Bcit Beranek and Newman inc. 1: 11

AD.A /3¢ /oA 2

Report No. 5421

Research In Knowledge Renresentation
For Natural Language Understanding

Annual Report
1 September 1982 to 31 August 1983

Prepared for:
Defense Advanced Research Projects Agency

Unclassified
SECURITY CLASSIFICAT ON OF TNIS PAGE (Whon Dete Entered)

REPCRT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

[T, REPORT NUMBER 2. GOVT AGCESIION NO
BBN Report No. 5421

:,hr“-.""’z‘/’ J) C/ /4

RECIPIENT'S CATALDG NUMBER

)4'
o~

4. TITLE (and Subittte)
RESEARCH IN KNOWLEDGE REPRESENTATION FOR

NATURAL LANGUAGE UNDERSTANDING
Annual Report
1 September 1982 - 31 August 1983

S. TYPE OF REPOART & PERIOO COVENED

Annual Report
9/1/82 - 8/31/83

PERFOAMING NDARG. REPOAT NUMBER
BBN Rerort No. 5421

7. AUTNOR(e)
Sidner, C., Bates, M., Bobrow, R., Goodman, B.

CONTRACY OR GRANT NUMBER()

Bolt Beranek and Newman Inc.
10 Moulton St.
Cambridge, MA 02238

N00014-77-C~0378
Haas, A., Ingria, R., Israel, D., McAllester, T. /
Moser, M., Schmolze, J., Vilain, M.
9. PEAFORMING ORGANIZATION NAMT AND ADDRESS 10, PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBE RS

11, CONTROLLING OFFICE NAME ANO AQDRESS
Office of Naval Research
Dept. of the Navy

. REPQOART OATE

October 1983

. NUMBER OF PAGES

234

Arlington, VA 22217
. MONITORING AGENCY NAME & ADDRESS(I! dilferent irem Ceontrelting Otllice)

. SECURITY CLASS. (of thie report)

Unclassified

§a. DECLASSIFICATION/ DOWNGRAGING

SCnEOuULE

76, DISTRIBUTION STATEMENT (of thie Reporr)
Distribution of this document is unlimited.

public.

It may be released to
the Clearinghouse, Department of Commerce, for sale to the general

. OISTRIBUTION STATEMENT (of the sbetract entered in Block 20, 11 ditforent (rem Repert)

. SUPPLEMENTAY NOTES

pretation, reference, miscommunication.

. RKEY WORDS (Continue on reveres side If necessary and identily by Mech number)
Artificial intelligence, natural language understanding, knowledge
representation, semantics, semantic networks, KL-ONE, NIKL, belief
and knowledge, reasoning, RUP, syntax, parsing, noun phrase inter~-

30. ARSTRACT (Centinue an reverss olde 1l neceseary and identily by bleck number)

“7BBN's ARPA project in Knowledge Representation for Natural Language
7/

Understanding is aimed at developing .echniques for rendering computer-
based assistance to a decision maker who is attempting to understand and
react to a complex, evolving system or situation. The decision maker's
access to the situation is mediated by an intelligent graphics display
system, which is controlled largely through natural language input. The
work during this past year falls into two main categories: fungémengglﬁ-)
cont'd...

>/[X ¥ o

FORM
JAN T3

1473

COITION OF | NOV 6S 18 OBSOLETE Unclassified.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Unclassified.

N

- >,

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)
——

20. Abstract (cont'd.)

problems in know.edge representation and reasoning, and fluent natural
language understanding. In this report, we first give a brief over-
view and summary of the activities of the project during the year.
This is followed by a series of detailed presentations of research in
particular areas. In addition, we document publications and presenta-
tions by members of the research group.

Uncl

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entersd)

s

‘!

Report No. 5421 Bolt Beranek and Newman Inc.

iy
&a

RESEARCH IN KNOWLEDGE REPRESENTATION
FOR NATURAL LANGUAGE UNDERSTANDING

s
it
il

Annual Report
1 September 1982 to 31 August 1983

October 1983

Prepared for:

Loty

Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209

51)

%5 ARPA Order No. 3414 Contract No. NO0O014-77—C-0378
- Effective Date of Contract: Contract Expiration Date:

g 1 September 1977 30 September 1984

”

This research was supported by the Advanced Research Projects Agency

m of the Department of Defense and was monitored by ONR under Contract
;? No. NO0014-77-C-0378. The views and conclusions contained in this
* document are those of the authors and should not be interpreted as
necessarily representing the official policies, either expressed or

§§ implied, of the Defense Advanced Research Projects Agency or the U.S.
4 Government .

|

L
1 L
% Al

Wt
4

[ww.a*“*"

i

Report No. 5421

SZCTION 1.

SECTION 2.

SECTION 3.

SECTION 4.

SECTION 5.

TABLE uF CONTENTS

Bolt Beranek and Newman Inc.

Page
INTRODUCTION 1
AN OVERVIEW OF NIKL, THE NEW IMPLEMENTATION OF KL-ONE 7
KL-ONE: SEMANTICS AND CLASSIFICATION
3.1 Introduction 27
3.2 A Brief Introduction to the KL-ONE Language 28
3.3 Syntax of the KL-ONE Language 30
3.4 Using KL-ONE 32
3.5 A Semantics for KL-ONE 33
3.6 A Definition of Subsumption 34
3.7 The Classifier Algorithm 35
3.8 Conclusion 38
KLONEDRAW — A FACILITY FOR AUTOMATICALLY DRAWING PICTURES OF 41
KL-ONE NETWORKS
4.1 Use of the Mouse 42
4.2 Functional Interface to KLONEDRAW 43
ASSERTIONS IN NiKL 45
5.1 Introduction 45
5.2 The old assertional system 46
$.3 Problems and Proposals 49
5.4 RUP, the svstem underlying PENNI 53
5.4.1 The RUP truth maintenance system 53
5.4.2 The RUP equality system 57
5.4.3 The RUP noticer compiler 63
5.5 The PENNI System 67
5.5.1 The PENNI-NIKL interface 69
5.5.2 An example involving classification 72
5.5.3 An example involving subsump'ion 75
5.5.4 An example involving roles 77
5.5.5 What do these examples have in common? 78
5.6 Conclusion 78

i WL - " -

.....

-

Bolt Beranek and Newman Inc. Report No. 5421
Page
SECTION 6. BELIEF AND KNOWLEDGE IN ARTIFICIAL INTELLIGENCE

6.1 Representation and Search 81
6.2 Some Inferences Abcut Belief and Knowledge 83
6.3 The Situation Theory 90
6.4 The Syntactic Theory 93
6.4.1 A Robot and His Beliefs 93
6.4.2 Formalizing the Syntactic Theory 95
6.5 Applying the Syntactic Theory 103
6.5.1 Observation 103
6.5.2 Inference 113
6.5.3 Knowing What 128
6.5.4 Knowing How 131
6.5.5 Belief and Truth 135
6.6 Further Work 139

SECTION 7. A TRANSPORTABLE NATURAL LANGUAGE INTERFACE

7.1 Introduction 143
7.2 Overview of IRUS 145
7.3 The RUS System 147
7.3.1 The Grammar 148
7.3.2 The Parser 149
7.4 The Database Interface 150
7.5 Conclusions and Future Directions 152
SECTION 8. PROGRESS REPORT: THE RUS SYSTEM 15%
8.1 Introduction 157
8.2 The Dictionary 157
8.3 Lexical Acquisition 160
8.4 Documentation of RUS 161

SECTION 9. THE PRAGMATICS OF NON-ANAPHORIC NOUN PHRASES

9.1 Introduction 163

9.2 Setting the Stage: Previous views on defnps and 168
a—-indefinites

9.3 Distinctions in the use of defnps and a-indefinites 174

9.4 Recognizing Uses of A-Indefinites 185

9.5 Interpreting Defnps 192

9.6 Looking Ahead 200

- - s

. = = R - " T, ta o = 272 20
s e e S P i Tl o « S
= O i « %
R T A e

""..Mm LJM&A'A;H'MQL-MML U WL P WAL PTG SO T Rl Pl S
o e

el
1} Report No. 5421 Bolt Beranek and Newman ‘nc.
1
Page
Q% SECTION 10. REPAIRING MISCOMMUNICATION: RELAXATION IN REFERENCE
¥
; 10.1 Introduction 205
" 10.2 The Domain 208
}ﬁ 10.3 The Knowledge Transferred in an Utterance 209
e 10.4 The Kinds of Problems 211
10.5 Knowledge for Repairing Descriptions 212
| 10.5.1 Linguistic Knowledge in Reference 213
53 10.5.2 Relaxing a Description Using Linguistic Knowledge 215
10.5.3 Perceptual Knowledge in Reference 215
= 10.5.4 Relaxing a Description Using Perceptual Knowledge 218
e 10.5.5 Discourse Knowledge in Reference 219
< 10.5.6 Hierarchical Knowledge in Reference 219
10.5.7 Relaxing a Description Using Hierarchical Knowledge 221
%ﬁ 10.5.8 Trial and Error Knowledge in Reference 221
10.6 The Relaxation Compcnent 222
10.6.1 Find a Referent Using s Reference Mechanism 223
?i 10.6.2 Collect Votes For or Against Relaxing the 224
ig) Description
" : 10.6.3 Perform the Relaxation of the Description 224
E 10.7 Conclusions 228
SECTION 11. PUBLICATIONS 233
"

B 10 e SR R RS RN N L o S S A T L .

- P Y
BT st i TP P SN SN S S P
=N BN NI VUN g SRR WU B S SO S

- - - - - -t « " . o . - - E - o oy 2, . - -
ST R NN Y BT " e o [PR TR SPR P SPON S S, N S e P M e B G g S

L |

e
[-‘
- o

¢

Report No. 5421 Bolt Beranek and Newman Inc.

..

1. INTRODUCTION

!g BBN's ARPA project in Knowledge Representation {for Natural Lenguage
Understanding is aimed at developing techniques for rendering computer-based

assistance to a decision maker who is attempting to understand and react to a

-
A

&
B

complex, evolving system or situaticn. The decizsion meker’'s access to the

situation is mediated by an intelligent graphics display system, which is
o controlled largely through natural language irput. A typical and motivating

Eﬂ i that

instance is of e military commander in a commend and control context,
] ejther of strategic situation assessment or of more tactical crisis
management. _ In such situations the commender requires a flexible and easily
controllable system capable of menipulating large amounts of data and, most

importantly, o¢f presenting information in a variety of forms suited to the

user's expressed or inferable needs and capacities.

A displey system of the kind envisaged would have the capacity to present

information in tebular, graphical, textual, and perhaps cartographic forms.

The user of such a system must be able to monitor, add, change and delete
information and, independently, to create and alter the various
representational foras. Moreover. for the system to be truly flexibie and
adaptive, it must maintein models of the domain (situation) being represented,
of the representational systems at its disposal, and of the user’'s conceptions
of these domeirs, situations, and systems of representation. For this last
purpose, the system nust also be able to construct models of its interactions

with the user.

G D .- -, - = = = = . T
s oA_tw = e Te e “y -

.
~

5 = LI LTl Tt = N ..
R it e a w te T - T - - - = A
Tt s Al s e e R A et e A A A B e St Tt al T

B WA

Bolt Beranek and Newman Inc. Report No. 5421

On the basis of these different kinds and sources of information, the
system must produce intelligible and appropriate displays 1o response to
high-level descriptions and commands. That is, the commander can usually be
expected to request a presentstion of certain aspects of the situation or
system being monitored in terms appropriate to the domsin itself and not in

terms of display forms. Even when the request, explicit or impliec1t, |is

expressed in terms of display forms, the specification will typically be at a
level of abstraction appropriate to the commander’'s purpose - not to thuse of
a graphics system designer or programmer. The system must be able to accept a
description of the information to be represented together with an abstract

specification of a display-type and then it must irtelligently determine the

T 1l o B 3 W W W N

details requireq actually to produce an effective dsiplay. Finally, given

information about the user's knowledge of the situation being monitored and

f his particular concerns with respect to it, the system must, in some cases, be
able to infer what kind of display a user might went to see, producz it and

monitor the user's response to its initiatives.

The crucial requirements for a medium of communication with stuch a system
are robustness, flexibility, the ability to express specifications while
abstracting from details of various kinds, and the abilily to eXxpress
conceptualizations of both the presented domain and the modes »f display in
ways that match a user's conceptualizatinn. By far the most natural form of
eccess to and contr i over such a system for most users vill be through the
use of natural language input. Hence a major focus of our research has been
the design of a system powerful enough to represent @he content of natural

language utterances together with facts about the user's beliefs and goals as

el o wlpln oL b e et A

e |

~

g

23 Report No. 5421 Bolt Beranek and Newman Inc.
;ﬁ these are communicated in the user's interactions with the system. Such a
§§ representational formalism must also express. in usable form, information
'! about the domain or situation being monitored and the nature of the display
;é gsystem itself.

22 The development of the KL-ONE knowledge representation system has been a
g: significant result of this aspect of our effort. KL-ONE has generated a great
& deal of interest in the research community and has been adopted by a number of
%3 groups. 11t hLas been transported to & variety of architectures and programming
- languages; v °sions of it have been implemented in SmallTalk, on various Xerox
%é processors, ari in Franzlisp for the DEC VAX series and other DEC machines.

The most complete implementations are in lnterLISP on the PDP-20, the BBN

Y
4

Jericho and the Xerox Dolphin.

o

’l
S Sy

Over the last two years, the development of .~ONE has been greatly

enriched by cooperation with the ARPA sponsored Consul group at 1S1. Indeed,

L

the major activity this year in knowledge representation has been the

§§ re~design and reimplementation of KL-ONE, a joint activity of the BBN and ISI]
0 groups. This effort has resulted in NIKL — & New Implementation of KL-ONE.
ii N1KL represents a significant streamlining and simplifying of the KL-ONE

. system - without significant loss of expressive power. The system has been,
§§ as hoped, much easier to comprehend, to implement and to debug. Moreover,
=3 ., there is a simple enough mapping between KL-ONE constructs and NIKL constructs
R to guarantee continued applicability of the descriptions and analyses of the
Qﬁ KL-ONE system and to allow us to continue using essentially the same graphical

notation for publication.

LA R T B A T TP S W) 2t . .

. - - e e v T - . .
e St S Pt ¥ . - o S
il

g M R | Bl . .- = .=, . T w iy + Tt . Q.0
F S, G . Y e TP T Y S iy PG SN, e S G U WD PAL IPNF.JPRE SIS T TN D TR N A e e Tm o malex

-

-

s

Bolt Beranek and Newman Inc. Report No. 5421

PEMFPLLT 3

Y WY PO

The first two papers in this report are devoted to the knowledge
representation system. The first pres2nts an introduction to and overview of
the new KL-ONE system; the second contains a semantic account of the core of
the system and, based on that account, a description and analysis of the
classification algorithm. These are followed by a short description of the

tacility for automatically drawing KL-ONE networks.

One crucial feature of NIKL is that it was designed, and 1is being
implemented, explicitly with the intent that it be interfaced with an
assertional {formealism which includes data structures for propositions,
predicates and terms and algorithms that realize powerful, but controllable,
inference procedures over those structures. As a first step, we have chosen
to connect NIKL with RUP (Reasoning Utility Package), a truth maintenance
system developed by David McAllester cf MIT. This decision has meant that a
number of KL-ONE constructs which were designed specifically to handle
assertional phenomeana have disappeared from NIKL, only to reappear in RUP
- or, more accurately, in the NIKL-RUP system. The fourth paper is a

description and analysis of the RUP-NIKL interface.

One of the tasks of a system of the kind envisaged is the maintenace of a
model of the user, in particular of his/her beliefs about the situation being
monitored, about the display system itself and about the history and current
state of his/her interactions with that system. The problems that arise in
representing the mental states (beliefs and desires) of agents in ways that
can be used to predict and explain their actions are highlighted in a

situation in which the user is presumed to be communicating his beliefs and

P e S R S I A TN IR, B L R, N WPl Yol T Dy O S e S S e . Sy e S Sy W

R Y

.
it

it

L

el

L)
"

gy

e

o
»

o

il

-

AW
i B

e

.

Report No. 5421 Bolt Beranek and Newman lInc

desires to a comnputational artifact through the medium of a high-level,
implementation independent language. The fifth section of the report presents
an attempt at a uniform treatment of a large number of these issues, a
treatment based on the idea that sentences in a formal language are usefui

representatives of the contents of agents’' menta: states.

The work on knowlcdge representation has been motivated by the task of
designing an intelligent computational assistant to a decision-maker who
communicates with the system in English. An essential component of the
overall system is a gremmar-parser formalism adequate to a rich fragment of
English and able to produce appropriate structures on which to base semantic
interpretation. The RUS parser and the PS1-KLONE (now PS1-NlKL) system for
semantic interpretation afford us these tools. RUS, 1like KL-ONE, has been
adopted by a number of research projects with a wide variety of domains. A
major effort this past year has been directed at making RUS more accessible to
users and investigating its application in other contexts. A significant
result of this work has been the development of 1RUS (Information Retrieval
Using RUS), a natural language interface transportable to a variety of
database systems. The seventh chapter in this report contains a descriptionr

and analysis of IRUS, and the eighth provides an update on the status of the

basic RUS system.

In any natural language understanding system, a crucial issue is the
treatment of the different kinds and uses of referring expressions. The ninth
section of the repcrt presents a systematic analysis of certain central uses

of both definite and indefinite noun phrases. One phenomenon treated in this

Bolt Beranek and Newman Inc. Report No. 5421

T IR

analysis is that not all uses of referring expressions are intended to direct
or even allow the hearer to fix on a particular object as the refereﬁt of the
expression. The tenth section of the report analyzes a ranges of cases in
which that is the speaker 5 intent but in which, for a variety of reasons, the
hearer is unable to fix on the object that the speaker has in mind. A system

for handling such cases of miscommunication is described and motivated.

The last section of the report contains a list of publications in which

other aspects of our research over the pai* year are presented.

-~ + 2T 2t o s
N . T S e P LT T R L .

Report No. 5421 Bolt Beranek and Newman Inc.

2. AN OVERVIEW OF NIKL, THE NEW IMPLEMENTATION OF KL-ONE

M. G. Moser

KL-ONE is a tooi for forming conceptual descriptions, allowing the system

HIGEAP;

using it to construct a knowledge base representing the beliefs of a reasoning

o
g

it

%45»

entity. New descriptions can be formed with a small number of operations to

combine and relate those already in the knowledge base or they cen be

-

?: introduced as primitves. This paper is an overview of the s’ructures and how
- they interrelate in the latest implementation of KL-ONE, New Implementation of
§§ KL-ONE or NIKL.

= .

ll There are several interfaces to KL-ONE for building a knowledge base, or
o KL-ONE net. One of these, JARGON, was developed to investigate the idea ihat
iﬂ certain English syntactic structures are natural expressions of the semantics
!! of KL-ONE structures. JARGON is only partially implemented, and its language
-y will be used in thiz overview to clarify examples. The complete interface,
éi CKLONE, allows wusers to define, name, update, and file KL-ONE Concepts using
e LISP forms. Typically, CKLONE is used to build a KL-ONE network for a

|8y "

l' T ¥

particular Jomain and the domain application system will access the network

using PENNI, a separate assertional language.

l\‘ £yt
eyl

A KL-ONE Concept is depicted with an ellipse to which depictions of the

various structures used to describe that Concept are attached. Each Concept

represents a class of things in the world of concern. We wusually ncme a

Concept after the elements in the set it denotes. Figure 1 shows a Concept

o PR N A . - a e T Mt At Tt SIS o T T e T - L I R Y
* Tyl] N g [SR » R - < = ¥ e

2 o e B R D A S et . tar, M N . 2
% £ Sl B S = e Taa

AT . * - . k) -
- . " " - 0 o A e 1] OGO a2 D, 2" . - 6o
P P P P o L N iR NI WL S R P W W PR PR L SRR PR RS A B el

| Bolt Beranek and Newman Ilnc. Report No. 5421
FI1G. 1. |C|ANIMAL
named "ANIMAL" that denotes the set of all animals. |C|concept-name is used

to denote a KL-ONE Concept structure we have named “concept—name’.

Every KL-ONE network includes a Concept that is defined to represent the

super-class of the classes denoted by all other Concepts. We call this Concept

"C=TOP”, or sometimes “THING"”.

1f we simply essert that there is some Concept called ANIMAL without
describing this Concept further, we have established some sub class c¢f the

class represented by |C|THING, as shown in Figure 2. '

Vi

AN ANIMAL IS A THING.

