AD-A134 892 COMPUTER PROGRAM DEVELOPMENT SPECIFICATION FOR ADA
INTEGRATED ENVIRONMENT. . <U) INTERMETRICS INC CAMBRIDGE
MA 12 NOY 82 IR-678-2 F38682-88-C-8291

UNCLRSSIFIED F/G 9/2

-
~
~n

4
=

il A e el ha A oo s |t L EA Al i ny
B R L RO Sk S AN I -s

o
EEE

L = .
125 s b :

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

EASR A S . Tl AL L vl SR W) i
RIS N O AL PRSI e T T T

...............

057

INTERMETRICS INC. « 733 CONCORD AVENUE ¢ CAMBRIDGE. MASSACHUSETTS 02138 » (6171661-1840
TWX NO. 710 320 7523

...........................

y e s - o R N . . e T . :
) 3 ¥, L . - -~ - - -
e AN o LTI e R L . e e

R "r"‘-‘h“ff‘_ﬁ",vlr"'"fu WK o PRI WA YR SR L s 2 i i 2 2 a

(1)
3
Q CONTRACT F30602-80-C~0291
. Q
¢) IR-678-2
A COMPUTER PROGRAM
DEVELOPMENT SPECIFICATION
Q . FOR
Ads INTEGRATED ENVIRONMENT:
KAPSE/DATABASE
TYPE BS
BS-AIE (1).KAPSE (1)
12 NOVEMBER 1982 DTlC
. ELECTE
0CT24 1983 °
B
a
8 PREPARED FOR: ROME AIR DEVELOPMENT CENTER
,f CONTRACTING DIVISION/PKRD
i L GRIFFISS AFB, N.Y. 13441
—d
- e
PREPARED BY: . INTERMETRICS, INC.
g : 733 CONCORD AVE.
L CAMBRIDGE, MA 02138
DISTAIBUTION STATEME.N:.:
Appsoved fox public zel
Distribution Unlimited 83 09 1 o
v

L

A

&
*)
E
X

'y

= PRSPV,

AT

{ ROl

3

o Wy b N

' -

E.

This document was produced under Contract PF30602-80-C-0291 for
the Rome Air Development Center. Mr. Donald Mark is the Program
Engineer for the Air Porce. Mr. Mike Ryer is the Project Manager
for Intermetrics.

Accession For
T NTIS GRA&I ;
O

pTIC TAB
Unannounced O
Justification ———

Distribution/
_Distribut o

Avanabinty Codes |
Avail | and/or
Dist Special

RIS PP IRIRRY S R P A N AP T L AP WAL A R L LU I DR TR S DI DR R I e e

1.

[] 2.

3.

T A R R
m&w;&e&wuugm ety)

- e T e T W e -

v i it - - LR s L 4 S

r——m‘!""'ﬁ'v e e gl R S dag BCIMCICRCE® SaA TS A R R S
.

CONTENTS

SCorR

l.1 Identification

1.2 Punctional Summary

APPLICABLE DOCUNERTS

2.1 Program Definition Documents

2.2 Inter-Subsystem Specifications

2.3 Military Specifications and Standards

- 2.4 Miscellaneocus Documents

REQUIREMENTS

3.1 Introduction
3.1.1 General Description
3.1.2 Peripheral Equipment Identification
3.1.3 1Interface Identification

3.2 Functional Description
3.2.1 Equipment Descriptions
3.2.2 Computer Input/Cutput Utilization
3.2.3 Computer Interface Block Diagram
3.2.4 Program Interfaces
3.2.4.1 KAPSE/Tool Interface
Requirements
3.2.4.2 KAPSE User Interface
3.2.4.3 Database/Tool Interface
Requirements
3.2.4.4 KAPSE/Host Interface -- VM/SP and
08/32
3.2.4.5 Compiler/Run-time System
Interface
3.2.4.6 Linker/loader interface
3.2.5 Punction Description
3.2.5.1 Simple and Composite Objects
(KAPSE.SIMPCOMP))
3.2.5.2 Access Control and Category
(KAPSE .ACCECAT)
3.2.5.3 Multiple Program Management
(KAPSE . MULTPROG)
3.2.5.4 History and Archiving
(KAPSE .BISTARCH)
3.2.5.5 Run-~time System (KAPSE.RTS)

3.3 Detailed Punctional Requirements

-i-

...... R I Jh T U T SR TR JE « ta -

CR® VI W1 b W W W W o

e
o

e
e

w
~N W

W W
O 0

L O O o)
AN b -

[ol
o ®

(V]
o

INTERMETRICS INCORPORATED » 733 CONCORD AVENUE « CAMBRIOGE, MASSACHUSETTS 02138 « (617) 861-1840

4 At e LAt S G e L. 8 e B - AL Al sl 2l | ad v
< faa o Nk G DML £ AT S D i g i St kY - . . g . P ——
S '!:.'t WA S SRl Sy T I P e TS AP I N T D P R s e M S el e -
," -

Iy

e

3.3.1 Simple and Composite Objects

R

(XAPSE .SIMPCOMP) 50
3.3.1.1 Block 10 50
- 3.3.1.2 Device IO 57
5 3.3.1.3 Access Methods and Data Clumps
& 6l
§ 3.3.1.4 Simple Objects 67
3 3.3.1.5 Composite Objects 76
R 3.3.2 Access Control and Category
(KAPSE.ACCECAT) 79 .
\Ji 3.3.2-1 Windw mj.ct’ 79
2 3.3.2.2 cawigzy and User-defined
3% Attributes 85
S 3.3.2.3 Access Control 90
A 3.3.3 Multiple Program Management
(KAPSE . MULTPROG) 97
., 3.3.3.1 Program Loading 97
e 3.3.3.2 Low Level KAPSE/Program
.3 Communication 99
";: 3.3.3.3 Program Invocation and Control
X 104
iy 3.3.3.4 KAPSE/KAPSE Communication 113
. 3.3.3.5 Terminal Screen Manager 113
;’i 3.3.3.6 Login/Logout and User Context 11
{5% 3.3.3.7 Inter-User Mail System - 119
wh 3.3.4 History and Archiving ‘
. (KAPSE.BRISTARCH) . 122
3.3.4.1 BRistory and Archiving
Operations 122
3.3.4.2 Backup and Recovery 125
o 3.3.4.3 Configuration Management
:15 Support 127
~5 . 3.3.5 Run-time System (KAPSE.RTS) 132
3.3.5.1 0OUnit Execution Support 132
£y 3.3.5.2 Storage Management 137
o2 3.3.5.3 Tasking Support 143
3.3.5.4 Exception Bandling 162
w 3.3.5.5 Language-defined Packages 166
A 3.3.5.6 Type Support Routines 169
3.4 Adaptation and Rehosting 172
L. 3.4.1 Installation parameters 172
,g 3.4.2 Operation parameters - 172
B 3.4.3 Rehosting Requirements 172
Ty ‘
_f 3.5 Capacity 172
%,25’,5 4. QUALITY ASSURANCE PROVISIONS 175
‘;*zé 4.1 Introduction 175
:;’5 4.2 Test Requirements 176
y Ly
%a\% - ii -
INTERMETRICS INCORPORATED » 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

wvﬂ‘r&ﬁ! e el I e A o RN ARSI i b RS R Rt Rt St S N S ’.-T

' 4.2.1 Ada Machine Testing 176

4.2.2 Production Input/Output Tests 1748

4.2.3 KAPSE Version 1 Test Case Generation 176

4.2.4 Kl Reliability Test 177

4.2.5 Full Function Testing - 177

4.2.6 KAPSE Version 3 Testing 178

4.3 Acceptance Requirements 178
n
-
)

- iii -
INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 581-1840

VN O L‘L‘;‘L‘.J

WAL S

R

R

Fe

Pigure
Pigure
Pigure
Pigure
Pigure
Pigure
Pigure
rigﬁrc
Pigure
Pigure
?igu:e
Pigure
Pigure
Pigure
Pigure

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE o CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15

FIGURES
KAPSE/Databage Overview
Views of KAPSE/Tool Interface
Example of Database
Windows made Bxplicit
Composite Object Example
Extended Object Structure
Programs and Context Objects
CPCI Dependencies
SIMPCOMP CPC Dependencies
Physical vs. Logical Blocks
Iogical Blocks and Clumps
Clumps and Files
Secondary Window Example
State Transitions (Caller)

State Transitions (Acceptor)

13

16
17
19
24
27
42
43
S5
62
66
80
160
16l .

AL AT

e
St a9

?

g D

LN RN

o

LY

AR

2t

Mty

VS iy

a

—aTe

P

PN ARTT N

.
Pt g I

N R T RN
VX 8 v o . .

- s - e
p T (] * . - » P
. Mg o t-ad [e) PR SO NP R Y AR I B e i o e e R

B5-AIE(l) .KAPSE(1)
l. SCOPE

% Identification
This specification establishes the requirements for

performance, design, test, and qualification of a set of computer
g:oz:an modules identified as the Kernel Ada Programming Support
v

ronment (KAPSE) of the Ada Integrated Environment, (AIE).
1.2 Punctional Summary T T

/
g mary .-

The KAPSE provides ssgg:al\\facilities to the Ada
Programming Support Environment/(APSE), which can be grouped into
the following five Computer Program Configuration Items. (CPCIs):

e ©

e e e e
: f) SIMPCOMP - Database Operations on Simple and
Composite ObjocuJ
2) AccmCar - Access Control and Categorization of
Database Objects, and the Manipulation of User-Defined
AttzibueuJ
3} MULTPROG Invocation of and Communication

Between Multiple Ada Programs, plus Multi-User and Multi-
KAPSE Support and SYHchronizationJ

4\ BISTARCE — Configuration and System Management,
‘with History, Archiving, Backup, and Rncove:y) oy

: 5) RTS - Run-Time Support for the Execution
of Ada Programs, including Language-Defined Input/Output
Packages.

This specification identifies the functional :gpshilities
of the various KAPSE computer program components (CPCs) and
describes the KAPSE/tool interfaces as well as the KAPSE/Host
.computer intecfaces.

AN

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 » (617) 861-1840

) o, L et e L ..<.'-,.-,.._...~.

. ‘. o - . . . e
PO DS DU N G Gy W S S . st G Y e

R LR B)

v gt

(] v 4 ‘W-‘.'.".'-";‘T"_"- T LT .'\"'.1

IR IS LWL Aot o o G TS TRTATR TR AR A AR LA AT T e T T e N

1
BS—-AIE(1l) .KAPSE(1)

This page left blank intentionally.

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE » CAMBRIOGE, MASSACHUSETTS 02138 « (817) 661-1840

e T Ty T S U R VAT SIS AT L C W AV SL PR A L PO A T A T I R . L T R . .
O T R I AN N I A o T T L e N Y S TP
LIS AN SR AR T A & L at ol 4 Y 2aas o A 2 LS NS P W PP WAL WA WA S WP v O PP PRI R G T |

R PR R, el e Wy W Ve Be T die - m at a2 2 BT NT L e T a® g™ B amymia® iy w5 % e

INTERMETRICS INCORPORATED «» 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

T 2
v LEARET A 'lk *

............

B5-AIE(1l) .KAPSE(1l)
2. APPLICABLE DOCUMENTS

Note that bracketed or inter-subsystem identifiers are used
to refer to documents in the text.

2.1 Program Definition Documents

{STOMEMAN80] Requirements for Ada Programming Support

Environments, “STONEMAN," Department of Defense,
¥ebruary I1980.

[sows0] Revised Statement of Work, 15 March 1980.

[LEM] Rofcunco Manual for the Ada Programmin Lanquage
J 2 lgazam Document, U.S. Depa:mnEg'of De%ense'
uly R

2.2 Inter-Subsystem Specifications
System Specification for Ada Integrated Environment, AIE(l).

Computer Program Development Specificationé for Ada
Integrated Bnvironment (Type BS):

a. Ada Compiler Phases, AIE(l) .COMP(l).
b. MAPSE Command Processor, AIE(1l).MCP(1l).

" Co MAPSE Generation and Support, AIEB(l) .MGS(l).
d. Program Integration Pacilities, AIE(1l).PIF(l).
e. MAPSE Debugging Pacilities, AIE(l) .DBUG(1l).

f. MAPSE Text Editor, AIE(l).TXED(1). |
g. Virtual Memory Methodology, AIE(l) .VMM(2).
h. Technical Report (Interim) IR-684.

2.3 Military Specifications and Standards

Data Item Description DI-E-30139, USAF, 14 July 1976.

.................
...............

BS-AIB(l) .KAPSE (1)
2.4 Miscellanecus Documents

[IBMB1) IBM Virtual Machine/System Product: System
Programmer_ s GuIEe,JéTQ':ﬂM-OT international

Business Machines, Inc., December 1981.

