schematic plot of the lines in the two bands. The height

of each line 1is the dimensionless strength parameter o, = Si/§ where S 1is

i
the average strength for the band. 1In statistical band theory the lines are
assumed to be randomly positioned in the band, and the line strengths are
assumed to be distributed with a probability density given by the exponential-

tailed inverse function.a This distribution function is
1 -S RS
P(s) " Sin R [eXP (.S_) - exp (-S—)] (11)
m m
Where R and Sm are parameters, it 18 convenient to work with the dimensionless
strength parameter ¢ = S/S (where S is the average of the distribution). The
probability distribution for o is easily shown to be

G(c) = S P(S o) (12)
which evaluates to
6(0) = ==y lexp (-A0) - exp (-RA0)) 13)
where
A=3/s =R (14)

13

== : * . - b - - . \ = 3
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This function 1s represented by the dashed curves in Fig. 5. 1In both
graphs, R = 106. The actual density distributions of S/S in the bands are
represented by the histograms in Fig. 5. The function and histograms, in each
case, appear to be in reasonable agreement, vindicating the use of the

exponential-tailed inverse distribution.

The line positions are assumed to be random. If this 1s the case, then

the spacing between lines has a probability density given by

p(6) =L exp (-8/3) (15)
5

where § is the average value for the spacing given by
§ = — (16)

The comparisons of this theoretical distribution with the actual histograms

are shown in Fig. 6. Again the agreement seems reasonable.

In the band model, the 1line width is assumed to be a constant equal to
the average value §. The actual distributions of widths in the 3040 and 3060
en~! bands are plotted as histograms in Fig., 7. The dashed curve 1s a
Gaussian distribution function with the same average and variance as the
actual width distribution. It 1s obvious that the widths are not distributed

normally.

Finally, the absorption coefficient k(v), defined by Eq. (2), is plotted

for our two representative bands in Fig. 8.

c. COMPUTER GENERATED LINE PARAMETERS

Additional tests of the band model were done using a set of computer

generated line parameters instead of the experimental H)0 parameters obtained

from the line atlas.

The computer generated line parameters are random samples drawn from
infinite parent populations which are defined by their probability distribu-
tion functions. The line strength population is defined by the exponential-

15
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tailed inverse distribution, the line wave number population is defined to

have a uniform distribution, and the line widths are all set equal to a con-

stant.

By using these computer generated line parameters we refine our analysis

of the band model error since we are now assured, as much as possible, that
the line parameter distributions are in agreement with the theoretical assump-
tions. In addition, we can study the effect of random fluctuations on the
error by generating many sets of line parameters and calculating the error
curve for each.

A spectrum of 250 lines in the wave number range 0 to 50 cu ! were

generated. The mean transmittances were computed for the 20 cu ! wide band
extending from 15 to 35 cm-l. The wave numbers for the lines were computed

using the simple formula

\)i = 50 . Xi (17)

where the X; are random numbers distributed uniformly in the interval 0 to
1. This array of wave numbers was then rearranged so that they were in mono-

tonically increasing order with respect to the index i.

The line width was set equal to a constant value,

61 = 0,075 (18)

This constant is approximately the same as the average line width in the two

H,0 bands considered previously (see Fig. 7).

The procedure for generating line strengths is more involved. The
relation between the random variable X which is uniformly distributed in the
range O to 1, and the relative line strength distribution given by Eq. (13) is

(o]
X=[ Gg") dg' = H(o) (19)
0
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Then inverting this equation and using oi = Si/§ we obtain

2 el
S5, =S H (xi) (20)
where the X, are random numbers, which are independent of the random numbers
used to generate the wave numbers, and H-l is the inverse function of H. The
functions H and H! must be computed numerically. The line strengths computed
this way will have an exponential-tailed inverse distribution with an average

:
|

value S. (Although S is the average value for the parent population, the
average line strength of the finite random sample that we will compute will

deviate from this value.)