CORT e ; P <. s, Ve e s o
= *m L s Tom T oot = R f

F L <. 2 ' | A5 3% CRL IS N TP R I PR oty ., - S
e B Pt ol BTN N Pt | B R P SOE S VLN S RN B SR RS - e S e B e K F Ko S mPn T

Report No. 5421 Bolt Beranek and Newman Inc

2

The arrow in Figure 2 expresses that |C|THING subsumes, or is a SuperC

St
[

of, |C|ANIMAL and that |C|ANIMAL specializes, or is a SubC of, |C|THING. When

one Concept is a SubC of mmnther, it denotes a subclass of the class denoted

gg by its parent. In terms of a frame system, a Concept would correspond to a
3 frame and its relationship to its subsumers would correspond to an is-a link.

A SubC will inherit all the components of its parents ard will have one
;ﬁ essential component that distinguishes 1t as a specialization of its parent.
i:.,

£3

(We have not yet established the specializing component for |C|ANIMAL.)

The collection of Concepts is organized into a taxonomic net (See Figure

l‘“‘:“.!

v

3). Adding a concept to the net requires installing it in the taxonomy.

2

Because Concepts derive much of their meaning from their SuperCs, it is

crucial that each Concept be installed under the most specific Concepts

possible and subsuming the most general Concepts possible. This is the job of

4l

)

vl the KL-ONE classification operation.
!g There is an important distinction to be made between definitions of terms
fi and statements about things represented by those definitions. Our Kknowledge
-
i base is definitional. Each Concept represents some class of things we want to
"

make assertions about. It may be thought of as a logical predicate, a complete

)
3

s ¥
.

specification of the necessary and sufficient conditions for membership in the
class represented. Each member of this class is called an instance of the

Concept. Concepts are definitional while instances are assectional.

For systems to use an existing KL-ONE network, there is a companion
assertional system for KL-ONE, PENNl. PENNI reasons about individuals (i.e.,

instances of Concepts) of interest to the current domain application.

- 0D 8 o o e oCe S0 0
P g . o~ g .
e N e R A AR A A s i At latata i sanadkatmlata i daha e

Bolt Beranek and Newman inc. Report No. 5421

FEMALE-
ANIMAL

FIG. 3. An ezample KL-ONE tazonomy

Assertions are made in terms of the structures in the KL-ONE network, and

consistency among assertions is maintained.

There is a class of terms we would like to be able to represent in our
knowledge base but which cannot be fully defined. Natural kind terms, such.as
person or elephant, cen oqu be described. Such Concepts can be created in
KL-ONE and their relevant properties described, but a PrimitiveClass marking
must Dbe assignea to indicate that there is some distinction between the new
Concept and its subsumers which is not defined within the knowledge base. A

PrimitiveClass' marking for the Concepts in the ANIMAL taxonomy of Figure 3 is

10

- = . R T T e et “ -
W -, B ST T T =
...........

"

o
"
[
fn
¥
!. b
L
lf
hI
b
‘l
’!
r
-
)
P

R g N e e R I PR A T
RoTPTP - By Vo B S LISIPEICI B PO =S TS SRS e S

Sri W
T

Report No. 5421 Bolt Beranek and Newman Inc.

indicated with a "*". The KL-ONE components which could specify the Concepts

g(not marked with a “*" will be introduced shortly.

This PrimitiveClass is an important component of Concepts whose KL-ONE
structure provides necessary but not sufficient criteria for membership in the
:1 class they are representing. Marking a Concept with a PrimitiveClass

indicates that membership in the class represented must be established in some

N

{ﬂ way external to KL-ONE. Other Concepts will not be subsumed by a Primitive
s Concept unless explicitly stated. This allows natural kind Concepts to be
Bt

ég included in the knowledge base and to be treated like defined Concepts.

The classifier is only concerned with the presence or absence of a
PrimitiveClass, the value and structure of the PrimgtiveClass marking can be
anything the system choses. It may contain information for the system to wuse
to determine if it should explicitly state something is subsumed by the

Concept, such as a function name.

Some Concept descriptions are so specific they have only one instance in
our world of interest. We think of ‘hese as Individual Concepts, vhile those
with multiple instances are thought of as Generic Concepts. Although the
distinction between individual and generic Concepts is assertional in nature,
KL-ONE allows the system to mark a Concept as being individual. This marking

is for the convenience of a system accessing a KL-ONE network and is ignored

by KL—ONE.

KL-ONE nets are built incrementally. We can not expect that the

knowledge base be coherently and systematically described in its entirity at

11

L e e S
- - R . ! 3
e O IO S PSS P SN, NP AP Sl J NS JOE-.. T S A= S. V0L NG -2 WA JLEE IR0 THPLENFLIE SR L R N

Bolt Beranek and Newman Inc. Report No. 5421

one time. There is an infinite number of conceptual specifications possible,
and the current taxonomy is a small selection from them. Relevant
generalizations and specializations of Concepts will become apparent both as
the network is being built and as it is being accessed by PENNI. For instance,
it might be useful to define |C|LI1VING-BEING which would subsume |C|ANIMAL and
|CIPLANT in our example, and }|C|MAMMAL which would be betyeen C|ANIMAL and
|C|PERSON. These new Concepts could be added as the network was being built or

as it was being used.

Since our ¢*axonomy must evolve independently of the order in which
Concepts are described, we must be abie to install new Concepts anywhere in
the taxonomy, i.e. to ciassify Concepts. A new Concept is described by
building a ConceptSpec which is then installed in the taxonomy by the
classification operation. Once installed, no more components may be added to
that Concept, although it may be generalized and specialized by the

classification of other ConceptSpecs.

Ia addition, there are several components which express interesting
things but which are not used in classification. That is, any inferences that
could be made on the basis of these components are not used by the classifier.
These may be added to a Concept description before or after it is installed
because they will not affect a Concept's place in the taxonomy. These things
include Indiﬁidual marking, explained above, and DisjointnessClass, Covering,

Data, IData, and lnverseRole, all to be discussed later.

The nemes we choose are only convienent labels for our Concept

descriptions. KL-ONE maintains the structure of the network, leaving the

interpretation of that structure to the system accessing it.
12

ey .

=

s -
]
|

Report No. 5421 Bolt Beranek and Newman lInc.

,s
5,

l Roles are KL-ONE entities which represent logical associations between
P Concepts. A Role describes an aspect or property of one Concept by relating
b

it to a'nother Concept. As the functional notation in Figure 4 illustrates, a
1 Role is formally a two place relation whose domain and range are represented

by Concepts. To expand the frame analogy, the slots of a frame would be

o similar to Roles.

3 A Role maps each instance of the domain Concept into a set of instances
of the range Concept. An instance of the range Concept is called a filler of

; o

5 the Role for the appropriate instance of the domain Concept. A Role actually

N represents a set of fillers for each instance of the domain Concept.

PART-TIME-
ACTIVITY

l] FIG. 4. 4 PERSON HAS PL' HOBBY WHICH ARE PL PART~-TIME-ACTIVITY.

PART-TIME-ACT1VITY = HOBBY(PERSON)

A KL-ONE Role is depicted with a square enclosed by a circle. Figure 4
denotes a relation, called "HOBBY", which, for every instance of |C|PERSON
o describes a set of instances of |C|PART-TIME-ACTIVITY. Roles, like Con'cepts,
are labeled by the network builder to indicate what the structure represents.

[Rirole-name is used to denote a KL-ONE Role structure we have named

"role~name”.

'Nouns are pluralized in JARGON by using the special morpheme "PL".

13

..... T) R PENER - -

LR g g R S T S B S e i A D R e)
o . B ., o w . AT e e a LN g
P o L N A P WA T I T S0 o U N e S NP . (i P, S U U0 W U SUG RN SR S S g W

.
Py

g s T — i O A T .

Bolt Beranek and Newman lnc. Report No. 5421

HOBBY
(O NIL)

PART-TIME-
ACTIVITY

ATHLETE

FIG. &. A PERSON WHOSE PL HOBBY ARE PL HOBBY-SPORT 1S CALLED AN ATHLETE.

A Role is associated with, or attached to, its domain Concept, the most
general Concept at which the Role makes sense. Because the relation denoted by
a Role #ill also apply to all subclasses of its domain, Role attachment is
inherited by all SubCs of the domain Concept. ln fact, one way to define a
SubC of the domain is to describe a more specific range of an inherited Role.
In Figure 5, we have defined the Concept of an amateur athelete, |C|ATHELETE,
by restricting the range of |R|HOBBY to |C|HOBBY-SPORT. This is expressed
with a RoleRestriction. This definition of an athelete does not include people

who have additional hobbies which are not sports. We will give a better

definition shortly.

Every attachment of a que tc a Concept has an associated FoleRestriction
which describes the range of the relation denoted by the Role when the domain
is restricted to the class denoted by the Concept. A Concept inherits both the
Roles and the RoleRestrictions of its SuperCs. A RoleRestriction has two

elements, a value restriction, the VR, and a number restriction, the #R.

e
2 a’e
raslnila

AN
%!

Report No. 5421 Bolt Beranek and Newman lnc.

¥Yhen the domain of a relation is restricted to a Concept, the VR of the
Role at that Concept is the Concept denoting the corresonding class for the
range. This will be either the inherited VR or a SubC of the inherited VR.

In the example in Figure 5, the VR of |R/HOBBY at |C|ATHLETE is

|C |HOBBY-SPORT .

The #R is a number range of the form (Min Max) that indicates how many
members may be in the set of fillers of the Role for an instance of the
Concept. This will either be the inherited #R, or a more restricted #R.

Figure 6 shows an example of defining a Concept using its #R on a Role.

(1 NIL)

_D

EMPLOYED-
PERSON

F1G. 6. AN EMPLOYED-PERSON IS A PERSON WHO HAS AT LEAST ONE JOB.

Through their function of relating two Concepts, Roles describe the
essential properties that allow us to distinguish SubCs. By tightening the

inherited RoleRestriction of |R|HOBBY, we defined twe SubCs of |C|PERSON.

The structure of a Role includes the Concepts representing the domain and

range of the relation denoted by that Role, PrimitiveClass (just as for

15

SN R S NORE. O S N N -

o .

e n

e e

Bolt Beranek and Newman Inc. Report No. 5421

Concepts), and all its SuperRoles. A RoleRestriction is a component of a

Concept definition and is independent of the restricted Role's specification.

The domain of a Role is the most general Concept at which that Role could

P

make sense. A domain is a component of a Role specification and is

independent of the domain Concept's specification. Usually, but not always, a

Concept that is the domain of a Role has no RoleRestriction for that Role and

so its place in the taxonomy is not aeffected by it. Absence of a

RoleRestriction is equivalent to & RoleRestriction whose VR is the range of

that Role and whose #R is zero to infinity, written (O NIL). T

Wz define subsumption among Roles just as we did for Concepts. 1In other

words, we can express that one Role denotes a more specific relation than that

denoted by another Role. Every KL-ONE net has a Role which is defined to
represent the host general relation of the relations denoted by all other 3
Roles. We call this Role "R-TOP", or "RELATION”. 1Its domain and range are
[CITHING, as shown in Figure 7. ;

RELATION
d l.l : '
FIG. 7. |RIRELATION

Roles have their own taxonomy with many parallels to the Concept

taxonomy. Some of the other Roles which describe our example taxonomy are

shown in Figure 8.

B . - . -) o LN -
E CN AN <. o I Tl i S X , L v Ce e,
oy ~ - - = -
LI S s ~ 'y & - e : its - LT . -
PRSP T IS K N I PN W T U WP TG W SV IS BN R PAEV PP TSRl B W S SRS

”

s

Report No. 5421 Bolt Beranek and Newman Inc.

i
L g

o
2,

e
% ;

RELATION

"3

i

ATHLETIC-HOBBY JOB&HOBBY

FIG. 8. 4n ezample Ro.e tazonomy

The subsumption arrow in Figure B8 indicates that |R|ATHLETIC-HOBBY
differentiates, or is a SubR of, |R|HOBBY, and that |R|HOBBY subsumes or is a

SuperR of |R|ATHLETIC-HOBBY.

The specification of a Role consists of the conjunction of the
specifications of its SuperRs plus an essential distinction. This essential
distinction may be a PrimitiveClass, a more limited range, or multiple
SuperRs. A RoleSpec is fully described and then classified, like a
ConceptSpec. - A classified Role’'s domain will be the conjunction of the

domains of its RoleSpec and all its SuperRs.

Just a&s with our Concept taxonomy, we need a classification operation
that allows us to generaiize end differentiate Roles whenever the need arises
so that their place in the taxonomy is independent of the order in which they
are installed. There are several Role descriptors for the convenience of a

network user, not used in classification, which will be explained later.

17

= N 2% "y ta
=

e WO T N i SR R 3 g Dl S A" - o . -, - - e - =)
W B gt bk Ry LR Ty s T a4 P L Mo T R TP L e T e e W e . D Tt S, -
R R P i T IS SR I SIS S P S B S Sy S I NS LW S ORI NS SN IR S S

1

Bolt Beranek and Newman Inc. . Report No. 542}

To return to our ,C|ATHLETE exa >le, suppose we have established the

ConceptSpec and RoleSpec shown in Figure 4.

1f we establish the subset of each person’'s hobbies which are sports,
Figure 9, thea a2 amateur athlete is someone who has at least one member in

this subset, Figure 10.

PART-TIME-
ACTIVITY

FIG. 9. SOME OF A PERSON 'S PL HOBBY ARE CALLED PL ATHLETIC-HOBBY WHICH
ARE PL HOBBY-SPORT. :

Another component of Concepts, RoleConstraints, represents a relationship
between the sets of fillers of Roles at that Concept. A RoleConstraint is
defined at its enclosing Concept and is inherited by that Concept's SubCs. As
shown in Figure 11, the introduction of a RoleConstraint is another way io

describe the specialization of a Concept.

A RoleConstraint consists of a constraint type which is either EQUAL,
SUPERSET, or SUBSET and two RoleChains which are lists of Roles. The {first

Role in the 1list must be attached to the enclosing Concept of the

18

......

........
R Sl T R W Wt d FRLEFO S W W S0 N 3 W

il

EF

Report No. 5421

Bolt Beranek and Newman lnc.
iR
R
i HOBBY
- (0 NIL) A
ART-TIME-
2 it ACTIVITY
&J‘
W ATHLETIC.
" HOBBY-
Loty (0 NIL)
P HOBBY-
™ SPORT
g
7 §
o
| (1 NIL)
i ATHLETE
o
)
-
i FIG. 10. AN ATHLETE IS A PERSON WHO HAS AT LEAST ONE ATHLETIC-HOBEY.
RoleConstraint. Each subsequent Role must be attached to the VR in the

RoleRestriction at the Concapt where the previous Reole in the 1list was

attatched.

In effect, ecach RoleChain represents a composite relation, composed of
the relations represented by the Roies in the chain, with its domain as the
enclosing Concept. In Figure 11, the runctional notation for Roles illustrates
the composite relation represented by the RoleChains. The constrain& type

. estahlishes, for any instance of the enclosing Concept, the relation between

the instances of the two composite relations.

We are now in a position to give a more concise explanation of hnw one

Concept or Role subsumes another. For simplicity, the terms Object and

19

. y = W LT TR N e e 13 7= 4y Th "5 = s T - L ~ >
F R i e T S e B -
< i ot Rl e SRS S .
= - w e

AT, = . e, e e Ve Tl @ 5 I
S N e I-V‘ ‘Efu_“q,f-nﬂl;"‘_z;,;_ﬂ."‘,g st et ot et e s T Tt s X S N S S AR S

Bolt Beranek and Newman Inc. Report No. 5421

LOCALLY-
EMPLOYED-
PERSON

RESIDENCE - RO

FIG. 11. A LOCALLY-EMPLOYED-PERSON IS AN EMPLOYED-PERSON.
THE LOCATION OF THE COMPANY OF THE JOB OF 4 LOCALLY-EMPLOYED-
PERSON IS THE SAME AS HER HOME 'S TOWN.
LOCATION (COMPANY (JOB (LOCALLY-EMPLOYED-PERSON))) =
TOWN (HOME (LOCALLY-EMPLOYED-PERSON))
ObjectSpec will be used for explanations which can apply to Concepts or Roles.
Subsumption means that the subsumee represents a subset of the set represented
by its snubsumer. The subsumee inherits all the structure of its subsumers.

The local structure of the subsumee expresses the essential distinctions

between it and its subsumers.

The specification of an Object is achieved by creating an Objectsﬁec
which specifies subsumers fo; that Object and local structures. The ObjectSpec
is then installed in the most specific place and, simultaneously, the most
general place possible in the taxonony. Along with the subsumers specified in
the ObjectSpec, additional subsumers may be identified by the classifier. That

is, there may be generalizations installed in the taxonomy which were not

20

AP RN L. S I SO IV WA WY

Coge oy

e

Report No. 5421 Bolt Beranek and Newman Inc.

explicitly specified as subsumers in the ObjectSpec. The classifier may also
dissolve an ObjectSpec if it discovers that the ObjectSpec has no properties

to distinguish it from an already taxonomized Object.

A Role 1is described by its subsumers and its local structure which
consists of its range and its PrimitiveClasses. Every Role wi!'l differentiate

its subsumers in at least one of three ways

0o Role Conjuntion. If a Role is subsumed by two or more Roles, then it
differentiates all of them. The conjunction of two Roles represents
fillers which satisfy all relations represented by its parents for a
single instence of the domain. In our example, |R| JOB&KHOBBY
represents the relation between a particular person and an activity
that is botk his or her hobby and his or lLier job.

o VRDiff. A Role may differentiate a subsumer by restricting its renge
to a SubC of its subsumers’ range. |R|ATHLETIC-HOBBY is |R|HOBBY with
its range restricted to |C|HOBBY-SPORT.

o PrimitiveClass Introduction. A unique PrimitiveClass may be
intrcduced to express how a Role differentiates its subsumer.
|R|RELATI1ON subsumes |R|HOME, |R'HOBBY, |R|JOB, and |R|GENDER in ways
not accounted for in the taxonomy.

A Concept is described by its subsumers and its local structure which

consists of RoleRestrictions of attached Roles, RoleConstraints, and
r.anitiveClasses. A Concept must specialize its subsumers in at least one of
four ways.

o Concept Conjunction. ¥hen a Concept 1is subsumed by two or more
Concepts, it specializes all of them. |[C|WOMAN is defined as a SubC
of both |C|PERSON and |C|FEMALE-ANIMAL.

o Role Modification. A Concept may specialize its subsumer by creating
@ new RoleRestriction for en inherited Role. This will restrict the
range for the subclass of the domein represented by the Concept in at
least one of three ways.

21

. I T L

s S

"

Pk SEEFRrR R

RIS

T e

Bolt Beranek and Newman lnc. Report No. 5421

The VR may be a SubC of the VR of the inherited RoleRestriction.
In the first |C|ATHLETE example, shown in Figure 5, |C|ATHLETE

is defined as |C|PERSON with the VR of |R|HOBBY restricted to
| C | HOBBY~-SPORT .

The Min of the #R may be greater than the Min of the #R in the
inherited RoleRestriction. |C|EMPLOYED-PERSON is defined as
|C|PERSON with the Min of |R|JOB increased to one.

. The Max of the #R may be less than the Max of the #R in the
inherited RoleRestriction.

0 RoleConstraint Introduction. The Concept may be the enclosing Concept
for a RoleConstraint.

o PrimitiveClass Introduction. A unique PrimitiveClass may be
introduced to express how a Concept specializes its subsumer.
|C|ANIMAL, |C|PLANT, |C|PERSON, and |C|UNICORN are natural kinds, and
so will need a PrimitiveClass.

As mentioned before, there are several descriptors which enhance Object
specifications, but do not affect classification: loceal data, inherited date,

disjointness, covering, individual marking, and inverse relations. These may

be attatched to taxonomized Objects either before or after classification.

KL-ONE provides a facility to associate keyed data with taxonomized
entities. Concepts, Roles, and RoleRestrictions can all have three kinds of
attached date. IDate is attached to an item and inherited by all its

subsumees. Data is local to the item to which it is attached. LocallData is

IData at its most general level of attachment.

The nature of the data is unrestricted; it can be advice, procedures,
indications of defaults. Because data can be added to taxonomized entities, a
network user can may both access data and add it. Attached data allows a
network user to hang information at its most general level af applicability
and tn distinguish it from information attached at a more specific level.

22

V. e 0 S alo ;
PRy ol Yl - W IR SN S St WS S PSP

Report No. 5421 Bolt Beranek and Newman Inc.

A DisjointnessClass represents a disjoint set. For Concepts, a
DisjointnessClass is a set of Concepts for which there are no common
instances. For Roles, a DisjointnessClass is a set cf Roles which, for any
particular instance in the conjunction of their domains, have no common

members in their filler sets.

