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C A MODEL FOR ORDINAL FILTERING OF DIGITAL IMAGES

By: M. F. JANOWITZ

§1. Introduction. A monochromatic digital image may be thought of

as a finite rectangular array of numbers. Each number in the array repre-

PR NN o N

sents some sort of average value for a specified type of radiaticn from a
fixed geographic or geometric region, with adjacent numbers corresponding
to adjacent regions. The digital image is subsequently transforied to an
actual picture by means of some sort of video display device. A will
soon be seen, however, a given digital image can produce more than one
picture, so one must examine the meaning of the display of this type of
data. This question will be examined within the context of a model that
allows one to classify various filter techniques, and to compare com-
peting techniques so as to decide which is better. In that the tnder-
lying model is order theoretic in nature, it is appropriate at this point
to present some needed background material from the theory of partially
ordered sets. Though the material can be presented in a more abstract
fashion, we choose to stay within the image processing framework in which

it will be applied.

In what follows, X will denote a finite rectangular array of points,

with X having m rows and n columns. The point in the 1£ﬂ row and

J th column is denoted x(i,j) or simply x if it is not important to

specify the exact coordinates. A monochromatic digital image may then

be thought of as a mapping d : X > | where L denotes a finite
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o chain. Though the exact nature of | may vary from computer to computer,
M

o . . . .

Y a typical representation may be obtained by taking L = (0,1,....,2%5"

L‘-

fij where i < j in L has its usual meaning in the real number system.

S

For M a nonempty subset of L, we agree to let vM and aM denocote
respectively the largest and smallest elements of M. The symbol F'
or P'(X) will be used to denote the collection of nonempty sutsets of
X, partially ordered by set inclusion. In connection with this, the
symbols <, -, u, n will have their usual set theoretic meanings.

Now let d : X -—--> L be any mapping. Notice that d may be

uniquely extended to a join homomorphism D*:P'(X) -——-> L by ‘he

rule

D*(Y) = v{d(y) : y e Y}.

One can also associate with d a mapping Ac°3§§}°9_ggf__________
NTIS GRA&I

DTIC TAB H

D : L[hd,255] > P! Unannounced

]
Justification_ﬁﬁ

where By__
Distrituticony

= afd(x) : x e X} Avallon’ .+ Codes

hy

/A""'" .o or
Dist Seoeinl

by the rule I

D(h) = {x ¢ X : d(x) < h}. ﬁ‘,

The pair (D*,D) of mappings has a number of interesting features in
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This says that D*:

p. 11. The reader

properties of residuated and residual mappings.

(R1) D* 1is isotone

(R2) D is isotone

(R3) Y < D[D*(Y)] for all Y . P'(X)
(R4) h > D*[D(h)] for all h > hy-

Sense ot i

p! > [hd,255] is residuated in the
is referred to that source for a development of tre

What we shall need

the fact that we have established one-one correspondences betweeir three
classes of objects:
(A) mappings > L
(B) residuated mappings D*:P'(X) > [hd,255]
where hg= A{d(x) : x ¢ X}
(C) residual mappings D: [hd,255] > P'(X).
The Tink from (B) to (A) is accomplished by observing that o 1is the

restriction of D*

to singleton subsets of X with the remaining links

arising from the theory of residuated mappings [1].

Suppose now that o6 : L

th:h>0(0)}, it

from L into M,

0t (k) =

This may be illustrated by defining

of the table

..........
-,y . .
............
.........

.-t I et ~
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> L is isotone. If M= [0(0),?55] =

is easy to see that if 6 1is regarded as a mapping

then 6 is residuated with 6+ M > L g~ven by

vih:a(h) < k}.
{0,1,2,3,4,5,6,7}

6 on bv means
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Then M= {3,4,5,6,7} and ¢ is given by

"
9+(h)] 1

> L and 6 :L —— L

There is one final needed item. If d:X

is isotone, then 0d:X > L with 0 o D* its associated residuated

mapping. As in the proof of [2], Lemma 7.1, p. 68,

(6o 0%)" =D o".