[(PE79] 08/32 Programmer Reference Manual, Perkin-Elmer
Computer Systems Division, Oceanport, NJ, April 1979.

[(Knuth73] The Art of Computer Programming, V. 3., Donald Knuth,
Addison Wesley, 1973.

(Warshall80] "A Theory of Accountability," Stephen Warshall,
CADD-8011-2401, Mass. Computer Assoc., Inc.,
Wakefield, MA, November 1980.

T

EN e

{.¢

AT

i

INTEAMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

C g T

Rt e

e W Y A

by AT

W R AL P el

U i i B v

¥

o AT

oy Pt

A A N R e et e AT A N e T T e e T
* i e . L) p

B5-AIE (1) .KAPSE (1)
3. REQUIREMENTS

3.1 Introduction

This section provides the set of requirements for the KAPSE

of the Ada Integrated Environment. This includes the performance
and interface specifications to which the KAPSE must comply.

3.1.1 General Description

The KAPSE provides database, program invocation, and run-
time support for all MAPSE tools and user Ada programs. In so
far as possible, the KAPSE isolates the rest of the AIE from host
machine idiosyncrasies, making the entire MAPSE toolset and
user~developed programs easily portable from one AIE to another.
Pigure 3-1 is an overview of the RAPSE and its interfaces.

3.1.2 Peripheral Equipment Identification

The 4341.KAPSE shall interface with the following equipment
on an IBM 4341 computer system:

a. 4Mb 4341 Central Processing Unit, Group I;

b. 3410 Magnetic Tape Drive;

c. 3708 Communications Controller;

d. 3278 Half-Duplex Pull-Screen Display Terminals;

e. 9712 8-line ASCII 1200 baud Half-Duplex TTY terminal
controller;

£. 3375 Direct Access Storage Devices (4 drives, with 600Mb
each)

g. 3203 High Speed Line Printer;

The 832.KAPSE shall interface with the following equipment on a
Perkin-Elmer (PE) 8/32 computer system:

a. 8/32 Central Processing Unit, with <<TBD>> memory:;
b. <<TBD>> Magnetic Tape Drive;

C. <<TBD>> Full=-Duplex ASCII Terminals;

d. <<TBD>> Disk;

e. <<TBD>> Line Printer;

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02128 « (817) 661-1840

..........

bl

..................................

i ae e v

ey

L 2 oLt

BS-AIE(l) .KAPSE (1)

Ada Programs (Including MAPSE Tools)

7 N
7 AT

Data Base | | m‘ 170 ¢ Program tavacation Other -
Momt Access Mathods and Control Services

N R

KAPSE/Host [nterface

A \ A

Host Operating System

Terwinals Other
Peripherals/

() NQMIS

6282318-2

Pigure 3-1: KAPSE/Database Overview and
Computer Interface Diagram

3.1.3 Interface Identification

The KAPSE shall interface with all subsystems within the
AIB, including:

a. MCPp MAPSE Command Processor;

b. cComp Ada Compiler:;

c. TXED Text Editor;

4. DBUG MAPSE Debugger;

e. PIP Program Integration Pacility;
6

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

. . . - . - - “w - - - st -
e n L W L e g g O TR b, § - YT SR Y R TP P

v rrw AL 1 Y
A et a A e il O i M ATk A A AN LR A T

BS-AIE(l) .XRAPSE(1l)
£. VMM Virtual Memory Methodology:
g. MGS MAPSE Generation and Support;

In every case, the RAPSE is providing the interface to the
program. The programs are all users of the KAPSE/Tool interface
(see 3.2.4.1) and the Database/Tool interface (see 3.2.4.3).
COMP uses the Compiler/Run-Time System interface (see 3.2.4.5).
PIF uses the Linker/Loader interface (see 3.2.4.6).

The 4341 .KAPSE interfaces with VM/SP (IBM8l]. The KAPSE 1is
the user of this interface, VM/SP is the provider of the
interfaca. All uses of this interface are encapsulated within
the KAPSE/Host interface packages.

The 832.KAPSE interfaces with 0S 8/32 [PE79]. The KAPSE is
N the user of this interface, QS 8/32 is the provider of the
& interface. All uses of this interface are encapsulated within
the KAPSE/Host interface packages.

o —
LA Lk

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE » CAMBRIDGE, MASSACHUSETTS 02128 » {617) §61-1840

........
............................ o e e e, R . . .
v o GRS S W R PRy VT WY Wl GUE WU WA YAE ST GRS WA GUE WAL PR R VLIPS -

b Rl L S 4 <

3 BS-AIE(l) .KAPSE(1)
1y
2 3.2 PFunctional Description

3.2.1 Equipment Descriptions

. The following equipment of the 4341 computer system impose
requirements on components of the KAPSE:

a. 4Mb 4341 Central Processing Unit, Group I;

The run-time system (KAPSE.RTS) must be written to be
consistent with the interrupt and time clock facilities of
the 4341. In particular, interrupt identification
information must be fetched from the appropriate fixed
locations in low memory of the virtual machine address space
upon interrupt. The Set Clock Comparator instruction must
be used to handle the real-time-oriented tasking constructs.

The real memory capacity of the 4341 places no direct
requirements on the KAPSE because it runs in a virtual
machine provided by VM/SP. The addressing limitations of
the machine (16Mb) do represent an upper bound on the size
of a single virtual machine, and hence on the number of

. programs which can simultaneously reside in the virtual
REMOLrYy Space. This bound imposes limitations on the
PROGRAM LOADING package of the KAPSE/Host interface
(KAPSE.RULTPROG) .

The instruction set of the 4341 processor places
requirements on the efficient design of the run-time system
routines (KAPSE.RTS), in particular in the CPC of unit
execution support.

Yl

b. 3410 Magnetic Tape Drive;

The <<TBD>> tape device driver (KAPSE.SIMPCOMP.DEVICE_IO)
must be consistent with the control and status register
layouts of the 3411 tape controller.

c. 3708 Communications Controller;

The terminal driver (KAPSE.SIMPCOMP.DEVICE_IO) must be
consistent with the facilities of the 3705 front-end. 1In
particular, the half-duplex nature of the 3705 must be
accommodated when implementing the host-independent
DEVICE_IO interface.

4. 3278 Half-Duplex Pull-Screen Display Terminals;
The terminal driver (KAPSE.SIMPCOMP.DEVICE_IO) must perform

EBCDIC to ASCII conversions for 3278 terminals, as well as
accommodate the field-oriented nature of the 3278 while

INTERMETRICS INCORPORATED » 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

W ‘{ ‘..;‘9."-"-'.'.'.'-""-"'-‘.'

PRSP I USSP T DTGP S GG YL AL DUL ALY I T DAL

N

B5-AIE(l) .KAPSE(1l)

AT

&

providing a random-access host-independent interface via the
package TERMINAL IO.

oVt

e. 9712 8-line ASCII 1200 baud BHalf-Duplex TTY terminal
controller;

r

".;_J"L'J. A

The terminal driver (KAPSE.SIMPCOMP.DEVICE_IO) must convert
random-access cursor positioning requests to the proper

control character sequences for the connected ASCII
- terminals.

£. 3375 Direct Access Storage Device

s Scshnte S

LY)

The disk device channel driver (XAPSE.SIMPCOMP.BLOCX_IO)
must correctly set up channel programs to perform the
fixed-block-size read and write requests as part of
implementing the host-independent interface of the package
PHYS_BLOCK_IO.

."\"';‘\‘-‘-\' S

3203 High Speed Line Printer;

-
a
L[]

The line printer device driver (KAPSE.SIMPCOMP.DEVICE_IO)
must provide the appropriate character code conversions and
format control characters to implement the host-independent
line printer interzface.

1%

- The equipment of the Perkin-Elmer 8/32 computer system does
not in general impose direct requirements on components of the
KAPSE, because the KAPSE runs under the host operating system
08/32. 08/32 and its device drivers handle all direct access to
the machine equipment.

LA O W

The limitations of the addressing of the 8/32 processor (1
Mb) places an upper bound on the size of the KAPSE, as well as
any user program.

L RO

The instruction set of the 8/32 processor places
requirements on the efficient design of the run-time system
routines (KAPSE.RTS), in particular in the CPC of unit execution
support.

3.2.2 Computer Input/Output Utilization

DV RN
L]

-

oL

None of the peripheral equipment of the 4341 computer system
has critical I/0 timing requirements, because all devices are

- operated by channel processors.

%

; Some of the <<TBD>> peripheral equipment of the 8/32

] computer system may Place requirements on the

X KAPSE .SIMPCOMP.DEVICE_IO CPC because of interrupt-per-character

o /0 controllers. In particular, if echoing is done by

¥

b

- 9

by INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02128 + i617) 661-1840

- Tt e BT I N S VTR . N e . N .
NPT ¢ I U IP G IP N GG GNP W S SIr I 5 I SR ST DS TRt Y YO0 LI WO WU S U S W S WD SO -

O o AT s Y ol s i . S

. i

REY S X%

T A 2 P e MaA AL & Lk i VAt b SRS S AR R RS S AR AE R T
BS-AIE(l) .KAPSE(]l)
TERMINAL IO for all terminals, then the amount of processing per
character should be kept to the order of one millisecond to

LA X KA

support thirty 300 baud input streams.
3.2.3 Computer Interface Block Diagram

See Figure 3-1.

P AR

s i S b

-l S RS i ¥

LA e P e el

PRy LR)

o

el A s N

10

INTERMETRICS INCORPORATED o 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

. , . .y e et taar At e e o
TN ' ‘-"’ " T N e e A T T T S e s e AR o]
Rl L R X u . : A et afataleiietataietotaietalatal siats =

..................

...........................

BS-AIE(1l) .KAPSE (1)

3.2.4 Program Interfaces 1

3.2.4.1 KAPSE/Tool Interface Requirements

The KAPSE/Tool interface consists of the following set of
packages, detailed in section 3.3:

(KAPSE.SIMPCOMP) :

Package SIMPLE OBJECTS
Package INTERACTIVE_IO

* Package FORMATTED IO
' Package COMPOSITE_OBJECTS

(KAPSE.ACCECAT) :

Package WINDOW_OBJECTS

Package CATEGORY

Package STRING_ATTRIBUTES
Package NUMERIC ATTRIBUTES .
Package ACCESS_CONTROL
Package ACCESS_SYNCHRONIZATION

(KAPSE .MULTPROG) :

Package PROGRAM_INVOCATION

Package INTER PROGRAM COMMUNICATION
Package DEBUGGER_INTERFACE

Package USER_CONTEXT

Package MAIL SYSTEM

(KAPSE.HISTARCH) :

Package HISTORY
Package BACKUP_RECOVERY

(KAPSE.RTS) :

. Package DIRECT_IO
Package SEQUENTIAL_IO
Package TEXT IO

. Package CALENDAR

These services are provided to Ada programs by a combination of a
Data Base Manager/KAPSE program, and interface packages linked
into the user”s program. Inside the KAPSE there is one "agent"
task per running program, assigned to handle all communication
:igglzhac program, and perform the appropriate KAPSE calls on its
e .

11

INTERMETRICS INCORPORATED » 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSET™S 02138 « (617) 661-1840

-
EAKIAMEGIAT AT S A I AN e SO

oy
w
) 2

BS-AIE(l) .KAPSE(1)

This structure is not visible to the user program, which can
view the KAPSE as a set of packages linked into it. 1In fact, the
bodies for the interface gackages linked into the user programs
do 1little more than bundle up each RAPSE/Database request into a
message and then send it across to its agent task within the
. KAPSE. The agent task unbundles the request, and calls the
appropriate package within the KAPSE, but this time, the body of
the package actually does the desired work. See Figure 3-2.

SOOI AR 7 DY

The message—passing model of the KAPSE/tool interface allows
the design to be hosted more easily on truly distributed
processors, as well as the "virtually” distributed VM/SP system.
The option also exists for several KAPSE-like programs to exist,
each serving their local client programs, and communicating with

each other to synchronize use of shared resources, and retrieve
remotely stored data.

3.2.4.2 KAPSE User Interface

3.2.4.2.1 Overall User View of the Database

The overall structure of the database hierarchy is as
follows:

ROOT

/ / N\ \
SYSTEM USERS TOOLS PROJECTS

The root composite object contains four components: SYSTEM,
USERS, TOOLS, and PROJECTS. All of these components are
themselves composite objects. The SYSTEM composite object
X contains objects of interest primarily to the system manager and
o certain maintenance tools (eg., backup, history indices, etc.).

The USERS composite object contains the top=-level
composite object (directory) for each user of the MAPSE. A
particular component is selected by the user“s USER NAME (see
h 3.303-6).

: The TOOLS composite object contains as components all of

. the standard MAPSE tools (and others added by a system manager).
Each component is an executable program context object, or a
command language script, selected by the distinguishing attribute
TOOL NAME.