Each Object in the DisjointnessClass defines e branch of that
DisjointnessClass, and all the subsumees of that Object come under that
brench. That is, Objects subsumed by different Objects in a DisjointncssClass
will also be disjoint. Furthermore, disjointness can be derived for two

Concepts when their VRs on the same Role fall under different branches of a

DisjointnessClass.

FIG. 12. 4 DisjoininessClass with three branches

Because DisjointnessClasses are independent of classification, there s
nothing to prevent an Object from being subsumed by multiple branches of a
DisjointnessClass. Such an Object will be marked as incoherent with respect to

the appropriate DisjointnessClass.

23

A -,

Ta

L I T | - 2) c e C st . T aT o * EP . s : .
A W S SR < S U SINSY SPUE N SN S PO A S U TS PR, SN S s Sy TP I NP WS W SV LB P S

Bolt Beranek and Newman Inc. Report No. 5421

A Coverin, 1is a set of Objects associated with an Object, the covered
Object. It expresses that the set represented by the covered Object is
exhausted ‘by the sets in the Covering. Every instance of a covered Concept
will also be an instance of at least one of the Concepts in the Covering.
Similarly, for a particular domain instance, every filler of a covered Role

will also be a filler of at least one of the Roles in the Covering for that

same domain instance.

FI1G. 13. A Covering for |C|LIVING-THING

Because any subset of an exhausted set will also be exhausted, all the
subsumees of the covered Object will also be covered. Usually, the Objects in

a Covering are subsumed by the most general Object they cover.

Both DisjointnessClasses and Coverings are not used by the KL~ONE
classifier, but provide a us' ful reasoning tool for PENNI and any other system

accesssing the network. A partition may be expressed with a Covering of

disjoint Concepts.

When the relation denoted by a Role has an inverse relation, we can

Report No. 5421 Bolt Beranek and Newman Inc.

OCCUPANT

FIG. 14. A PERSON 1S ITS PL HOME 'S OCCUPANT.
A RESIDENCE 1S ITS PL OCCUPANT 'S HOME.

PERSON = OCCUPANT (HOME (PERSON))
& RESIDENCE = HOME (OCCUPANT (RESIDENCE))
express this in KL-ONE by establishing an InverseRole. For any
(instance,filler) pair described by a Role, the (filler,instance) pair is
described by that Role's InverseRole. This property is inherited by all SubRs

of the Role.

In sumary, KL-ONE maintains a knowledge base using Concepts to represent
classes of things in the world and Roles to represent relations between these
classes. Concepts and Roles are interrelated; i.e., Concepts are specified in
terms of other Concepts and Roles , and Roles are defined in terﬁs of other
Roles and Concepts. Two subsumption taxonomies are maintained, one for
Concepts and one {for Roles. An Object's place in its taxonomy is defined by
creating an ObjectSpec by using a small number of well defined operations to
describe it in terms of other Objects. For Concepts the KL-ONE operations are
establishment of SuperC, restriction of Role, and constraint of Role. For

Roles, the KL-ONE operations are esteblishment of SuperR, and restriction of

Bolt Beranek and Newman Inc. Report No. 5421

range. When these operations do not establish a sufticient definition of an
Object, a PrimitiveClass is introduced. The ObjectSpec is then installed in
its taxonomy by the KL-ONE classification operation. In addition, there are

several Object components which are not used in classification and so may be

established at any time.

26

- - - - -
. - = o
RO L) T R OO T Tl BT A, TR TS e s e Y T TC e TR

oG g -
el O WY

Report No. 5421 Bolt Beranek and Newman Inc.

3. KL-ONE: SEMANTICS AND CLASSIFICATION'

J. Schmolze and D. Israel

3.1 Introduction

Citing Hayes ([6], page 47).

One can characterize a representational language as one which has

. a semantic theory, by which | mean an account ... of how
expressions of the language relate to the individuals or relationships
or actions or configurations, etc., comprising the world, or worlds
about which the language claims to express knowledge ... Such a
semantic theory defines the meanings of expressions of the language.

KL-ONE is such a langquage.

The original designers of KL~ONE were primarily interested in automating
the understanding of natural language. They needed a language 1in which to
represent the meanings of sentences (of English). Thus, Brachman et al

[1. 2, 7] chose the "real world” as their primary domain and proceeded to
design a language in which one could represent knowledge about important

classes of real world objects and the relationships between them.

This chapter presents a description of most of the language of KL-ONE.

We also specify a semantics for KL-ONE. However, our primary interest is to

'A version of this paper has been submitted to the 11th Annual ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages, Salt Lake
City, January, 1984.

27

Lo e T S

Bolt Beranek and Newman lnc Report No. 5421

show some interesting properties of the algorithm for the KL-ONE classifier,
which deduces subsumption relationships between the terms of KL-ONE. KRYPTON

[4] is the only other representational formalism, in the semantic network
style, in which classification plays a central role. For more information

plus a description of the system that implements KL-ONE, we refer the reader

to 1, 2, 7, 8).

3.2 A Brief Introduction to the KL-ONE Language

KL-ONE lets one define a set of well formed terms, which are divided into
three groups: Concepts, Rolesets and Role-Chains. Concepts denote properties
(i.e., one-place relations) and Rolesets denote two-place relations.
Role—Chains are formed by composing either Rolesets or other Role~Chains, and

they denote the result of the corresponding relational composition.

Alternatively, one can think of Concepts as denoting sets and both
Rolesets and Role—Chains as denoting sets of pairs. A Concept, then, cau
denote all animals and a Roleset can denote all pairs (a,b) such that b is an
offspring of a. By combining these appropriately, one can define a Concept
denoting parents, where something is a parent just in case it is an animal and

has at least one offspring.

KL-ONE allows for both primitive and defined terms. The conditions
specified for a primitive term are necessary but not sufficient. These terms
are used to denote sets for which non-trivial, sufficient conditions for
membefship cannot be stated, as in sets corresponding to natural kinrds. (ot

ccurse, KL-ONE does not commit itself to any particular term being primitive.)

28

W7 AT T i 5 e el
= A I Tl T e)T
s VTP TN T S " U PO S SO SRS IR B 2

a vz ¥

e 100 L e O s SO p il) g
. At 2 . PR APV UL AP . WP Uit Wil Wl Wit S

[
ot

e ES

ok Report No. 5421 Bolt Beranek and Newman lnc
!! The conditions specified for defined terms are both necessary and sufficient,
& such as the Concept for parents mentioned earlier. Furthermore, the

weli-fcrmed complex terms are generated by a small set of operaitors for
Q! combining Concepts, Rolesets and Role—Chains. Each of these operators implies
s particular meaning for the construct as a function of the meanings of the

] constituents.

iy KL-ONE has been implemented as a semantic network in which the terms are

represented as nodes and certain relations between terms are represented as

éﬁ links. These relations correspond only to term forming operations. Relations
™ from & particular domain, such as the "offspring” relation, are expressed as
53 terms. This is unlike some other semantic network formalisms that allow
3 domain relations to be expressed as links (see [5, 3, S]). The most important
i

i inter—term relation that KL-ONE maintains is that of subsumption, which in the
:g set—theoretic sementics denotes set inclusion between the sets denoted by the
) terms. Given the above specifications, the Concept for animals subsumes the
55 Concept for parents, and the KL-ONE system puts a link denoting subsumption
¥ between the corresponding nodes.

;; Thus, a portion of any KL-ONE network is actually 2 taxonomy based upon
éi subsumption. This 1is no coincidence — taxonomic reasoning has proven to be
2 extremely useful in the application areas mentioned earlier. It yields a
EE class of inferences that, when done quickly, greatly enhance the performance
ﬁ? of such systems. The classification algorithm, mentioned earlier, takes a
-

o term and attempts to find all other terms (from a particular, finite network)
55 that either subsume it or that it subsumes. It is a crucial component for our

reasoning systems.

29

5 o tw e e N - - I N . ot
AT, T R T N M T S ST i S SO SIS TP, AU [P UL SYPIE YO A W AP, NP L YERA Ty Wiy Ui SUSNPSIRT Rl Y Y. U W, SRy S

Bolt Beranek and Newman Inc. Report No. 5421

3.3 Syntax of the KL-ONE Language

Let Kc denote all of the KL-ONE Concepts, KR denote all of the Rolesets,
and Kp~ denote all of the Role-Chains. Also, let the Role—Chains include the
Rolesets, so Kp. includes Kp. and let K be defined as the union of K, and Kpc-
A precise definition of K is given below via a set of tyred operators (this
follows the style of Brachman, et al [4]). Alongside each element and

operator is an intuitive description of its meaning (a formal description is

in Section 3.5).
There are iwo distinguished elements of K:
RTOP is in KR. 1t denotes the top of the Roleset taxonomy, i.e., it subsumes
all Rolesets.
CTOP is in KC. It denotes the top of the Concept taxonomy, i.e., it subsumes
all Concepts.
KL-ONE allows one to draw from an infinite set of primitive Rolesets and
an infinite set of primitive Concepts. The operator RP is defined as a
bijection from the natural numbers to the primitive Rolesets such that (RP i)

refers to the i-th primitive Roleset. (CP i) is similarly defined for the

primitive Concepts.

The definitions of the operators follow. Let i and n be natural numbers.
Furthermore, let R, Rl' -+.. R, be elem=nts of KR' C. ¢y ..ov Cy be elements
of K., and RC, RC;...., RC, be elements of Kpo. (The terms "meet',

“composition” and "filler” are defined in Section 3.5.)

30

- T o e e T e e T T e T T
- * - = .) .

O
- E - C

S e

g

- - !

- - . - » - - . E - a]) - - .
- - PP « 3 FRITLES e : : =7+ ~ . 3 e
oaat b= 1P R TPAL A T Ity Wy ST R D e Yt T TP 7 T Ay Tty TP WG TP U 0 Ny P . PO PO) I S O U S RRC e W

L)

EL

falt)

Report No. 5421 Bolt Beranek and Newman Inc.

(RP i) is in Kp anc denotes the i-th primitive Roleset.

(RMeet Ry ... Rn) is in Kp and denotes the mect of Rolesets R, ..., Ry
(RChain RCl Ces RCn) is in KRC end denotes a Role-Chain as the composition of
the Role-Chains RCI. RN RCn.

(CP i) is in Ke end denotes to the i-th primitive Concept.

(CMeet C, --. Cn) is in Ko and denotes the meet of Concepts Cyv v Cp.

(CRestrict R C) is in K. and denotes a restriction of the Roleset R to the
Value-Description C.

(CMin R n) is in KC and denotes a Concept with at least n fillers of the
Roleset R.

(CMax R n) is in KY and denotes a Concept with at most n fillers of the
Roleset R.

(CSubset RC, RC,) is in and denotes a Concept with a subset relation
1 2

between the fillers of the Role-Chain RC1 with the fillers of
RC,.
2

This defines all of K.

¥While the operators RP and CP refer the primitive Rolesets and Concepts,
their relationships to other elements of K are specified via primitive

introductions.
Let i be a natural number, R be in KR' and C be in KC.

(RPrim E i) states that R subsumes :he i-th primitive Roleset.

{CPrim C i) states that C subsumes the i-th primitive Concept .

The precise meaning of these operators and restrictions upon their use

will be explained in the next two sections.

31

Bolt Beranek and Newman inc. Report No 5421

3.4 Using KL-ONE

We offer some examples of term specifications. Our earlie~ example for

animals and parents is specified with.' 3

let ANIMAL

(CP 1); let Offspring = (RP 1);

let PARENT

(CMeet ANIMAL (CMin Offspring 1))

A parent is a animal with at least one offspring, i.e., PARENT is subsumed by
ANIMAL and has at least one filler of the Offspring Roleset. 1f we wanted to
state that all mammals were animals and that al] people were mammals, we would "

use primitive introductions:

(CPrim ANIMAL 2); let MAMMAL = (CP 2);

(CPrim MAMMAL 3); let PFRSON

(cp 3), '

Assuming animals, mammals and people are natural kinds, we denote them by

primitive Concepts.

When using KL-ONE, one builds a particular, finite network, i.e.., a
particular set of Rolesets, Concepts and Role—Chains. A network, called N, is
defined to have two parts. NK is a set of well formed terms of KL-ONE, and is

a subset of K. Np is a set of primitive introductions.

'References to terms will be written in bold-face characters. Concepts will
be all upper-case; Rolesets w.!] be capitalized.

32

- - T -

of Y . P S , « = g - Tt T . « =" 8 K - - 4y - - -
e e Mt e e K frn ot A e Ta et et bt A R R e A Pl i B Mo B P M B

Y]

= " Report No. 5421 Bolt Beranek and Newman Inc

o

! 3.5 A Semantics for KL-ONE

%é A semantics for a KL-ONE network will be given in a standard first-order
language with lambda abstraction {called FOL+). With some network N, we

m

ﬁ} associate a set of predicates, one predicate corresponding to each element of

N NK' and a set of sentences in FOL+, one sentence corresponding to each element

- of NP

Sa

n

sﬁ Before specifying the semantics, we define a notation for expressing
number restrictions (i.e., arising from CMin and CMax). Let

“[@n:x][px])"” express that there are at least n distinct x's such

Ei that each is p-ish.

ii Our semantic specification consists of two mappings. Thz first mapping,
M, takes each element of Ny into a (possibly complex) predicate, which is

(el denoted in FOL+. The second mapping., AX, takes each primitive introduction

into a sentence in FOL+.

M is defined by:

o
L.

el

(M RTOP) = lambda xy.x=x&y=y

5

g

i.e., the universal two-place predicate

£

(M (RP i)) = the i-th primitive two—place predicate

?2 which we will write as r*y
&

(M (RMeet Ry ... R)) = lambda xy.(M R,)xy&...&(M R)xy
& (M (RChain RC; ... RC,)) =

”

lambda xy.[azl.....zn-ll

*l
.

[(M RCl)le&(M RCp)z 2%, . . &(M ch-l)zn—zzn—l&(M RCn)zn_ly]

.4

'!’l’ l.

33

e

dad

A, e PR

Y | & .
R Y R T TP IAAY T AP W LA, WG, [P S) Sl N aeg g S

Boit Beranek and Newman Inc. Repcrt No. 5421

(M Crnp) = lambda x.x=x
TOP

Aot

.e., the universal one-plac: predicate

(M (CP i)) = che i~th primitive one-place _.edicate
which we will write as c‘i
(M (C. C, - Cn)) = lambda x.(M Cl)x&..‘&(M Cn)x

(M (CRestrict R 7)) = lambda ».[Vy][(M R)xy->(M C)y]

(M (CMin R n))

lamzda x.[dn:y][(M R)xy]

(M (CMax R n))

jambda x.~[3n+1:y]1 (M R)xy]

(M (CSubset RC; RC;)) = lembda x. [vy][(M RC)xy->(M RC,)xy]

A filler for some Roleset R with respect to some Concept C is defined as
some y such that "(M C)x&(M R)xy”. A filler for a Role-Chain 1is defined

cimiiarly.
AX is defined by:

(AX (RPrim R i))

“[vxy][r®xy->(M R)xy]"

(AX (CPrim C i)) "[Vx][:'ix—>(M C)x]"

3.8 A Definition of Subsumption

Let N be a network consistiag of N and Np, where Np contains the
Concepts C1 and C2, and th: Rolesets R1 and R2' Alsc . let TP be the

conjunction all sentences associated with NP via AX. C1 subsumes C2 if:
Tp => [vx][(M C5)x->(M Cl)x]

is valid. Intuitively, C1 subsumes C2 if every individual that is Cz—ish mist

g
i
- Report No. 5421 Bolt Beranek and Newman Inc.
T
,' also be Cl—ish given the relationships stipulated by the primitive
v -.wroductions.

R, subsumes R, if:
a
N

Tp => [Vxy][(M Ry)xy->(M R,)xy]

- is valid.

Subsumption is not defined between an element of KC eand an element of KR'

Also, for historical reasons, we have not utilized the relation of subsumption

between elements of Kgpe a@s opposed to KR' although that 1is an obvious

extension we could make.

3.7 The Classifier Algorithm

The classifier algorithm is based upon a function that attempts to
determine whether or not two terms stand in a subsumption relation. The
function's name is C-SubsumesP (for classifier subsumption) which maps two
elements of K into one of TRUE, FALSE or INAPPLICABLE. C-SubsumesP defines e

new relation between elements of K which we call c—-subsumption.

Using C-SubsumesP, the classifier algorithm takes a newly specified term
(call it X) and determines those Concepts from a particular network that X
subsumes and those that subsume X. Furthermore, it keeps a record of all

subsumptions that it discovers (by adding a link in the network).

Our original hope was that c-subsumption would be identical to

subsumption, but our analysis shows that it is not. However, we have shown

35

Bolt Beranek and Newman Inc. Report No. 5421

that C-SubsumesP is sound, i.e., letting X1 and X2 be members of K, then
“C-SubsumesP(X1,X2)=TRUE” implies that X1 subsumes X2 by the definition in

Section 3.6. We have also shown that C-SubsumesP(X1,X2) always terminates.

But C-SubsumesP is not complete, i.e., it 1is not the case that Xl
subsumes X2 implies that "C-SubsumesP(X1,X2)=TRUE". There 1is a class of
comhinatoric analyses that is not done by C-SubsumesP which must be done in
some cases where there are several uses of both CMin and CMax. However, we

are hopeful that C-SubsumesP is complete if we eliminate the use of CMax.

Before diving into C-SubsumesP, we {first examine an algorithm named
Reduce that takes an element of K and reduces it into canonical form. Let X

be an element ~f K.

(Reduce X) ==

(Combine (CSubsetTransClosure (Simplify X)))

Simplify “flattens” all terms, i.e., all Concept terms have just one
(CMeet ...), or no CMeet at all. Also, all Role-Chains will have only

Rolesets as their arguments (not other Rote-Chains).

CSubsetTransClosure computes the transitive closure of all wuses of

CSubset.

Combine puts "like" components together, e.g.,
{(CMeet (CRestrict R C1) (CRestrict R C2)) becomes (CRestrict R (CMeet C1 C2)).
It also makes recursive calls to C-SubsumesP in order to eliminate redundant
information, e.g., if "C-SubsumesP(C1,C2)=TRUE"”, then (CMeet C1 C2) becomes

just C2.

36

Report No. 5421 Bolt Beranek and Newmen Inc.

ll We

(the potential subsumee) are specified and each case tests the structure of

finally arrive at C-SubsumesP. Various cases for the second argument

)

)

i

the first argument (the potential subsumer).

x
RV

(C-SubsumesP X; Xp) =

if Xl and X2 are of different types
then INAPPLICABLE
else X; <- (Reduce Xl) Xp <= (Reduce Xz)
cond
X1=RTOP: TRUE
X1=CT0P: TRUE
X2=RTOP: FALSE
X2=CTOP: FALSE
Xa=(RP i): X;=(RP i) |
let (RPrim R’ i) be in Np; (C-SubsumesP X, R)
X5=(CP i): X,=(cP i) |
let (CPrim C' i) be in Np. (C—SubsumesP X, c)
X2=(CRestrict Ry C5): X =(CRestrict R, Cl) &
(C-SubsumesP R, Rl) & (C-SubsumesP C, C,)
X2=(CMin R, nz): X1=(CMin R, nl) &
(C-SubsumesP R, Rz) & ng2n,
X2=(CMax R, nz): X1=(CMax R, nl) &

(C~SubsumesP R, Rl) & np<n,

37

T T T L P S SR T S O TS

Ea) e Tt -~ PO A R P e 5 £ .)
IR L E LR S E e S B, R T e T Cegesaeeta coadmi Fae o Vu aaseame T Des o e T S Tes B

Bolt Beranek and Newmen Inc. Report No. 5421
Xp=(RMeet R% ... RZ,):
if X;=(RMeet R} ... Rl))

then for each R}. (C-SubsumesP R} Xz)
else there is some R? st (C-SubsumesP Xy R?)
X2=(CMeet C? Cﬁz):
if X;=(CMeet] ... cl))
then for each C}, (C-SubsumesP C} X3)

else there is some C? st (C-SubsumesP X, C?)

X,=(RChain R} ... R?). {note: n>l, thanks to Simplify}
X1=(RChain Ri ... Ré) & for 1<ign, (C-SubsumesP R% R?)
X,=(CSubset RC? RcZ). X,=(CSubset RCl ncl) &

(C-SubsumesP Rcf RC]) & (C-SubsumesP Rc} Rc3)

3.8 Conclusion

We have briefly described the KL-ONE knowledge representation formalism,
sketching its syntax and characterizing its semantics. The system is meant to
express a certain range of taxonomic or hierarchical relationships among
properties and relations, both primitive and defined. Within this framework,
the question of an automatic classification scheme arises quite naturally We
describe such an algorithm and point toward & proof of its soundness with

respect to a defined relation of subsumption between KL-ONE terms'.

