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A MODEL FOR ORDINAL FILTERING OF DIGITAL IMAGES

By: M. F. JANOWITZ

51. Introduction. A monochromatic digital image may be thouqht of

as a finite rectangular array of numbers. Each number in the array repre-

sents some sort of average value for a specified type of radiaticn from a

fixed geoqraphic or geometric region, with adjacent numbers corresponding

to adjacent regions. The digital image is subsequently transforr ed to an

actual picture by means of some sort of video display device. A, will

soon be seen, however, a given digital image can produce more than one

picture, so one must examine the meaning of the display of this type of

data. This question will be examined within the context of a model that

allows one to classify various filter techniques, and to compare comn-

* peting techniques so as to decide which is better. In that the under-

lying model is order theoretic in nature, it is appropriate at this point

to present some needed background material from the theory of partially

ordered sets. Though the material can be presented in a more abstract

fashion, we choose to stay within the image processing framework in which

it will be applied.

In what follows, X will denote a finite rectangular array of points,

with X having m rows and n columns. The point in the i hrow and

thj - column is denoted x(i,j) or simply x if it is not important to

specify the exact coordinates. A monochromatic digital image may then

be thought of as a mapping d :X >L where L denotes a f'inite
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chain. Though the exact nature of L may vary from computer to computer,

a typical representation may he obtained by taking L - 10,I ..

where i . j in L has its usual meaning in the real number system.

For M a nonempty subset of L, we agree to let vM and AM denote

respectively the largest and smallest elements of M. The symbol F'

or P'(X) will be used to denote the collection of nonempty subsets of

X, partially ordered by set inclusion. In connection with this, the

symbols c, -, u, n will have their usual set theoretic meanings.

Now let d X --- L be any mapping. Notice that d may be

uniquely extended to a join homomorphism D*:/'(X) .... > L by *he

rule

D*(Y) = v{d(y) y E Y).

Accession For

One can also associate with d a mapping Aeio -For
NT IS GRA&I

DTIC TAB
L[hd,255 ]  > P1 Unannourjied

"..r, JUSt ifiot o

where By-
. " @ Distriut! 40,1l

hd A{d(x) x X1 Ava. Codes
,'or

by the rule

D(h) = {x E X d(x) < hl. L

The pair (D*,D) of mappings has a number of interesting features in

that

-,



1 *. .'. 3.< - . , . . . . . . . . . . . . . . - - . . . ' - , : - " " - " •

"/'21-3-

(Ri) D* is isotone

(R2) D is isotone

(R3) Y c D[D*(Y)] for all Y P'(X)

(R4) h > D*[D(h)] for all h ' hd'

This says that D*:P' > [hd,255] is residuated in the s,,,f. -

p. 11. The reader is referred to that source for a develoITiment of -e

properties of residuated and residual mappings. What we shall ,e.*

the fact that we have established one-one correspondences betwee, tnree

classes of objects:

(A) mappings d X -- > L

(B) residuated mappings D*:P'(X) > [hd,255]

where hd=A{d(x) x E X}

: (C) residual mappings D :[hd,2 55] - > P'(X).

" The link from (B) to (A) is accomplished by observing that i is the

restriction of D* to singleton subsets of X with the remainiag links

arising from the theory of residuated mappings [1].

Suppose now thnat 0 : L -> L is isotone. If M : [0(0),?55]

{h : h > 0(0)}, it is easy to see that if 0 is regarded as a mapping

from L into M, then 6 is residuated with 0 :M > L g-ven by

a + (k) = v{h :6(h) < k).

This may be illustrated by definir, 0 on {0,1,2,3,4,5,6,7) by means

of the table

. * .* .. * . . *
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h 0 1 2 5 3 4

O(h) 3 3 46 6 6

Then M {3,4,5,6,7} and 0+ is given by

h 3 4 5 6 7

S+(h) 1 2 3 7 7

There is one final needed item. If d:X > L and e :L ---- > L

is isotone, then Od:X -> L with 0 o D* its associated residuated

mapping. As in the proof of [2], Lemma 7.1, p. 68,

(e o D*)+ = D o 0'.