) The PROJECTS composite object has the component
) distinguishing attribute of PROJECT, and has initial components

(PROJECT=>KAPSE) and (PROJECT=>MAPSE_TOOLS) for use by MAPSE
developers.

12

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

A oS ol T L R

. - SirSulir i e SR St At et A et T st Stestt et Tl gt M SR Ar-Radit =y
~ B T S S L T o A T TS LA A N e P S
" . h - - - . - - . - - - « .) - . - "

B5-AIE(l) .RAPSE(1l)

¢ Figure 3-2,
User and Implementation View of KAPSE/Tool Interface:

User View: KAPSE linked into his program QIF Pkg = XAPSE

'
E |
4 Interface .
3 KIF Pkg Package
X
.: User KAPSE
] Program KIF Pkg [nternal
- Routines Routines

B o aah Ao d
(XX]

M ffem—]
. subroutine calls subroutine calls
‘ [mplementation View: User Program and KAPSE Separated by Protection Boundry
Protection

‘: Boundry
’ KIF Pkg
c
' User KIF Pkg
; Program Agent
9 Routines R

.

XIF Pkg

3 KIF Pkg
o
] PY KIF Pkg CAPSE

o ° [nternal
g L] Routines
A L]
A .
: KIF Pkg
§
; Agent
s Y !
- []

L]
¥
e/
;
5 ‘ .
Z . messages 111182392-5
3 3.2.4.3 Database/Tool Interface Requirements
7
Y The KAPSE database is the repository for all user data
¢ and programs, as well as the primary medium of tool to tool
X communication and coordination. The KAPSE database facilities
L]
L 13

) INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 - {517) 661-1840
€
§
R R N R T s

L F

o PO, PNt

e e . e A

INTEAMETRICS INCORPORATED » 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 + (817) 861-1840

e S e P A R L A e e N N R M A T T R R e i e R

BS-AIE(1l) .KAPSE(1l)

provide for the construction, organization, and partitioning of
large configurations of inter-related nprogram, data, and
documentation elenents. It records the nature and purpose of
these elements, and allows for access control and
synchronization. Finally, the KAPSE database facilities provide
historical information recording the derivation and relations
between the objects stored within the database, as well as
sufficient information to fully reconstruct from disk or archival
storage the content of old or lost source text.

3.2.4.3.1 Database Objects

The database is a collection of objects, all of which
have attributes and content. These objects can be classified as
follows:

a. Primitive Files All of the data stored in the
database are represented using "Primitive File"” objects.
Piles have only pre-defined attributes like LENGTH, FIRST,
ACCESS_METHOD, etc. These files are implemented using one
of the built-in access methods (see 3.3.1.3), and are

designed to be efficient for representing both small data
items and large directories.

b. Extended Objects The user normally works with
*"Extended Objects." Extended objects have a user-extendible
list of labeled attributes, as well as system-defined

attributes including CATEGORY, ACCESS_CONTROL, and HISTORY.
The content and user-defined attributes of extended objects
are either Files or Windows (see below).

C. Window Objects "Windows® allow the user to go from
one extended object (the source) to another (the target) in
the database. Extended objects are available only through
such windows. The window also determines the "role" a user
plays in the extended object, and may limit the user to a
specific “"partition® of the object”s content or attributes.
Bach extended object is available through exactly one
“primary” window. Any number of "secondary" windows may
also provide soms (perhaps more limited) view of the object.

Bach of the above objects can be further classified as follows:

a. FPFiles fall into two classes: Simple and Composite. A Simple
file is a sequence of data bytes, and provides the
representation for Ada "external files,” as well as for
simple string- and numeric-valued attributes. A Composite
file is a set of named or numbered component objects, which
may themselves be either Files or Windows, and provides the
representation for "directories® as well as for relations,
tables, lists, sets, etc.

14

o

el Sl L B W B B

oA ol N - v N

s A s e 4l

. TR

2 Wi B [n T

e e s g

DY o o Lol

. N K" AT H S A etk € s e e et . . - o e e e E - . .
w, L S A «, L N P T AL LN St e e . . e . ERRE - - et - R
i > L ...,‘ Wy " > N P N A A A A S T PP RS A ~ ’

...............

BS-AIE(l) .KAPSE (1)

b. Extended objects are generally classified by the nature of
their content, as either Simple Objects, Composite Objects,
or Extended Window Objects. Primary windows are used to
connect extended objects into enclosing composite files,
thereby providing for a hierarchy of composite objects. The
database as a whole is a single large composite obiect
called the "root,” whose direct components are major
divisions of the database.

c. As mentioned above, windows are classified as either primary
or secondary. Primary windows go from an enclosing
composite object to its components. Secondary windows allow
one to go from one part of the database to another part of
the database (i.e. to an object not directly enclosed by the
source of the window). Following only primary windows, the
entire database forms a tree of extended objects. With
secondary windows, the structure of the database becomes an
arbitrary directed graph. See Pigures 3-3 and 3-4.

The tera "obiect” alone will generally refer to extended objects
in the remainder of this specification.

3.2.4.3.2 Extenaed Object Attributes

The attributes of an extended object may be any kind of
meta-information describing its content, purpose, version,
revision, etc. As such they provide the primary means for
building, organizing, and partitioning the database.
Configuration management and other high-level tools will record
information appropriate to their needs as attributes of cbjects.
Lower-level tools deal primarily with the content of extended
objects.

The attributes can be grouped as follows:

1. Distinguishing (name) attributes;
2. Non=distinguishing attributes:

a. System-defined attributes (such as CATEGORY,
ACCESS_CONTROL, and HISTORY);

b. Category-defined attributes;

c. User-defined attributes;

d. Content-defined and Path-defined attributes.
An attribute can be represented as a pair consisting of an
attribute 1label and an attribute value. PFor clarity, it will be

written in the unabbreviated form: label => value, to be read,
label "is” value. The label of an attribute must be a string of

15

INTERMETRICS INMCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 561-1840

.....
< .

B R R T i e e

BS-AIE(1l) .KAPSE (1)

Figure 3-3, Example of Database:

Example of Database

ma—— * Orimary window
Attt t-L * Secondary window

D * composite object

= simole object

//‘ ﬁ\\o

[]
TO0LS a88
USERS ? R
! lfurus €T ‘\'
; SYSTEM
~ J0E MARY T00LS
1 F99
“ -
COCKPIT
! 1
. 17
) 111182392-6

characters which satisfy the syntax of an Ada identifier (i.e.,
start with a letter, and c¢ontinue with letters, numbers, or
underscores). The attribute value will also frequently be a
string, but it may in general be any kind of File or Window.

16

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

.........................

Y

S

7
....................

LSS R AT M M e S ot TITR RN TR, S, v v ‘7-:';'-‘:‘7

BS-AIE(l) .KAPSE (1)

Figure 3-4, Windows made Explicit:

Windows made Explicit:

.

- MY_DIRECTORY

-

Where each window may include a Role Translation Table such as:

Qutside Role Inside Role Role Modifiors
“TESTER" “READER"
“CREATOR" “CREATOR" _OWNER
“WORLD" "READER" _READ_ONLY
“USER" "USER"
- 111182392-2

The KAPSE supports a convenient parenthesized list notation
to specify attribute label/value pairs, as shown below:

(PROJECT=>SHUTTLE , FUNCTIONAL_AREA=>NAVIGATION)

17

INTERMETRICS INCCRPORATED « 733 CONCORD AVENUE » CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

[URT PR A T T T I) I A YL EPT W Wl T S SRR S0 S B T S)

i BS-AIE(l) .KAPSE(l)

£

(o]

25 This would specify that the attribute labeled "PROJECT®* has

f»a the value “SHUTTLE* and that the attribute labeled

F *FUNCTIOMAL_AREA" has the value "NAVIGATION."

jé 3.2.4.3.3 Naming and Partitioning with Distinguishing Attributes

ﬂ Distinguishing attributes identify an object uniquely within the

! content of its enclosing composite object. If the component is a
window, the name implicitly applies to the extended object viewed)

w through the window.

.i When a composite object is created, part of its definition 4

) specifies the labels of the distinguishing attributes by which

3 its components will be named (i.e. distinguished from one
o another). When a component is created within the content of this
. composite ocbject, values for these distinguishing attributes must
% be supplied. These may be used later to select this component

from the composite object. The new component may not be created
- if an existing component has the same list of distinguishing
attribute values.

For aexample:

CREATE_COMPOSITE (*COMP_OBJ",
COMPONENT_DA=>"PROJECT FUNCTIONAL AREA MODULE®) ;

I dv, ot e

" creates a composite object with the three distinguishing
attributes: PROJECT, FUNCTIONAL AREA, and MODULE. See Figure 3-

Se

Now components could be created within this new composite
object "named” as follows:

" " R

1. (PROJECT=>SHUTTLE, FUNCTIONAL AREA=>NAVIGATION,

9
:
i .
0 MODULE=>INITIALIZATION)
- 2. (PROJECT=>SHEUTTLE ,FUNCTIONAL AREA=>CONTROL,
| MODULE=>INITIALIZATION) 4
3. (MODULE=>INITIALI ZATION, PROJECT=>VOYAGER,
A FUNCTIONAL_AREA=>NAVIGATION) 4
i 4. (MODULE=>INTERPOLATION, PUNCTIONAL AREA=>NAVIGATION,
PROJECT=>VOYAGER)
5
;g Two components need differ in only one of the distinguishing ;

h attribute values to be considered distinctly named (e.g., (1) and
& (2) above).

? 18

v INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « 1617) 661-1840

P -y - " e e TR . = AndL auibdt TNTTETE T e T T AT T LTt - .
<k "GN ot 5 At s it Tt e T R S A A AOMACRALMAA R A S AR 1

BS5~AIE(l) .KAPSE (1)

Figure 3-5,
Composite Object with Three Distinquishing Attributes:

PROJECT |
o I
"'Owll.E ————
) i
|
I
FUNCTIONAL |
AREA |
i
l
|
|
[
|
J
’ e L X r ¥ L 1 _J -l D G S S e
”’/
’,
-
4! -

REPRESENTS COMPONENT:
(FUNCTIONAL AREA => NAVIGATICN,
PROJECT => SHUTTLE,

MODULE => INITIALIZATION)

111182392-4

Positional notation may be used instead of labeled
notation, based on the ordering specified when the composite
object was created:

19

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIOGE, MASSACHUSETTS 02138 » (617) 661-1840

............................

.........................

- - " ST oy s TR TR TN T w T e T M o T e T e T oy g T w WU, W W
T L Bt Mnm sanw A e abin AR it St "Rt T Y f._' .'_'7_."-75 ., T "-'.'Vn '_"’ e R o A .‘A DL P M ~ .~

PR R
..................

B5-AIE(l) .K.PSE(l)

1. SHUTTLE.NAVIGATION.INITIALIZATION
N 2. SHUTTLE .CONTROL . INLTIALI ZATION
3. VOYAGER .NAVIGATION.INITIALIZATION
4. VOYAGER .NAVIGATION.INTERPOLATION

3.2.4.3.3.1 Partitions of Composite Objects

G

Composite objects may be "partitioned®” so as to identify a :
subset of the components, by specifying values for some of the
distinguishing attributes of the components, while leaving others
unspecified, as follows:

A
dat

WS

(PROJECT=>SHUTTLE) would include (1) and (2) from above.

{ W

(FUNCTIONAL AREA=>NAVIGATION,MODULE=>INITIALIZATION) would

include (1) and (3).

Positional notation may also be used to specify partitions, but
the special value "*" must be supplied as a place holder:

» CONTROL.* would include only (2)

%

VOYAGER.*.* would include (3) and (4)

i Y s oy nE
A H AP

Attributes other than distinguishing attributes may be used
to specify partitions of a composite object. Non-distinguishing
attributes are not ordered, and a special 1labeled notation is

-% always required, using a distinguishing attribute label to
g "qualify® the non-distinguishing attribute 1label. Here is an
‘> example of a single partition specification giving values for
2 both kinds of attributes:
>
(FUNCTIONAL _AREA=>NAVIGATION,MODULE” PRIORITY=>HIGH) j
,ﬁ This partition would include (1), (3), and (4) from above only if 4
3 their current value for a non-distinguishing attribute labeled
- *PRIORITY" were "HIGH.® If a non-distinguishing user-defined
- attribute has never been specified for an object, the value is
i taken to be the null string.
'.-1
o
%
7
k4
2 20
Al
4

\d INTERMETRICS INCORPORATED » 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840Q

85-AIE(l) .XAPSE(l)
§ 3.2.4.3.3.2 Object Pathnames

An object which is a sub-sub-component of a composite object, can

be identified relative to the upper level composite object by

[specifying a sequence of two component names separated by periods

§ (each component name may itself be a sequence of distinguishing

‘ attributes). This process may be continued leading to the
general concept of pathname, where a subcomponent of an object is
identified by a pa Tom the composite through the intermediary

- composites, leading £finally to the desired object. Each object
in the entire database can be uniquely identified by the path to
it which follows only primary windows from the root composite
object. For example:

USERS.JONES . (SUBPROJECT=>VOYAGER , PHASE=>DOCUMENTATION) .A.B

could be the pathname from the root to some sub-sub object.
Notice that the parenthesized, labeled notation and the
positional notation may be mixed if joined by dots, with the
parenthesized portions interpreted relative to the point reached
by the preceding part of the pathname.