'The help and advice of Ron Brachman, Hector Levesque and Krithi Ramamrithem
is gratefully acknowledged.

38

S e e e Tt “.J.-.-‘_.. T oy . o
E > = bd ~ * a N - . .
‘;t‘;;.:u\!-:,\‘-'_khﬁq“.»’1‘&"‘-‘.1:_1"; e e F S T A e T A AT T

R
LI SO L W = At P

(e
LA

'
&

e

byl

-)H W
"

.
it Lot

e W

& |

-.\
toateal -1

(ol

. ..; »
LI R

g Wy
i o

]

‘»‘
P |

P

L»'

s
"
PR

TRV
Cadalt.

g -

Report No. 5421 Bolt Beranek and Newman Inc.

REFERENCES

[1] RBcechman, R.J. 4 Structural Paradigm for Representing Knowledge. Ph.D.

Th., Harvard University, May 1977. Also, BBN Report No.3505, Bolt Beranek and
Newman Inc., May 1978

[2] Brachman, R.J., Bobrow, R.J., Cohen, P.R., Klovstad, J.W., Webber, B.L.,
Woods, W.A. Research in Natural Language Understanding — Annual Report: 1
Sept 78 - 31 Aug 79. BBN Report No. 4274, Bolt Beranek and Newman Inc.,
Cambridge, MA, August, 1979.

[3] 3Brachmen, R.J. On the Epistemological Status of Semantic Networks. In
Associative Networks ~ The Representation and Use of Knowledge in Computers,
Findler, Nicholas V., Ed. ,Academic Press, New York, 1979.

[4] Brachman, R.J., Fikes, R.E., and Levesque, H.J. KRYPTON: A Functional
Approach to Knowledge Representation. techrep 639, Fairchild Research and
Development, Artificial Intelligence Laboratory, May, 1983. An extended

version to appear i1n]1EEE Computer, Special Issue on Knowledge Representation,
September 19835.

[5] Feahlmen, S.Z.. NETL: 4 System for Representing and Using Real-World
Knowledge. MIT Press, Cambridge, Massachusetts, 1979.

[6] Hayes, P.J. The Logic of Fremes. In Frame Conceptions and Text

Understanding, Metzing, Dieter, Ed. ,Walter de Gruyter and Co., Berlin, 1979,
pp. 46-61.

(7] Schmolze, J.G. and Brachman, R.J. Proceedings of the 1981 KL-ONE
Workshop. BBN Report No. 4842, Bolt Beranek and Newman lnc., June, 1982.

[8) Sidner, C.L., Bates, M., Bobrow, R.J., Brachman, R.J., Cohen, P.R.,
Israel, D., Schmolze, Jj., Webber, B.L. and Woods, W.A. Research in Knowledge
Representation for Natural Language Understanding, Annual Report: 1 September

1880 - 3 August 1981. BBN Report No. 4785, Bolt Beranek and Newman Inc.,
Cambridge, MA, 1981.

[8] Woods, W.A. What's in a l1ink? Foundations for semantic networks. In
Representation and Understanding: Studies in Cognitive Science, D.G. Bobrow
and A. Collins, Eds., Academic Press, New York, 1975, pp. 35-82.

39

Bolt Beranek and Newman Inc. Report No. 5421

40

.
v .

- T - @t s -
Al w1 Ta M Tt

RN

Report No. 5421 Bolt Beranek and Newman Inc

4. KLONEDRAW — A FACILITY FOR AUTOMATICALLY DRAWING PICTURES OF KL-ONE
NETWORKS

T e

J. Schmolze

KLONEDRAW is the neme of a program that draws pictures of KL-ONE
netwerks. One simply informs KLONEDRAW of which portion of some network to

draw and it composes a picture of it using the familiar graphical notation for

KL~-ONE . Furthermore, this process 1is completely automatic. Although, we

already have several ways of displaying the contents of a network, KLONEDRAW

is unique in its role as a pictorial pretty-printer for KL-ONE Concepts.

One uses KLONEDRAW by creating one or more Pictures ("Picture” will be
used as a technical term for the following discussion), each of which displays
either part, or all, of the current KL-ONE network. The Picture appeurs to
you as an Interlisp window that has a menu alongside. Associated with each
Picture is an infinite 2~dimensional plane that we call a blackboard. When
you request a Concept to be drawn in some Picture, it is (conceptually) drawn
on the blackboard, and the Interlisp window is positioned on the blackboard
just over the Concept; thus the drawing of the Concept is visible. The
Picture's window is "scroll-able” and can be positioned anywhere on the
blackboard. As more and more of the network is drawn, one scrolls the window
in order to view different parts of the network. Of course, one can scroll
the window semantically as well by requesting that certain Concepts be made

visible.

One can have any number of Pictures at any time and they can either have

41

Tt e VA - . b - T
-t te T LT o«

.'-‘ - -.‘ - " - - e T e - - ~ - - - = - . B - . -
A R e ST I U T\ PR S e S P NE SOl S Pt RO P I IS ST TR I ST ST S W A S B T W

s
"
E
i Bolt Berarek and Newman Inc. Report No. 5421

their own, independent blackboards with a drawing of the current network, or

they can share a blackboard. The function that creates Pictures,

CREATEPICTURE, has an optional argument named PictureForGroup. 1t
PictureForGroup is a Picture, the newly created Picture will share the
blackboard of the given one. Of course, the new Picture will have its own
window, thereby allowing multiple windows on the same blackboard. Eventually,
there will also be a scale argument, letting you create several windows on the
same blackboard, each with a different amount of detail. The small version
could provide a global view while the normal version gives all of the details.
Also, we recently expanded KLONEDRAW to use either a color monitor or the

black and white monitor.

4.1 Use of the Mouse

Each part of a KLONEDRAW Picture that corresponds to a KL-ONE object is
“mouse sensitive”. If you depress thé left mouse button, it begins to track
yeour selections and highlights items as you go along, such as Concepts or
Roles or SuperC links, etc. This is done by changing the color of the item.
As you move away from an item, it is un-highlighted, by going back to their
original “color"”. 1If you let up the left button over a node or link, you have
selected it. Once you select some KL-ONE item, it remains highlighted (but
with a slightly different pattern), and the i*em can be used as an argument to

a command from the command menu.

The command menu has several commends which work in the following way.

They take zero or more arguments, where the arguments are selected from the

42

T R A T PR P PP AU -SSR SR . LIPS SUPRONT WO S SN P SO

Report No. 5421 Bolt Beranek and Newman Inc.

corresponding picture. As soon as a command and its required arguments are
selected, the command executes, independent of whether you select the command
first or the nodes first. Commands are selected in the normel menu way.
Among the current list are commands that will re-draw the Picture (which takes
zero arguments) or move the drawing of a Concept (which takes a Concept as an

argument).

4.2 Functional Interface to KLONEDRAW

The functional interface to KLONEDRAW is so simple that we have included

it below:

CREATEPICTURE[TITLE ; PICTUREFORGROUP ; WINDOW] Creates a KLONEDRAW Picture.
A Picture 1is a structure that includes a blackboard with some portion of the
current network drawn on it, a window, and a command menu. TITLE 1is simply
the (optional) title for the window. PICTUREFORGROUP is (optionally) another
Picture; if supplied, the Picture being created will have the same blackboard
as PICTUREFORGROUP. WINDOW ;s an optional window to re-use. If no window is

supplied, it prompts you for the size of the window.

KLONEDRAW[ENTITYLIST,PICTURE] This is the main function for drawing.
ENTITYLIST is either a single entity or a list of entities. An entity is
either a KL-ONE object, such as a Concept, or the name of a KL-ONE object. It
draws the objects in ENTITYLIST and then scrolls the window so that at least
some portion of the items in ENTITYLIST are visible. If the objects in
ENTITYLIST are already drawn, the window is simply scrolled so that they are

visible. The PICTURE argument determines which Picture is affected.

43

Bolt Beranek and Newman Inc. . Report No. 5421

ERASEPICTURE[PICTURE] Erases the blackboard of PICTURE. Note that if it
shares the blackboard with another, only this Picture is affected by this

function (i.e., it not longer shares a blackboard).

44

- T - - + T a PR -, T
A N N e o FROE Ly

gk

Report No. 5421 . Bolt Beranek and Newmen Inc.

6. ASSERTIONS IN NIKL

M. Vilain and D. McAllester

5.1 Introducstion

The KL-ONE knowledge representation system can be thought of as composed

e
ot
LN it

of two subsystems. One part of KL-ONE, the terminological component or Tbox,

-
O

is responsible for providing a vocabulary of terms with which to describe the

world. The Tbox maintains structural and taxonomic relations among these

i

terms. The other part of KL-ONE, the assertional component or Abox, is used

i

to make statements about the world. The Abox records the facts that hold of

entities described by terms in the Tbox.

o
m et
L st

In the past, much of the work done in designing and implementing KL-ONE

has focused on the terminological component of the language. The KL-ONE Tbox

e

) has developed into a complex and richly expressive system. In contrast, the
;3 original KL-ONE system was given a simple assertional mechanism which has not
changed substantially since it was first designed. Recent investigations have

-

'&:é
) looked more closely at the KL-ONE Abox and pointed out some important

114 shortcomings in its design [2, 1].

=1

-

‘o
In particular, these investigations voiced dissatisfaction with the

3]
3; limited expressive power of the original KL-ONE Abox. Enhancing this
. expressive power is the subject of the research described in this article. We

are replacing the old KL-ONE assertional mechanism with a considerably more

4 45

. o
o = i B n st sy Lae 2 F o f o el A s

Bolt Beranek and Newman Inc Report No 5421

powerfui system: at 1its core 1is a reasoning engine for the propositional
calculus. The new Abox has been named PEWNl.' PENNlI will sarve as the
assertional component of NIKL, the new version of KL-ONE that is described in

Chapter 2 of this report.

This new Abox significantly changes the nature of the KL-ONE language; in
the rest of this article we outline some of these changes. First we review
the old KL-ONE assertional mnechanism. We then describe the assertional
language of PENN1, along with RUP, the propositional reesoning engine on which
the new Abox i3 built. Next we show how the terminological component of NIKL
is interfaced to its assertional counterpart. We conclude with a review of

how our work has extended the expressive power of KL-ONE.

5.2 The old assertional system

To give perspective on the PENN] system, we include a brief review of the
old KL-ONE assertional mechanism.’ The old KL-ONE Abox is a simple extension
of the terminological taxonomy; hence we begin our description of the Abox
with a discussion of the taxonomic component of KL-ONE. Nodes in the taxonomy
are descriptive terms; the subsumption relation between concepts is to be
taken as relation between such terms. Thus in Figure 1, the node BICYCLIST is
to be taken as a description of bicyclists: they have a TRANSPORT-MODE which

is BICYCLEs. The superc (subsumption) link between BICYCLIST and PERSON

'The name PENN! is an acronym for the (P)ropositional (EN)gine for (NI1)KL.

*The description of the old Abox given here is necessarily cursory. More
details can be found in [8}.

46

- ~ . - At e e .)
TSP A PO A PR S, U Ar 0. WP SRS P\ WY S -

-,
il

%l

| Report No. 5421 Bolt Beranek and Newman lnc.

-
e

.

i‘ states that anything which can be described as a BICYCLIS{ can be described as

a PERSON -~ the structure in Figure 1 can be read as saying "All bicyclists

are persons’.

AL PERSON
29 ~—
R TRANSPORTATION
-MODE BICYCLE
/_—2
— 85—

FIG. 1. A KL-ONE NETWORK

e

el
R TS
[R E

4

Absent from these descriptive readings of taxonomic terms 1is any claim

5]
h

that the terms describe entities which actually exist. The network in Figure

w7
ictal

1 makes no statement about the actual existence of bicyclists or persons. To

s
LS,

provide a mechanism for notating existence, the constructs of nexus nodes and

description wires were added to the KL-ONE language.

=~ At the heart of the old Abox is the construct of nexus nodes. A nexus
- nede in a KL~ONE network stands for an entity in the world; it denotes that
3$ entity. Unlike the descriptive nodes of the concept taxcnomy, the nexus nodes
are taken assertionally: a nexus in a network stands for an individual which
is .asserted to exist. Nexus nodes are connected into the network by means of
| description wires. These wires have the following reading: if a neius N is
) connected by a description wire to a concept C, then the entity denoted by N

S
\z is descr-ibed by C. Consider the first network in Figure 2. It has the

A4 47

IO AU LR o < n - - B OO Sy) .t -7 -
s B e e e e T a S o o e mke e R e el T e B AL e

Bolt Beranek and Newmen Inec.” : Report No. 5421

following interpretation: the nexus John denotes some individual in the world,

+ud this individual can be described as a BICYCLIST. We can read this

TR

structure as asserting "John is = bicyclist”. As the second network in Figure
2 suggests, a nexus can be described by w.~e than one concept by running
: several wires -1t of the nexus. The second network can be read “John is a

: bicyelist =ad a red-haired person”.

Network 2:
Network 1: RED-COLOR
; BICYCLIST
] \.§__/
BICYCLiIST v/r
-PERSON
HAIR
-COLOR
John QO John

Key: (Q — nexus
o~ — description wire

2. A NETWORK WITH NEXUS NODES

48

PR A W IR N PR LT A W SN S T W Y. SUS PSS P PSP IR PP AP YA SRl W NS RPRPe

Report No. 5421 Bolt Berenek and Newman Inc.

5.3 Problems end Proposals

The original KL-ONE Abox was a very simple mechanism, and its simplicity
made it a straightforward and clean extension of the terminological part of
KL~ONE . However, this very simplicity also posed great restrictions or the
kinds of assertions that could be formed in KL~ONE. The following are some of

the more salient shortcomings of the old Abox.

o In the old assertional language it isn’'t possible to make "weak", or
not fully determinate, statements about individuals. One can not
assert disjunctive propositions (e.g., "John is either a bicyclist or

a motoreyclist”). Nor can one assert negated propositions (e.g.,
"John is not a motorcyclist”). This is a weakness of the description
wire scheme: there are no special kinds of description wires that
encode disjunction or negation.

o The nexus nodes of the old Abox must be interpreted as denoting

distinet individuals. It isn’'t possible to equate two nexus nodes
— that is, one can't assert that the two nodes actually denote the
same individual. For instance, say we construct a nexus (called

VENUS) that denotes the second planet orbiting our sun, and construct
another node (called MORNINGSTAR) denoting the star {hat appears on

the horizon every morning. If we later learnn that these two
celestial bodies are one and the same individual, we are at a loss to
express this. Because the nexus nodes must denote different

individuals, we can not equate VENUS and MORNINGSTAR.

o The old . Abox doesn’'t provide a way to assert propositions that have
the status of inference rules. By this we mean that the language can

not express implications (e.g., "if John is a bicyclist then he is
not a motoreyelist”). Nor can it be used to express a wide range of
quantified statements (e.g., ‘“every bicyclist is not a

motorcyelist”).

o Finally, the old Abox doesn't provide any mechanism for making
inferences automatically from statements in the assertional language.
Each of these shortcomings of the old KL~ONE Abox constitutes a major

restriction on the expressive power of the KL~ONE assertional language. In
fact, taken together these shortcomings define some appealing desiderata for
the revised Abox of NIKL.

49

, L - o = 5 o -
P R - ~ =

PR P N A, -a . e

L T LT e e ™ -

T TR T 'Q_’t o I) n

- " - - . . - v .
= PO T S i A T te .t ata et . o © At)
A PSMYEY I LY D WS G A SR AP UL TP PR RS- VU= BT IP UL S-AE AEL A WU T S

Bolt Beranek and Newman Inc. Report No. 5421

These desiderata resemble "“a prescription ... for a language like that of
First Order Predicate Logic” [2]. This view very much embodies the philosophy
behind PENNI, the assertional component of NIKL. We have replaced the old
assertional language of nexus nodes and description wires with a language

based on a fragment of the predicate calculus.

As was said at the start of this paper, statements in the assertional
language are sentences formed out of terms in the taxonomic language.' Because
the A-language is based on predicate logic, we must agree to a formal
(logical) reading of the T-language. Elsewhere in this report [9]. we sketch
a formal semantics for the taxonomic language. This account defines the way

taxonomic terms are used in the A-language. Briefly, we proceed as follows.

For each concept node in the taxonomy, we identify a corresponding
l-place predicate which has the same name as the concept. For example, to the

PERSON and BICYCLIST concepts of Figure 1, correspond respectively the

A-language predicates named "PERSON” and "BICYCLI1ST" — as in (PERSON John) or
(BICYCLIST John). Similarly, each role in the NIKL role lattice has
associated a 2-place predicate bearing its name. Thus to the

TRANSPORTATION-MODE role in Figure 1 corresponds the A-language predicate

named "“TRANSPORTATION-MODE”. Finally, constant symbols denote individuals in

the world (e.g., the constant symbol “John" in (BICYCLIST John) denotes some
individual person). Constant symbols correspond to the nexus nodes of the old

assertional language.

'We v 1 also use the terms “A-language” (or "PENNI language”) and

“T-lang.age” (or “NIKL" language) to refer to the assertional and taxonomic
languages respectively.

50

’

Report No. 5421 Bolt Beranek and Newman Inc.

Constant symbols in the A-languege denote individuals in the world. To
assert that a term in the T-language, i.e. a NIKL concept, describes an
individual, ‘one applies to the individual the A-language predicate
corresponding to the T-language term. This statement is then &n essertion in

the A-language. To illustrate this, the following table contains some

examples of PENNI language assertions. The assertions in the teable cover many

»
’

P
LN i

of the examples given eerlier during the discussion of the old nexus node

mechanism. The table also contains examples of A-language statements that
could not have been expressed using the old Abox. Note that the examples

refer to concept terms taken from the taxonomy in Figure 3.

VEHICLE

) f

>
O
TRANSPORTATION
OTORCYCLIST, =MODE :

—>(MOTORCYCLE
TRANSPORTATION
-MODE

FIG. 3. THE TAXONOMY USED IN TABLE 1

51

- e L AT c T a -

LR . N X 3 2 ek : .
b Y . - . - - - - = T . E) 3 3 ' & 1 -« + bt » £3 kY A
WL LT S PP LA T, T S S S SR . S S s B S S 0 WS- S AP E .V PR RPN N P e

s

- i
Yot s T oW

Boit Beranek and Newman Inc. Report No. 5421
“John is a bicyclist” (BICYCLIST John)
"TrustyRusty is a bicycle” (BICYCLE TrustyRusty)
"John's transportation is (TRANSPORTAT10ON-MODE John

TrustyRusty"” TrustyRusty)
"John is & bicyclist and (AND (BICYCLIST John)

a red-haired person” (RED-HAIRED-PERSON John))
"John is either a bicyclist (OR (BICYCLIST John)

or a motorcyclist” (MOTORCYCLIST John))
“John isn‘'t a motorcyclist"” (NOT (MOTORCYCLIST John))
"if John is a bicyclist then (=> (BICYCLIST John)

he isn't a motorcyclist” (NOT (MOTORCYCLIST John)))
"Venus is a planet"” (PLANET Venus)
“The morning star is a (CELESTIALBODY MorningStar)

celestial body”
“Venus and the morning star = Venus MorningStar)

are one and the same"”
TABLE 1. A-LANGUAGE EXAMPLES

These examples are suggestive of the scope of the PENNI language. More
precisely, the assertional language is exactly defined by these four
conditions:

1. (P a) 1is an assertion i1n the A-language, where P is the predicate

corresponding to some NIKL concept (We

predicate” or "NIKL-p

will wuse the terms "NIKL
red” to refer to this kind of predicate.), and

2 is an individual term.

2.
corresponding
or "NlKL-rel"” to refer
are individual terms.
3. (= a b) is an asser
individual terms.
4. Boolean combinations o

assertions in the A-language.

statements of the f
(<=> P Q), where P and

(R ab) 1s an assertion in the A-language, where

R is relation

to a NiKL role (We will use the terms "NIKL relation”

to this kind of relation.), and both g and L

tion in the A-language, where both a and b are

themselves
By these Boolean comtinations we mean
orm (NOT P), (ORP Q), (ANDP Q), (== P Q), or
Q are both A-language assertions.

f assertions in the A-language are

52

toaT ‘ N - —w . .
iiii - T T e WS N PO ate « P ST - ‘
PO s _—f e telts awmla EE PSR R e ———

-— -,

5T RSN A

p

e

- . o . _— -'-'-';“l"-'
= , b3 . T A ate; . ME 4
SR L dl e PR) b

Report No. . 5421 - Bolt Beranek and Newman Inc.