In summary then, a picture may either be viewed in the form (A),

(B) or (C) as previously described. Somewhat closer contact may be

made with the model described in [2] by working with the lattice of

all subsets of X, P(X). In a manner similar to that described earlier

in the section, one establishes a bijection between the following classes

of objects:

(A) mappings d:X > L

(B) residuated mappings D*:P(X) - > [hd,255]

where hd is some fixed lower bound for {d(x) :x c X!

(C) residual mappings D: [hd,255] > P(X)

The situation will be examined in more detail in the next section.

* . ~ -. . -.. *- . . . - i - . - . . .ii: . t- . - ~ -- _ . / .i .- ? -- -:i -- .- -
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§2. Display of digital images. Let d:X L be a monochrcmatic

digital image, where L might be {0,1,...,255). The digital image d

is converted to an actual picture by means of some sort of visua' display

device. The display device either produces a black and white picture

by associating with each integer i in L an intensity of grey C[i],

or it produces a color picture by associating with i a color C[ii.

In the latter situation, the display is controlled by a color lookup

table of the form

0 1 2 . . . .255

C[O] C[l] C[2] . . . . C[255]

where the 256 colors are chosen from a palette consisting of 23k

possible colors with k representing the number of bits assigned to

represent a given color. The colors in the table are then linearly

ordered by the rule

C[i] < C[j] if i < j in L.

For purposes of this discussion, it will be assumed that the colors

or grey shades C[O], C[l],...,C[255] are fixed. Many image pri-

cessing systems come equipped with a means of dynamically modifying the

-. lookup table so as to enhance certain portions of the picture. This

deserves a careful consideration.

We are given a digital picture d where

d X . .> L.
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If 0 is an isotone mapping on L, a new picture may be createl by

looking at

Od X > L.

But this involves applying 0 to each and every pixel x X to change

the color representation from

x > d(x) > C[d(x)]

to

x -- Od(x) >C[Od(x)].

The same effect may be achieved by changing the lookup table so that it

becomes

0 1 2 . . . 255

|C[0(0)] c[e(1)] C[0(2)] ... c[0(255)]

Since this only involves changing 256 entries, it is the preferred

approach. This, however, has dramatic implications. When a digital

image is entered into the computer, one can obtain not just a single

picture but a whole class of pictures that arise by means of lookup

table modifications. Tnis should cause one to examine the significance

of the actual data values in a given picture d.

An alternate view of a digital picture involves associating with

each color C[h] that portion of the picture that is painted with the

color C[h]. Thus one would look at

..2 - . . . . . . . .. . "" " "" - - " .. . ..
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C[h] -> h---> ix X d(x) hl

instead of

x d(x) C[d(x)]

What happens to the alternate representation when an isotone mapping

o is applied to d? As long as the restriction of 6 to the range of

d is injective, this is easy to answer, since one simply looks at

C[o(h)] > h -> {x d(x) : hI.

What happens though if e merges distinct levels of the picture? One

can certainly still consider

C[e(h)] > Ix :Od(x) =(h)},

but it turns out to be more useful to do a second alternate repre;entation

by means of

C[h] -> {x :d(x) < hi.

Since for h > hd = A{d(x) :x E X} it is true that

ed(x) < h <->d(x) < 8(h) ,

we then have

C[h] > +(h) > x :d(x) < 0+(h)}

The second alternate representation associates with each color C[h] those

pixels x that are painted with C[h] or some color that preceeed it in

the lookup table.
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§3. Filters. It is often desirable to take a picture d X .... L

and enhance it to produce a picture F(d) : X > L. This is done by

applying some sort of spatial or frequency domain filter to d. To achieve

the most generality, let us agree to call any transformation of a pic-

ture d :X > L to a picture F(d) :X > L a filter. It is under-

stood, however, that for a filter to be useful, it must somehow or other

aid in the understanding of the original picture. At any rate, applying

a filter to d produces F(d). This may be illustrated scheniati:ally by

d FF(d)