Pathnames may also be used to identify . attributes rather
than components of the content. In these cases, the apostrophe
(single quote, "tic”) is used to distinguish an attribute label

_ from a component name. The. attribute named may itself be a
complex object, in which case the pathname may continue after the
attribute label with further component or attribute names. For
example:

SYSTEM.PRINT”QUEUE” FIRST .BODY

might be the pathname to an object which is the body of a listing
that is first on the system print queue.

3.2.4.3.3.3 Secondary Windows and Pathnames

Object pathnames may be specified which do not follow
strictly down the hierarchy of composite objects and attributes,
by traversing secondary windows. When a secondary window is

. encountered in a4 pathname, the rest of the pathname 1is
interpreted relative to the partition of the extended object
referred to by the window.

When a secondary window is created, the name of the target
object and the partition limitation, if any, are specified. 1In 1
addition, the user may specify further 1limits on the allowed ‘
range of access to operations on the attributes and content of
the extended object. Secondary windows are the means by which a
user may delegate access to and/or responsibility for parts of
the database to other users.

=

21

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

Sa. ‘.,-".*._x",j

AN P B o e g s a LA

" S

L2 Al

Ty

) ol >

(P A i ®

BS—-AIE(l) .KAPSE(1l)

The access limitations of a window are expressed as an
abstract role to which users of the window are limited. The role
is identified by an ASCII STRING, like “MANAGER", "READER®", or
"DEVELOPER," which must be one of the roles listed in the ROLES
attribute of the viewed extended object. Within the partition of
the extended object designated by the window, the user is limited
to the operations allowed to the role by the object’s
ACCESS_CONTROL attribute (see below). Multiple windows may exist
specifying different roles relative to the same partition.

For example, consider a pathname (starting at the root),
“USERS.JOHN .MARYS LIB," that identifies a secondary window whose
target has the full name "USERS.MARY.LIB." Then the pathname,
"USERS.JOHN.MARYS_LIB.Q.R," would identify the same object that
the pathname, “"USERS.MARY.LIB.Q.R," identified. However, because
different paths were followed to the object, different roles, and
hence different access rights, may be held at the object.

3.2.4.3.4 Non-distinguishing Attributes

3.2.4.3.4.1 System-Defined Attributes

Several attribute labels are predefined by the RAPSE to have
special meanings, and hence are not available as labels for

-user~defined attributes. They include among others:

a. CATEGORY DESCRIPTOR

b. CATEGORY

c. USER_DEFINED_ATTRIBUTES
d. CONTENT

e. ACCESS_CONTROL

£. HISTORY

Such system-defined attribute labels will be capitalized in
discussions that follow.

3.2.4.3.4.2 Categqory Descriptor and Category-Defined Attributes

Every extended object has a CATEGORY and a
CATEGORY_DESCRIPTOR. The CATEGORY DESCRIPTOR attribute is like a
type descriptor for a database object, and specifies the class
and structure of the object, and may place constraints on the
values of particular attributes. The CATEGORY attribute is a
string, like “ADA_SOURCE" or "TEST SCRIPT,"” acting as the
identifier for the type of the database object. The CATEGORY
attribute is purposely similar to the notion of "type" in high

22

INTERMETRICS INCORPORATED » 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617 661-1840

..............................

BS-AIE(l) .KAPSE(1l)

3 level languages and provides the user with much the same kind of
4 data abstraction and structuring.

The category descriptor includes a table of attribute
i descriptors, keyed by the category-defined attribute labels.
4 Each attribute descriptor specifies whether the attribute is a
constant across the category, or defined as a particular element
of each object of the category (a “"variable®). For category-
defined attributes that are variable, other limitations may be
placed on the range of permissible values, as well as a default
value when the value has not been specified.

The category descriptor of an object is set when the object
is created, and may not be changed. Nevertheless, the effect of
changing the descriptor can be effected by creating a new object
with the desired changed descriptor, and then copying the content
and appropriate attributes into the new object. During this
process, the KAPSE can verify that the values of the attributes
do not violate any constraints implied by the new descriptor.

3.2.4.3.4.3 User-defined Attributes

_ The CATEGORY DESCRIPTOR defines all of the category-defined

! , attributes for the object. Nevertheless, the KAPSE supports a

. convention whereby the single system-defined attribute labeled

' _ "USER DEFINED_ ATTRIBUTES" may be used to stare values of

i attributes not explicitly defined in the category. Hence, the
actual 1list of 1legal attribute labels is effectively unbounded
for extended objects.

~User-defined attributes are created when assigned a non-null
value (which may be any file or window), and are deleted when
assigned a null value. Individual attributes are retrieved using
the attribute label as the key into the composite
USER_DEFINED_ATTRIBUTES file. For instance, OBJECTPURPOSE 1is
equivalent to OBJECT USER_DEFINED ATTRIBUTES.PURPOSE if PURPOSE
is a user-defined attribute label.

See Pigure 3-6 for an example of an extended object with
category- and user-defined attributes.

3.2.4.3.4.4 Qther Attributes

3.2.4.3.4.4.1 Content-defined Attributes

For convenience, the attributes of the content of an
extended object are accessible as though they were attributes of
the extended object itself. Content-defined attributes are
hidden by other pre-existing attributes of the same label. The
attribute label may be prefixed by "CONTENT”" to override this.
For example, OBJECT’LENGTH is equivalent to OBJECT CONTENT” LENGTH
if LENGTH is a content-defined attribute label.

23

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE » CAMBRIDGE, MASSACHUSETTS 02138 » (517) §61-1840

Y PP’ A

L)

Xk A e LIS IS

P

< iy et AP AP

SR U A el

5o

; ol N

i T e

Th

i)

¥ PNt PG

LR IS A

[i) ' nVatatetata®. a'a *a « . P A L D e . T et et

BS-AIE(l) .KAPSE (1)

Figure 3-6, Example of an Extended Object”s Structure:

Example of an Extended Object's Structure:

oj)
—d]
CATEGORY 3
OESCRIPTOR J ACCESS CONTROL
, = —{] -
3
“PROG_ARCHIVE® <e==f CATEGORY ..-I; USER_DEFINED_ATTRIBUTES
' USER_COMMENTS 2 [e
Gu—
5
@ TUTORIAL I values of
Greme— user
defined
CATEG DEFD
Am.c - o attributes
) H L °
[]
.
OPERATIONS
n
Gen—
| xayed access Hst access
values of file file used values of
constant category for extended variadle
attributes descriptor object attributes

Note that the labels for the attributes in element positions
1,2,3,and 4 are system defined.

111182392-10

To hide existing content-defined attributes with a new
user-defined attribute of the same label, the attribute
Ui:k_pErINED_ATTRIBUTBs must be referenced explicitly the first
time.

24

INTERMETRICS INCORPORATED + 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

...

TR Ty AT TI P T TITNTETR TS Cuoe s Tade it S St Suth S S Sute Sare Suh St fiarniagn L L e
. . . 1

b4 BS~AIE(l) .XAPSE (1)
_;} 3.2.4.3.4.4.2 Target-defined Attributes

by Again for convenience, the attriobutes of the target of a
. window are accessible as though they were attributes of the
) window itself. Windows have no nameable attributes themselves.
A Certain special primitives (see 3.3.2.1) and path-defined
> attributes (see below) are available to query and adjust
R information about a window.

N - ' 3.2.4.3.4.4.3 Path-defined Attributes

bt

éﬂ The path-defined attributes CURRENT ROLES,
] - CURRENT_MODIFIERS, CURRENT RIGHTS, CURRENT OPERATIONS,
i? CURRENT (_CHANNELS, and CURRENT PARTITION, are accessible to reveal
“ the access available at a particular moment via a particular
‘ path. These attributes are not stored on any object, but are
% cather derived from the path followed to reach the object.

_3

_’,,3 3.2.4.3.5 Uses for Composite Objects

Composite objects are used for the normal concept of a user
.y directory. However, because of the ability to use multiple
EE distinguishing attributes, to define partitions, and to operate

)

and control the objects as a whole with the various KAPSE
database primitives, composite objects can serve many other
purposes as well.

v
[sl

LERE

3.2.4.3.5.1 Configurations as Composite Objects

Composite objects can be used to hold the set of component
objects which represent a particular configuration of a system.
The configuration can also be adjusted as necessary by Ada
programs. New components can be created, existing components can
X be modified or deleted. The configuration, because it is a

\ single composite object, can be copied as a unit. The structure
of the configuration can be laid out and controlled by a category
descriptor, and access control <can be applied to the
configuration as a whole, or to its individual parts.

XA

3.2.4.3.5.2 Program Context Object

Bach program running in the MAPSE has associated with it a
single composite object called its program context object, or
simply "context object." It is through the context object that
Ada programs gain access to the rest of the database. All object

}g pathnames begin in the context object, and then go through

W windows to other more permanent parts of the database.

o

: The context object is normally deleted after the program

g finishes execution, and its results and status have been reported

™

g+l

b 25

E

s

v INTERMETRICS INCORPORATED « 733 CONCORD AVENUE + CAMBRIDGE, \MMASSACHUSETTS 02138 « 617" 661-1840
R

? e Y R I S e S R RS

ARG SN I R A R R

B5-AIE(1l) .KAPSE(1l)

to its invoker. Components and attributes of this context object
may be simple objects (temporary files), composits objects (a set
of temporary objects), or windows on the more permanent parts of
the database. All context objects are composite objects using a
single distinguishing attribute labeled LOCAL NAME for their
components.

When an Ada program creates or opens an object in the
database, it specifies the pathname. If the pathname begins with
a dot or a tic, then the rest of the path is interpreted relative .
to the context object.

If the pathname does not begin with a dot or a tic, the
KAPSE uses the window attribute labeled CURRENT DATA of the
context object, and interprets the path relative to that window.
In effect, it is as though "“CURRENT DATA." were inserted at the
front of the pathname.

When a program is to be invoked from some existing running
program (i.e. the compiler being initiated £from the command
language processor), 2 new context object is created, initialized
with a window attribute called "“PROGRAM" back on the executable
program object, and with other window attributes and parameters
inherited from the invoker and its context object. This new
(sub) context is by default created as a component of the content
of the invoker“s context object, allowing the invoker to refer to
the subcontext during its execution by its LOCAL_NAME. See
Pigure 3-7 and section 3.3.3.3.

3.2.4.3.5.3 Private Objects

The KAPSE supports the creation and controlled manipulation
of rivate objects, encapsulated abstract data objects analogous
to Asa objects of private type. Private objects are managed by
one or more “trusted™ programs, instead of being directly
accessible to a user through the normal database I/0O operations.
For example, the KAPSE mail system allows users to send and
receive mail using private objects called mailboxes, without
giving users the ability to corrupt the internal structure of the
mailboxes.

Two implementations of private objects are supported by the
KAPSE. The first takes advantage of the KAPSE”’s access control
facilities to implement an object manipulated by programs local
to the object. The second uses access control combined with the
INVOKE_OPERATION primitive to implement an object manipulated by

l

programs (“"operations®) external to the object.

The simpler kind of private object is a composite object
with one data component, and a number of executable program
components, each with privileged window attributes back on the
data component. To most external windows, only "execute" access

26

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617} 661-1840

P N . .
........... .

- . L. T T - . . . R . - . .
PR SRSy Lmk:.k‘_;_'n‘._"ua,'- PPV P ROV, PR TGP RU Y e Wt ST W U PRy ay Y | PR PP PRl SN e |

T, Y . Y. L Ear e At A A AT NN TR TR - AR A it

BS-AIE(l) .KAPSE (1)
Figure 3-7, Programs and Program Context Objects:

Programs and Program Context Objects:

PROGRAM EXECUTABLE
CONTEXT PROGRAM
0BJECT OBJECT
Y
PARAMETERS PROCESSOR
> »4 >4
RESULTS -9 ot LINK MAP -9
CURRENT_DATA PROG_LIB
TOP_LEVEL_DATA
L
ROOT .
ot CONTENT
L]
[
[
(LoAD
MODULE)
CONTENT

/TN

{Sub Contexts and Temporary Files)
111182392-1

is given to the program components, and no direct access to the
data component. In this way, direct access to the data is denied
most users, but they can access the data via the programs
supplied in the private object.