In summary then, a picture may either be viewed in the form (A),
(B) or (C) as previously described. Somewhat closer contact may be
made with the model described in [2] by working with the lattice ot
all subsets of X, P(X). In a manner similar to that described earlier
in the section, one establishes a bijection between the following classes

of objects:

> L

(A) mappings d:X

(é) residuated mappings D*:P(X) > [hd,255]
where hd is some fixed lower bound for {d(x) :x ¢ X}

> P(X)

(C) residual mappings D : [hd,255]

The situation will be examined in more detail in the next section.
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§2. Display of digital images. Let d:X > L be a monochreomatic

digital image, where L might be {0,1,...,255}. The digital image d
is converted to an actual picture by means of some sort of visua® display
device. The display device either produces a black and white picture

by associating with each integer i in L an intensity of grey <C[i],
or it produces a color picture by associating with i a color C[i].

In the latter situation, the display is controlled by a color lockup

table of the form

0 l 1 l 2 ] Ce e I 255

cfo] l c[1] ‘c[z] ‘ . | c[255]
where the 256 colors are chosen from a palette consisting of 23k
possible colors with k representing the number of bits assigned to
represent a given color. The colors in the table are then linearly

ordered by the rule

Clil < Cl3] if i<J in L.

For purposes of this discussion, it will be assumed that the colors

or grey shades C[0], C[1],...,C[255] are fixed. Many image pro-
cessing systems come equipped with a means of dynamically modifying the
lookup table so as to enhance certain portions of the picture. This
deserves a careful consideration.

b We are given a digital picture d where

d: X —--> L.
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If © 1is an isotone mapping on L, a new picture may be create? by

AL ". ‘.‘. b

looking at

od : X > L.

"

But this involves applying 0 to each and every pixel x ¢ X tou change

the color representation from

> d(x) > Cld{x)]

X

to

x —> 8d(x) > Cled(x)].

The same effect may be achieved by changing the Tookup table so that it

becomes

0L1|2l....255

clo(0)] | cloM] [co@] | ... | cless)

Since this only involves changing 256 entries, it is the preferred
approach. This, however, has dramatic implications. When a digital
image is entered into the computer, one can obtain not just a single
picture but a whole class of pictures that arise by means of lookup
table modifications. This should cause one to examine the significance
of the actual data values in a given picture d.

An alternate view of a digital picture involves associating with

each color C[h] that portion of the picture that is painted with the

color C[h]. Thus one would look at




Clh]

> h —--> Ix ,» X:d{(x) = h}

instead of

X --—- d(x}) -—- C[d(x)] .

What happens to the alternate representation when an isotone mapging
g s applied to d? As long as the restriction of © to the range of

d 1is injective, this is easy to answer, since one simply looks at

> h

Cle(h)] > {x :d(x) = h}.

lhat happens though if 6 merges distinct levels of the picture? One

can certainly still consider

cla(h)] > {x : 0d(x) = a(h)},

but it turns out to be more useful to do a second alternate representation

by means of

c[h] > {x :d(x) < h}.
Since for h > hd = A{d{x) : x € X} it is true that
8d(x) < h <=—=> d(x)f_e+(h),
we then have
+
> {x :d(x) <8 (h)} .

¢[h] > 9% (h)

The second alternate representation associates with each color C([h] those

pixels x that are painted with C[h] or some color that prececzd it in

the lookup table.

R
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-5 §3. Filters. It is often desirable to take a picture d:X —-—> L
%i: and enhance it to produce a picture F(d) : X > L. This is done by

l.' ,\'

N applying some sort of spatial or frequency domain filter to d. To achieve
{?1 the most generality, let us agree to call any transformation of a pic-

ture d: X > L to a picture F(d): X

> L a filter. It is under-
stood, however, that for a filter to be useful, it must somehow or other
aid in the understanding of the original picture. At any rate, applying

a filter to d produces F(d). This may be illustrated schemati:ally by

‘ d ‘ F > F(d)

We now apply an isotone mapping 6 to the lookup table. This transforms
both the original and filtered versions of the picture as indicated

below:

] —— ]
! |
" oo |

Suppose now that an object is observed in 6F(d) that was not observed

in any of the other images. Is it real or is it an artifact of F and/or
8?2 Unless one understands the relation between 6d and oF(d), this 1s

difficult to answer. An ideal relationship would be if

F(ed) = oF(d),
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since this says that the process that produced F(d) from d al<o

produced 6F(d) form ©6(d). This now leads to a natural gquestion.