We now apply an isotone mapping 0 to the lookup table. This transforms

both the original and filtered versions of the picture as indicated

below:

r d > F

Suppose now that an object is observed in OF(d) that was not observed

in any of the other images. Is it real or is it an artifact of F and/or

8? Unless one understands the relation between Od and OF(d), this is

difficult to answer. An ideal relationship would be if

F(ed) = OF(d),

............ . ' - .' +.'...... .... -.'..'..............................
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since this says that the process that produced F(d) from d also

produced OF(d) form O(d). This now leads to a natural question.

For a given class of isotone mappings 0 :L > L, what filters F

have the property that

F(ed) = OF(d)

for dll digital images d :X ----> L? In connection with this, it will

often be useful to view a digital image d :X -- > L as a residual

map D: M - > P'(X) where M = [hd,2551  and hd = A{d(x) :x X1.

The filter
L

d > F(d)

then takes the form

D - > F(D)

where F(D) is the residual mapping associated with F(d). Notice

then that by [2], Lemma 7.1, p. 60,

F(Od) = OF(d) < .. > F(D ') : F(D) 0+

Definition. (i) Let M c L and 0 :L > L be isotone. The

filter F is said to be (e,M) -compatible in case

F(ed) = OF(d)

for all images d with range contained in M.

(ii) The filter F is said to be monoton_ equivariant if

it is (0,M) compatible for all such that 0 is injective.

II!
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Our first goal will be an examination of the meaning of monouone

equivariance for filters F. It should be mentioned that though this has

essentially already been done in [3], it will still be useful to repeat

the proofs here.

Lemma 1. If F is monotone equivariant, then range F(d) rar ',

for every d : X > L.

Proof: If h E range d, one can define 0: L > L so that 6(k) : k

for all k E range d, but 0(h) # h. Then d = ed, whence

F(d) F(ed) = OF(d).

If k = (Fd)(x), then

k : (Fd)(x) = 0[(Fd)(x)] = o(k).

In that h e 0(h) we conclude that h range F(d).

Theorem 2. If F is monotone equivariant and if d has range

h < h1 < ... <ht, then F(d) depends only upon the sequence

D(ho) D(hl) c ... c D(ht)0 -

and is independent of the actual levels h0 < h1 < ... < ht.

% Proof. Let d : X - > L be as above, and let Yi = D(hi)(i : 0,... ..... ,t).

In view of Lemma 1, the output is determined by the sequence

(FD)(h 0 ) (FD)(h I) .... (FD)(ht)

-- D ,
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since h < h < h implies (FD)(h) (FD)(hi) To show LhdLS - i+l

the output is independent of the actual levels hi , choose a seqjence

ko < k < ... < k

0 1

of elements of L and define

c:X >L

so that Yi C(ki). If 0 :L > L is defined so that e(hi) = ki

one then has

ed =c,

whence

F(c) = F(A d) = eF(d).

Then

F(G) (FD) +

and

(FC)(ki) = (FD)(O+(ki)) (FD)(hi).

This shows a monotone equivariant filter to be ordinal in nature.

It transforms a strictly increasing sequence

A0 c A1 c c At X,

of subsets of X to an increasing sequence

. . ..

.- .' ."- " - ". . " - . . .- " . - -. . " " " " ,
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B0 c B1 c ... c Bt =X,

where B. depends on the entire input sequence.