27

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (817} 561-1840

. e - . N e O
P T SRR .« . . S RS
I N WP AL TR T TPV DU RIS TP T Ji VAL TR DU YI DI TP Py iy T Wy S Pup iy g e

........

E BS-AIE(l) .KAPSE(l)

When executed, the context objects for the program
components will have their “PROGRAM window back on their program
objects. WwWith that, and the privileged window attributes of the
program objects, they can implement, on the user”s behalf, useful
high-level operations on the data component.

This kind of ptxvate object requires no special handling by
: the KAPSE, as the “PROGRAM window attribute is a standard feature
. available to all programs. This kind of encapsulation is
analogous to that provided by an Ada package with externally
visible procedures, but with private data.

% The second kind of private object does not contain direct
A program components, but rather has an attribute 1labeled
"“OPERATIONS" which is a window on a composite object where the
trusted programs reside. These trusted program objects cannot be
attributed with windows on the private object, because they do
not know in advance which object is to be manipulated. Instead,
the KAPSE provides an INVOKE OPERATION primitive which, given the
name of an operation as “a simple string, and a path to the
private object, will look up the operation in the composite
referred to by the designated object®s OPERATIONS attribute. If
there, it will initiate the selected program with a privileged
window in its context of the name "“IMPLICIT OBJECT" referring to
the private object.

By restricting access to the object so that the user can
only 1invoke the "operations" (see Operate access right, below),
the private object is analogous to an instance of a “"private"
type of an Ada package.

It should be noted that an object need not be a totally
private object to have an OPERATIONS attribute; the ability to
invoke an operation on an object as well as gain other direct
access can be useful.

3.2.4.3.6 MAcceas Control for Extended Objects

Access control within the KAPSE is based on the concept of

"role." Bach extended object may define its own set of abstract

roles. A role represents a logical set of participants in the

access and manipulation of an extended object. For example, a

i project manager might wish to define roles for a REVIEWER, a

X TESTER, a PROGRAMMER, and a MANAGER within a particular extended
object.

The manager would then set up the ACCESS_CONTROL attribute,

which is associated with every extended object, to define the set

3 of "concrete access crights® which each role may use in the

- object. For example, (s)he could give read access to the

\ REVIEWER, read and execute access to the TESTER, and read, write,

y and execute to the PROGRAMMER, while reserving the special
’ _OVERSEER modifier for the MANAGER role, as shown below:

]
! 28
:
‘

INTERMET®ICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

A A A at et o

._,4
e
;

4 vl

ol
talal

i A

" MR

TG i

¥

(3anatate atyrd

4

T A TN ARG Y

i

X

S

4

1 ;

AT

LW ARG o

b

BS-AIE(l) .KAPSE (1)

Role Concrete Access Rights

REVIEWER Read

TESTER Read, Execute

PROGRAMMER Read, Write, Execute

MANAGER Read (plus _OVERSEER modifier -- see below)

3.2.4.3.6.1 Abstract Roles

The set of roles for an extended object is defined by the
ROLES attribute, an indexed list which serves to provide a
mapping between role indices and role names. The role indices
are stored internally (as bit positions, generally) instead of
role names in all windows and attributes which refer to roles.
Role names are provided externally for the user”s benefit.
Certain role indices are reserved for system-defined roles (e.g.
SYST=M, CALLER, SUBCONTEXT).

3.2.4.3.6.2 Access Control Attribute

The ACCESS_CONTROL attribute for an extended object is a
list of access control elements. An element specifies the
following for a specific role:

a. A set of available concrete rights;
b. A set of available operations;
€. A set of available communication channels;

These rights are possibly limited or extended by partition
limitations and role modifiers (see below). Each of the above
sets are represented with bit vectors, using the appropriate
index (role index, right number, operation index, channel index).

3.2.4.3.6.3 Concrete Rights

The following concrete access rights are pre-defined for the
AIE:

. a. Read This right is required to be able to read
the files which make up the content and attributes of the
extended object. It also controls whether one can go
through any of the enclosed windows.

b. Adad This right is required to be able to add
information to any file or window, including appending to a
simple file and creating new elements of a composite file.

¢c. Delete This right is required to be able to delete

information from any file or window, including removing from
the head or tail of a simple file (aka “"consuming"), and

29

INTERMETRICS INCORPORATED » 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « /617) 561-1840

et L T e

BS-AIE(l) .KAPSE(1)

deleting existing elements of a composite file. Both add
and delete rights are required for random—-access writing of

a simple file, and replacing of existing elements of a
composite file.

d. Execute This right is required to be allowed to
execute the content of the extended object as a program. A
PROCESSOR attribute must also be defined for the extended
object. The PROCESSOR attribute specifies the processor
which will interpret the content of the extended obiject.
The attribute value is the name of the target machine for
compiled code, or a window on the interpreter for a command
language script.

e. Operate This right is required to be allowed to
invoke any of the operations of the extended cbject. an
OPERATIONS attribute must also be defined for the extended
object, and the operation index must be included in the
available-operation set.

£. Communicate This right, which is only relevant ¢to
running program context objects, is required for any
communication with or control over the running program. To
communicate on a program-defined channel, a CHANNELS
attribute (which associates a channel index with each of the
channel names accepted by the program) must also be defined
for the context object. The system-defined channels (e.g.
“ CONTROL," "_DEBUG") are assigned pre-defined indices. The
system- or program—-defined channel index must be included in
the available channel set.

Operate and communicate are mutually exclusive -- communicate
only applies to running program contexts, operate only applies to
data objects with an OPERATIONS attribute. The operation index
set, and the channel index set may therefore be defined by the
same set of bits, interpreted appropriately.

3.2.4.3.6.4 Windows and Access Control

Windows specify the roles (and role modifiers, see below) to
be used within an extended object, in terms of the roles used in
the extended object enclosing the window. The concrete right
"read” is also needed to "go through” the window at all.

The role “"translation” is expressed as follows:

a. A set of outside roles which retain the same roles inside
the extended object (they "translate” into themselves).

b. A list of translations. The first part of each translation
identifies a set of outside roles; the second part J
identifies the set of internal roles and modifiers inherited
by any member of the first set. This allows for the

30

INTERMETRICS INCORPORATED « 733 CONCOROD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

....................................

B5-AIE(1l) .KAPSE(1)

possibility that a user (typically a manager) may have
several roles at the same time. The set of internal roles
and modifiers resulting from a window translation 1is the
union of those provided to each of the outside roles held on
entering the window.

3.2.4.3.6.5 Role Modifiers

A set of role "modifiers" are predefined for all extended
objects. These modifiers determine extra rights and limitations
associated with the roles held:

a. _OWNER This modifier means that the ACCESS_CONTROL
attribute of the extended object may be edited (see 3.3.2.3)
This modifier is always translated into OVERSEER on going
through a primary window, and is lost on going through a
secondary window. This modifier is automatically given to
the creator of an object.

b. _OVERSEER This modifier means that the ACCESS_CONTROL
may be edited if one of the roles held already has read
access as defined by the existing ACCESS_CONTROL attribute.
This modifier is preserved on going through a primary
window, but is lost on going through a secondary window.
This modifier is automatically given to the copyer of an
object, on the copy only.

c. _READ ONLY This modifier means that no modifications
may be made to the object or any of its components,
independent of any rights granted by access control
attributes. This modifier is preserved on going through a
window. This modifier is automatically given when the

partition of the window includes non-distinguishing
attribute limitations.

3.2.4.3.7 Primary Windows and Extended Objects

when an extended object is to be created, a primary window
is first created with the designated name, and then the new
object is created as its target. The creator must have the "add4"
concrete right on the file in which this primary window is being
implicitly created. If an existing object is being replaced, the
creator must have the "delete” concrete right as well. The ROLES
and ACCESS_CONTROL attributes of the extended object are
initialized by default to be the same as the enclosing extended
object, unless overridden by additional parameters to the CREATE
primitive. The implicitly created primary window is initialized
to allow external roles to keep their role internally, but also

to give the OWNER modifier to the set of roles held by the
creator.

When an extended object is copied, a new primary window is
created to control access to the copy. The copy is otherwise

31

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, NASSACHUSETTS 02138 » (81715611340

R A e e T T T s T .-{
...... B S RSP . R .

BS—-AIE(l) .KAPSE (1)

identical to the original. The translation %table of the new
primary window is set up to translate the copyer”s roles outside
this new window, to the same roles already held by the copyer
inside -‘the original extended object. This allows a large
extended object to be gafely copied, without £first having to
verify that the copyer has read access to all of its sub-
components. The copyer”s roles are given the OVERSEER modifier
for use in the new copy, so that its ACCESS_CONTROL attribute can
be adjusted,

The OWNER and OVERSEER modifiers are important because of
the special nature of the ACCESS_CONTROL attribute. It is the
attribute which defines the access rights to the object as a
whole, and hence, any role which can edit the access control
attribute has effaectively unlimited access to the object.

The _OWNER modifier is given to the creator of an extended
object. The creator may then adjust the ACCESS CONTROL
arbitrarily. On the other hand, when an existing extended object
is copied, only the _OVERSEER modifier is given to the copyer on
the new copy. What this accomplishes is that the copyer can
adjust the access control of the copy only in components of it
that he or she could already read.

3.2.4.3.8 Secondary Windows and Extended Objects

As mentioned above, secondary windows may be created on an
extended object. Secondary windows have in addition to their
role translation table: ‘

a. An object designator of the target:;

b. An optional partition limitation.

3.2.4.3.8.1 Role Translation

When the secondary window is created, the translation table
is set wup, by default, to translate the roles held outside the
new window, to the roles (and role modifiers) already held by the
creator inside the extended object. 1If desired, the creator may
further limit the roles and modifiers inherited via the new
window.

X 3.2.4.3.8.2 Target Object Designator ‘

The target object designator of a secondary window consists
of a common ancestor label and a window key (see below). The
common ancestor label uniquely identifies an extended object
s which must enclose both the window and its target. The common
\ ancestor”’s label, stored in the system-defined attribute
e NODE_LABEL, is assigned automatically when the first window
wanting to use it is created. These NODE LABELS are large

32

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02128 « (6171 661.1840

AL TP PR PN 2 e) PR PR P U I UP U TONCUPAY TR APy SR ST SUNE G YN ST Sy -.J

BS~AIE(l) .KAPSE(1l)

integers to minimize c¢ollisions (it should be noted, however,
that even given collisions the KAPSE will find a suitable, if not
optimal, common ancestor). The NODE LABEL of the root of the
database is distinguished (e.g. always T) for efficiency. The
root can always be used as the common ancestor as a last resort.

The window key is assigned when the window is created, to be
unique among all windows using the same common ancestor, by
advancing the value of the attribute LAST WINDOW KEY of the

. common ancestor. These keys are never reused. Periodically, the
KAPSE will do a "garbage collection®” to identify keys that have
no further references and compress the key space.

The window Kkey 1is used to select an element of the
WINDOW_XREF attribute of the common ancestor. The element
selected is a file with information relevant to the window, as
follows:

a. ORIGINAL WINDOW The path from the common ancestor
back down to the original window created. This attribute
does not change, hence it in effect "names" the window for
all time in terms that are meaningful to the creator of the
window. If the creator decides later to revoke the wiadow,
then he can do so by specifying the value of this attribute
in the revoke operation.

b. TARGET The path down to the target. It is
an error if this path does not "end"™ on an extended object,
or passes through secondary windows.

C. PARTITION The partition of the target visible
to users of the window. By default, this partition is all
of the target,

d. ROLE_SET The set of all roles available to
users of the window, as based on the original translation
table., This set is represented as a bit vector.

e. MODIFIER_SET The set of modifiers for the users
of the window, as specified in the original translation
table. This set is represented as a bit vector.

N £. PARENTS A list identifying all the parent
windows of this window (see 3.2.4.3.8.4 below).

g. TRANSITORY A flag, which indicates that this
window will soon disappear and may not be listed as the
parent of any window derived from it (see 3.2.4.3.8.4
below).

h. HAS_CHILDREN A flag, indicating that a window has
been created with this as one of its parents.

33

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE ¢« CAMBRIDGE, MASSACHUSETTS 02138 » 6171 661-1840

« .~'n -) At " .
RN AR A

PSPy Y T — s A .8 L

....................

8 BS-AIE (1) .KAPSE (1)

i. REVOKED A flag, indicating that this window,
' and all of its copies, have been revoked, but their children

' have not. The children are then treated as direct children
{ of the parent windows.

~ It is important to understand that window <creation is
» distinguished from window copying. No additional WINDOW_XREF
1§ : elements are created for copies of windows (in particular those
b copies due to the copying of a large enclosing extended object).
On the other hand, each creation of a new window involves the
creation of an element of the chosen common ancestor”’s
WINDOW_XREF attribute.