5.4 RUP, the system underlying PENNI

In the preceding section we described the assertional language of the
PENN] system. In this section we will discuss some of the functionality of
PENNI . In particular, we will look at RUP', a powerful reasoning system on

top of which PENN] was built.

RUP is a system that was developed at MIT by David McAllester. The
system consists of a set of reasoning utilities that are designed to underly
knowledge representation systems. Within PENNI, RUP is used to maintain a
database of A-language @assertions and to perform inferences on these
assertions. In the pages that follow, we will describe some of the features
of RUP that are relevant to PENNI. We will gloss over many (significant)

details about RUP; the interested reuder is referred to [6] and [5].
§.4.1 The RUP truth maintenance system

At the center of RUP is the RUP truth maintenance system, or TMS. The
TMS contains a database of formulae of the propositional calculus. Associated
with each proposition is a truth setting which indicates whether the
proposition is held to be true, false, or unknown (a proposition with a truth
setting of unknown is a proposition which the system doesn’'t know to be true

or false). These three truth settings are the only ones that cen be assigned

to a proposition.

The user can enter propositions into the TMS incrementally. As each

'The name RUP is an acronym for the (R)easoning (U)tility (P)ackage.

53

u_g_a-,i-n_ﬂ_r.p;_a-n_'-

- AL i \

Bolt Beranek and Newman Inc. Report No. 5421

proposition is entered, the tuser can assign 1t a truth setting, thereby
i asserting the proposition to be true or false.' When the user asserts a
proposition, the TMS invokes an inference engine to derive the consequences of
* the assertion. This antecedent or premise driven inference engine deduces a

subset of the consequences entailed by the addition of the new proposition.

; It is significant that the consequences which are actually deduced are only a
subset of those which are entailed. Trying to deduce all cf the consequences
: could lead to an exponential effort. RUP restricts the inferences that it

tries to meke and thereby achieves considerable efficiency.2

To illustrate the use of the TMS, consider the following example. Say we

add to the TS the proposition:
(=> (BICYCLIST John) (NOT (MOTORCYCLIST John)))

This results in the creation of four TMS data structurzs (called TMS ncodes).
One of these TMS nodes correspond to the asserted implication, and the other

three correspond to its component sub—expressions. fhis situation is depicted

in Figure 4.

Note that in Figure 4 the only proposition that has been given &

determinate truth setting is the one that was asserted. The premise— driven

'The user can also leave the proposition with a truth setting of unknown; in
this case the system will try to deduce a truth setting for the proposition
from other propositions in the database.

zHowever, RUP does provide a consequent or goal driven reasoning mechanism
that can capture deductions that were not made by the antecedent engine. For
details see [6] and [5].

54

- N -t = w = P
-~ T - - T .
B -

- - . ™ . . - "o = CRC LY 2y) . o C o R . " "
PRI I D e iy el P I SR L T S Nt St I S NP o P S Ay IR W PN W PR R VS e e

——

Report No. 5421 Bolt Beranek and Newman Inc.

NODE1
PNAME (=> (BICYCLIST John)

(NOT (MOTORCYCLIST John)))
TRUTH true

JUSTIF ¢

NODEZ2

PNAME (NOT (MOTORCYCLIST John))
NODE3
TRUTH unknown

PNAME (MOTORCYCLIST John)

JUSTIF @
O e

TRUTH wunknown

JUSTIF @

FIG. 4. AN ASSERTED IMPLICATION

engine was (justifiably!) |uneble to deduce truth settings for the

sub-expressions of the asserted proposition.
To continue the example, say we now assert the proposition:
(BICYCLIST John)

The TMS invokes its inference engine which can now make several deductions.
On the basis of the proposition we just added and the one asserted earlier the

system deduces that
(NOT (MOTORCYCLIST John))

must be true. On the basis of this new inference, the system can further

deduce that

55

Bolt Beranek and Newman Inc. Report No. 5421

(MOTORCYCLIST John)

must be false. The database ends up as in Figure 5.

NODE1

PNAME (=> (BICYCLIST John)
(NOT (MOTORCYCLIST John)))

TRUTH true NODE4

JUSTIF @

TRUTH true

JUSTIF
NODE2 :

PNAME (NOT (MOTORCYCLIST John)
NODE3

|

TRUTH true

PNAME (MOTORCYCLIST John)

JUSTIF e—
TRUTH false

JUSTIF ¢

FIG. 5. AN INFERENCE IN THE TMS

With eech deduction mede by the system, & record is kept of which
propositions in the database were used in making the deduction. This is
accompl ished through the justification field of TMS nodes. Given a
proposition P in the database, the justification field of its TMS node
contains pointers to a set of propositions which together entail P. If P was
asserted by the user, then the justification field of P is set tc NIL.
Alternatively, if P was deduced by tﬁe system, the field points to those

propositions used by the system in deducing P. This is illustrated by Figure

56

PNAME (BICYCLIST John)

Report No. 5421 =~ Bolt Beranek and Newman lnc.

5. Among others, the figure depicts the justifications recorded by the system

when running the example described above.

The justifications that RUP records for 1its deductions are a very
importeant aspect of the system. RUP uses the justifications it records to
provide the user with a number of sophisticated features. 1In particular:

o RUP cen use its recorded justifications to explain to the user how it
arrived at a particular conclusion. 1t does this by searching
through the justification pointers for the exact set of user
assertions that underly the conclusion. This set 1s returned to the

user.

o RUP wuses the justifications to perform efficient incremental
retraction.

o RUP also uses the justification pointers in its backtracker. The
backtracker implements dependency directed backtracking, an extremely
efficient backtracking technique.

We will not describe these features in further detail here. The

interested reader is referred to [6] and [5] for more information.

5.4.2 The RUP equaliiy system

In the preceding paragraphs we described features of the RUP truth
maintenance system. We now turn our attention to another component of RUP,

the equality system.

The equality system is responsible for maintaining a congruence relation
between terms in the TMS database. The equality system groups congruent terms
into congruence classes. It uses these congruence classes for performing

substitution of equals for equals in propositions stored in the database.

57

.. 020252
ol - a7, ="

By - - - - - . - - . - » - -
i B * Eecapel - *h 4 Py S H f s E: S i ¥ x . 4 - [
g TP A B, e IR il A N S A S S A A - W S I Ui SRS ST, PO Wy S A N W ULV S0 Sl PO BT, DU WP SRS T

Bolt Beranek and Newman Inc. Report No. 5421

The equality system is activated by assertions in the database of form

(= TERM1 TERM2).

When the user asserts such a proposition, the equality system enforces thre
assertion by placing the two equated terms in the same congruence class. This
is done according to the following scheme. When a term its first entered in
the database, a new (singleton) congruence class is created and the term is
made the sole member of the class. When two terms are equated, the equality
system fetches their respective congruence classes and merges the two classes,
producing a single composite <class. In this operation it doesn't metter
whetk:r the classes being merged are singleton classes or contain more than
one member. This scheme ensures that any two congruent terms are always in
the same congruence class. Consequently, to test whether any two terms are
congruent, the -equality system only has to check whether their congruence

classes are the same.

To illustrate the equality system, consider the following example. Say
we assert these propositions:

(CELESTIAL~BODY MorningStar)

(CELESTIAL-BODY EveningStar)

{PLANET Venus)
Figure 6 portrays the resulting state of the RUP system. In the left half of
the figure are the TMS nodes corresponding to the three propositions. In the
right half are three "Venn diagram bubbles”; they correspond to the singleton

congruence classes for the three terms MorningStar, EveningStar, and Venus.

58

. M By ¥ F - . - - * e N » -
- U NV WO WU SR T Nl WA W L, I 3 U SN D VR S W S S

Report No. 5421 Bolt Beranek and Newman Inc.

TMS Equeality System

NODE1
PNAME (CELESTIAL-BODY MormingStar)

TRUTH true
JUSTIF ¢
NODE2
PNAME (CELESTIAL-BODY EveningStar) MorningStar
TRUTH true

JUSTIF @
NODE3
PNAME (PLANET Venus) EveningStar
TRUTH true
JUSTIF ¢
o g

FIG. 6. TMS NODES AND CONGRUENCE CLASSES
Say we now add these assertions to the da‘abase:

{= Venus MorningStar)

(= Venus EveningStar)
These additions will cause a sequence of events to occur. The first assertion
causes the equality system to fetch the congruence classes for the terms Venus

and MorningStar; it merges these twu classes. 'A similar operation for Venus

5¢

oI AP AP L A P S L I S LAt
R S e OSSP MR U (VRN TP B O ST S W TP W WL SR Y

T BB

e
E IR S N)

rpEany - FRFUCSTEICRPY T

JUSTIF ¢ |

Bolt Beranek and Ne~man Inc. Report No. 5421

and EveningStar' is brought about by the second assertion, leaving all three
terms Venus, MorningStar, und EveningStar in the same congruence class. This

is depicted by Figure 7.

TMS Equality System

NODE4

PNAME (= Venus MorningStar)

TRUTH true h

NODES

PNAME (=Venis EveningStar)
TRUTH true

JUSTIF ¢

MorningStar

<Other TMS nodes not shown> EveningStar

FIG. 7. EQUALITY ASSERTIONS

Figure 7 illustrates an important characteristic of the equality system.
Notice that even though the terms “EveningStar” and "MorningStar” are in the
same equality syétem congruence class, there is no TMS node in the database

corresponding to the proposition:
60

- . ¥ e o B A0 ;P 58 . 3 * . -
- S P a § o o e te - -

d L i Ry LA Vg,) = - S T T W Y A - w o = o 5
T e St . S S Lo S SO SO R SR - I SR WA U S S s SR Str . PR IPRL AN . B S e P e A e e B e i S Stk T L i

Report No. 5421 Bolt Beranek and Newmen Inc.

L 0 N

0
et

L

(= MorningStar EveningStar)

The equality system didn't on its own enter the proposition in the database,

even :hough the proposition was entailed by the two earlier equality

Er JL-— Tl =

assertions. This is by design; it prevents the database from being overloaded

with equality propositions.

[T

If we actually want to test whether EveningStar and MorningStar are

Bl

congruent, it suffices for us to enter the proposition

(= MerningStar EveningStar)

into the database with a truth setting of unknown. Entering the proposition
in the database invokes the equality system which then tries to derive a truth
setting for the proposition. This derivation is done by simply comparing the
congruence classes for MorningStar and EveningStar. Since the classes are one
and the same, the equality system gives the proposition a truth setting of

true, and leaves the database as in Figure 8.

Our discussion of the equality system so far has centered on equality
assertions and the congruence relation between terms. The equality system
also performs substituiion of equals for equals. Consider again the example

of Venus and the Evening Star. In particular, consider the assertions:

(PLANET Venus)

'Note that the equality system installed justification vointers for the
proposition (= MorningStar EveningStar). The details of how this is done are
beyond the scope of this paper. Once again, the reader is referred to [6] and

[5].

61

.. = = ~

e e - . - ot Y . JO
Cdaan et At a s st e atatatataltatala? xlntataalnliel . wivlielelas

—

Bolt Beranek and Newman lnc. .. Report No. 5421

TMS " Equality System

NODE4 r
- —
PNAME (= Venus MorningStar) l
TRUTH true

JUSTIF @

NODES

PNAME (=Venus EveningStar)
TRUTH true

JUSTIF ¢

. e

NODE®

—

PNAME (= MorningStar EveningStar)

MorningStar

TRUTH true

EveningStar

JUSTIF o

<0Other TMS nodes not showm: L

FIG. 8. AN INFERENCE BASED ON EQUALITIES
(= Venus EveningStar)

Together, they entail another propositicn: (PLANET EveningStar). This
proposition follows from substitution of equals for eqnals. However, the
equality system does not add this proposition to the database when Veaus and
EveningStar are equated. This is for the same reason that it doesn’'t assert

all the equality propositions that follow from user~asserted equalities: the

62

=

- .t - - . 2 P Ao
3 » - 3 . e e . »
LAV Y. S A O P B R A e e Al it ol B il

= Report No. 5471 Bolt Beranek and Newman Inc.

= equality system tries to prevent overloading the database with unnecessary
) propositions.

o

¥

1f we want to query whether (PLANET EveningStar) is true, we proceed once
again by adding the proposition to the database with a truth setting of
unknown. This activates the equality system which then attempts to derive a

determinate truth setting for the proposition. To do so, the equality system

recognizes that EveningStar is in the same congruence class as Venus. From

this it follows that
(PLANET EveningStar)

is logically equivalent to
(PLANET Venus).

The twe should have the same truth setting. Since the second of these is
assigned a truth setting of true, the equality rvstem infers that the first

one should be true as well. Figure 9 shows the resulting state of the system.
5.4.3 The RUP noticer compiler

The final feature of RUP which we will describe here is the noticer
compiler. The noticer compiler allows the user t- write demons s.milar to
those in the PLANNER system. These demons (which we cell noticers) are LISP
fvictions which are invoked when certain events occur within the RUP database.
Characteristic of the events that wili trigger noticers are the addition of a
proposition to the database, a change in the truth setting of a proposition,

and others.

63

O o ro S e R PR

r 'y . P T Tm T e et e e
e e s e e T
Y2 A

™

L W N Yl = .
 Tm T Se e T e tw Pl L T e e 022 %o P = o PR . -
e L ! e i e, R R R el S T W P i | T IR e N L NP TR] W T g g)

e B

Bolt Beranek and Newman Inc. Report No. 5421

NODE4 TMS Equality System
PNAME (= Venus MorningStar)
TRUTK irue
JUSTIF ¢
S —
NODE3
PNAME (PLANET Venus)
TRUTH true
JUSTIF ¢
NODE?% MorningStar

PNAME (PLANET MorningStar)
TRUTH true

JUSTIF o

EveningStar

‘<0Other TMS nodes not shown>

FIG. 9. SUBSTITUTION OF EQUALS FOR EQUALS

YVhen & noticer is defined by the user, it must be given two primary
components: & trigger condition and a body. The trigger condition indicates
in which situations the noticer should be invoked. The body of the noticer is

the LISP code that gets executed when the noticer is activated.

The trigger of a noticer has two components: a pattern that matches

propositions in the database and an event marker which specifies a database

64

. =
»

" . . e .
AN e s .t al a¥ e n LS . R4 L O, =T
PR, S, S SO, " S W W T U S T S TR DA T P PR e

T |8 =Y

Y [

(= P

Ey

Report No. 5421 Bolt Beranek and Newman lnc.

event (such as assertion or truth change). When an event specified by the
event marker of a trigger occurs to & proposition that matches the trigger's
pattern, the trigger is activated and the noticer associated with the trigger
is invoked. The RUP noticer compiler provides a language which {facilitates
defining the trigger conditions of noticers. The compiler compiles these

trigger conditions into internal RUP tests and actions that encode them.

When a noticer is activated it is run just like any other LISP function.'
In practice, the noticer will often perform some specific computation and then
(if needed) make changes to the RUP database to reflect the results of this
computation. The language provided by the noticer compiler facilitates making
these changes. The compiler compiles statements that manipulate the databare

into optimized invocations of internal RUP functions.

We will not try in this paper to give a complete description of the
features of the noticer compiler. Instead we will simply illustrate the use
of the noticer system by giving an extended example of a noticer definition.
This is a very simple noticer that recognizes predications of the form
(PLANET ?x). It then asserts that if ?x (or rather, that term which matches
?x) is a planet, then it must orbit the sun. The noticer is particularly
simple in that it doesn’'t perform eany computation before manipulating the
database. For the sake of clarity, the following definition strays somewhat

from the syntax which is actually recognized by the noticer compiler.

"This is a simplification. In actual fact, when a noticer is triggered it
gets placed in a queue of activated noticers. Later on, the queue will get
emptied and the noticer will be run.

65

O W - S W S\

Bolt Beranek and Newman Inc. Report No. 5421

(DEFNOTICER NoticePlanets
(TRIGGER (PLANET ?x) INTERN)
(BODY (RUPAssert (=> (PLANET 7x)
(ORBITS ?x Sol)))
))

DEFNOTICER is a function that defines RUP noticers. It is passed three
arguments. The first is the name of the noticer: noticers (just as
functions) are given a name — in this case the name of the noticer is
“NoticePlanets”. The second and third arguments to DEFNOTICER are the trigger

and body of the noticer being defined.

In this example, the trigger condition of the noticer specifies the
pattern (PLANET ?x).and the event INTERN. The pattern matches any one—place
predication whose predicate name is PLANET. The INTERN event marker indicates
that the noticer should be invoked when propositions that match the trigger
pattern are INTERNed, i.e. entered into the database. Note that the ?x term
in the trigger pattera is taken as a free variable. It gets bound to the

argumen®! of any one-place PLANET predication that activates the noticer.
For example, say we add the following proposition to the database:
(PLANET Venus)

This proposition matches the trigger pattern of the NoticePlanets noticer; the

?x free variable in the trigger pattern gets bound to the term Venus.

In the trigger pattern of a noticer, any atomic term that begins with the
letter “?" is treated by RUr as a free variable that will get bound at the

time the noticer is activated. This binding is maintained while the noticer

66

v

- R B on .
DI, T St S A S R .| SRS SO APUP PR S N USSP SO 1P APy, . N ST HPG. SO A AP S SR A TR W I LAY N A W L A L Sl S

E‘,:[-' v
2 %)

&3 Report No. 5421 Bolt Beranek and Newman Inc
o4
!! is executed and is made available to tane LISP code in the body of the noticer.
& To continue our example, consider the body of the NoticePlanets noticer. This
l,‘::‘i
i body contains a call to the function RUPAssert, the basic function for
!g asserting propositions in RUP. The argument to RUPAssert 1is a proposition

that mentions the variable ?x:
feta |
3
iy

(=> (PLANET ?x) (ORBITS ?x Sol))
When the noticer got ectivated by our entering (PLANET Venus) into the

dacabase, the ?x variable got bound to the term Venus. Hence, when RUPAssert
actually gets catled in the body of NoticePlanets, its argument is the fully

instantiated proposition:
(=> (PLANET Venus) (ORBITS Venus Sol))

RUPAssert adds th.s proposition to the datebase with a truth setting of true.
Since we had just asserted (PLANET Venus) to be true, the new addition causes

(ORBITS Venus Sol) to be deduced true as well.

This concludes our discussion of the noticer compiler, and along with

that our discussion of RUP.

5.5 The PENNI System

We will now resume our description of the PENN] system and the
assertional language it provides. So far, this paper has described two
aspects of our work on PENNl. We have talked about the assertional language

provided by PENN]l, and we have discussed RUP, the propositional reasoner

67

B U T W UL I TR R e
. - % J *
)

v, »
LA, TR

\7 - - 2 ’- °Q » r
- - : N P R P)
Al st A a il e e a i ata il ISP S SRS J00- ST AU SN SN N

o Y -
A e Sy

Bolt Beranek and Newman Inc. Report No. 5421
underlying PENNI. In the pages to come, we will fit these two views of our
work together. We will first describe briefly how RUP is used in PENNI. We 1

will then consider how PENNI fits within the NIKL effort as a whole. In
particular, we will show how the inference mechanism for the A-language is

interfaced to the terminological component of NIKL.

The wav PENNI uses RUP is actually very straightforward. As we alluded
to earlier, PENNI uses RUP to maintein a database of A-language assertions.
Within RUP, these asserticns are not treated any differently from other 2
propositions in the RUP database. Just as with eny other proposition, "
A-language assertions can be incrementally asserted or retracted; they may
serve to justify or be justified by other propositions, they may be involved
in noticer invocations; and so on. Thus, PENNI uses the full features of RUP
to implement its database of A-language assertions. Hence, at some level,
much of the functionality that PENNI provides within NIKL is simply that
functionality which is provided by RUP. However, the A-language database |is
only one aspect of the features provided by the PENNI system. The remainder
of PENNI's functionality stems from PENNI's position as part of a larger

knowledge representation system — NIKL.

Within NIKL, the Abox and the Tbox are distinct, but closely coupled
subsystems. They are distinct in that each can be used independently: the
former to perform assertional inferences, and the other to perform
terminological inferences. However, the two subsystems are intended to be
used together, as a connected whole. The connection between PENNI and the

Tbox lies in the fact that PENNI recognizes when it can use terminological

68

= ATy L, e

. . o 3
PR * o Omo ° o= . - -t v s el
- e = s o . o s = ™ . .
o e el At mEat mr et m® m ik ot o atal el e Al aim i atatat i alal ket ok ol b

= 2
e B S T S et e W

Report No. 5401 Bolt Beranek and Newmen Inc

inferences from the Tbox to supplement assertional inferences. This

A interconnection of the terminological and assertional cor.onents of NIKL is a
]

! crucial feature of the system. Most of the remainder of this paper will be
!‘1 spert analyzing the Abox-Tbox connection and looking at how providing this

connection affects the use of NIKL.