Remark 3. The converse of Theorem 2 is also true. To see t is

assume that d has range h0 < hI < ... < ht , that range F(d) _ range d,

and that F(d) depends only on the sequence

D(ho) c D(hl) .. D(ht) X

of subsets of X. If 0frange d is injective, we can let ki  C (hi)

and c = o(d). Then

~~~d(x) < h i  < = >c(x) < ki

so that C(ki) = D(hi) for i = 0,1,...,t. But then

(FC)(ki) = (FD)(hi),

so

(Fc)(x) < k1i <-..> (gd)(x) < hi

and consequently

'd

(Fc)(x) = k. <-.. .> (Fd)(x) = hi-

It is immediate that

F(od) = oF(d)

as desired.

a~~ a ?.. .
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In the most general situation, a change of lookup table involves

the application of a linear or piecewise linear mapping 0 to L. In

the linear case, one is given non-negative integers a, b such -hat

O < a < b < 255

and 0 a,b is defined by the rule

a,b . a

0 h <ha

! "[ ~ ~ (ah) = [

a 25 5 h > a

It turns out that (eM) - compatibility for all o is in itseli aa

powerful condition on a filter F.

Definition. A filter F is said to be flat if there is an

isotone mapping y :P(X) > P(X) such that

F(D) y oD

for all d X -> L.

* * *.* .o.
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Theorem 4. Let F be (e a,M) - compatible for all ea  (L _ a 255)

and all M c L. Then F is flat.

Proof: Let c, d :X > L be digital images, and let a, b . L be

such that C(a) = D(b). We claim that (FC)(a) = (FD)(b). This is a

direct consequence of the fact that

(Co )(h =C(a) h , 255

a x h =255

D(b) h 255• ".' (D o Ob)(h) =

X h =255.

Thus OaC Obd, so

[F(C)] o 0a [F( D)]O

and

•' [F(C)](a) = [F(D)](b).

We may now define y : P(X) -- > P(X) by

y(Y) = [F(D)](b)

Y(,) =( ,

where D(b) = Y and note that y is well defined. It is then clear

that

[F(D)](h) = (y o D)(h)

so F is flat.

.
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Corollary 5. If F is (O,M) - compatible for every 0 andaa

every M c L, then F is (0,M) - compatible for all isotone mappings

- : L -> L and all M c L.

In view of the above discussion it is reasonable to consider the

L . theory underlying flat filters. Such filters are easy to construct as

one only needs to produce an isotone mapping -y on P(X) such that

-yX) = X, and y( ) = . Having recognized this need, it is appropriate

to decide upon reasonable conditions for these mappings. The idea is

to attach some spatial significance as to whether a point belongs to the

output of the mapping. In other words, if Y c X, the decision as to

whether x y(Y) should be based on all points in some small reqion

surrounding x. This may be precisely stated by saying that the map-

ping y shall be point-based in that for each x E X there is a subset

N(x) of X containing x and a mapping yx P(N(x)) > {O, 1 such

that:

(PBI) yx(N(x)) 1, and xy : 0.

(PB2) For A E P(X), x c y(A) <--> y x(A n N(x)) : 1.

So that y will be independent of the polarity of the image, it 'urns

out to be useful to have y preserve complements in that

(PB3) For A E P(X), y(X\A) X \y(A).

Remark 6. For a point-based isotone mapping -y on P(X) to pre-

serve complements, it is clearly necessary and sufficient that x have

the property that for every proper subset A of N(x), exactly one of

Y (A) and x(N(x) \A) shall equal 1.
--.-
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Now let y be point-based with an associated family of neiohbor-

hoods N(x)(x , X). If M(x) is a second such family, it is evident

that so is M(x) n N(x). In view of this, there is no harm in assuminq

(PB4) If M(x)(x c X) satisfies (P61) and (PB2), then N(x) c M(x).

Such a minimal family of subsets of X will be called the system of

neighborhoodsassociatedwith *,. Unless otherwise specified, when we

speak of a point-based isotone mapping , it will be assumed that