A different set of line parameters will be generated each time this |
process 1is carried out, since different random numbers are used in each run.
Repeating the calculation many times will generate an ensemble of line para-
meter sets. (Each set 1s a random sample drawn from the same parent popula-
tion,) Line by line and band model calculations were carried out using these
computer generated line parameters. The results of a typical calculation are
shown in Figs. 9 through 13. These calculations were then repeated 20 times,
using different random sample line parameters in each calculation. The 20

error curves are all plotted on the same graph in Fig. l4,

The error seems to be composed of two parts, a random fluctuating

component and systematic component. The random component dominates at inter-
mediate distances and shows no bias, i.e., it is just as likely positive or

negative. The systematic component dominates at large distances and increases

without 1limit as the distance increases. This just means that, in this limit,
the band model always predicts larger transmittances than the line by line
calculation. Such behavior is easily understood by examining the asymptotic
behavior of the band model and line by line transmittances. The asymptotic

form for the band transmittance, obtained from Eq. (5), is

Tx) + expl-2 (L& 0172 @)
e
21
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. The line by line band transmittance is given by Eq. (4). It is obvious
h!l that when x is very large only the values of k(y) in the vicinity of the
gj minimum value kmin will contribute to the integral. The integral can be
EE: evaluated by the steepest descent method to obtain the asymptotic formula

. T » (-2“—)1/2exp(-k x) (22)

k"x min

where k" 1is the second derivative

of k(v) evaluated at the minimum. The
asymptotic form of the error E is then derived from Eq. (10),

E » 0.434 [k_.  x] (23)

The essentially linear increase at large distances is evident in all the error
curves plotted in Fig. 14.

The random component of the error will be discussed in Section III-C.
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III. NEW TRANSMITTANCE APPROXIMATIONS

The basic result of statistical band model theory is the formula, Eq.
(5), for computing the mean band transmittance. This formula has three
adjustable band model parameters, which are determined either by fitting to
experimental data or by calculating directly from line parameter data using
Eqs. (6) through (8). The failure of this method for moderate to long optical
path distances has been demonstrated in the previous section. In this section
we derive alternative parameterized formulas for computing T(x) which are

accurate for all values of the optical path length,
Rewrite the integral in Eq. (4) as a simple numerical quadrature

N
T(x) -l pX exp[—k(vi)x] Sv (24)

Av {=1
where N is the number of quadrature points, 6v is the spacing between points,
and Av is the bandwidth. Since Av = Név, this can also be written

T(x) '-:7 g exp[—k(vi) x] (25)
i=1

N must be large enough to ensure adequate accuracy. (For the calculations in
the previous section we used N=1000.) The numerical ordering of the terms in
the sum does not matter.* Thus the array k(vi) of discrete k values can be
rearranged in monotonically increasing order. The points were originally
spaced v = AV/N units apart. The rearranged points are spaced & = 1/N units
apart in the unit interval 0 { p { 1. It is useful to regard these points as

defining a monotonically increasing continuous function of p 1in this

<
L3

L g

interval. (One could define this function, for example, by connecting the

I
Ll

" l_."‘ﬂ‘ ¢ ok

+
The basic idea of reordering k values is quite old. Application of the
method and references to its previous use are given in Ref. 5,
3a. Arking and K. Grossman, J. Atmos. Sci. 29, 937 (1972).
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points with straight line segments.) We call this function k(p) the "mono-
tonic absorption function.” The formula for the transmittance can be
expressed in terms of k(p)

1
T(x) = f exp[-k(p) x] dp (26)
0
or, in discrete form
— 1 N
T(x) =5 I exp(-k(pi)x] 27)
i=1

The function k(p) is shown for the 3040 and 3060 en! bands of H,0 in
Fig. 15. These should be compared to Fig. 8 where the absorption coefficients
are shown plotted as k(v) in their natural order. It is obvious that the
k(v) functions cannot be approximated by any simple analytic function. The
monotonic functions k(p) however may be amenable to simple analytic approxima-
tions. Both of the graphs of k(p), shown in semi-log plots in Fig. 15, appear
to be roughly linear. Therefore the first approximation we will try is just a

simple exponential function
k(p) = ko exp(bp) (28)

A. TWO-PARAMETER APPROXIMATION

In the previous section it was shown that the long range behavior
of T(x) is dominated by Kpyne Since we want the long range behavior to be
correct, we define ky = k, = k(0). At the other extreme, the very short
range behavior of T(x) is determined by the average value of k. This {s
easily proven. For very small values of x, the exponential in Eq. (26) can be

replaced by the first two terms of its power series expansion, thus

T(x) = 1 =<k x 29)
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where

1
<k> = [ k(p) dp (30)
0

is the average value of k.