For a given class of isotone mappings © :L > |, what filtery F

SOy MO RN - §

have the property that

F(ad) = oF(d)

¥ for all digital images d: X —— L? In connection with this, it will
@ often be useful to view a digital image d: X —— L as a residual
map D: M > P'(X) where M= [hd,255] and hy = a{d(x) : x - X}.

The filter

d > F(d)

then takes the form

> F(D)

D

where E(D) is the residual mapping associated with F(d). MNotire

"

then that by [2], Lemma 7.1, p. 60,

F(od) = oF(d) < - > F(D o 67) = F(D) o @' .

Definition. (i) Let McL and 6:L > L be isotone. The

filter F is said to be (6,M) - compatible in case

F(ed) = oF(d)

i
'
N
A
L
¢
2
r
[
:

for all images d with range contained in M.

(ii) The filter F is said to be monotone cquivariant if

it is  (0,M) compatible for all o such that n m 1s injective.
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Our first goal will be an examination of the meaning of mono.one
equivariance for filters F. It should be mentioned that though this has
essentially already been done in [3], it will still be useful to repeat

the proofs here.

Lemma 1. If F 1is monotone equivariant, then range F(d) « rar 7,

> L.

for every d:X

Proof: If h e range d, one can define 6:L > L so that a(k) = k

for all k ¢ range d, but 6(h) # h. Then d = od, whence
F(d) = F(ed) = 6F(d).

If k= (Fd)(x), then
k = (Fd)(x) = 6[(Fd)(x)] = 6(k).

In that h # 6(h) we conclude that h ¢ range F(d).

Theorem 2, If F 1is monotone equivariant and if d has range

h0 < h] < ... <ht, then F(d) depends only upon the sequence
D(ho) ¢ D(h]) < ... < D(ht)
and is independent of the actual levels h0 < h] < ... < ht‘

Proof. tet d: X

> L be as above, and let Yi = D(h,)(i =9,...1,...,t).

In view of Lemma 1, the output is determined by the sequence

(FD)(hg) « (FD)(hy) « ... < (FD)(h,)

[P TR PP IrLIL Sy .‘..J
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since h. < h < h. ., implies (FD)(h) = (FD)(h,). To show Lhal

the output is independent of the actual levels hi‘ choose a seguence

of elements of L and define

so that Y. = C(ki). If 8:L > L is defined so that A(h.) = k.

one then has

od = ¢,
whence

F(c) = F(nd) = 6F(d)
Then

F(C) = (FD) o 0"
and

(FC)(k;) = (FD)(87(k;)) = (FD)(h,).

This shows a monotone equivariant filter to be ordinal 1n nature.

It transforms a strictly increasing sequence

0° Apc.ou e At = X,

of subsets of X to an increasing sequence

PR U OO WA TR TP WAL NP Sl VO G S O . I .:.Ll




> B

cByc... cB, =X,

1 t

where Bi depends on the entire input sequence.

Remark 3. The converse of Theorem 2 is also true. To

assume that d has range hO < h] < .. < ht’ that range

and that F(d) depends only on the sequence

D(ho)cD(h])c ... < D(h,) = X

t)

of subsets of X. If 0' is injective, we can let

range d
and ¢ = ¢(d). Then

d(x) < hy <==> c(x) < ks

so that C(ki) = D(hi) for i =0,1,...,t. But then

S0
(Fc)(x) < k; <==-> (Fd)(x) < h,
and consequently
(Fe)(x) = k; <==> (Fd)(x) = h,.

It is immediate that

F(ed) = oF(d)

as desired.

see tlis

F(d) « ranqe d,

k, = ((hi)
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In the most general situation, a change of lookup table invo'ves
the application of a linear or piecewise linear mapping 6 to L. In

the linear case, one is given non-negative integers a, b such .hat
0 <a<b«<25

and ea b is defined by the rule

0 h<a
= h-a,
ea,b(h) = [b — 255] a<h<b
255 h >

where [t] denotes the result of rounding the real number t to the
nearest integer. When b =a + 1, we may denote Oa p s ea end

observe that

It turns out that (o,M) - compatibility for all 8, is in itselt a

powerful condition on a filter F.