the family {N(x) :x X} represents this minimal system of neigh)or-

hoods.

In order for y to interact properly with planar rigid motions,

we need to consider the effect of translations. These are mappings

of the form T where p,q are fixed integers and T (i,j) = (p + i,q + j).
p,q p,q

Unless p = 0 = q the domain and range of T will be proper subsets

of X. We agree to call the point-based isotone mapping translation -

invariant provided it satisfies

(PB5) If N(x) is contained in the domain of the translation T,

if N(x) # {x1, and if y : T(x), then N(y) : T(N(x)) and

Yy =yx oTl

Remark 7. The reason for the concern about whether N(x) = x

is that around the edge of an image there may not be enough room to

form the desired neighborhoods, so that one might simply take N(x) = {x).

LI
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Definition. Let y be a point-based, translation-invarianc isotone

mapping on P(X). To say that -y is frequency-defined is to say that

there exists an integer j such that if N(x) {x}, yx (A , N(x)) = 1

if and only if #(A n N(x)) > j. Here #Y denotes the cardinality of

the set Y.

Theorem 8. Let y satisfy (PBl) through (PB5). Let x be

chosen so that N(x) {x} and let k = #N(x). Let j be the least

cardinal number for which yx (A) = 1 for some subset A of N(x) with

.. , j = #A. Necessary and sufficient conditions for y to be frequency-

defined are that k be odd and j = (1 + k)/2.

Proof: Let y be frequency-defined. If #A < k/2, then #(N(x) , A) > k/2,

so there is a subset B of N(x)\ A with #B = #A. Since Yx(B) = 0,

this is a contradiction. If k is even, taking B c N(x) with :ar-

dinality k/2 will produce a similar contradiction. Thus k is

" odd and #A > k/2. If now #B (1 + k)/2, then #B > #(N(x) \ B). It

follows that y x(B) = 1 and consequently that j = (1 + k)/2.

Suppose conversely that k is odd and j = (1 + k)/2. We must

,- show that yx(B) = 1 for all B c N(x) for which #B > j. Since

#B > j implies #(N(x) \B) < j, it follows that y (N(x) \ B) = 0x

and consequently yx(B) = I.

The mapping y is called a join homomorphism in case

y(S u T) = y(S) u y(T) for all S, T c P(X). There is a dual notion

of meet homomorphism, and to say that y is a homomorphism is to

1*



say that it is both a join and a meet homomorphism. The next theorem

shows that these conditions are extremely powerful, and will be cnly

met in trivial circumstances.

Theorem 9. Let y be a point-based isotone mapping on P(X). Then

(la) <=> (lb), (2a) < > (2b) and (3a) <-> (3b).

(la) y is a join homomorphism.

(Ib) For each x E X there is a subset Ax  of N(x) such that

x c y(S) < -> S n A x p.

(2a) y is a meet homomorphism.

(2b) For each x E X there is a subset B of N(x) such that

x

X E y(S) <=> S DB x "

(3a) y is a homomorphism.

(3b) For each x there is an element yx of N(x) such tnat

x Y (S) < > Y x S.

Proof: (la) => (Ib) One simply takes C to be the union of all

x

subsets of N(x) that are mapped to 0 by y and notes that ) (Cx) = 0.

The set N(x) \ C then serves as A

x x*
(Ib) > (la) If x E y(S u T), then (S u T) n Ax  t , so

S nA x or T n A x . Hence x c y(S) u y(T).

(2a) -> (2b) One takes B to be the intersection of allx
subsets C of N(x) for which y(C) = 1.

(2b) > (2a) Is obvious, as is (3b) -- > (3a).

LO (3a) -> (3b) If B is defined as in the proof of (2a) > (2b),x

then y (Bx) 1 but Y (C) = 0 for all C Bx . It is immediate thatx , x x
Bx  is a singleton set, and (3b) follows.

.. . . . .



_L

-19-

Remark 10. If Y is translation-invariant, it is tempting to

say that if A is in the domain of the translation T, then

,[T(a)] = T[T,(a)]. This is only true if both A and T(A) lie in

that portion of X on which N(x) t {x}. To illustrate this, let

") be defined by 3 by 3 neighborhouds by the rule that .yx(A) 1