The parameter b in Eq. (28) is chosen so that the average value of the

exponential approximation is equal to <k>. Thus, we obtain

1
<k> = ko [ exp(bp) dp (31)
0
or
b
L.l (32)
0

which can be solved numerically for b. Using these values for the parameters

ko and b, the exponential approximation to k(p) 1is plotted as the dashed
straight lines in Fig. 15. The approximate transmittance is then computed by
substituting the function k(p) given by Eq. (28) into Eq. (26) and integrating

the resulting expression. The integral can be evaluated analytically.

To accomplish this, the variable of integration in Eq. (26) is changed
from p to k

%;5 T(x) = ft; explkx] f(k) dk (33)
;31 where the function f£(k) is
£ = 90K (34)
and
o k, = k, exp(b) (35)

Mwhata el

4

{The meaning of the function f(k) will be discussed in more detail later.]}

At R
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Equation (28) is easily inverted to obtain 1

1
p(k) ~5 ln(k/ko) (36)
and therefore, using Eq. (34)
£(k) = (37)
bk

Substituting this expression into Eq. (33) gives

— 1
T(x) ;’[E1 (ko Xx) - E1 (k1 x) ) (38)
where E;(x) is the exponential-integral function defined by6
c e-t
EI(X) = Ix St dt (39)

Very efficient methods are available for the numerical evaluation of the

exponential integral function.6

The function, Eq. (38), has three parameters
kg, kj, and b. However only two are independent. Using Eq. (35) we express b

in terms of kj and k; obtaining our final two-parameter expression for T(x)

- 1
T(x) ;;?EI7E37 lEl(kox) - El(klx)] (40)

This function was evaluated numerically and the approximate mean
transmittance curves are shown plotted in Figs. l6a and 17a along with the
precise line by line results for comparison. Below these graphs in Figs. l6b |
and 17b are the error curves for the two-parameter approximation and also, for
comparison, the error curves for the band model transmittances (see Figs. 2b
and 3b).

6M. Abramowitz and 1. Stegun, Handbook of Mathematical Functions,
Dover, New York (1965)
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The range of integration in Eq. (26) for the variable of integration p is
0 < p £ 1l. For large values of the distance x, the contribution from the
upper portion of this integration range is very small. In order to demon-
strate this quantitatively, we have computed the upper limit of integration
required to compute 90% of the value of T(x) for various fixed values of x.
These upper integration limits are shown as tick marks in Fig. 15 and are
labeled with the appropriate value of distance x in kilometers. We see that
even for fairly small distances, the upper portion of the integration range
does not make much contribution. This would suggest that any analytic fit to
k(p) should be weighted to have the least error in the lower part of the p
range. The present procedure for calculating the slope parameter b overempha-
sizes the large k values, From Fig. 15 we see that a better fit would be
obtained in the lower portion of the k{(p) curve if the slope parameter b were

less.

A new procedure, which gives more weight to the lower k values, was tried
for fitting the analytic function, Eq. (28), to k{(p). The parameter ko is
still defined to be the minimum, ky = k(0), However, instead of computing the
average value of k as in Eq. (30), we now compute the average value of the
natural log of k

1
< golk) > = fo gn lk(p)] dp (41)

The parameter b is determined by requiring that the average value of the

natural log of the exponential approximation, Eq. (28), is equal to < gn(k) >
1
<an(k) > = 1 g [k, exp(bp)] dp (42)
0
This is easy to solve and we obtain
b =2 [<gn(k)> = gn(k,)] (43)

The new value for the parameter k; is then computed by substituting this value

of b into Eq. (35) and the tramsmittance 1is computed using Eq. (40).
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This new analytic approximation to k(p) is shown plotted as the dashed
straight line in Fig. 18. The slope of the line has been reduced from that of
Fig. 15 and a better fit to k(p) is obtained in the lower range of the
curve. In Figs. 19 and 20, which show the transmittances and error curves for
our two example bands, the error has been reduced from that shown in Figs. 16
and 17. Thus, the second method for computing b, which gives more weight to
the lower k values, 1is slightly superior. It has a very simple graphical
interpretation in the semi-log plots shown in Fig. 18. The area under the
straight 1line approximation is equal to the area under the line by line
k(p). (Unless otherwise stated, in any future reference to the two-parameter

method, the parameters are computed by the < 2£n(k) > method.)