Definition. A filter F is said to be flat if there is an

isotone mapping v : P(X) > P(X) such that
E(D) =y oD

for all d: X > L.

" o T . e Tt
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RS Uy W W, O T S R, S P W VRl T "D, DT Wy R AU TR W P W NP U N WO LIPS . NP W S Sy .




B -14-
{ . ,

Theorem 4. Let F be (ea.M) - compatible for all N (L < a < 255)
o and all Mc L. Then F is flat.

Proof: Let ¢, d: X > L be digital images, and let a, b - L be
-2 such that C(a) = D(b). We claim that (FC)(a) = (FD)(b). This is a
.

e direct consequence of the fact that

5 JC(a) h # 255

N

+

T (C o 8,)(h) =
L [ X h = 255

- . jo(b) h # 255

N (D o eb)(h) =

2 [ X h = 255.

\-
o Thus Gac = obd, SO

.':j c + _ rc +

: [F(C)] = of = [F(D)] o o]

. and

2 [F(©)1(a) = [F(D)1(b).
..‘ We may now define vy :P(X) -—— P(X) by

% ¥(¥) = [F(D)1(b)

., (o) =¢
& where D(b) = Y and note that y 1is well defined. It is then clear
A that

i [F(D)I(h) = (v o D)(h)

so F is flat.




-15-

Corollary 5. If F s (Oa,M) - compatible for every 6, and

every Mc L, then F is (6,M) - compatible for all isotone mappings

9:L > L and all Mc L,

In view of the above discussion it is reasonable to consider the
theory underlying flat filters. Such filters are easy to construzt as
one only needs to produce an isotone mapping y on P(X) such that
viX) = X, and ~v(¢) = ¢. Having recognized this need, it is appropriate
to decide upon reasonable conditions for these mappings. The ideu is
to attach some spatial significance as to whether a point belongs to the
output of the mapping. In other words, if Y c X, the decision as to
whether x ¢ y(Y) should be based on all points in some small region

surrounding x. This may be precisely stated by saying that the map-

ping y shall be point-based in that for each x ¢ X there is a subset

N(x) of X containing x and a mapping Yy : P(N(x)) > {0,1" such

that:

(PB1) v, (N(x)) =1, and v,(¢) = 0.
(PB2) For A e P(X), x e y(A) <=+ YX(A n N(x)) = 1.

_—

So that y will be independent of the polarity of the image, it ’urns

out to be useful to have Yy preserve complements in that

(PB3) For A e P(X), +vy(X\A) = X\v(A).

Remark 6. For a point-based isotone mapping vy on P(X) to pre-
serve complements, it is clearly necessary and sufficient that Yy have
the property that for every proper subset A of N(x), exactly one of

v, (A) and v (N(x)\A) shall equal 1.

________
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Now let Y be point-based with an associated family of neiohbor-
hoods N{x)(x « X). If M(x) 1is a second such family, it is evident

that so is M{x) n N(x). In view of this, there is no harm in assuming
(PB4) If M(x)(x e X) satisfies (PB1) and (PB2), then N(x) < M(x).

Such a minimal family of subsets of X will be called the system of

neighborhoods associated with y. Unless otherwise specified, when we

speak of a point-based isotone mapping y, it will be assumed that
the family {N(x) : x <« X! represents this minimal system of neigh»or-

hoods .

In order for Y to interact properly with planar rigid motions,
we need to consider the effect of translations. These are mappings
of the form Tp,q where p,q are fixed integers and Tp,q(i,j) = (p+ 1,0+ 3).
Unless p =0 =q the domain and range of Tp,q will be proper subsets
of X. We agree to call the point-based isotone mapping translation -

invariant provided it satisfies

(PB5) If N(x) 1is contained in the domain of the translation T,

if N(x) # {x}, and if y = T(x), then N(y) = T(N(x)) and

Remark 7. The reason for the concern about whether N(x) = {x}
is that around the edge of an image there may not be enough room to

form the desired neighborhoods, so that one might simply take N{x) = {x}.

. . . - Lt - . <. o . N
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Definition. Let y be a point-based, translation-invarianc isotone

mapping on P(X). To say that y 1is frequency-defined is to say that

there exists an integer j such that if N(x) # {x}, YX(A o N(x)) =1
if and only if #(A n N(x)) > j. Here #Y denotes the cardinality of

the set Y.