if #A > 5 for A E P(N(x)). Let X = {1,2,3,4,5} x {1,2,3,4,5},

x = (2,2) and T = T I. Then if A is the subset indicated by

l's in Figure 2(a), one sees from Figs. 2(c) and 2(d) that

T[1,(A)] .

111 00 00000 111 00 00000

1 1 100 01110 11100 00100

1 1 1 0 0 0 1 110 1 1000 0 111 0

00000 0 1 110 00000 0 0100

00000 00000 00000 00000

A T(A) Y(A) y[T(A)]

Fig. 2(a) Fig. 2(b) Fig. 2(c) Fig. 2(d)

%I
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4. Underlyinq Statistical Considerations. Suppose that the

true input data d*: X .... > L has been corrupted by additive or

multiplicative noise so as to produce an actual input d :X L.

One wants to construct a flat filter F that somehow smoothes the

noise without blurring the picture. Thus at each level h, one wishes

to estimate

A h = Ix :d*(x) < h}

by means of looking at

Ah = {x: d(x) < h}.

Hopefully, F(d) will provide a good estimate of Ah by way of

{x (Fd)(x) < h}.

To put the problem in a specific framework, suppose that Ah and

Ah are related by the assumption that for some fixed a priori proba-

bility p (p > 0.5) one has

A*

(SI) x - h > x , Ah with probability p,

(S2) x I A* .. > x I Ah with probability p,

and that these probabilities are independent of the location of x.

The goal is to define y on P(X) so that

(1) is isotone

(2) y somehow maximizes the probability of correct classification

of points. In other words, in sone specific sense we wish to maximize

the a posterior probability that
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(a) If x Y(Ah) then x . Ah and

(b) If x v' Y(Ah) then x / Ah.

In view of the discussion of 3, it seems reasonable to restrict

.. our attention to translation-invariant, point-based isotone mappings

having a fixed system {N(x) :x , X) of neighborhoods of points

Because of this, we need only consider a fixed point x for which

N(x) f {x', and the mapping ) :P(N(x)) -- > {0,1 defined by

Ix(A) 1 > x c (A)

for A _ N(x).

For a given subset Ah of X, one can define a probabilit)

measure p' on N(x) by the rule that for A c N(x), p'(A) sLall

be the probability of observing A, given the true input data

Ah ,, N(x). For example, if N(x) is a 3 by 3 neighborhood cen-

tered on x, if Ah n N(x) and A are given by the matrices

ll~ 0 l 1

011 and 000

000 001

where 1 denotes membership in a given set and 0 membership i~i its

complement, we have p'(A) = p5 (l p)4. A numerical measure o" the

ability of x to distinguish between Ah and its complement is

provided by the gain G(yx). For x Ah , this is defined to be the

probability that for a randomly chosen subset B of N(x), x() 1;

I -'-
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added to the probability that if the true input data were the complenent

of Ah' we would have x (B) = 0 for B a randomly chosen subseL of

N(x). In connection with this it is convenient to let

F = {B :B N(x) , y (B) = 1}
__ x

It follows that

G(y ) Z{p(A) :A T

+ Z{p(N(x)\A) :A E Fy}.

The reason for this is that if p" is the probability measure associ-

ated with the complement of A then for B

p"(B) = p'(N(x)\B).

One may now search for those mappings y such that x has maximal

gain for a given type of input data. The search is aided by the fol-

lowing result:

Theorem 11. Let p' be a probability measure defined on N(x).

Suppose p' has the property that

(1) for A , N(x), p'(A) f p'(N(x)\ A), and

(2) if p'(A) > p'(N(x)', A) and if A c B _ N(x), then

p'(B) > p'(N(x)\ B).
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Define 1' (N(x)) ... ' {O,l1 by the rule
x

- } 1 p'(A) > p'(N(x) \A)
- 2' (A ) 

0 otherwise

'Then Y is isotone; furthermore, G(yx) > G(,") for any other isotone

mapping y" -> {O,lT.
x

0 Proof: The fact that )' is isotone comes from condition (2) of the