B. THREE-PARAMETER APPROXIMATION

Any further significant improvement in accuracy can only be accomplished
by 1increasing the flexibility of the analytic function used to approximate
k(p). We have done this by dividing the integration range into two parts, 0 <
p <1/2 and 1/2 { p £ 1, and approximating k(p) in each of these regions by an
exponential function

kg exp[blp]. 0<p<1/2
k(p) = (44)

k1/2 explbz(p-l/Z)J, 1/2 < p <1

The function is required to be continuous which implies

k1/2 =ls exp[bl/Zl (45)

The maximum value of this function is

Ly =L

The inverse function to Eq. (44) is

exp(b,/2] (46)

1
EI 2n(k/k0) ko < k < k1/2
p(k) = (47)
1
s; ln(k/kl) k1/2 < k < kl
and therefore from Eq. (34)
35
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for Alternate Definition of Parameters in the Two-Parameter
Model (see text).
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F% b K ky < k< k) /o

b £(k) = (48)
4 1

! B,k e <k

T

4

Note that f(k) is discontinuous at k = kl/2’

- Y
, A

1

The minimum value of the analytic approximation is ko. Just as in the

s
a s
]
5% o it

previous cases, this is defined to be equal to the true minimum value kmin of

k(p),

L4

ko = kmin = k(0) (49)

The parameters b, and b, are defined similarly to the previous case. If we

calculate the average values of gnlk(p)] in each half region

1/2
<an(k) > = [ anlk(p)] dp (50)
0
1
<anlk) >, = [ anlk(p)] dp (1)
1/2

and equate these to the values obtained when the analytic approximation, Eq.

(44), is substituted for k(p) in Eqs. (50) and (51),

b =4 [2 <en(k) > - an(k)] (52)

and

bz = 4[2 < gn(k) >2 - zn(kllz)l (53)

The value of ky/2 in Eq. (53) is computed using Eq. (45). With all the para-
meters defined, the analytic approximation, Eq. (44), is evaluated and plotted
in Fig. 21. This should be compared with the previous two-parameter approxi-

mation in Fig. 18.
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Fig. 21. Monotonic Absorption Function k(p). Comparison of line by
line and three-parameter model.
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The transmittance is obtained by substituting the expression for f£(k)
given by Eq. (48) into Eq. (33) and evaluating the integrals. The result is

1
x)] + . [El(k

— -1 -
T(x) = +— [E (k) x) = E, (k, ;

: X = El(k1 x) ] (54)

/2 1/2

Using Eqs. (45) and (46) we can express b; and by in terms of kg, k1/2’ and

kl‘ The final form for our three-parameter formula is

= 1
T(x) = [E. (k. x) - E (k x) |
2 ln(kl/zlko) 170 172
1
T3 2alk, /%) ) [E)Ckyyp %) = E (k) x)] (55)

Transmittances computed using this approximation are shown plotted in
Figs. 22 and 23 along with the error curves. As can be seen, this three-

parameter approximation is excellent over the entire range of distances.

In the discussion presented so far, the two-parameter and three-parameter
approximations have been presented as approximations to line by line calcula-
tions. Obviously, they can also be used as a convenient fit to experimental

transmittance data.

c. k=DISTRIBUTION FUNCTION

The function f(k) is defined by Eq. (34). 1In differential form it is
dp = f(k) dk (56)

Integrating this expression gives

k
bp = p, = P = jkz £(k) dk (57)
1
The quantity Ap is the fraction of the spectral interval for which k is in the

range k; < k € ky. If k 1s considered to be a random variable, then f(k) is
the probability density distribution of k and Ap is the probability that a
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randomly chosen k will be in the interval kl & k.S.kz' For this reason the
function £f(k) has been called by Arking and Grossman5 the k-distribution

function.