Theorem 8. Let vy satisfy (PB1) through (PB5). Let x be
chosen so that M(x) # {x} and let k = #N(x). Let j be the least
cardinal number for which yx(A) = 1 for some subset A of N(x) with
J = #A. Necessary and sufficient conditions for Yy to be frequency-

defined are that k be odd and j = (1 + k)/2.

Proof: Let y be frequency-defined. If #A < k/2, then #(N(x) \ &) > k/2,
so there is a subset B of N{(x)\A with #B = #A. Since YX(B) =0,

this is a contradiction. If k 1is even, taking B < N(x) with :ar-

dinality k/2 will produce a similar contradiction. Thus k is
odd and #A > k/2. If now #B = (1 + k)/2, then #B > #(N(x) \ B}. It
follows that yx(B) = 1 and consequently that j = (1 + k)/2.

Suppose conversely that k is odd and j = (1 + k)/2. We must
show that YX(B) =1 for all B < N(x) for which #B > j. Since
#8 > j implies #(N(x)\B) < j, it follows that YX(N(x) \B) =¢C

and consequently YX(B) =1,

The mapping y is called a join homomorphism in case

y(S uT) = y(S) uv(T) for all S, T e P(X). There is a dual notion

of meet homomorphism, and to say that y 1is a homomorphism is to
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say that it is both a join and a meet homomorphism. The next theorem
shows that these conditions are extremely powerful, and will be cnly

met in trivial circumstances.

Theorem 9. Let vy be a point-based isotone mapping on P(X). Then
(la) <=> (1b), (2a) <=> (2b) and (3a) <-> (3b).

(1a) y is a join homomorphism.

(1b) For each x ¢ X there is a subset Ax of N(x) such that
x ¢ Y(S) <= > S n AX £ 0.

(2a) y 1is a meet homomorphism,

(2b) For each x ¢ X there is a subset B, of N(x) such that
x e y(S) <> S > Bx'

(3a) vy is a homomorphism.

(3b) For each x there is an element y_ of N(x) such that

x e y(S) <> Yy € S.

Proof: (la) -=> (1b) One simply takes Cx to be the union of all

subsets of N(x) that are mapped to QO by Yy and notes that yx(Cx) = Q.
The set N(x) \Cx then serves as Ax'
(1b) => (1a)  If xey(SuT), then (SuT)nA #b, so

SaA # sor Tnh 7o Hence xcv(S) v y(T).

(2a) == (2b) One takes Bx to be the intersection of all

subsets C of N(x) for which v(C) = 1.

o (2b) > (2a)  Is obvious, as is (3b) ==> (3a).

yi (3a) —> (3b) If Bx is defined as in the proof of (2a) => (2b),
E; then v (B) =1 but v (C) =0 forall C« B . It is immediate that

P:l B, is a singleton set, and (3b) follows.
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; Remark 10. If vy is translation-invariant, it is tempting to
say that if A is in the domain of the translation T, then

[T(a)] = T[y(a)]. This is only true if both A and T(A) 1lie in
that portion of X on which N(x) # {x}. To illustrate this, let

y be defined by 3 by 3 neighborhouds by the rule that yx(A\ =]
if #A >5 for A e P(N(x)). Let X =1{1,2,3,4,5) x {1,2,3,4,51,

x=(2,2) and T =T Then if A 1is the subset indicated by

1,1°
1's in Figure 2(a), one sees from Figs. 2(c) and 2(d) that

T (A)T # v [T(A)].

DIEALAEY - § PRSP SN - Are s  Ea

11100 00000 11100 00000

ol 11100 01110 117100 00100
11100 01110 11000 01110
00000 01119 00000 60100
00000 00000 00000 00000

A T(A) Y(A) ¥[T(A)]
Fig. 2(a) Fig. 2(b) Fig. 2(c) Fig. 2(d)
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34. Underlying Statistical Considerations. Suppose that the
true input data d*: X —--> L has been corrupted by additive or
multiplicative noise so as to produce an actual input d:X - L.
One wants to construct a flat filter F that somehow smoothes the

noise without blurring the picture. Thus at each level h, one wishes

to estimate

AT = {x:d%(x) < h}

*
h
by means of looking at

A, = {x:d(x) < hh

Hopefully, F(d) will provide a good estimate of Ah by way of

{x: (Fd)(x) < h}.