A

£ A PR IR PR e

3.2.4.3.8.3 The Common Ancestor

When a window is created, the target object 1is designated
relative to some "common ancestor” extended object. This allows
a large Extended object enclosing a window, its target, and the
common ancestor to be copied and preserve the window/target
relationship in the new extended object. Alternatively, 1if the
copied object does not include the common ancestor, then the new
copy- of the window will continue to refer to the original target.
This flexibility means that the judicipus choice of a common
ancestor can determine whether a window is considered to point to
a specific "absolute” object, or just to an object in some local
relationship with it.

LA WA

;‘Al ..

oAk

nd § AR P

OEEE)

Besides enclosing the window and its target, the common
ancestor must enclose the common ancestors of all of the parent
windows (see below). If the common ancestor is not explicitly

'j specified, the nearest ancestor satisfying these requirements is

; used.

X 3.2.4.3.8.4 the Parents of a Window

. Whenever a secondary window is created, it may be recording

Q roles which were obtained as the result of traversing some pre-

~ existing secondary windows. The creator must specify a path to

3 the target (TARGET PATH), and a path to where the window should

. be created (WINDOW_PATH). Both of these paths as usual start in

- the context object of the creating program. The new window is
defined to be "derived” from all those windows traversed by the

| TARGET _PATH which were not also traversed by the WINDOW_PATH.

1 This definition is based on the theory that if the TARGET PATH

1 and the WINDOW_PATH start out the same, those windows traversed

.i along this common part will still have to be traversed to reach

-, the starting point of the newly created window (i.e.
WINDOW_PATH) .

4

?3 The "parents” of the new window are defined to be the union

ﬁ of:

%

A 34

%

& INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, VASSACHUSETTS 02128 « (617) 861-1840

.
-

L Yl A A A R T
PR T e e IR AR ISR A IR T e e o 1

B5-AIE(1l) .KAPSE (1)

a. Those windows from which it was "derived" which don“t have
the TRANSITORY flag set;

b. The parents of those windows which do have the TRANSITORY
flag set:;

The "parent" relationship forms a directed acyclic graph
recording window creation dependence. This forms the basis for
window revocation rights (see below).

The path to the common ancestor of each of these parents,
along with the parent”s key at the common ancestor, are recorded
in the PARENTS component of the WINDOW_XREF element for the newly
created window.

3.2.4.3.8.5 Transitory Windows

The TRANSITORY flag is used to prevent permanent dependence
on temporary windows created simply for focusing on a part of the
data base. It is envisioned that an interactive user will move
through the data base by “"changing view" from one location to
another traversing both primary and secondary windows. A
transitory window (i.e. “CURRENT DATA) will record each new
*view"”. The windows derived from the transitory window will take
as parents not the transitory window itself, but rather the
parents of the transitory window, allowing the transitory window
to be deleted without affecting windows derived from it.
Interactive users may walk around the database until they have
precisely the view desired and then derive a more permanent

" window from the transitory window.

3.2.4.3.8.6 Revoking a secondary window

After creating a window, there may come a time when the
rights thereby granted are to be revoked. The right to revoke a

window is limited to those with OVERSEER or _OWNER role
modifiers at one of the following "places":

a. At the location of the window itself.
b. At the location(s) of the parent window(s).

¢c. At the target extended object, but only if none of the
parent windows e~.d at the same target (this represents a
. definition of the direct "children®" of the target).

A window may be revoked in only two ways:

a. The window and all of its descendants may be revoked;
or

b. The window may be revoked, and its children remain to become
adopted children of its parents.

35

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « :617) 661-1840

e bt B By s Shet om Jhas d v AANEE AR En-g b nen sl ik SN L N 2 S A TR R A A A B A ST A S
Mottt et Sunt Rt Bt It UL ALl S S A - R S T AT ST P T

BS-AIE(l) .KAPSE(1l)

Note that it is only possible to revoke a direct child window.
It is not possible to selectively revoke "grand-children”
windows, without first revoking the responsible parent. This
provides sufficient flexibility, without sacrificing reasonable
accountability rules (see (Warshall80] for a further discussion
of these issues).

3.2.4.3.9 History Recording and Management

From the point of view of history, ¢two significantly .
different kinds of extended objects exist in the database: source
objects and derived objects. Source objects are those with
content produced, in general, by a human using a text editor.
Derived objects, text or otherwise, are those produced as the

output of other tools or user programs, with little or no direct
input from the user other than parameters.

The history attribute is designed to uniquely identify a
particular "state®” of an extended object”s content, and to record
enough raw data to support present and future monitoring,
analysis, and rederivation tools.

In the case of a source object, the history attribute refers
to a "source archive® wherein an efficient representation of
multiple states (revisions or versions) of the same basic text
may be stored. The history attribute consists of a window on the
source archive, and an index used to locate the pieces of text
that make up this particular state of the object. Given a copy
of the history attribute of a source object, it is possible o
reconstruct the original text (subject to access control).

When an object is first created, it is considered by default
to be 4 derived object. It may then be explicitly identified as
a source object, at which time, it may be added to an existing
source archive, or used to create a new source archive., When
added to an existing source archive, the source object is
assigned the next sequential state index. With a new archive,
the source object is assigned state number one.

The history attribute of a "derived" object consists of a
window on a program invocation "script," and an index indicating
which output of the program gave this state of the object. Every
time a program is invoked, a script is created to record its
pacrameters, when it was invoked, an 1list of windows on the
objects manipulated by the program, and copies of their history
attributes (including the TERMINAL_INPUT object -- see 3.3.3.5).
If the program modifies no objects, the script may be deleted
after the program completes. Otherwise, the script must be saved
permanently, and the history attributes of each of the modified
objects must be updated to point to the script.

The window mechanism keeps track of references to history
scripts and archives. Periodically, the contents of source

36

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02133 » '617) 6811840

.........................

PO WP S SO

BS-AIE (1) .KAPSE (1)

a archives and scripts that have not been referenced recently may
o be dumped to tape through a ZXAPSE service (see 3.3.4.1).
. Nevertheless, a "stub" remains to keep track of where the history

has been saved off-line. A user may explicitly request re-

activation of 3specific scripts or archives. Even recently

referenced archives or scripts may be written to tape to ensure
i that the tape contains an internally self-consistent
2 representation of hist~ry. However, these history elements are
- left on-line as well.

v In addition to the data mentioned above, each history script
3 and source archive records the date and time, as well as the USER
~i NAME, when the program execution or source archiving occurred
‘5 (see 3.3.4.1).

3.2.4.4 KAPSE/Host Interface ~- YM/SP and 0S/32

The KAPSE is designed to be as host-independent as possible.
This is accomplished by defining KAPSE/Host interface packages
- which provide for the rest of the KAPSE a uniform interface to
the host. Only the bodies of these interface packages will need
re-writing when re-hosting. Also, any embedded machine code is

. restricted to the KAPSE/Host interface packages.
?: The KAPSE/Host interface packages, detailed in section 3 3,
i - are as follows:

(KAPSE.SIMPCOMP) :

2 Package PHYS_ BLOCK_IO
Package DEVICE 10

(KAPSE .MULTPROG) :

Package PROGRAM_LOADING
V.t Package KAPSE PROGRAH COMMUNICATION

:j Package KAPSE KAPSE COMMUNICAEION
X (KAPSE.RTS) :
(Most of it, except the
ol “Langquage-Defined Packages” CPC)
¥
ﬁ Note that, in a sense, these packages represent the opposite
2 "side” of the KAPSE from the RXAPSE/Tool interface packages
> identified in section 3.2.4.1.
A 3.2.4.4.1 OQverall Architecture
- The overall architecture provided by the KAPSE/Host

interface packages, using whatever host facilities are
appropriate, is a number of independently aexecuting Ada programs

37

INTERMETRICS INCORPORATED « 723 CONCORD AVENUE « CAMBRIDGE, TASSACHUSETTS 02138 « (6171 561.1240

ik e G S

T e i A Ar i A et e CU CICRCIR R

B5-AIE(l) .KAPSE(1l)

running concurrently on the host machine. Each independent Ada

program has its own run-time system, including an Ada task
scheduler.

The KAPSE/Host interface packages implement (with help from
the host) device drivers, as well as the loading, timesharing,
memory management, and swapping of the independent programs. The
KAPSE/Host interface packages also provide a low-level
communication path between the KAPSE and each user program
(package KAPSE_PROGRAM COMMUNICATION), and between two KAPSES on
separate (virtual) machines (package KAPSE_KAPSE_COMMUNICATION).

The KAPSE itself is an Ada program, using a specialized
version of the Ada run-time system lacking the high-level IO
packages, and supporting the connection of entries of tasks
within the KAPSE/Host interface packages to real hardware
interrupts (see 3.3.5.3).

The communication path from the user Ada program toO the
KAPSE is analogous to a "system call®” or SVC. Except for this
communication path, the KAPSE/Host interface packages entirely
isolate the user Ada programs from one another, from the KAPSE,
and from the host (using hardware protection where possible).

In summary, the KAPSE/Host interface packages insulate the
KAPSE from the idiosyncrasies of the host system facilities. The
rest of the KAPSE, in turn, implements the high-level KAPSE/Tool
interfaces in terms of these low-level host-independent
interfaces, In addition, the KAPSE/Host interface packages
prevent the application programs running under the KAPSE from
accesging the host facilities directly, thus ensuring that the
KAPSE Database is not contaminated.

3.2.4.4.1.1 IBM VM/SP

This overall logical architecture is implemented on top of
the VM/SP system using multiple virtual machines [IBM8l], each
with its own KAPSE program. A particular user is allowed to DIAL
into one of the running virtual machines, or to IPL his own (or
his project”s) if it is not already running. After 1IPL, the
KAPSE Dbegins running and spawns multiple LOGIN programs within
its virtual machine to handle the terminal associated with the
IPL, and each terminal which connects later via DIAL.

After connecting via IPL or DIAL, the user must LOGIN by
providing a user name and password. If accepted, LOGIN then
invokes the c¢ommand processor identified in the user”’s
INITIAL_ PROGRAM CONTEXT attribute of his top-level directory.
The additional programs initiated by the command processor will
share the same virtual machine with the KAPSE and those of other
simultaneous users of the virtual machine. The multiple programs
within a single virtual machine are managed by the KAPSE/Host

38

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 861-i1840

RO b Al A S

- v L - o t—h"'.".—\lk M ".~'U "-\ - I‘~‘~' ~- . ¥ i .“‘V W - -
CSRICVIEY - . : R o= :

BS-AIE(l) .KAPSE (1)
interface package PROGRAM_LOADING.

To provide access to each other”s databases, multiple RAPSEs
on the same physical machine may communicate via the XAPSE/Host
interface package KAPSE_KAPSE_COMMUNICATION. This communication
n . between virtual machines is implemented using the Virtual Machine
1 Communication Facility (VMCF) or the Inter-User Communication
% Vehicle (IUCv), both of which are high-band-width memory-to-

memory data paths provided by the VM/SP Control Program.

g : 3.2.4.4.1.2 Perkin-Elmer 0S/32

The same overall logical architecture is implemented
differently on top of the 0S/32 system, by placing each
independently executing Ada program in its own 0S/32 task. User

R programs execute in a mode whereby the only 0S/32 SVC & system

3 calls they can perform are inter-task communication. They are
X not permitted to directly stop, start, or otherwise interfere
; with other tasks (NOCON mode) [PE79].

The KAPSE runs in its own 0S/32 task without NOCON mode,

allowing the KAPSE/Host interface packages access to all 0S/32

: system calls. They initiate all physical I/0, including terminal
1 and disk, and thereby c¢an optimize physical disk access and
\ provide a central buffer cache. All 0S/32 tasks communicate

using the standard 0S/32 inter-task communication primitives, a
memory-to-memory queue-based data path [PE79].

3.2.4.5 Compiler/Run-time System Interface

The Ada compiler [AIE(l).COMP(1l)], like any tool written in
Ada, depends on its own run~time system (KAPSE.RTS) implicitly
for proper execution. In addition, the middle and back end of
the compiler (COMP.MID, COMP.BEND) depend on the interface
presented in general to compiled code by the run-time support
routines, because they expand and generate the code for Ada
language constructs which implicitly use those interfaces.

Bach of the CPC’s within the RAPSE.RTS CPCI provide a set of
routines, some expanded in-line, others called out-of-line within
) compiled code. The interfaces to these routines, as known to the
) compiler, are detailed in each of the discussions in section
." 3.3.5.

3.2.4.6 Linker/lLoader interface

The linker [AIE(1l).PIF(l)] depends on the load module
format, defined by the loader within the package PROGRAM_LOADING
of the KAPSE/Host interface, CPCI KAPSE.MULTPROG. This interface
i remains to be fully specified, and may vary from host to nost.