-

Given the k-distribution function f(k), the mean transmittance is given

:j: by Eq. (33). In this expression the lower and upper integration limits have
been expressed as the finite values k; and k;. This is in conformity with our
expectations for real spectra where kg > 0 and k; < @. It will be useful now
to extend these values to their ultimate limits and write

T(x) = [ explk x] £f(k) dk (58)
0

[This more general formula is true even for real spectra, since we only need
to define f£(k) = 0 outside the range ko S.k.Skl']

7

Domoto recognized that this relation defines T(x) as the Laplace

transform of f(k) and, conversely, f(k) is the inverse Laplace transform of
T(x). He applied this procedure to the statistical band model where T(x)
is given by Eq. (5). The inverse transform he obtained is

_31/2 _
1 a k k k
L i B et =) expla(2 - = = =) (59)
C @] w2 £ D)

where a = ;76e. This distribution is defined on the entire interval 0 < k
<“.

The k-distributions f(k) for the two and three parameter models are given
by Eqs. (37) and (48), respectively. The exact k-distribution can be computed
numerically from a line by line calculation. These functions are plotted in
Figs. 24 and 25. Figure 24 compares a band model, line by line and the two-
parameter model. Figure 25 1is the same, but plots f(k) for the three-
parameter model instead of the two-parameter model. Note that the three-

parameter f(k) is discontinuous.

’G. Domoto, J. Quant. Spectrosc. Radiat. Transfer 14, 935 (1974).
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The cumulative distribution function 1is obtained by integrating the

probability density function8

k
- p= J £(k') dk' = F(k) (60)

.':;-:. kmin

The inverse of this cumulative probability function is the function we have

previously defined as the "monotonic absorption function” k(p). Thus
=)
k(p) = F “(p) (61)

This procedure provides a means of computing the monotonic absorption function
k(p) for the statistical band model. Both steps of the procedure must be done
numerically: first a numerical integration of f(k) to obtain F(k) and then a
numerical interpolation to obtain F-l(p). "The results are plotted in Fig. 26.

The exact results are also plotted for comparisdn. This graph should be com-
pared with Figs. 15, 18, and 21, where k(p) for the two- and three-parameter h

models are plotted.

The functions T(x) and k(p) are transforms of each other. One can be
computed from the other. The function k(p) is calculated from T(x) by the
procedure just outlined and T(x) is calculated from k(p) by Eq. (26). The
behavior of T(x) for large values of x is determined, for the most part, by
the values of k(p) in the interval near p = 0. This is illustrated in Fig. 15
where the upper limit of integration used in Eq. (26) to calculate 90% of the
final value of T(x) is plotted for various values of x. In the limit as
X + o, T(x) is determined by the single point at p = 0, k(0) = Kgiian [see Eq.
(22)}]. Thus, in order to compute'T(x) accurately for large optical path
lengths, it is necessary to have an accurate approximation of the function

k(p) at and near p = 0.

8S. L. Meyer, Data Analysis for Scientists and Engineers, Wiley, New York

(1975) p. 20, 103.
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Fig. 26. Monotonic Absorption Function k(p). Comparison of line by

line and band model. Compare this also with Figs. 15, 18,
and 21.
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The two- and three-parameter approximations we have proposed take advan—
tage of the relatively simple form of the function k(p) by approximating
In{k(p)] by one or two straight line segments. These approximations are
constrained to be equal to kmin at p = 0, This ensures that our approximation

will have the correct long range behavior.

The statistical band model, on the other hand, is basically limited in
accuracy for large values of x because the information contained in the band
model parameters E} Y, and Ge is not sufficient to determine kmin' More
generally it is not sufficient to determine k(p) in the interval near p = O,
The best that can be done with this information is to determine a distribution
of ku(p) functions which are compatible with the parameters. (The subscript

a labels the functions in this distribution.) The functions ka(p) determine
a family of mean transmittance functions T;(x). These in turn determine a

family of error curves Ea(x), which will look very much like the family of

error curves shown in Fig. 14.%

If the only information we are given about a band is the statistical band
model parameters, then each of the error curves Ea(x) is equally probable.
The error curve that applies in any particular case can be thought of as just

a random selection from this family of curves.