theorem. The assertion regarding G(y'x) > G(x) follows from an

examination of the sets T,, F I T and F Any changes in
Y Y

the sums for G(y) and G(y") must clearly come from members ofx x

(T F ,,) u (T ,, n Fy ).

For A E T n F ,, the term in G(yx) corresponding to A is p'(A),
Y Y x

while in G(y") it is p'(N(x) \A). By construction of ', we

have p'(A) > p'(N(x) \A). Similarly, for B E T n F the term

in G(y') is p'(N(x) \B) while the one in G(y") must be p'(B).

Again by construction of y' , p'(N(x)\ B) > p'(B)

" Corollary 12. If N(x) _Ah and k = #N(x) is odd, then the

mapping Yx described in the theorem is given by

Y (A) = 1 if k/2 < #A.

.- -, -" C : , - ' , .? ., ' -" " "- -> > , .- -- - - .- . , - --. -. - - -. --- -. .. . ' . - -. . . " - '
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Remark 13. The mapping in Corollary 12 nay be imiplemented by

means of applying a suitable median filter Lo d. This says that

within the framework of the current model, the best way of smoothing

noise in the interior is to use a median filter.

The paper will conclude by carefully examining the situation

where N(x) is a 3 by 3 win~dow centered on x. The members of

Ah will be denoted by I's, those of its complement by 0's, and w,

shall restrict our attention to a fixed x. Notice that the mapping

produced by Theorem 11 is necessarily complement preserving. This is

desirable because one wants the output of a filter to be independent if

the polarity of the input data. In view of this, we shall concentrate

on input data for which x r Ah and assume that 5 < #(N(x) n Ah). We

shall begin by looking at 5 types of input data. They will be denoted

type i (i =0,*1,2,3,4), according to whether or not N(x) has

i = 0,1,2,3, or 4 members of X \Ah Before doing the theoretical

analysis, let us examine some calculated probabilities of correct clalsifi-

cations. This is done in Table 3. There are two items of interest hare.

For the type 4 case, the filters all seem to decrease the probability of

correct classification. This is hardly surprising since in this instance

the 8 immediate neighbors of the given pixel all have equal chances of

representing members of Ah as opposed to its complement. Thus no

additional information can be obtained by looking at the 8 neighbors of

- .;x. The second observation is that in the type 3 case the answer seems

to depend on the numerical value p of the a priori probability of

correct classification.
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Prob. TYPE

Correct Method 0 12 3 4

.9 A .9991 .9954 .9787 .9128 .7071

B .9962 .9861 .9590 .9112 .8717

C .9914 .9515 .9104 .9014 .8980

8 A .9804 .9529 .8944 .1839 1.6079

B .9584 .9233 .8736 .8150 .7487

C .9.006 .8564 .8212 .8046 .7929

.7 A .9012 .8467 .7715 .6747 .5606

B .8576 .8125 .7629 .7100 .6519

C .7757 .7450 .7222 .7057 .6906

.6 A .7334 .6870 .6367 .5833 .5280

B .6963 .6661 .6354 .6043 .5722

C .6374 .6250 .6139 .6036 .5936

Method A. x )A(Ah) if 5 < #Ahn N(x).

Method B. x E )B (Ah) if 6 < #Ahn N(x) or if

#Ah n N(x) {4,5} and x ( Ah

Method C. x C ,c(Ah) if 7 < #A h nN(x) or if

#(A n N(x)) {3,4,5,6} and x Ah

Table 3. Probabilities of correct classification.

"' '" -" .- ,. .- • - .- - ' .. '; - .-' .- .. ' -, .. -' - , - - -- -- . . . . , - - '- - • " . - - • -
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One can bring Theorem 11 to bear on the prob ler by siJ ply ai I-

culating probabilities of occurrence of each of the 2 possibL1e

subsets of N(x), given the a priori assumption regarding the nature

of A N(x). This has been done but the rather tedious details
h

will not be repeated here. Rather, we shall simply list the results

in Table 4.

---

DATA Best Isotone

TYPE Method

0 TA of Table 3

A of Table 3

2 of Table 3

3 There is a critical value pO of p(.8958 pO .9000)