39

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRICGE, MASSACHUSETTS 02138 « 6'7) 661-1840

O L) .. - . e BN

. A T | e el o/ Muus ugs Se seih ars T T T
L2bAe A) A e S et it st jpmit i S Rt et St et el G St S Rt SN g AN) - .
------ R . B A D 2 T T

B5~AIE(l) .KAPSE (1)

In general, a load module will be a single direct-access
file, written using the language-defined package DIRECT_IO

(KAPSE.RTS). The information within the load module is
sufficient to identify the size, layout, and initialization of

virtual memory for the program”s code and static data, as well as

identify where execution is to begin, and what initial stack
allocations are appropriate.

40

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) §61-1840

- - e A ek S Tt ey A e S alhaPulit SR T P L T A
bbb g A Al R A AN R E R - LR - .

IR
[l

e
.‘ﬂ

BS-AIE(l) .KAPSE(l)

v -
FRRCYCUIRE e 2

3.2.5 PFunction Description

PEET e

The KAPSE consists of five Computer Program Configuration
Items (CPCI”s):

a. KAPSE.SIMPCOMP
. b. KAPSE.ACCECAT
c. KAPSE.MULTPROG
d. KAPSE.HISTARCH
e. KAPSE.RTS
A brief discussion of each of these CPCI“s follows. See Figure

3-3 for an overall CPCI dependency diagram.

3.2.5.1 Simple and COEgositc Objects (XAPSE.SIMPCOMP)

1 This CPCI defines simple and composite objects; it defines

‘ the techniques used to implement objects as well as the

1 operations that can be performed on objects. Access methods and
data clumps define the techniques used to implement simple’
objects. Simple objects correspond to files on a typical
operating system. Composite objects are collections of simple
objects. A traditional directory is an example of a composite
object. Also defined are the routines that do physical input and
output (I/0). Block I/0 defines read and write routines between
a program and the disk; device I/0 defines read and write
routines between a program and an interactive terminal.

A short discussion of each of the CPC’s that comprise this

CPCI follows. See Figure 3-9 for the inter-CPC dependencies
within this CPCI.

3.2.5.1.1 BLOCK IO

BLOCK I0 defines routines to read from and write to the disk
in fixed size blocks.

3.2.5.1.2 DEVICE IO

DEVICE 10 defines routines to read from and write to an
interactive terminal.

41

INTERMETRICS INCORPORATED « 733 CONCORO AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 - (5171 £61-1840

.......

BS~AIE(l) .RAPSE(l)

Figure 3-3, Top Level CPCI Implementation Dependencies:

Top Level Implementation Dependencies:

windows on window for history
> ACCECAT ¢ .
mail boxes
access methods/
files efficient
storage of
copies,
general
fﬁf D8 featureq
prog context abj
HISTARCH
MULTPROG

message passing
and interrupts

RTS

111182392-12

3.2.5.1.3 ACCESS METHODS AND DATA CLUMPS

ACCESS METHODS AND DATA CLUMPS defines how file objects are
implemented by the KAPSE. Data clumps are units of disk storage
that are convenient for building access methods. Files are disk
structures that are manipulated by access methads. The

42

INTERMETRICS INCORPORATED » 733 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) §561-1840

Lt e T
........

. . Y RN . . . L. e e e e
IR AP S PN U o\ R P TPV LY AP PSS P LY S0 S WY L WAL

f

2

2 BS-AIE (1) .KAPSE (1)

5

i Figure 3-9,

e SIMPCOMP Inter-CPC Implementation Dependencies:
Simpcomp Implementation Dependencies:

Simple Objects Composite Jbjects

~ 7 N/

g

A Device 10 Access Methods and

¥ Data Clumps

¥

§ Access Methods/Files
X Clumps

‘ i

) Block 10

‘_“S *

§ Logical Blocks

}g Y

¥ Reference Count

{4: Tree Manager

& Buffer Manager
3

J Physical Block [0

. 111182392-11

techniques used to implement the access methods are defined. The

. four different Kinds of files implemented by the KAPSE are
< introduced:

fﬁ a. Direct Access File;

1

L]

¥ WYV

43

INTERMETRICS INCORPORATED + 733 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « 817! 561-1840

[4

€

A W X

LB o o T 3" K S

TR A Ry

vy e g

INTERMETRICS INCORPORATED » 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (§17) 681.1340

..

BS-AIE(l) .KAPSE(IL)
b. Text Access File;
C. List Access File;
d. Key Accessg File.

3.2.5.1.4 SIMPLE OBJECTS

SIMPLE OBJECTS defines operations accessible at the
KAPSE/Tool interface for manipulating extended objects with
contents which are:

a. Direct Access File;

b. Text Access File.

3.2.5.1.5 COMPOSITE OBJECTS
COMPOSITE OBJECTS defines routines available as part of the
KAPSE/Tool interface, for manipulating extended objects with
contents which are: o
a. List Access PFile;
b. Key Access File.
The routines to create composite database objects, to open and

close partitions of existing composgsite objects, and to get the
next component of a partition of a composite object are defined.

3.2.5.2 Access Control and Category (KAPSE.ACCECAT)

This CPCI defines the KRAPSE”’s mechanism for controlling
access to database objects, and the KAPSE’s mechanism for
classifying objects. The CPC”s that comprise it are:

a. WINDOW OBJECTS
b. CATEGORY-DEFINED AND USER-DEFINED ATTRIBUTES

¢. ACCESS CONTROL

Access control information in the KAPSE is distributed
throughout the database. Each extended object contains
information that defines the access rights available to users of
the object, according to the user”’s "role." A role is an abstract
property associated with a user that characterizes the activity

44

..................................
L A T e A I

...................
...........................

. s - PPy ——y s Bt e gt iy Siedh B S -G vl by S BaaC Ay S _"V_"".ﬁ:".—"_‘V"\.‘.“.-“T—"- P " ad

.........

............................

L
%
s
Iy
4
I
.
.
’

.

»
.

- N

B5-AIE(l) .KAPSE(l)

expected of the user (such as "PROGRAMMER", or "REVIEWER"). A

& role becomes associated with a user when the user goes through a
window; going through windows is also the means by which a user
o traverses the database. Hence, the notions of access control,

] windows, and roles are all inter-related,

- The RAPSE”“s CATEGORY facility is a mechanism whereby the
3 user can define the structure and properties of a class of
database objects. This facility is analogous to the concept of
« R type in high level programming languages. An object”s CATEGORY
is stored as an attribute of the object. In general, an
attribute of an object can itself be any kind of database object.
3

A brief discussion of each of the component CPC”’s follows.

3.2.5.2.1 WINDOW OBJECTS

PN
ad g b o >

WINDOW OBJECTS defines routines to create, delete, copy, and
revoke windows.

p 3.2.5.2.2 CATEGORY-DEFINED AND USER-DEFINED ATTRIBUTES

This CPC defines routines:

e
N 2

.

a. to create and manipulate category descriptors:

Swe

b. to get and set the values of user-defined attributes.

A category descriptor is a list access file, each element of
which describes the properties of a single category-defined
attribute. The CATEGORY CPC defines routines to create and
manipulate category descriptors, and thereby define new database
object structures.

P G AN

b

n

5 User-defined attributes are those attributes that are not
2 defined by either the system or the category descriptor. Each
4 extended object has a system-defined attribute called
” "USER_DEFINED ATTRIBUTES® whose value is a keyed access file.
- The components of this attribute are keyed by user-defined
oy - attribute 1labels, strings that satisfy Ada naming conventions.
Y The components have values that can in general be any kind of
3 object.

.

3 When the user gives the label for an attribute, the KAPSE

first checks to see if the label corresponds to a system-defined
attribute; if not it then checks to see if it corresponds to a
category-defined attribute of the object. If the label is not
category-defined, it searches USER_DEFINED ATTRIBUTES to see if
it appears as a key to one of its components. Finally, if not
there, the KAPSE repeats the process on the content of the
object.

€S A Moy

45

B RN o A

INTERMETRICS INCORPCRATED « 733 CONCORC AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 » '617) 881-1840

T e T L T e T e
......... . . S

NN NI g e e
RS o4 M o' (X A

)

i trim o avn B 4P B e A4 Bt A Maliterins sda R S AN HhcacEieaCH A M aC Mt A P AL
ot ‘ata'utyv,Pab ¥ TulJj¥,'a g

BS~-AIE(l) .KAPSE (1)
3.2.5.2.3 ACCESS CONTROL

ACCESS CONTROL provides routines to get and set the
primitive access rights of an object that are associated with a
particular role, as well as adjust the role translation table
associated with a window.

3.2.5.3 Multiple Program Management (KAPSE.MULTPROG)

This CPCI defines how a program is invoked, how a program
communicates with another program, and what the environment of a
running program is. Also defined are the debugger interface to a J
running program and the KAPSE mail system.

The CPC’s for this CPCI are:

a. DPROGRAM LOADING

b. KAPSE PROGRAM COMMUNICATION

¢. PROGRAM INVOCATION AND CONTROL
d. KAPSE KAPSE COMMUNICATION

e. TERMINAL SCREEN MANAGER

£. LOGIN/LOGOUT AND USER CONTEXT
g. MAIL

A brief discussion of each follows.

3.2.5.3.1 PROGRAM LOADING

PROGRAM LOADING defines the mechanism whereby programs are
loaded into memory. It also defines the mechanism for sharing
code between programs, and other host related issues involving
needs of running programs. The PROGRAM LOADING CPC is part of
the KAPSE/Host interface.

3.2.5.3.2 KAPSE PROGRAM COMMUNICATION

RAPSE PROGRAM COMMUNICATION defines the interface that
allows a user program to request services of the KAPSE. To
ensure integrity of the KAPSE, a protection boundary exists
between the KAPSE and the user programs. The protection boundary
is crossed only by bundling up a user request into a message and
sending the message to the KAPSE via this special interface.
This CPC forms part of the KAPSE/Host interface., interface.

46

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661.1840

O Y PR TN
PURI) : N AP NP)

..........
PRI

TSI RN W VS N e PR VR P S DAY b bR NP NV |

BS-AIE(l) .KAPSE(1l)

3.2.5.3.3 PROGRAM INVOCATION AND CONTROL

PROGRAM INVOCATION AND CONTROL defines all interfaces
associated with invoking a program, communicating with a running
program, and manipulating a running program. In particular,
routines are defined to do the following:

a. To call a program and wait for it to complete.
- b. To initiate a program and not wait for it to complete.
C. To await the completion of a program.
d. To suspend and resume a program.
e. To invoke an operation defined for a database object.

f. To allow communication between running programs.

g. To debug a program.

3.2.5.3.4 KAPSE KAPSE COMMUNICATION
<<TBD>>

H 3.2.5.3.5 TERMINAL SCREEN MANAGER

TERMINAL SCREEN MANAGER defines an abstraction of an
interactive terminal. This abstraction provides terminal control
facilities to start and stop terminal output (XON, XOFF), to
intercupt a running program (Control-C), to erase the previously
typed character (Control-H), and to erase the current line
(Control-X). It also implements a Scroll Control Mode that
provides to the user commands to review text previously displayed
on the terminal.

3.2.5.3.6 LOGIN/LOGOUT AND USER CONTEXT !

. LOGIN/LOGOUT AND USER CONTEXT provides routines to login, to
obtain the user name of the currently executing user, to change
the portion of the database viewed through the CURRENT_DATA

. window, and to change the user“s password.

3.2.5.3.7 mL

MAIL provides routines to send a message, to check if a sent
message has been read, to see if there are any waiting messages,
and to read mail.

47

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE + CAMBRIDGE, MASSACHUSET™S 02138 + (617) 6611340

- . . A it St e - SRRl acia rth 4t Jina i it WD e T S LA A dadi N Sl S N e S i i BN N R et T, w e . e W T T T
o ¥ . FY P A RCAIL AR L A SR S S S e e Rat Tl B e e e I e N - e T T

B5-AIE(l) .KAPSE(1l)

3 3.2.5.4 History and Archiving (KAPSE.HISTARCH)

‘ This CPCI has three CPC’s:
A a. HISTORY

1 i b. BACKUP RECOVERY

3 c. CONFIGURATION MANAGEMENT

2 3.2.5.4.1 HISTORY

| =9 =1 *

A HISTORY defines the mechanism whereby the KAPSE records

) enough information about an object to allow it to be
reconstructed.