To put the problem in a specific framework, suppose that Ah and

A*
h

bility p (p > 0.5) one has

are related by the assumption that for some fixed a priori proba-

(S1)  x « A; c+> x . A, with probability p,

(S2) x ¢ A; —==> x ¢ A, with probability p,

and that these probabilities are independent of the Tocation of x.

The goal is to define y on P(X) sothat

' (1) y s isotone
M! (2) y somehow maximizes the probability of correct classivication
of points. In other words, in some specific sense we wish to maximize

the a posterior probability that

« e s e e a - e - -~ . R - -
e e A S T, T T VA L T SO AR ‘
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(a) If x . Y(Ah) then «x . A;, and

(b) If x ¢ Y(A) then x/ A

h)
In view of the discussion of 33, it seems reasonable to restrict
our attention to translation-invariant, point-based isotone mappings
having a fixed system {N{x):x . X} of neighborhoods of points
Because of this, we need only consider a fixed point x for which

N(x) # {x}, and the mapping y_:P(N(x)) —— (0,1} defined by

for A < N(x).

For a given subset A; of X, one can define a probabilit)

measure p' on N(x) by the rule that for A < N(x), p'(A) shall
be the probability of observing A, given the true input data
AL N(x). For example, if N(x) is a 3 by 3 neighborhood cen-

h
tered on x, if A; n N(x) and A are given by the matrices

111 101
011 and 00O
000 001

where 1 denotes membership in a given set and 0 membership in its
complement, we have p'(A) = p5(1 - p)4. A numerical measure o” the
*
ability of Yy to distinguish between Ah and its complement i<
. . Ak . . .
provided by the gain G(Yx)' For x « Ah’ this is defined to be the

orobability that for a randomly chosen subset B of N(x), ,x(b) = 1;

............
- . P
T teh e ey

. LI . . - . . .
PO IPN OIE PRl P s T T T e Aala da e B0 e W e #aiwa®. A m
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-
b added to the probability that if the true input data were the complement
*
of Ah’ we would have YX(B) =0 for B a randomly chosen subset of

N(x). In connection with this it is convenient to let

—
n
—_
=2
o]
=
——
x
—
—
=
-~

=1}

o} .

-
"

{B:B < N(x), v, (B)
It follows that

6(v,) = Z{p(A) A e T}

+ Z{p(N(x)\A) : A ¢ FY}.

The reason for this is that if p" is the probability measure associ-

ated with the complement of A;, then for B < N(x),
p*(B) = p'(N(x)\B).

One may now search for those mappings Yy such that Yy has maximal
gain for a given type of input data. The search is aided by the fol-

lowing result:

Theorem 11. Let p' be a probability measure defined on N(x)

- Suppose p' has the property that
(1) for A < N(x), p'(A) # p"(N(x)\ A), and
-1
hia (2) if p'(A) > p'(N(x)\ A) and if A < B < N(x), then

p'(B) > p'"(N(x)\ B).
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N
- Define ' : P(N(x)) ----» {0,1} by the rule
-,{x X
3>
N
5 [1 p'(A) > ' (N(x) \ A)
f:-, ‘1;((A) =
.- t 0 otherwise
N
S %
s Then y; is isotone; furthermore, G(y;) z_G(y;) for any other isotone
N mapping Y; > {0,171,
IS
;3: Proof: The fact that \; is isotone comes from condition (2) of the
_nf. theorem. The assertion regarding G(y;) z_G(y;) follows from an
iii examination of the sets TY" FY. s Tyu and F\“ . Any changes in
iit the sums for G(Y;) and G(y;) must clearly come from members of
-'-‘;: ] F n 1} [} .
0, (TY nF ) u (TY n FY )
.ﬁ; For A ¢ Ty. n FY”, the term in G(yx.) corresponding to A is p'(A),
= while in G(y") it is p'(N(x) \A). By construction of ', we
fi‘ have p'(A) > p'(N(x)\A). Similarly, for B e TY" n Ey., the term
N
. in G(y') is p'(N(x)\B) while the one in G(v") must be p'(B).
—_ Again by construction of y' , p'(N(x)\ B) > p'(B)
Corollary 12. If N(x) < A" and k = #N(x) 1is odd, then the
fj mapping 7; described in the theorem is given by
L v (A) =1 if k/2 < #A.
2
b
Fa,
f
A%
h,
v
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Remark 13. The mapping in Corollary 12 may be implemented by
means of applying a suitable median filter (o d. This says that
within the framework of the current model, the best way of smoothing

noise in the interior is to use a median filter.