such that for p pO , 'A is the best method and ior

p < PO' B of Table 3 is best. p0  is determined ty

solving the equation p = x(l - p) where x is the "oot
;""6 5_ x2

of the equation x - 9x + 6x 24x + 6x - 4x + 1 0

lying between x = 8.6 and x 9.

*". 4 x y(Ah) if x Ah

l..il Ih

Table 4. Summary of "best" flat filters based on 3 by 3

neighborhoods.

.'°
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Up to this point it has been assumed that the center pixel x

was a member of Ah , and that any other members of N(x) Ah

were randomly scattered through N(x) \ fx . The situation changes

dramatically if more information is known. To see this, note that.

N(x) consists of three data types as indicated below:

c b c

b a b

c b c

The center pixel is type a, its North, South, East, West neighbor.

are type b, and the remaining four corner pixels are type c. Our

basic assumption will now be that x , Ah , and that we know the num-

ber of type b as well as the number of type c pixels that are in the

complement of Ah, but not their precise location. Thus a data type

may be specified by an ordered pair of integers that denotes the

number of pixels of types b and c that lie in the complement of

A For example, data type (1,2) indicates the presence of one type

b pixel and two type c pixels in the complement of Ah. The cal-

culations inovlved in applying Theorem 11 are again tedious, so they

will be omitted. By way of illustration, however, the type (0,I) -

case will be considered in some detail.

Recall that p denotes the a priori probability of the input

data being correct, and set q I - p. The probability of observing

variour numbers of l's in the corners is then seen to be

__

. % '°.--. . .'. "'.



6'1s Probabilities

22 4 P 3q

3 4

2 3p ql + 3pq

3p 2 q2 + q4

3
0 pq

Since by assumption the type a and b pixels all lie in Ah, ,hey

can be lumped together into a single category. There are now

6 - 5 = 30 data types to analyze. This involves examining 15 pairs

of subsets. But this can be cut down to 6 pairs if one realizes

two things:

1. If there are more l's than O's in both data types, the

result is clear.

2. If there are two l's in the type c data, then the de-

cision rests entirely on the type a and b.
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DATA TYPE

A N(x) \A p'(A) p'(N(x) \ A)

P6 3  3 6(5,0) (0,4) q

(4,0 (1,4) p5q4  p4q5

(3,0) (2,4) p4q5  p5q4

(5.1) (0.3) p5q4 + 3p7 q2  p4q5 + 3p q7

(4,1) (1,3) p4q5 + 3p6 (13  )q + 3p3 6

(3,1) (2,3) 3p5q4 + p3q6  3p4q5 + p6q3

NOTE: The dots indicate the higher of the two probabilities, in

each row.

The actual results are summarized in Table 5.

*::-



-DATA TYPE BEST ISOTONE METHOD Ix(A) I if

(0,1) 6 #N(x) A or

5 = #N(x) A unless N(x) A is type (1,4) or

4 #N(x) A provided N(x) A is type (4,0)

(0,2) A N(x) has at least 3 members that are type a or b

(1,2) Same as (0,2)

(1,1) 6 " #N(x) n A or

5 #N(x) f, A unless N(x) A is type (0,1,4) (1,r

(0,4,1)

4 #N(x) n A provided N(x) r A is of type (1,3,0)

or (1,0,3).

NOTE: The types (1,0), (2,0) and (2,1) are handled by symmnetry

Table 5. Summary of "best" flat filters based on 3 by 3

neighborhoods.

.4

.
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As a final item, let us see how well the "best" flat filters do w th

various types of data.

DATA A PRIORI PROBABILITY OF CORRECT DATA
f- r--~ ------ - - ---- -

TYPE .9 .8 .7 .6

(0,0) .9991 .9804 .9012 .7334

(0,1) .9957 .9545 .8498 .6886

(0,2) .9914 .9421 .8369 .6826

(0,I) .9802 .8979 .7715 .6371

(I,2) .9526 .8499 .7311 .6134

Table 6. A posterieri probability of correct classification for

data of given type using "best" filter method as speci-

fied in Theorem 11.
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