[5.5.1 The PENNI-NIKL interface

=

-

R To appreciate the coupling between the asserticnal and terminological
j components of the system, we must return for a moment to our original
3

description of the Abox-Tbox distinction. The terminological component of
NIKL, the Tbox, is responsible for providing a vocabulary of structured terms

with which to describe the world. The domain over which the Tbox reasons is

this vocabulary of terms: in some sense the Tbhox is about terms. On the
= other hand, the assertional component of NIKL, the Abox, uses terms from the
Tbox vocabulary to build models of the world. In particular, it uses the Tbox
“! terms to say things about individuals in the world. In the same sense that
3

the Tbox is about terms, the Abox is about individuals.

In NIKL, it is individuals (in the Abox) that serve as the locus of the

i interface between the assertional and terminological components of the system.
’ For each individual r mentioned in the assertional database, PENN] keeps a
record of all the assertions made of z. From this, PENNI isolates that
i particular set of assertions that consists of NIKL-predications and

NIKL-relations made of r that are assigned a truth setting of true.'

1NIKL-preds and NIKL-rels that are assigned truth settings of false or
unknown are treated differently. We will not go into the details of this
here.

69

¥

\ " o laggt » y) . z - o . -, L .
ISR P B, SR G T YiiE SR 1Y . S PGP 1 WP Sh W S W NSRS R PIRE, BT R S S e R

Bolt Beranek and Newman lnc. Report No. 5421

Each of these NIKL-preds and NIKL-rels corresponds to a term in the Tbox
taxonomy — a concept or a role. PENNI fetches these corresponding Tbox terms
end combines them to produce a new composite term. This composition is a

straightforward taxonomic operation and proceeds in the following way.

1. Suppose PENNl is constructing the composite Tbox term for the
individual x. Further, say the following NIlKL-predications and
NIKL-relations are true of =z:

(C1 x)
kéﬁ x)
(R1 x y1)
ifh;xxym)

2. First, PENNl constructs a new concept in the Tbox taxonomy which
will be the composite term for z. (Note: we will also call this
composite term the composite concept for =z or the composite
description of z.)

3. For each NIKL-pred (Ci =z) asserted of =z, PENN] retrieves the
corresponding concept in the taxonomy, Ci. This coucept is made a
subsumer of the composite description of =z.

4. For each NIKL-rel (Rj =z wyj) involving =z, PENNI retrieves the
corresponding NIKL role, Rj, and attaches information about this
role to the composite concept for =r. There are technical
intricacies as to how this is done — emong these: the composite
concept for each of the y; must be computed before the role
information can be attached.

The result of this first set of operations is depicted in Figure 10.

5. PENNI next enters the composite term it has just constructed into
the Tbox taxonomy, this is done by invoking the Tbox classifier.
The classifier will ensure that the new term is entered into its
most specific (appropriate) location in the taxonomy.1

1For details about how the classifier performs this operation, see [4] and

[9].

W i el s T e e b A el e

Report No. 5421 Bolt Berenek and Newman Inc.

Cn

[P

!

composite

Fi for yl

- composite

b for x

% composite
y in// for T
== —

J

FIG. 10. THE COMPOSITE CONCEPT FOR X

The process we have just described results in the creation of a term in
the Tbox taxonomy. Starting from Abox assertions about an individual z, PENNI
produces a concept in the taxonomy which we take to describe z. By nature of
the classifier, ‘this new concept is in fact the most specific concept which
can be deduced (from the taxonomy) to describe z. We call this concept the

MSG of z; this stands for the most specific generic concept that describes =zx.

PENNI records the association between an individual and its MSG by adding
& NIKL-predication to the assertional database. The predicate that is added
is simply the N1KL-pred that corresponds to the MSG of the individual. For
example, if the MSG that was consiructed for an individual z is the concept

BICYCLIST, PENN] adds to the database the assertion (BICYCLIST x).

Given the association between individuals and their MSGs, the Abox can

now invoke the Tbox to make terminological inferences that have bearing on

71

P A g s P R
S

s » . - . - -, , - - . ™" -“ "-.---’. - A-., . . - = = " At et .
SR S N Ry N o R A e v e T T I W, e G P T W R SO s ST O ey N S e e VT R P 1 S (e Sy IO T VRN, OO Y VR U O LD

Bolt Beranek and Newman Inc. Report Nc. 5421

Abox individuals. Several kinds of inferences can be made in this way. Some
inferences follow directly from the very action of wusing the classifier to
enter an individual's MSG into the taxonomy. Others are implicit given the
position in the taxonopy of an individual's MSG. These latter inferences are
not made until the need for them arises. In the paragrapu. ¢ "%

illustrate some of these inferences by means of a few extended examples.
5.5.2 An example involving classification

As we mentioned above, some terminological inferences that get reflected
in the Abox are immediate consequences of ciassifying the MSGs of individuals.
As an example of this, consider the network in Figure 11. This network
contains three concepts: E1CYCLIST, RED-HAIRED-PERSON, and RED-HAIRED-
BICYCLIST. The third concept is a subconcept of the first and second
concepts. What is more, the RED-HAIRED-BICYCLIST concept is taken to be =@
defined concept. It is defined to be that concept which describes exactly
those individuals that are described by Dboth the BICYCLIST and

RED-HAIRED-PERSON concepts.

FIG. 11. A NETWORK WITH A DEFINED CONCEPT

72

. o e e T o Bk ® s YRR S
2 a e iate e S N P HwY e 3 & 2] .

) - - » o R IR N .
- = q - A - - * - e e - » - - - I\ » . - L™ . . ., " -
tor R nan LR T e s Pl e R e A Y U P I N T T T S Pt e R S U SO AR AP W gl 8 UM M. MUl ST STt ey W v e

Report No. 5421 Belt Beranek and Newman Inc.

Say some user program now asserts the following propositions in the PENNI

database:

(BICYCLIST John))
(RED-HAIRED-PERSON John)

PENN] collects .these two assertions about the individual John and uses them to

construct the MSG for John. This MSG is depicted in Figure 12. It has two
superconcepts: BICYCLIST and RED-HAIRED-PERSON. Note that this MSG is once
again a defined concept; in fact, it is defined to be exactly the same concept
as RED-HAIRED-BICYCLIST. When the MSG of John is given to the classifier, the
classifier recognizes that the two concepts are defined identiczally. The
classifiear "merges" the MSG concept created by PEIL.II and the
RED-HAIRED-BICYCLIST concept. This results in the individual John's MSG now

being the concept RED-HAIRED-BICYCLIST, as shown in Figure 13.

RED-HAIRED
=PERSON

N

composite
for John

RED-HAIRED
-BICYCLIST

FIG. 12. THE COMPOSITE CONCEPT FOR JOAN

73

A L S T W TN
- T R EN ~ - 5 - -
Pr e e P S S R e Y

Bolt Beranek and Newman Inc. Report No. 5421

RED-HAIRED
~PERSON

MSG of John:

FIG. 13. THE MSG FOR JOHN 1

After this classification step, PENN] associates John and its MSG by

adding the following proposition to the A-language database:
(RED-HAIRED-BICYCLIST John)

Adding this proposition to the database has several significant consequences.
In particular, the predicate RED-HAIRED-BICYCLIST may have a particular
significance to the user program that made the original assertions
(BICYCLIST John) and (RED-HAIRED-PERSON John) . Given that
(RED-HAIRED-BICYCLIST Johu) hes now been asserted in the database.. this user

progrem may now be able to make new inferences.

One way in which these inferences could be made is by using roticers.
For example, the user program we've been mentioning could have defined some

noticer with the trigger pattern
. (TRIGGER (RED-HAIRED-BICYCLIST ?x) INTERN) _ ' |

This noticcr would have been activated when PENNI associated John and its MSG.
74

.= .

1 - ~ - - - . . » L Ll = &
£ .0 7 . . - . B p . - - A = o Iy = a =
ST —aim ol = Bt e et A e P, P S S A S S Y S IR

i SR S SR S S SR R E S W T = e i

Report No. 5421 Bolt Beran:k end Newman Inc.

$.5.3 An example involving subsumption

The preceding example showed an instance of a terminological deduction
that PEHNI added automatically to its assertional datebase. This inference
was added to the database as soon as PENNI had an opportunity to do so — that
is, immediately after invoking the classifier on an individual's MSG. Not all
of the terminological inferences that PENNI makes use of are performed in this
way. Many inferences are left implicit. One class of these implicit

inferences are those inferences which are based on subsumption.

Consider the network in Figure 14. The network consists of the two
concepts BICYCLIST and PERSON. BICYCLIST is subsumed by PERSON, and we read

this subsumption relation (as usual) a5 a 'iniversally quantified implicatiorn.

vx (BICYCLIST x) => (PERSON x)

PERSON

v/r BICYCLE

BICYCLIST
TRANSPORTATION

J ~MODE
MSG of John:

FiG. 14. A NETWORK WITH THE MSG FOR JOAN

75

Bolt Berunek and hewman Inc Report No. 5421

Say some user program now asserts

(BICYCLIST John).

The MSG of John 1irf ‘rivially computed to be the concept BICYCLIST; this is
shown in Figure 14. 3Say the user program now wishes to query the truth of the

proposition

(PERSON John) .

To d¢ this, the program simply enters the proposition into the database with a
truth setting of unknown. When the proposition is interned, PENNI recngnizes
it to be a NIKL-predication of the individual John. PENNI then tried to
derive a truth setting for the proposition by using the Tbox. It does this by
first fetching the Tbox term corresponding to the predication — this term is
simply the concept PERSON. PENNI then asks the Tbox whether this concept
(i.e. PERSON) subsumes the MSG of ihe individual John (i.e. BICYCLIST). This
is indeed the case, and given thir PENNI can now assign a truth setting of

true to the proposition (PERSON John}.

Note that PENNI does ot automatically infer the proposition
(PERSON John) after calculating the MSG for John. The user program had io
intern the proposition ior the deduction to be made. This is by design: by
following this scheme PENNI avoids adding unnecessary predications to the
assertiona’ database. (The alternative to this scheme would be tu add to the
database a NIKL-predication -~orresponding to ~very concept in the taxonomy
which subsumes an indivi-Jual's MSG — all the way up to THING. This .s

impractic: . and grossly inefficient.)

76

ERR T T R S T P T PR P Y S, 9 P .
o -

= At e, . a — . . . aly . - . L.
. g i L el Skt e -3, N R I TSP Y, S S P SRE SN I AP S JIE TV Pt Sl s o N

PR S SN S

..

w3 Report No. 5421 Eolt Beranek and Newman Inc.

Inferences based on subsumption should to be thought of as implicit.
& They are never made explicitly until they are needed; when they are needed

they are made autormatically.

»

R §.5.4 An example involving roles

Ej In this example we will look at an inference that PENNI makes using role
o information. Consider o.ice again the network in Figure 14. ln particular,
) consider the TRANSPORTATION-MODE role attached to BICYCLIST. This role is
;; value-restricted to the concept BICYCLIST. We read the restriction

information as follows:

]
et ot

’
«

vx,v [(BICYCLIST x) & (TRANSPORTATION-MODE x y))
=> (BICYCLE y)

Say some user program now asserts these predications:

(BICYCLIST John)
.. (TRANSPORTATION-MODE John TrustyRusty)

After the [{first isertion, the MSG for the individual John is trivially

B computed to be the concept BICYCLIST. When the second proposition is added,
- PENNI recognizes it to be en assertion of a NIKL-relation between the
A

individuals John and TrustyRusty. PENNl then fetches the role (from the Tbox
9 role lattice) corresponding to the relation, and looks wup the range

restriction of the role. This range restriction is computed using the domain

:3 restriction provided by the MSG for John. As we just saw, this range
restriction is simply the concept BICYCLE.

5

3

PENN1 reads this.restriction . as the same universally quantified statement

il we gave above. “his allcws PENNl to infer the proposition
7

I e I

TR s . S5 - - i G R s = 1A o7 - N
AL 0 St Nl S, PO e U SO, PO Py VR V. UL, S SN I U S VU0 U VLA Wil SRR S -

Bolt Beranek and Newman Inc Report No. 5421

(BICYCLE TrustyRusty)

which is then added to the propositional database. This addition has all the
usual consequences of asserting a NIKL-predication: the MSG for the
individual TrustyRusty will be wupdated (or created), and further Abox

inferences mey occur.
5.5.5 What do these examples have in common?

Each of the examples we have just seen shows the Tbox being used to
supplement the Abox. In each example, the NIKL taxonomy was used to perform
terminologicael deductions that were then reflected in the assertional
database. In some cases, this enabled further inference to proceed in the

Abox.

None of these terminological deductions could have been performed easily
using the Abox alone. To cepture the full scope of the terminological
reasoning done by the Tbox would require adding to the Abox many rules of
inference. This would prove to be a substantial burden. In fact, no general
purpose inference engine could be expected to do this reasoning efficiently.
By separating assertional and terminological reasoning, NIKL is able to

provide efficient inference mechanisms for both.

5.6 Conclusion

We started our investigation of the new NIKL Abox with a 1list of
desideratea. How does the work we have just described measure up to these

wishes? We feel it measures up well. In particulear:

78 !

-

'.]

Report No. 5421 Bolt Beranek and Newman Inc.

o The new assertional language supports ‘'weak” statements. By
providing propositional calculus as the basis for the A-language we
allow for not fully determinate statements.

o The new Abox supports reasoning about equality. Abox individuals can

be equated, thereby asserting them to denote the same entity in the
world.

o The new Abox supports inference rules. By judicious use of noticers,
the user can write rules that encode some quantified reasoning.

o The new Abox provides a powerful inference engine. This inference
engine is RUP, whose array of inference utilities makes it one of the
most sophisticated and versatile reasoning systems currently in
existence.

We feel that our efforts towards building the assertional component of
NIKL have met with some success. However, the efforts we have described here
are just the beginning of our investigation. The development of PENNI is an
ongoing process, and much work still remains to be done. This work isn’'t
limited to our research alone. Indeed, the idea of separating a general
knowledge representation system into distinct, but interacting., subsystems, is
gaining serious acceptance in the field of Al. Other knowledge representation
systems now exist that, like NIKL, distinguish different kinds cf knowledge
and provide separate, but coupled, inference engines for each [3, 7]. We
expect that this approach will yield many contributions to knowledge

representation. NIKL and PENNI are among the first of these.

79

Bolt Beranek and Newman lnc. Report No. 5421

AR -8]

Sa'

S

8,

L
T,

REFERENCES

[1] Bobrow, Robert J., David J. Israel, and James G. Schmolze. The NIKL
Working Papers. unpublished, Bolt Beranek and Newman Inc.

[2) Brachmen, Ronald J. and Hector J. Levesque. Assertions in KL-OWE. In
Proceedings of the 1981 KL-ONE Workshop, Schmolze, James G. and Ronald
J. Brachman, Eds., BBN Report No. 4842, 1982, pp. 8-17.

[3] Brachman, Ronald J., Richard E. Fikes, and Hector J. Levesque. "KRYPTON:
A Functional Approach to Knowledge Representation.” IEEE Computer 76 (October
1983). Also available as Fairchild Technical Peport No. 639 or FLAIR
Technical Report No. 16.

[4) Lipkis, Thomas. A KL-ONE Classifier. 1n Proceedings of the 19817 KL-ONE
Workshop, Schimolze, James G. and Ronald J. Brachman, Eds., BBN Report No.
4842, 1982, pp. 128-145.

[5] McAllester, David A. An Outlook On Truth Maintenance. Massachusetts
Institute Technology, Artificial Intelligence Laboratory, August, 1980. Al
Memo No. 551

[6] McAllester, David A. Reasoning Utility Package User's Manual.
Massachusettis Inst.tute Technology, Artificial Intelligence Laboratory, April,
1982. Al Memo No. 667

[7] Rich, Charles. Knowledge Representation Languages and Predicate
Calculus: How to Have Your Cake and Eat It Too. Proceedings of the AAAl-82,
American Association for Artificial lntelligence, 1982, pp. 193-196.

[8] Schmolze, James G., and Ronald J. Brachman. Summary of the KL-ONE
Language. In Proceedings of the 1981 KL-ONE Workshop, Schmolze, James G., and
Ronald J. Brachman, Eds., BBN Report No. 4842, 1982, pp. 233-260.

[#] Schmolze, James G. and lsrael David J. KL-ONE: Semantics and
Cleassification. In Research in Knowledge Representation for Natural Language
Understanding, Annual Report September 1982 - August 1983, Bolt Beranek and
Newman Inc, Repori No. 5421, 1983.

80

------- “, LY -.~|
* " . P I ST e

- - - - N - + N
- a * %" - '-1 L .~ - . . e - - s - i L . . B
LT N T T W, Wl U - S S Sl S Nl Wi S S S0 AL SRR S -0, BT LT Wl Wil A V0. A S W G Ve S WA Sl Wl S S WA ¥ ¥

Repor' No. 5421 Bolt Beranek and Newman lnc

8. BELIEF AND KNOWLEDGE IN ARTIFICIAL INTELLIGENCE!

A. Haas
6.1 Representation and Search -
R
3 Artificial Intelligence programs must have common-sense knowledge. This
fa 1
includes knowledge about beliefs and knowledge. A progrem must be able to

understand that Bi!l believes Mary's phone number is 5766, or that John knows
the name of every person in the department. 1f a program is supposed to
understand these facts, it should be able to make the right inferences from
them. 1f Bill knows that Mary's phone number is 5766, he knows what Mary's
phone number is. 1f a program thinks that Bill knows that Mary's number is
5766, the program should be able to infer that Bi!l knows what Mary's number
is. 1f we have a knowledge representation that can represent facts about
beliefs and knowledge, and an adequate set of inference rules, we have taken
the first step in building a program that can reason about beliefs and
knowledge. The next step is to devise a search strategy: an algorithm that
decides which inference rules to apply to which expressions to solve a

problem.

This paper is atout the first step. 1t proposes a representation and

15 version of this paper has been published as BBN Technical Report No.
5368 "The Syntactic Theory of Belief and Knowledge” and, under this same
title, has been submitted for publication in a collection, edited by Prof.

- Jerome Feldman, in the series Advances in Artificial Intellisgence.

81

- . o 0o - e ta

- - - - - .
i 2 A ~ -

Y . + » E . ORI S Rl e) . & °0°c . . ‘.
R T Tt at a e Er et A i e Rk Hs B T B e B oA o Ee e R e A e B A e Sn b oo MmaBon B B R f e R B heea . W

i

W

. = -
oli ol b atal

TE

TERRE e
o TR T e) FRERR R e s

Bolt Beranek and Newman Inc. Report ~Yo. 5421

inference rules for reasoning about belief and knowledge. Section
6.2 presents examples of sound and wunsound inferences about belief and
know] edge . The problem is to allow all the sound inferences and rule out the
unsound ones. The best treatment to date is Moore's {13), and 1 discuss his
successes and failures. Section 6.4 presents the syntactic theory of belief
and shows how to formalize it. Section 6.5 is the core of the paper:. a series
of examples of representation and inference in the formal system. These
examples describe the processes that creste, store and use beliefs and

knowledge. Perception, introspection, memory, inference and planning are all

considered.

Recent work has made great improvement in Al theories of belief and
knowledge, but they still have serious problems. For example, Moore's theory
predicts that agents always know every logical consequence of their knowledge.
My theory tries to solve the problems by formalizing familiar ideas from
computer science. For example, it says that sentences stored in an agent's
memory represent his beliefs. [t makes three main improvements in the match
between theory and common sense. First, it does not predict thet agents
always infer everything that follows from their knowledge. It considers the
agent's goals and his limited inference ability before predicting that he will
make an inference, and it says that inferenc= takes time. Second, it gives a
better account of what you must know about an object in order to know what
that object is. It says that you know what an object is if you know enough
about it to carry out your intended actions. Finally, it gives a better
account of when you need knowledge to perform an action. It simply formalizes
the obvious: robots perform actions by sending commands to effectors, and to

act they must find out which commands will produce the desired actions.
82

O}

B . a a 5 - - .o L ‘ .
L T SO O ek . S D RN L g . £ =
e St L SR Sen e T g b ogusie Y otegnts e e Sone oot e St oD P L P LY SR SN SR AOUL (- S P - B PO V. e Y L T S

Bl

i4

rlat

- Report No. 5421 e Bolt Beranek-and ‘Newman Inc.