The paper will conclude by carefully examining the situation
where N(x) dis a 3 by 3 window centered on x. The members of
A: will be denoted by 1's, those of its complement by 0's, and w»
shall restrict our attention to a fixed x. Notice that the mapping
produced by Theorem 11 is necessarily complement preserving. This is
desirable because one wants the output of a filter to be independent Lf
the polarity of the input data. In view of this, we shall concentrate
on input data for which x - A; and assume that 5 < #(N(x) n A;). Ve
shall begin by looking at 5 types of input data. They will be denoted
type i (i = 0,7,2,3,4), according to whether or not N(x) has
i=20,1,2,3, or 4 members of X\.A;. Before doing the theoretical
analysis, let us examine some calculated probabilities of correct classifi-
cations. This is done in Table 3. There are two items of interest h:re.
For the type 4 case, the filters all seem to decrease the probability of
correct classification. This is hardly surprising since in this instarce
the 8 immediate neighbors cf the given pixel all have equal chances of
representing members of A; as opposed ts its complement. Thus no
additional information can be obtained by looking at the 8 neighbors of
x. The second observation is that in the type 3 case the answer seems
to depend on the numerical value p of the a priori probability of

correct classification.

. N . St . . . . -
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Prob. o TYPE !
TYPE__ I
Correct | Method 0 1 2 3 | 4 |
: 9 A 9991 | 9954 | .o787 | .9128 | .7071 |
) B .9962 .9861 .9590 L9112 i 8717
C .9914 .9515 .9104 .9014  .8980 |
- T e e
v .8 A .9804 .9529 .8944 7839 | 6079 |
I , B .9584 .9233 .8736 8150 | .7487 |
A c 9006 | .8564 | .8212 % 8046 | .7929 |
3 .7 A 9012 8467 NS 6747 5606 |
B 8576 .8125 7629 ! .7100 | .6519 J
C 7757 . 7450 7222 7057 ! 6306
.6 A 7334 .6870 6367 5833 ; 5280 |
B 6963 .6661 .6354 6043 | .5722
C 6374 .6250 6139 6036 } 5936 i
* - . ,..,__J_- i N S |
~ Method A.  x . 1,(A))  if 5 < #A .0 N(x).
7 Method B.  x  vg(A)) if 6 < #AnN(x) orif
*
#Ah n N{x) « {4,5} and x ¢ Ah
' Method €. x« (A) if 7 < #A aN(x) or if
*
#(A n N(x)) ¢ {3,4,5,6} and x Ah
Table 3. Probabilities of correct classification.
o e T T T T D e o .
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|

e One can bring Theorem 11 to bear on the problem Ly simply cal-

‘§£- culating probabilities of occurrence of each of the 29 possible

f}' subsets of N{(x), given the a priori assumption regarding the nature
3

ff} of A; n N{(x). This has been done but the rather tedious details

,}ﬂ will not be repeated here. Rather, we shall simply list the results
e in Table 4.
Y
1

o . B i
- 'DATA | Bast Isotone

: TYPE Method
0 l iy Of Tab.le 3 3 o
S 1 1y Of Table 3 o
3 2 YA of Table 3

: 3 ; There is a critical value Py of p(.8958 - Py * .9000)
:5f i such that for p - py , v, s the best method and 1or

-, : ‘ p < Por g of Table 3 is best. Po is determined ty

-:j solving the equation p = x(1 - p) where x is the voot
A y 2 ‘
o | | of the equation O - 9xd wext - 2ax3 4 6x’ - ax+ 1 -0
= j lying between x = 8.6 and x = 9. !

—_— -+ - .ﬁ‘— —— e —— e ——— e . ———————— —— —— — I
4 : X y(Ah) if x . Ah .