Before leaving this section, it is interesting to examine the functions
k(p) plotted in Fig. 26 in more detail. For convenience, the band model func-
tion will be written kB(p) and the line by 1line function will be written as
kL(p). The general behavior of kB(p) is that it turns sharply downward near
p =0 and approaches the value kB(O) = 0, which is always less than kmin =
kL(O). This 18 a manifestation of the incorrect asymptotic form of the band

model transmittance function given by Eq. (21).

*The family of error curves shown in Fig. 15 is not exactly the same as those
described here. In Fig. 15 the parent populations were fixed, whereas in the
case decribed here the band model parameters k, Y, and be are held constant.
After the calculations for this report were complete, we discovered a simple
method to generate line parameters that have fixed band model parameters.
However, we believe that the family of error curves shown in Fig. 15 is at
least a good qualitative and also a semiquantitative picture of the behavior
that would result when the band model parameters are held fixed.
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E_ In the region 0 < p £ pp where p, ~ 0.5, the relationship between kB(p)
:_‘ and k; (p) will generally be one of two types. Either kB(p) < k;(p) as in the

lower graph of Fig. 26 or kB(p) and k;(p) will intersect at some small value
p; with kB(p) > kL(p) in the region p; < p < p, as in the upper graph of Fig.
26. For the first case, we can predict from Eq. (26) that ?B(x) > TL(x) and
thus the error ratio will be greater than 1. This behavior is illustrated in
Fig. 3b.

In the second case, the behavior is more complicated. For moderate

Py r.:rvvvv'-:r
ey e e it PR

values of x the result will be TB(x) < TL(x). However, as X increases, the
effective range of integration in Eq. (26) decreases. At some point it will
fall entirely within the interval 0 < p £ p; where kB(p) < ky(p). When this
occurs we obtain T (x) > T (x). Thus the functions ?L(x) and TB(x) eventually
cross and the error ratio varies from less than 1 to greater than 1. The
beginning of this behavior 1s 1llustrated in Fig. 2b which presumably would
follow the scenario just outlined 1f x were extended beyond 100 km. The error

curves shown in Fig. 14 1llustrate both types of behavior.

D. MONTE CARLO METHOD

The term "Monte Carlo” usually refers to a computational procedure 1in
which a 1large (or infinite) distribution of values of some quantity or
parameter is replaced by a manageably small, unbiased random sample of the
distribution. For example, a physical quantity may be the average value of
some distribution. The Monte Carlo approximation is computed by generating a
random sample of the distribution and then averaging the random sample. In
the present case, the Monte Carlo method is a practical procedure for calcu-
lating the parameters for the two- and three-parameter approximations from an

unbiased random sample of the k-distribution.

The k-distribution 1s the continuously 1infinite collection (or
population) of k values that are defined by the function k(v) in the band

interval Av without regard to their order. An unbiased random sample of this

infinite population of k values can be generated by randomly selecting M wave
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1 numbers vy (i = 1, M) from the band interval and then calculating k(vi) using
2
;a Eq. (2). The random wave numbers are computed from random numbers X; in the
interval O to 1 by the formula
V= (vU = vL) X, i=1, M (62)

.I where vy and vy, are the upper and lower boundaries of the band.

L
The least value of k in this random sample is a good approximation to
3 kmin
i parameter approximations.

and is set equal to the parameter kO for both the two- and three-

The average value of gn(k) for the M values of k in the random sample is
the Monte Carlo approximation to the quantity <gn(k)> defined by Eq. (41).
The parameter k; for the two-parameter approximation 1is then calculated by

combining Eqs. (35) and (43) to obtain

k, = %0- expl2 <gn(k)>] (63)