These improvements have practical importance. A planner will not get far
if (following Muore's theory) it thinks that there is no point in planning to
do inferences, since they all happen instantly and automatically. Nor will an
interactive program do well if it thinks that a large mathematical expression

is a good answer to a user's question because it is a standard name.

These improvements are all made in the same way: by using familiar ideas
from computer science. 1{ an agent uses sentences to represent his beliefs,
and applies inference rules to them, there is no reeson to expect that he will
believe all consequences. of his beliefs. If an agent acts by sending commands
to his effectors, then of course he must find out which commands will produce
the desired actions. Konolige took this line, but he only went halfway - he
returned to Moore's theory in his treatment of knowing what and knowing how.

As a result, the problems of Moore's theory reappear in Konolige's theory.

There is also an important gain in the technique for reasoning about
another agent's inierences. The idea of building a data base to represent
another agent’'s beliefs has always appealed to Al workers. But it had =a
serious problem: there was no way to represent that John knows what Mary's
phone number without putting Mary's phone number in the data base. The use of

new constants to stand for unknown terms solves this problem.

6.2 Some Inferences About Belief and Knowledge

Let us consider some examples that show why reasoning about beliefs is
hard. For one thing, the familiar rule of substitution of equals does not
apply when one of the equals appears inside the scope of the verb ‘"believe”.

For example, the following inference is not valid.
a3

e o JR o p— - . R .
= ~ Pt ey > e TN, | R U T T SR
S O, SO R S S PR . U N SRR W SO Vol W W

s ot

P T el

: . -
Pt ol R et

=,

v . - R ek T T N] =, o
[T A I DAL T o N T T T £ AT = a0 © Gpae o g
e T T A e T T A T T e T e e e e e et a T e et a e e a e L alt el

Bolt Beranek and Newman Inc. Report No. 5421

John believes that Mary's phone number 1s 444-1212.
Bill's phone number is Mary's phone number.

John beclieves that Bill's phune number is 444-1212.

It is easy enough to forbid the substitution of equals when one of the equals
appears inside the scope of "believe”, but this is not very satisfying. One

would like an explanation of why substitution of equals does not apply.

The following inferences are valid:

John knows that snow is white.

John believes that snow is white.

John knows that snow is white.

Snow is white.

That 1is, all knowledge is true belief. On the other hand, not all true
beliefs are knowledge. Suppose somebcdy predicts that a horse will win a race
when the odds are 30 to 1 against it. Sure enough, the horse wins. We might
ask "How did he know the horse would win?”. It would make sense to answer "He
didn't know, it was just a lucky guess.” That is, a true belief might not
count as knowledge if there is no good reason for the belief. 1 will not
consider this problem further. Suffice it to say that all knowledge is true

belief.

The following inference is valid.

84

IS S . . . m s
N oMt a7 .
- R

Report No. 5421 Bolt Beranek and Newman lnc.

John knows that Mary's phone number is 444-1212.

John knows what Mary's phone number is.

But this one is not necessarily valid:

John knows that Mary's phone number is Bill's phone number.

John knows what Mary's phone number is.

This raises the question: when does John's knowing that X is N entail that
John knows what X is? The noun phrases '"444-1212" and "Bill’'s phone number”
both denote Mary's phone number, but knowing that Mary's number is Bill's
number does not count us knowing what Mary's phoné number is. 1n some sense
the phrase "Bill's phone mmber'" does not contain enough information, but it's

hard to clarify this.

Context helps to decide what knowledge about X counts as knowing what X
is. Suppouse that you and John are staying at a hotel in a strange city, and
you go out for a walk. After a while John asks "Do you know where we are?"
You realize that you're completely lost, and answer "No."” Seeing a telephone
you decide to call Mary and ask for directions. She answers and says "Do you
know where John is? 1 need to talk to him right away.” You answer "Yes, he's
right here” and hand him the phone. When John asked if you knew where he was

you said no; a moment later you answered yes to the same question.

If you had answered John's question with '"Yes; we're right here”, he

would not have been amused. John wanted information that would help him to

85

- - e e e e g . r o
e T R R S e S U PR IR W SR R MU RUNS. 1 W Al TR 15 SR W S

W

=
e
|~
-
A
4
-

PO BN 34

w

.‘
3

s - ¢ HOND

Ll
PR

‘_4.?.'_‘ A

W
Lt el L

sk X Ta A

Beclt Berenek and Newman lInc. Report No 5421

get back to the hotel. Mary wanted information that would help her to get in

touch with John, and for that purposz "right here” was a useful description of

Joan's location.

One clue to the problem of "knowing what” comes from the problem of

"knowing how". The following inference is correct:

John knows that Mary's number is 444-1212.
John knows how to dial a telephone.

John knows how to dial Mary's number.

This one is not:

John knows that Mary’'s numver is Bill's number.
John knows how to dial a telephone.

John knows how to dial Mary's number.

We saw that if you have the name ""444-1212" sfor Mary's number you know what
her number is, but not if you only have the name "Bill's number”. Similarly,
if you have the name "444-1212" for Mary's number you know how to dial the
number, but nct if you only have the name "Bill's number”. It is tempting to
connect these two facts. 1In any case a theory of belief and knowledge must
say something about what knowledge is needed to perform actions. So the

theory of belief and knowledge is connected to the theory of planning.

The problem of “knowing what” is closely related to the so-called de re

statements about belief. Suppose you see John in a restaurant with a woman

86

[

. 6o o . S (il 0S5 L . . a7 i . . i
i e e ta Atk ettt e atatata et atatataladelat il et alat adalatatasdadmiictadlas

Report Wo. 5421 Bolt Beranek and Newman Inc

you don't know, and you think "That must be John's wife”. Later you find she
was his sister. You might say ‘1 thought John's sister was his wife.” The

following inference is valid. at least in some contexts:

I thought John's sister was an accountant.

I believed the statement "John's sister is an accountant”.

But the following is surely not valid in this context.

I thought Jobhrn's sister was his wife.

I believed the statement "“John's sister is his wife”.

In this case the example seems to mean about the same as "] saw John's sister
and thought she was his wife". The speaker vuses the description *“John's
sister” to identify the woman he took for Jchn's wife. Such statements are

called de re reports of belief or knowledge.

Truth is a crucial property of beliefs. Our theory must explain

inferences like this:

John believes that gold 1s an element.
Everything that John believes is true.

Gold is an element.

If we know that someone's beliefs are itrue, we can infer things about the
objects those beliefs refer to. We can also reason in the other direction: if
an objec. has certain properties, then rertain beliefs about it are true.

87

- R

.

A VP SRt " . et S R .. - . o i
P P ST NP S NP S L T ST VA Sl VS SR UL I S WY SRy W SN AT S, S SUDUPNNIC S . RPE, (I S W S S ISP S S U Y SR S

Bolt Beranek and Newman Inc. Report No 5421

Coal is black.
John believes that coal is black.

John beljeves something true.

Common sense says that we think about objects outside our heads, and that our

beliefs about them can be right or wrong.

People use their beliefs to infer new beliefs. What they i1nfer depends
on what problems they want to solve and how hard they think. For example, the

following inference is very plausible.

John knows that Mary's number is 5766.
John knows that Mary's number is Bill's number.
John is trying to figure out what Bill's number is.

John will infer that Bill's number is 5766.

On the other hand, a math teacher had better not accept the following:

The students believe the Axiom of Choice.
The Axiom of Choice entails that every set can b. well-ordered.
The students will infer that every set can be well-ordered.

A theory of belief ought to distinguish hard inferences from easy ones,
and it ought to say that what people infer from their beliefs depends on what
they try to infer.

People know about their own beliefs. They can easily answer questions
like "Do you know what Mary's phone number is?”. Yet we don't want to claim

88
xﬁ;ﬁﬁiﬁbgﬁﬁﬁf‘iéff?ﬁg;ﬂ{;LA;LQ;héﬁ.,m;g;L;L;ggulu Sasaanatleiataats atale tatatiala

1
?— 1
C i
I
) & Report No. 5421 Bolt Beranek and Newman Inc. i
II that pezople always know about all their beliefs, anymore then we want to claim j
£ that they believe everything that they could infer from their beliefs. E
y -~
Otherwise, we would end up with the following as a valid chain of inference: ‘E
i
n
John believes that snow is white.
5€ John believes that John believes that snow is white. =
o John believes that John believes that John believes that snow is 1
D¢ white. g
. J
) John believes that John believes ihat John believes that John 1
= believes. .. R
S !
1
G, The second line is plausible enough, but the fourth line is weird, and if we
continued the 500th line would be impossible to read, let alone believe. o3
Introspection is like inference: it is something pecple do on purpose, and m
they do as much of it as they need for the problem at hand.
Many beliefs are the result of perception. People meke inferences like
the following:
John looked at a piece of paper with a number written on it.]

John krnew what number was written on the paper.

] stressed above that many beliefs arise from a deliberate effort of thinking. B
If we gay that inference and introspection happen esutomatically, we get 1into
trouble because these processes take beliefs as input and produce new beliefs
as output. Therefore their output can be used as input for more introspection

and inference, and if the process runs on autometically we might get an

89

P L e) n . L)
- e - - . £ g
O " - %

- . .
ks .- ., S e e . . “ .
‘_!;:T.A.‘l_!‘ AP S S S SO S P sl SO SN TR P WL I L S VP - RGP T . o -}

Bolt Beranek and Newman Inc. Report No 5421

infinite set of beliefs. This problem does not occur with perception, because
its input is not old beliefs, but physical events in the exterrnal world

Therefore no problem arises if we claim that perception creates new beliefs

automatically. And this seems to be true. If someone sneaks up behind vour
w back and blows a bugle in your ear, you'll notice it whether you want to or
not.

6.3 The Situation Theory

Robert Moore's dissertatinon [13] uses a theory of belief based on

e

Hintikka's possible worlds theory [6]. Moore had the ingenious idea of

1ot
*alx

it

replacing Hintikka's possible worlds with the situations of McCarthy's

Chif
it

i,
L

situation calculus. Recall that the situation calculus is a technique for
reasoning about actions. It introduces entities called situations, such that
;j an object can have different properties in different situations, and at each
instant cf time the world is in exactly one situation. Since the properties
of objects vary from situation to situation, a sentence can be true in one
! situation and false in another. Also, a description like "Bill’'s phone
number” can denote different objects in different situations. One describes
an action as a relation over situations. If this relation holds between
situations sl apd s2, you can perform the action at any instent when the world
is in situation sl, and if you do the world will be in situation s2 at the

next instant. Moore dealt with knowledge only, but I will consider a natural

"
Wi

v
o i
mmzb’“ﬂn

extension of his theory to belief.

g 1

Moore proposed to represent an agent's beliefs as a set of situations,

90

cwt A T R T PR [-
LR, w e o
......

Y . - - . .
- - . "~ - " = = . " 2 E . L == = T =
Lol o e gl i e R P i i e e Foofa g T L 2 it s et S e

e —— ——— -
{
5 Report No. 5421 Bolt Beranek and Newman Inc.
' which 1 will call the agent's alternatives. 1f situation s is one of the
: & agent’'s alternatives, then the agent's beliefs do not rule out the possibility
:% that the current situation is s. In other words, for all he knows the world
] g! might be in situation s. Thus if the agent knows everything about the current
- situation, his set of alternatives contains only the actual situation. If he
| €§ knows nothing ;t all his set of alternatives contains every situation. The
s more the agent learns, the more -:tuations he rules out and the fewer his
i
%; alternatives.
; ég An agent believes that P 1f P is true in all of his alternatives. This
; n explains at once why substitution of equals fails inside the scope of
3 gi "believe". 1f John believes that Mary's number is 444-1212, then Mary's
i - numbezr is 444-1212 in all of his alternatives. 1f B:ill's npumber is Mary's
é 'l number, then Bill's number is Mary's number in the actual situation, and so
E o Bill's number is 444-1212 in the actual situation. Still John's alternatives
-
§ might include situations in which Bill and Mary have different numbers, and in

these alternatives Bill's number 1is not 444-1212. So John does not

necessarily believe that Lill’'s number is 444-1212.

This theory will also handle the first "knowing what” example. Moore
says that an agent knows what X is if X 1s the same object in all of the
agent’'s alternatives. That is, the agent’'s beliefs rule out all but one value
of X. 1f the agent knows that Mary's number is 444-1212, then Mary's number is
444-1212 in all the agent's alternatives. Surely 444-1212 is the same number
in all situations. That number is Mary's phone number in all of the agent’s

alternatives, so the agent knows what Mary's number is. On thr other hand,

91

L . B . - - .
«® s ., « ' . it %, - % N s
PRSP T, S . R T I O e ey

Bolt Beranek and Newman Inc. Report No. 5421

suppose the agent knows only that Mary's number is Bill's number. Bill might
have different phone numbers in different situations, so there need not be any
one object that is Mary's number in all of the agent's alternatives. Again we

get the right prediction.

Moore goes on to say that actions take arguments. For example, the
action of dialing a phone number takes one argurent, the number to be dialed.
An agent knows how tc perform an action only if he knows what the action's
arguments are. Then it follows that an agent knows how to dial Mary's number
if he knows that Mary's number is 444-1212, but not if he only knows that

Mary's number is Bill's number.

I claim that thé situation thecry of belief is wrong, and that a very
different approach is needed (this is also Moore's current view - see [14]).
The first criticism is that it makes false predictions about "knowing what".
We don't say that you know what Mary's number is if you know that her number
is equal to six times thirty—one squared. Yet six times thirty-one squered is
surely the same number in every situation. In this cnse Mary's phone number
is the same number in all of the agent's alternatives, yet he still doesn't
know what her phone number is. Also, according to the situatinon theory
whethe- an agent knows what X is depends only on the agent's alternatives.
But we have seen that it can depend also on what the agent wants to do with
the knowledge. If you want to put Mary in touch with John, and you know that
John is standing next to you, you claim that you know where John is. 1f you
want to direct John back to his hotel, and you know that he is standing next

. to you, you must learn more before you can claim to know where he is.

(3%}

“at e e x B L R] - - o° S . .
e . -t Tt .’ - - - E

= e " aVa LU S P e O T = -

el [l Wl At] P 2 =

L - Vo % N = . A S . ; -~ T T B o
P P I N I I N A A R S S P T VL WSO Sy AR SN R S M W Y MR WA SRS PN

-

-Fwa® ooy

dii

T
«“in

-
talal

. a
E‘- r
.

hd

s
i,

;s

o
i
1a

b

Report No. 5421 Bolt .Beranek and Newman lnc

Suppose the agent believes that F, and P entails Q. Then P is true in all
of the eagent's alternatives and since P entails Q, Q is true in all of the
agent's alternatives. That is, the agent believes Q. So in the =srtuation
theory an agent believes everything that follows logically from his beliefs.
If the math professor in our previous example uses the situation theory to
reason abou!t his student's beliefs, he will conclude that they believe that
every set can be well-ordered as soon as they know the axioms of set theory.
There is a similar problem about introspection - as soon as an agent believes

P he believes that he believes that he believes..., and so on forever.

This problem is not surprising in a theory that talks about beliefs, but
not about the reasoning that creates beliefs. There may well he en infinite
set of beliefs that an agent could infer, given arbitrary time and scratch
paper. But at any time only a finite number have actually been inferred. 1If
we say nothing about the inference that creates beliefs we can’'t distinguish
between those that are easy to infer and those that tak- a long time. Then
it's no wonder if we end up with a theory saying that everything is inferred
in zero time. | conclude that the situation theory of belief is on the wrong

track. We need a theory that describes the inferences that create beliefs.

6.4 The Syntactic Theory
6.4.1 A Robot and His Beljefs

I have described some of the data that a theory of belief and knowledge
must hendle, and how Moore fared with the situation theory of belief. Now I

consider the syntactic theory. First comes a statement of the theory in

93

* . - e - # <L s = - = 3=
T PR A P % foal PSS WA PSR P S A

Bolt Beranek and Newman Inc. Repori Nn. 5421

English, then the tools needed to formalize it, and then a series of example

inferences.

] propose to take very seriously the idea that people are like computers.
The agents in my theory look a lot like Von Neumann machines. Not that people
are really like Von Neumann machines; rather common sense does not tell us
about the massive parallelism and other non-Von Neumann things that go on in
our heads. Let us imagine a simple robot, and build a theory that describes
his beljefs. We will see that this theory can handle all of the given

problems as well as the situation theory, and some of them better.

1f we want to write a program that believes that snow is white, we devise

a knowledge representation in which we can assert that snow is white - for
example, by writing "(white snow)". Then we add this expression to a
collection of expressions that are supposed to represent the program's
beliefs. This practice suggests a theory: that beliefs are expressions of a
knowledge representation language. This is the syntactic theory of belief.
It appears now and again in the litereiure of philosophy - see [7}, [3), and
[10]. McCarthy [11] was the first Al worker to advocate this theery. Moore
and Hendrix [14] argued that the syntact‘ theory can solve many philosophical

ot problems about telief.

Men, machines and Martians can use very different internal languages to
represent the seme belief. | propose to ignore this possibility, and assume
that all agents use the same representation for every belief. Our robot
assumes that everybody else represents beliefs exactly as he does, and he

ignores the difference between.a belief and his representation of that belief.

94

- ; 5
B R S 2 g 7 o .
TR, NN A 8 N S M UG L W Vel o SO Bl A S AP W PSR Y PN,

i
.

»

ir.

¥

AxA.

S
.

g 3
g

.
"%

*3
WERTA

T
¥

e

L

5
A = iy A e e
P Pl Y P EN T)

-Report No. 5421 Bolt Beranek and Newman Ine¢

Konulige [8] was the first to formalize this version of the syntactiec theory.
His treatment differs from mine in several important ways, which 1 will note

az | come to them.

Suppose John believes that snow is white. The robot thinks that John's
representation of this belief is the same as the robot's representation: the
expression "(white snow)”. The robot aiso thinks that the representation is
the belief. 1t forms a name for the representation by putting quotation marks
around it. So it represents the fact that John believes snow is white by an
expression roughly like this.

(believe John "(white snow)")
The first argument of "“believe” is the name of a man. The second argument is
the neme of an expression. To formalize the syntactic theory, one must assign

names to expressions. That is, one must devise a system of quotation.
6.4.2 Formalizing ihe Syntactic Theory

I use predicate calculus with the following logical symbols:

3

(=> p q) - material implication

(& p q) ~ conjunction

(Vpq) - disjunction

(~ p) - negetion

(all x p) ~ universal quantification
(some x p) - existential quantification

This is the official notation; often I drop parentheses and use ccunectives as
infix operators. A few predicates, like "<" and "=", will also be wused as

infix operators.

95

) - LI S T T S S - - a g0 “ .

A T O T NC P AR e men® o ys Lo - R O I . ST e e

K - hd v . - 3 - - - - . b k - 2 . - - _ -, - -t
I T T S P ST APRE T DI e B SP S- P Vol SO Ty SP R i SEet. bl b T i St T SR T S0 SOV |

=

Bolt Beranek and Newman Inc. Report No. 5421

The beliafs of our hypothetical robot are sentences of a first-order
logic extended with quotation. These beliefs need not be stored explicitly,

but the robot must be able to find out whether he believes a given sentence or

not in constant time by a standard retrieval algorithm. We do not say that

Py
Rl

.

you believe something if vou can infer it after ten minutes of puzzling. All

E SRele
AT R Nl

the beliefs are sentences ol a single language L. When the robot forms beliefs

about its own beliefs, those beliefs must be sentences of L that talk about
sentences of L. This is a bit surprising. We are used to talking about an
object language L1 by using & meta-ianguage L2, where L1 and L2 are distinct.
Why not stick to this method® Since Lhe robot can form beliefs about beliefs
about beliefs... up to any finite depth, we zould set no limit t¢ the number
of meta-]languages needed, but that is quite OK. If we follow this plan no
leanguage can ever talk about itself, but the robot can always form beliefs
about his beliefs by going one step further in the hierarchy. Konolige wused
such a hierarchy of meta-languages in his formalization of the syntactic

theory.

L by

This plan will not work, because it forbids any belief to refer fto

wyily

8

itself. A belief cean refer only to beliefs in languages lower in the
hierarchy. In fact beliefs do refer to themselves. For example, a humen
might notice that he never forgets anything that interests him strongly.
Suppose this belief interests him strongly; then it refers to itself, and
quite likely makes & true assertion about itself. Or suppose the robot uses a
pattern-matcher to retrieve beliefs from memory. It will need a belief
describing the pattern-matcher, and this belief can be retrieved by

pattern-matching- li:e any other. Thus it says of itself "I can be retrieved

96

Tt P T L 5 L
e T atntan g I,y Y, P -
L& S T T =

- - = T s - Tt A -
L o - - * 2 - a3 2 - - S g = »
ey e Sk i TS PR W R P Yol - s R i AP SPT. DR JOY Wt ¥ = . FAE PR B e R e

ol 1T L T T v

[+

O

iy
DI W

A

a "
ri"“‘

=13
.