1 e e e e e e e e - _

o Table 4.  Summary of "best" flat filters based on 3 by 3

i;‘ neighborhoods.
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Up to this point it has been assumed that the center pixel «x
was a member of A;, and that any other menbers of N{(x) A;
were randomly scattered through N(x) \ {x:. The situation changes
dramatically if more information is known. To see this, note tha*

N(x) consists of three "data types as indicated below:

C b C
b a b
C b c

The center pixel is type a, its North, South, East, West neighbor.
are type b, and the remaining four corner pixels are type c. Our
basic assumption will now be that x . A;, and that we know the num-
ber of type b as well as the number of type ¢ pixels that are in the
complement of A;, but not their precise location. Thus a data type
may be specified by an ordered pair of integers that denotes the
number of pixels of types b and ¢ that lie in the complement of
A:. For example, data type (1,2) indicates the presence of one type
b pixel and two type ¢ pixels in the complement of A;. The cal-
culations inovlved in applying Theorem 11 are again tedious, so they
will be omitted. By way of illustration, however, the type (0,1) -

case will be considered in some detail.

Recall that p denotes the a priori probability of the input

data being correct, and set q = 1 - p. The probability of observing

variour numbers of 1's in the corners is then seen to be




R T T T e TN o T TR T T TN . PR e e

-28-

.

£1's f Probabilities
e
4 : P3q z
, |
i |
3 g P4 + 3p2(12 )
1 !
2 J 3p3q + 3pq3 }
| |
1 j 3p2q2 + q4 I

|
! |
3

0 | Pq |

Since by assumption the type a and b pixels all lie in A;, chey
can be Tumped together into a single category. There are now

6 ~ 5 =30 data types to analyze. This involves examining 15 p3airs
of subsets. But this can be cut down to 6 pairs if one realizes

two things:

1. If there are more 1's than 0's in both data types, the
result is clear.
2. If there are two 1's in the type ¢ data, then the de-

cision rests entirely on the type a and b.
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e B
DATA e | i
A NGIAA o' (A) Wprw(x) A
| (5.0)  (0.4) | . pb® t pq®
Lo (L) . pt IR
(3.0) (2,4) p'q’ ; - pq°
(5.1)  (0,3) - pogt e 3p7q2 088 Y]
(4,1) (1,3) g’ v 383 ( g+ 3p3°
(3.,1) (2,3) 3n q + p3 6 t . 3p4q5 + pbq?
I S ST

NOTE: The dots indicate the higher of the two probabilities, in
each row.

The actual results are summarized in Table 5.

I RS I S S P SR R N RIS SRR SR O e e L




(1,1)

6 < #N(x) n A or

Y T Y

5

#N(X) oA

unless

N{x) - A

AT S A Stk T S Arane - S AU S~ e Jew Jhut Sl Rt JENL St g

}_ ,X(A) =1 if
- (0,1) | 6 #M(x) «A or
!l 5 = #N(x) o« A unless N(x) . A is type (1,4) or
i: i 4 = #N(x) - A provided N(x) A is type (4,0)
% S S
A (0,2) i A o N(x) has at least 3 members that are type a or b
(1,2) | Same as (0,2)

is type

(0,1,4) or

(0,4,1)

4 = §N(x) n A provided N(x) n A 1is of type (1,3,0)

J- or (1,0,3). ;

NOTE: The types (1,0), (2,0) and (2,1) are handled by symmetry

Table 5.  Summary of "best" flat filters based on 3 by 3

neighborhoods.

S s tas Tralaciae’ aa e al A al i oo j

y e .o -0, - R,
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As a final item, let us see how well the "best" flat filters do w th

various types of data.

: | DATA | A PRIORI PROBABILITY OF CORRECT DATA
‘ i | Rttt e
TYPE : 9 8 | 7 6
b T e SR
i 0,0) 999 | 9804 19012 .7334 |
' (0,1) ‘ .9957 | 9545 | .8498 | .6886 |
(0.2) ! 9914 9421 8369 | .6826 ,
(0,1) I 9802 8979 7715 [ 6371 |
' (1.2) J 9526 8499 | 7311 i 6134 |
e . 1 [ R S |

Table 6. A posterieri probability of correct classification for
data of given type using "best" filter method as speci-

fied in Theorem 11.
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