For the three-parameter model we must compute Monte Carlo approximations
for the quantities <g,n(k)>1 and <g,n(k)>2 defined by Egqs. (50) and (51),
respectively. The quantity k(p=1/2) is the median value of k which we
designate k;.4. This is the value of k such that half the elements of the
distribution exceed it in value and half are 1less in value. The
quantity <gn(k)>1 is the average value on gn(k) for k < kmed and <g,n(k)>2 is
the average value of gn(k) for k > kpeq® Thus in the Monte Carlo
approximation we divide the random sample of M elements into two groups, each
with M/2 elements such that any k value in the first group is less than any k
value in the second group. (In order to avoid any ambiguities in this
procedure, we always choose M to be an even integer.) The average value
of gn(k) in the first group is an approximation to <g,n(k)>l and the average
value of gn(k) in the second group approximates <zn(k)>2. The parameters k1/2
and k, for the three-parameter model are then computed by combining Eqs. (45),
(46), (52), and (53) to obtain

k

i = %a expl4<gn(k)>, ] (64)

Sl
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and

k; expf4<zn(k>>21 (65)
1/2

In Figs. 27 and 28 we show the results obtained by this method using the

R ) o b s S
~
—

three-parameter approximation and a random sample of M = 50 values of k.
These results are almost as good as the results obtained previously using 1000
points but required about 1/20 the computational effort. The Monte Carlo
procedure is thus an efficient method for carrying out (approximate) line by

line calculations.
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IV. SUMMARY AND LISCUSSION

In this report, we have investigated the reliability of the statistical
band model by comparing the model with precise line by line calculations and

we have also derived two new nonstatistical band model approximations.

The first part of the study, which i1s an evaluation of the statistical
band model, is contained mainly in Section II with some additional discussion
in III-C. The study was carried out on a system of Hy0 absorbers in the wave
number range 2800 to 3400 em !, Tests were also made using sets of computer
generated line parameters. The results of these calculations were presented

graphically,

Figures 5 and 6 show that the distribution of Hy0 line strengths and line
spacings are in reasonable agreement with the theoretical assumptions made in
the statistical band model. The 1line by line and band model transmittances
are compared in Figs. 1, 2, 3, 13, and 14. It is concluded from these (and
others not presented here) that the statistical band model is fairly reliable
in the short optical path length regime in which T(x) > 0.1, but for long
paths where T(x) < 0.1, the transmittances can be in serious error by orders
of magnitude. This error has a random component that dominates at intermedi-
ate distances and a systematic component that dominates at very long dis-

tances.

The random error arises because the information contained in the band
model parameters 1is not sufficient to define a unique k-distribution, but
rather is compatible with an entire ensemble of k-distributions from which one

has been randomly selected.

The systematic error arises because of certain simplifying assumptions
made in the derivation of the band model transmittance. All values of the
strength parameter and all values of line spacing from 0 to = were allowed.
As a result, the k~distribution extends from 0 to = whereas any real distribu-
tion has finite limits, k4 > 0 and Kgax ¢ », The unphysical k values in the
range 0 to kp,, result in an erroneous asymptotic behavior for the band model
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transmittance that is consistently too large. This systematic component of
the error is easily computed from the asymptotic formulas and is given in Eq.
(23).

The second part of this report is concerned with the derivation and
testing of two new nonstatistical band model approximations. They are
referred to simply as the two-parameter and three-parameter approximations.
The formulas for these two approximations are given by Eqs. (40) and (55).
They are compared with the exact results and with the statistical band model
in Figs. 19, 20, 22, and 23. We conclude that the two-parameter model is
sometimes slightly inferior to the statistical band model for short optical
paths but is always much superior for long paths. The three-parameter model
is uniformly excellent for all path lengths.

The present study was a preliminary investigation and was limited in its
scope. A more complete study should repeat most of the calculations in this
report over a broader range of conditions including much higher and lower
temperatures and pressures, for other portions of the Hy,0 line system, and for
several other molecules, especially €05 . Also other line profiles should be

studied.

Several other topics that could be included in a new study would be a
study of the temperature and pressure dependence of the model parameters kg
kl/2' and kl; a generalization of our new approximations to systems with non-
uniform temperatures and pressures; and the development of practical numerical
techniques for fitting both the two- and three-parameter formulas to experi-

mental transmittance data.
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