\v; Al S

et b T

*
R
e S

-
s

*

Report No. 54”1 -Bolt Beranek and Newman lnc

by using such-and-such a pattern”. There is nothing paradoxical or even
unusual going on here. The point is important, because the decision to use a
single sel f-describing language will 1involve us in the paradoxes of

self-reference. One can avoid these paradoxes, but it is not easy.

One way to assign names to sentences is to let sentences be their own
names. Then we could represent the fact that John believes snow is white by
writing
(believe John (white snow))

This might be a good system, but it is impossible in first-order logic.
Sentences denote truth values in first-order logic, they do not denote
themselves. We must look farther for & quotation mechanism that will fit into

first-order logic.

In English we form the name of & sentence by writing quotation marks
around the sentence. Thus the expression
"Snow is white.”
denotes the sentence
Snow is white.
If we adopt this scheme in our formal language we could represent the fact
that John believes snow is white by writing
(believe John "(white snow)")
We can fit this scheme into first-order logic by saying that quoted
expressions are constants that denote sentences. Yet this idea is not good
enough, because it will not allow us to reprssent the fact that John knows

what Mery's phone number is. We observed above that John knows what Mary's

e T

Bolt Beranek and Newman Inc. - Report No. 5421

number is if he knows tha‘ Mary's number is n, where n is an Arabic numeral.

We might try to represent this by writing

1

(some n (know John “(= (PhLoneNumber Mary) n)")
&
(IsArabic n)

)

But this will not do. By definition of quotation marks, the second argument
of the predicate letter “know" denotes the wi{

(= (PhoneNumber Mary) n)

Thie is true no matter what the varieble "n“ is bound to. So the quantifier

“some” does nothing, and (1) means the same as (2).

2

(know John “(= (PhoneNumber Mary) n)")
& (some n (IsArabic n))

We need a quotation system that allows us to embed non-quoted expressions in

quoted expressions. Then we can represent the fact we tried to represent with

(1).

Instead of using a quotation mark that applies to whole expressions, et
us quote the individual symbols. If we put the character ' in front of each

symbo] that we want quoted, we can write

.

= W

g I

; =i

i i Report No. 542) Bolt Beranek and Newman lnc
g &l

B

2 B

1l 3

H o~ (some n (know lohn ('= ('PhoneNumber 'Mary) n))
L1 ‘:;'i &

(lsArabic n)

.\)
& tc represent the fact that (1) fails to express. All the symbols in the
- second argument of "know" are quoted, except for the variable “n"” which is
fi% bound by the quantifier in the ordinary way. If we can fit this quotation
f; scheme into first—order logic, we can formelize the syntactic theory.
g;

The problem is to ssign denotations to the quoted symbols so that
S% sentences 1like (3) will have the intended meanings. given the usual semantic
1 rules of first-order logic. To each constant of our language we assign a
I' name, formed by appending the character ' to that constant. Thus if “Mary"” is
;3 a constant and denotes a woman, "'Mary” is a constant and denotes the constant
f? "Mary" . To each variable we assign a name in the same way. 1f "x" is a
. varie,.e, then "'x" is a constant that denotes the variable "x".
Eg JJow consider the symbols that take arguments - function letters,
A predicate letters, connectives and quantifiers. These symbols are called
53 functors. The term "(& P Q}“ consists of the functor "&" and its arguments
i "P" and "Q". 1f "F" is a functor of n arguments, then "'F" is a function
ol
Eé letter. It denotes the function that maps n expressions el ... en 0 the
- expression with functor "“F" and arguments el ... en. For example, the
é; function letter "'&" denotes the function that maps wffs wi and w2 to the wiff
?g with functor “&" and arguments wl and w2 - which is the conjunction of wl and
- w2. The function letter "'~" denotes the function that maps a wff to its
fj} uegation, and so on.
P 99
=

B e e e o o e e S T e

walel

T, o m
Bl Tl B Jeo¥ Tk

»

x
5
!

=4
A=
e

Bolt Beranek and Newman Inc Report No. 5421

If the variable “n" denotes the arabic numeral "5766", then the term
(= ('PhoneNumber 'Mary) n)
should denote the sentence
(= (PhoneNumber Mary) 5766)
The function letter "'PhoneNumber' denotes the function that maps a term t to
the term with function Jletter “PhoneNumber” and argument t. The constant
"'Mary” denotes the constant "Mary”. So the term
('PhoneNumber 'Mary)
denotes the term with function letter "PhoneNumber" and argument "Mary", which
is
(PhoneNumber Mary)
The function letter "'=" denotes the function that maps terms ti1 and t2 to the
wif with predicate letter "=" and arguments tl and t2. So the term
('= ('PhoneNumber 'Mary) n)
denotes the w{f with function letter "=" and arguments "(PhoneNumber Mary)"
and "5766", which is
(= (PhoneNumber Mary) 5766)

And that is the answer we want.

So if the robot knows what Maryv's phone number is, it can represent this

fact by the sentence

(some n (know Me (’'= ('PhoneNumber ’'Mary) n))
&
(I1sArabic n)

100

Sl .
x M -

= - + . - -
- Co Rt Tt e P T ate &t o) PR . Camld
. e A R A e R - o e e T U e . T

| &
) Report No. 542i Bolt Beranek and Newman lnc
: ll The constant "Me” is the robot's selfname - the robot's usual asme for itself.
) "knew” is an ordinary predicate letter - not a special modal operator as in
2 Hintikka. The model theory of our language contains no special rules for
!! interpreting the predicate "know".
3 On the other hand, suppose that the robot only knows that Mary has a
& phone number. We represent this as
5?‘ (know Me ('some 'n ('= ('PhoneNumber 'Mary) 'n)))
. In this case the existential quantifier 1s inside the quotation mark.
3
” The term
i 4 ('= ('PhoneNumber 'Mary) '5766)

includes the quote name of the arabic numere! for Mary's phone number. The

term

5 (= ('PhoneNumber 'Mary) n)

hes a variable in the same position. (4) is the quot=s name of a wff, but (5)
is a wff schema. The quote name of a wff includes a quote name for every term
in that wif. A wff schema is like the quote name of a wff, except that

variables can appear in place of the quote names of terms. A wff w is called

[t P

an instance of a wff schema s if for some assignment of values to the free
) variables in s, s denotes w. For example, if the variable "n"” is assigned the
value "5766", then (5) denotes

6 (= (PhoneNumber Mary) 5766)

;1 So the sentence (6) is an instance of the wff schema (5).

Writing a quotation mark in front of every functor is a nuisence, so we

‘abbreviate by putting the quotation mark in front of a whole expression. Thus

101

o .« OO D - -, - o s
D . -~ et e =" - 5 CER St B <

. . . . O .
-t -

R R A R I Tt TR o S S L o2 . - s e O o 7 =
o LY SOl S S P SRR SRS T P LIRS PSP e e B Beon K BB B B B B St B Bl

Bolt Beranek and Newman Inc. Report No. 5421 . -

**(FhoneNumber Mary)” wubbrevistes "('PhoneNumber 'Mary)". 1 use infix
notation for the connective "&", b.t never for the quot~-d function letter
"réet., People rdon't wusually use infix notation for function letters, and 1
want to emphasize that quoted functiou letters really are function letters.
They obey every syntactic and semantic rule thet governs function letters in
first-order logic. In particular, we apply quotation marks to quoted function
letters like any other funct’on letter. Thus "' 'Superman” denotes the quoted

constant '’Superman”, which denotes the quo‘eless constant "Superman’, which

denotes the man from Krypion.

We also need the function letter "quote"”, which denotes the function that
maps an expression to its quote neme. This function maps the wif "(white
snow)" to the term ", ‘whitz 'snow)”, for example. So we write

(quote ('whits 'snow}) = ('’'white ' 'snow)

iy

A

The argument of ‘“quote” is a term that denotes the wff "“(white suow)'. The

i

=
=

i

right-hand argument of the equals sign denotes the term "('white ‘'snow)".
This sentence says that the quote name of "(white snow)” is "('white 'snow)"

-~ which is true.

The diffe.ence between the quotation mark ' and the function letter
"quote” is this. 1f "v" is a variable, then "'v"” .s a constant that derotes
that variable. "“(quote v)” is a term in which the variabie "v" is free, and
its value depends on the value of “v”. 1f the ve ue of "v” is the constant
"Superman”, then "(quote v)” will denote the quo.e name of the constant

"Superman”, which is "'Superman”.

102

PR O g S g - g J ot -
e - . .= a2 £ & -
w e e e T e T - e

S - b o >
e Pa . . . ot . S .
P S A A A B I S B R AP o AU PR . g S o . T 1 PRI

«|

ST T
© R
S $ 3 o alie

[5PS. 5

LN

‘I

R

» ' BN
PRIl

b Ca

.,
o

LY]

Fnne

Lot s

L

s

o

37

WA

i |

«
4

*

- Report No.- 5421 Bolt Beranek and Newman lnc.

?.5 Applying the Syntactic Theory

1 have now explained the syntactic theory and the machinery used to

formalize it. The —axt task is to apply the formalized theory to the examples

described in Section 6.2

6.5.1 Observation

The robot forms new belieis by observing the external world and his own
internal state. The world is always changing, so the robot needs a theory of

time, and it must be able to perceive the passage of time.

8.2 1.1 Time

Time is a set of instants totally ordered by <. If instant i precedes
instant j there is an interval whose lower endpoint is i and whose upper
endpoint is j. It contains the instants that are later than i and earlier than
j. The lower endpuint of interval I is -I, and its upper endpoint is <+I.
Nearly all properties of objects hold during intervals. In particular, we
write (believe A S 1) to indicate that agent A believes sentence § during
interval 1. Actions happen during intervals. Thus we write (puton Robot A B

1) to indicate that the robot puts block A on block B during interval 1.

¥We can define the order relations between intervals in terms of the <
relatiop between thei~ endpoints. For example, interval I is before interval
J if the upper endpoint of I is before the lower endpoint of J: +I < -J.

Interval I meets interval J if the upper endpoint of I is the lower endpoint

of J: 41 = ~J.

...... . 0 I

a7 e
e

- . . . T Le
St T, TR T Sa i S - I I} DY SR .2
PO L T R W O S - i A o st At et

Bolt Beranek and Newman Inc. Report No. 5421

The robot has sensors ~ devices that detect events in the outside world
and produce descriptions of those events in the robot's internal language.
The sensors accept physical events as input and produce sentences as output.
These sentences become beliefs. A belief created by perception must note the
time of the perception. For suppose the robot receives the same message from
his sensors at two different times — hears two rifle shots in succession, for
example. If the beliefs created by these two perceptions do not mention the
times at which the perceptions happened, they will be identical. Then the
robot's collection of beliefs will be the same as if it had heard only one

shot.

Therefore the robot will need nemes for intervals of time. These names
are constants of the internal language called time stamps. If the robot hears
the doorbell ring during interval I, it creates a time stamp for interval I
— say "Intervall01”. Then it adds to its beliefs the sentence
(ringing Intervalil01l)
which says that there is a ringing sound during IntervallOl. The robot
automatically records every percepiion, and also other events such as
inferences and commends to the effectors. Whenever it records such an event
it creates a time stemp for the interval when the event happened. It uses

that time stamp to name the interval in the belief thut records the event.

A time stamp is a useful name for an interval because the robot keeps
records of the lengths and order of intervals, and uses time stamps to name
the intervals in those records. If the robot creates a time stemp

"Interval53” for an interval J, then as soon as interval J is over the robot

104

PR TSNP, WP SIS S S St ISP Nt DL/ - SRS S Sept Py Vs s

Ao
id®

Report No. 5421 Bolt Beranek and Newmen lnc.

,.,,_

P
ol " 4T
alal e

]
¥

L

forms a belief that records 1its length. This estimate of the interval's

length need not be accurate. People can't tell a minute from {fifty seconds

v

without a watch, but they can tell a minute from a second. The robot can get

23

N by with rough estimates too. Let us choose a small unit of time and
e approximate the lengths of intervals with whole numbters of units. Then if J
733 is 30 units long, there 1s an interval K such that J meets K and

(believe Robot '(= (length lnterval53) 30) K)

TS
ik

This belief gives the length of the interval in units, using an arabic numeral

ﬁg to name the number of units. For any integer n, let (arabic n) be the arabic

F numeral that denotes n. So (arabic 2+2) = (arabic 4) = '4. Suppose the robot
creates a time stamp t for an interval i whose length is n units. Then there

is an interval j such that i meets j and

(believe Robot ('= ('length t) (arabic n)) j)

Setting t = 'Interval53, n = 30, j = K gives

(believe Robot ('= (’length 'Interval53) (arabic 30)) K)
Since (nrabic 30) = '30, we have

(believe Robot ('= (’length 'Interval53) '30) K)

which is a notational variant of the last example.

The robot also records the order relaticn:. between intervals that have
time stamps. To record the crder relation between two intervals it is enough
to record the order relations between their endpoints. Given intervals I,J we
must record the order relations between -1 and -J, -1 and +J, +! and -J, +1
and +J. Consider the first case. If i and j are intervals with time stemps

%ﬁ ti,t2, the robot will record the order relation between +i and -+j immediately

after the later of the two instants. There are three case. to consider. 1f

T e
“J

+i < +) there is an interval k whose lower endpoint is +j, and
105

LT " . c =" o -) . " .t
DELIPE ISt S St S, S LI N S SR ST R - PP VLA WP AU O P it

Bolt Beranek and Newmar Inc. Report No. 5421

(believe Robot ('< ('+ t1) ('+ t2)) k)

If +4i = +} there is an interval k whose lower endpoint is +i, and

(believe Robot ('= ('+ t1) ('+ t2)) k)

Finally, if +j < +i there is an interval k whose lower endpoint is +i, and
(believe Robot ('< ('+ t2) ('+ t1)) k)

So the robot always knows the order relations among ell intervals that have
been assigned time stamps. Thus the robot has a sense of time: 1if it
remembers two perceptions it remembers which came first and how long they
lasted. This particular axiomatization of the sense of time is crude, but it
will do for our purposes. One could AO a better job with the same formalism

if necessary.

6.5.1.2 Perception

Certain physical events cause the robot’'s sensors to produce sentences
that describe those events. Let us write (perceive Robot s i) to indicate
that during interval i the robot;s sensors produce the sentence s as a
description of some event or state in the outside world. As an example, let
us describe the robot's ability to read. The symbols we read and write are
expressions of English, not expressions of the robot's internal language. Let
us gloss over this distinction and pretend that expressions of the thought

language can be written on paper, and the robot can read them.

Suppose that the robot's field of view is a rectangle, and the sensors
use integer Cartesian coordinates to descmibe positions in the field of view.
Let (written e x y i) indicate that the expression e is written down at

coordinates (x,y) in the robot's field of view during interval i. If this is

106

T s i T T oam® Wit S e S ey 0 ©c O 5% g . o 7 o B oS - . -

LY o 5 L E N - . g - " -
- Y - N - - e . - T T) . N i N iy e ol By, et 8 k. S T . | .‘H
. ENaly a. & NI S TP T P SRS WA SRR RS TIPS PR e, S - - - -~ - .

Report.No. 5421 Bolt Beranek and Newman Ine.

the case the robot's sensors will report it, using a quote name for the

ﬁﬁ expression e, arabic numerals for the integers x and y, and a time stamp for
S
18]
the interval i. Suppose that e 1s an expression, x and y are coordinates, and
H
g% i is an interval. If (written e x y i), there is a time stamp t for the
interval i, and
%j (perceive Robot ('written (quote e) (arabic x) (arabic y) t) i)

Suppose that "(white snow)" is written at ccordinates (150.150) in the robot's

mwv

field of view during interval I. Then there is a time stamp for interval 1,

say "Interval99"”, and we have

(perceive Robot
('written (quote '(white snow))
(arabic 150)
(arabic 150)

‘Interval99
)
1
)
Using (quote '(white snow)) = ''(white snow) and (arabic 150) = '150 gives

i
LRt b W

(perceive Robot

('written '’'(white snow) '150 '150 'Interval99)
)

et
P

The robot believes what its sensors tell it. That is, if it pe-ceives a
sentence s during interval i, there is an interval j such that i meets j and
the robot believes s during j. In this case there is an interval K such that I
meets K and

(believe Robot ('written '’ (white snow) '150 '150 'Interval99) K)

107

e a5 I [AR I "
i B A AP T = A0 O PP ST AP W u U A PR AP A, WP ULV LA AP B P S VL B AT S

e tidld

R
Wbt all

Belt Beranek and Newman Inc. Report No. 5421

6.5.1.3 Retrieving Beliefs From Memory

The robot acts by executing programs, and its programming language is
quite conventional. There is a fixed set of registers. Just like a Von
Neumann machine, the robot must bring a data structure into a register before
it can operate on that data structure. Remembering a belief means bringing it
from memory into a register. 1f the robot has Bill's phone number stored in
its memory, but for some reason can't retrieve it, it cannot call Bill. 1t
has no way to pass the phone number to its telephone dialing routine. This
matches our intuitions about people: if you know Bill's phone number, but you

can't remember it at the moment, then you can’'t call Bill.

The statements of the programming lenguage are terms of the internal
language, although they have no useful denotations. Considering them to be
terms of the internal language is handy because we can then use quotation to
name programs. The expressions of the programming language are terms of the
internal language, and their values in the programming language are their
denctations. Of course they are limited to terms whose values the agent can

compute.

All the expressions of the internal language are data structures of the
programming language. There are other data structures in the programming
lenguage — lists of expressions, for example. Every data structure has a name
in the internal lenguage called its print name. The print names of
expressions are just their quote names. The print name of the list (cons e

nil) is ('cons (PrintName e) 'nil).

The:robot uses a statement called the retrieve. statement to retrieve

108

5
53 Report No. 5421 Bolt Beranek and Newman Inc.
~
g! beliefs from his memory. A retrieve statement has the form (retrieve r p c),
;3 where r is a register, p is a wif schema, and c is a wif. p is called the
- pattern end c is called the condition. Suppose the robot wants to reirieve a
g% sentence that tells what John's phone number is. Such a sentence has the form
LA
6

ﬁ'ﬂw

7 ('PhoneNumber 'John n)

The term n must be an arabic numeral:

.‘L,....
WY,
2 'l.g

[

8 (1sArabic n)

The robot can retrieve a sentence that tells what John's phone number is by

executing a retrieve statement with pattern (7) and cordition (8):

9 (retrieve Rl
('PhoneNumber 'John n)
(lsArabic n)

A sentence s matches the pattern "(’'PhoneNumber 'John n)" and the condition
"(1sArabie n)" if for some binding of the variable “n”, '"('PhoneNumber 'John
n)" denotes s, and "(IsArabic n)" is true. For exasmple, if “n” is bound to
"5766", then "('PhoneNumber ’'John n)"” denotes "(PhoneNumber John 5766)" and
“(l1sArabic n)" is true. Therefore "“(PhoneNumber John 5766)" matches the
pattern "(’'PhoneNumber ’'John n)" and the condition "(lsArabic n)". 1f a
sentence matches the pattern “('PhoneNumber ‘John n)” and the condition
“(1sArabic n)”, then it has the form (’'PhoneNumber 'John n) for some arabic
numeral n. That is, it tells what John's phone number is. So if the robot
knows what John's phone number is, he can retrieve that knowledge by executing

- the statement (9).

109

\

-7 B

e
PR

.«Bolt Beranek and Newman lnc. : Report No. 5421

B Sl A
s Mot

In general, a sentence s matches pattern p and condition ¢ 1f p is a wiff
schema and for some bindings of the free variables of p, p denotes s and ¢ is

true. Suppose the robot executes the statement ('retrieve r p ¢) in iaterval

1, and the robot believes a sentence that matches pattern p and condition

¢. Then the retrieve statement returns a belief that matches the pattern and
the condition. There may be several beliefs that match. If so any one of
them might be returned. Register r is set to the belief that is returned. |
That is, there is an interval J such that] meets J and register r holds the
returned belief during J. The retrieve statement allows the robot to search

his memory.

6.5.1.4 Introspection

Now that we llave a statement that searches the memory we can describe
introspection very neatly. Al]l we have to do is say that whenever an agent
executes a statement he knows whether it returned a value, and if so what
value. The agen<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>