3 3.2.5.4.2 BACKUP RECOVERY

BACKUP RECOVERY defines routines to do a full backup
‘ (effectively a snapshot of the database), to do an incremental
backup (recording only those blocks that have changed since the
last backup), and to recreate a formerly backed up version of an

object.
] 3.2.5.4.3 CONPIGURATION MANAGEMENT

CONFIGURATION MANAGEMENT defines a simple set of

configuration management tools, as an example of the use of the

Cr} _ configuration management support primitives provided within the

) RKAPSE as part of other CPCs. The configuration management

o facility includes a tool to list the elements of a partition, as

| well as tools to reserve and release items of a configuration for
W the purpose of safe updating.

3.2.5.5 Run-time System (KAPSE.RTS)

This CPCI has the following CPC’s:
a. UNIT EXECUTION SUPPORT

W RN

b. STORAGE MANAGEMENT :)
TASKING SUPPORT

(2]
.

d. EXCEPTION HANDLING

rysy

PREDEFINED PACKAGES

A
[]

£. TYPE SUPPORT

A brief discussion of each follows:

N

X 48

v INTERMETRICS INCORPORATED « 733 CONCORD AVENUE » CAMBRIDGE, VASSACHUSETTS 02138 « (617) 6611840
LY

!

71‘»’ ., ‘.';’.-"'f.-"- R

Pkl P

T . !'_.,-,.—v_v.-. gt Tt e S ittt e st

VT AR S .‘('.'.'.""‘.".“'."71

BS-AIE(l) .KAPSE (1)

3.2.5.5.1 UNIT EXECUTION SUPPORT

~ TANANCEY S R

UNIT EXECUTION SUPPORT provides the basic support for the
execution of sequential program units, including subprograms,
blocks, and packages, and for the creation of local stack frames \
with a header, local variables, and subprogram communication
area.

g

3.2.5.5.2 STORAGE MANAGEMENT

T sV Ve eV~
¥

STORAGE MANAGEMENT provides routines for the allocation and
management of the various run-~time storage structures, including
primary and secondary stacks, and controlled and checkpointed
heaps.

3.2.5.5.3 TASKING SUPPORT

TASKING SUPPORT provides the basic routines for task
creation, activation, synchronization, and termination.

3.2.5.5.4 EXCEPTION HANDLING

EXCEPTION HANDLING provides the basic support for raising
and handling exceptions. ’

3.2.5.5.5 PREDEFINED PACKAGES

PREDEFINED PACKAGES implements the five predefined packages:
a. IO_EXCEPTIONS
b. SEQUENTIAL_IO
c. DIRECT_IO
d. TEXT_IO

e. CALENDAR

3.2.5.5.6 TYPE SUPPORT

TYPE SUPPORT provides routines to support basic operations
on typed objects, such as fixed point arithmetic, and IMAGE and
VALUE processing for scalar types.

49

INTERMETRICS INCCRPORATED « 733 CONCORD AVENUE » CAMBRIDGE, MASSACHUSETTS 02138 - (817) 681-1840

-, . EPiEAEY ot : Lo P .. . 7. . - Sl - e e v . . - - T~
WPV USSP TRy PR S I AP D Ul P G B T TR SO ST JRPC NP AP RS SNP SEPSIN p SN WA WS W WRE W VY U W WIS PW.P SV P TN W ST S

L.

' B5-AIE(l) .KAPSE (1)

N 3.3 Detailed Functional Requirements

3.3.1 Simple and Composite Objects (RAPSE.SIMPCOMP)

3.3.1.1 Block IO

3.3.1.1.1 Physical Disk 1/0

R Y SR

i ’
2.iata el

4

¥ Iy
PILILIR P L

At AN X

S

3.3.1.1.1.1 1Inputs and Outputs

The following low-level subprograms are implemented for each

host, to provide physical disk I/0, as part of the KAPSE/Host
interface:

with DATABASE DEFS; use DATABASE_DEFS; -- Host dependent
Package PHYSICAL _BLOCK_IO is

type BLOCK_ARRAY is array(l..BLOCK_SIZE) of STORAGE UNIT:;

procedure READ _BLOCK (BLK: in BLOCK _ID; DATA: out BLOCK_ARRAY) ;
«= This procedure translates BLK into a physxcal
-= disk address and then reads the block at
-~ that disk address into the buffer designated
-- by DATA. An entire block”s contents is read.

procedure WRITE_BLOCK (BLK: in BLOCK _ID; DATA: in BLOCK_ARRAY) ;
-= This | procedure translates BLK into a physical
-= disk address and then writes the contents of
-~ the buffer designated by DATA into that disk

-=- address. An entire block”’s contents is
== written.

end PHYSICAL_BLOCK_IO;

3.3.1.1.1.2 Processing for VM/SP

Each KAPSE is given its own virtual machine which in turn is

assigned a number of virtual mini-disks within the WM/SP
Directory. Each of these mini-disks consist of a number of
cylinders, with each cylinder holding a number of the KAPSE
fixed-gsize blocks. A KAPSE data base can be logically viewed as

array of physical disk blocks, each block identified by a

50

- INTERMETRICS INCORPORATED « 733 CONCORD AVENUE » CAMBRIDGE, MASSACHUSETTS 02138 « i617) 651-1840

.l’."" vq-.'(-‘_-'-'-'"_..'.N.'.‘_",»" RN . . . - s .
~ .‘ -\$\\~ -'y'\l.' -‘\'1"1..0"§'-'-'-'. Ve e e T et PR A S S L P

A

BS-AIE(l) .KAPSE (1)

unique block identifier (BLOCK_ID). Block identifiers are just
integers. A separate function is provided to map Block
identifiers into physical disk addresses (mini-disk, cylinder,
track, byte).

Blocks are allocated so that sequential blocks are in the
same cylinder, if possible, with a separation from the
predecessor block determined by the physical characteristics of
the device type of the mini-disk. The logically sequential
blocks of an object are allocated non-contiguously to allow for
the delays associated with a time-sharing environment, which
prevent a user program from processing data as fast as the disk
could provide it.

3.3.1.1.1.3 Processing for PE 0S/32

The 0S/32 KRAPSE task obtains disk storage by creating
contiguous 0S/32 files with a consistent naming scheme. The
files are then assigned to the KAPSE with exclusive read/write,
thereby preventing other 0S/32 tasks from corrupting the data.
After g:eating such a file, it is treated much 1like the WVM/SP
mini-disk.

3.3.1.1.1.4 Special Requirements

The translation from BLOCK_ID to a physical disk address
must be very efficient, Note that the only direct user of
PHYSICAL_BLOCK_IO is the buffer manager (discussed below).

3.3.1.1.2 Buffer Management

3.3.1.1.2.1 Inputs and Outputs

The parameters to buffer management routines are typically a
block identifier, a string to be read or written, and some
"buffer management advice.” Routines are also provided to flush a
buffer, given the block identifier for the contents of the
buffer, and to flush all the buffers.

Buffer management advice is information that the caller
provides (as an in parameter) to the buffer management routines
to help the buffer manager decide what to keep in memory and what
to flush to disk. Buffer management advice is specified as a
value from the enumeration: (WILL_NEED_AGAIN,
WILL_NOT_NEED AGAIN, NO_ADVICE). -

51

INTERMETRICS INCORPORATED » 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1340

R T AL L St AL AR T

N

g |
N BS-AIE(1) .KAPSE (1) |
e ‘
% 3.3.1.1.2.2 Processing

E Buffer management provides an in memory cache of the

’ contents of recently referenced disk blocks. Its job is to

0 minimize traffic to and from the disk, consistent with the

M legitimate needs of the caller (such as the periodic need of some

applications to flush a particular buffer to disk).

Buffer management uses a "clock" algorithm in which all
y buffers being used are linked into a doubly linked circular list, 1
I This list (hereafter called the ring) is the "clock face” of the
clock algorithm. A separate variable points to a particular
element on the ring; this variable is the "hand" of the clock 1
algorithm. When a buffer is needed, the hand sweeps forward
around the ring looking for an element that indicates that it has
not been recently referenced. As the hand passes over an
“ element, it sets the referenced flag to "NOT_REFERENCED". In
this way, even if it has to sweep the entire ring, the hand will

PN A
AL A

..1 eventually find a buffer with NOT REFERENCED set. This algorithm
4 implements an efficient approximation to "Least Recently Used."
2 Buffer management also maintains a free pool of buffers that
o have been removed from the ring. A threshold value determines
‘ﬂ when the pool must be replenished (via the algorithm described
Wk above) .

¥; The buffer manager advice allows additonal control over this

caching algorithm, by causing it to favor or disfavor certain
blocks by moving them in the ring. .

The flush routine forces the contents of modified buffers to
the disk, allowing higher level data base management routines
control over the order in which physical writes occur. This 1is
especially important for reduncancy/integrity structures such as
transaction logs. The contents of a transaction log entry must

I R

2 be physically written to disk before the change it describes can

% be written to the disk.

3

5 The buffer manager uses physical block I/0. The only direct

2 users of the buffer manager are the logical block manager and the

~ reference count tree manager. Both are discussed below. «
3 3.3.1.1.2.3 Special Requirements |
¥ Since all traffic to and f:oﬁ the digk is via the buffer

- manager, its performance is a very important part of the overall

- performance of the KAPSE. The algorithm will be tuned to provide

o a satisfactory level of performance.

i 52

s

g INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 + (617) §61-1840

'2'1

‘s

YWy Tl T D I T T SR I T I IR B I S T e IS I S P TN e P T s .
Py N P O T N LA L R ey SR RIS RN el

e

Do ma i N

T

[St

© 3t el gl wdis? v

S h DR GRS

[AL P

S SRS W e D R

-:J P sCOnaaity

s & nIargagnieiogs

4

Ciad™

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE. MASSACHUSETTS 02138 « (617) 861-1840

..................

..........................

B5-AIE(1l) .XAPSE (1)

3.3.1.1.3 Reference Count Tree

3.3.1.1.3.1 Inputs and OQutputs

The primary input to the reference count tree manager 1is a
block identifier. Routines are provided to get the reference
count of a block, to increment it, and to decrement it; each of
these return the reference count of the specified block as an out
parameter. The routine to allocate a block returns the block id
of the allocated block.

3.3.1.1.3.2 Processing

Reference counts are kept for every disk block in a
database. The reference count of a block is the number of disk
block pointers that point at the given block. If the reference
count of a block 1is zero, then the block is free and can be
allocated.

Reference counts are kept in a separate data structure
called the reference count tree. The reference count tree has a
root, some number of internal blocks, and leaf blocks. The root
and all of the internal blocks contain nothing but disk pointers.
The leaf blocks contain nothing but reference counts. The block
id associated with a particular reference count is known
implicitly by the position of the reference count in the
reference count tree. The depth of the tree is uniform and is
expected to be small.

3.3.1.1.3.3 Special Requirements

As with the buffer manager, this routine is critical for the
overall performance of the RAPSE.

3.3.1.1.4 Logical Blocks

3.3.1.1.4.1 Inputs and OQutputs

Logical blocks are identified by a limited private type,
LOGICAL BLOCK HANDLE. A logical block handle is merely an access
value on a data structure defined in the logical block manager
package. The operations provided are to read and write the
contents of a logical block, to copy all or part of a logical
block”s contents, to move all or part of a logical block’s
contents, and to allocate logical blocks.

33

Ly et AP dir i AV AN J R SR R B R e e

BS-AIE(l) .KAPSE (1)

The primary input is a logical block handle; secondary
inputs specify what part of a logical block is to be moved or
copied, or provide the data for write operations.

P L

o~ TSRO
o

oo The outputs of logical block operations are logical block
N handles or the data that were read.
a_{
it 3.3.1.1.4.2 Processing
3 The content and attributes of all non-device (see 3.3.1.2)
;ﬁ objects are recorded on the disk provided by the host machine.
¥ At a low level, all recorded information consists of either bytes
S of data or pointers to other disk blocks. 1In the KAPSE, this
i distinction between data bytes and disk pointers is made by the
, logical block manager.
'5? Logical blocks are a logical view of a physical disk block.
s They contain two distinct parts: a data byte part and a block
i pointer part. Access to the data part of a 1logical block is
A unrestricted. Access to the block pointer part of a logical
-~ block, however, is restricted to a few operations, and the actual
< value of a block pointer is never revealed to the caller. The
WA * caller must identify a block poiatar by its location in the block
) pointer section. The location of a block pointer is referred to
f§ as a "slot," and the caller refers to a slot by a "slot number.”
XE Access to block pointers is controlled to maintain for every disk
block an accurate count of all references toc that block, needed
§; for "virtual" copying (see below).
o] Operations on the byte portion of a 1logical block are to

read or write all or part of the bytes stored.

Operations on the block pointer portion of a 1logical block
are to allocate a new block and store its identifier in a given
P slot, to erase the block pointer stored in a given slot, to copy

:ﬁ a pointer from slot from one slot to another, and to move a

s pointer slot from one slot to another.

i: The graph formed by disk block pointers is guaranteed by the

logical block manager to be acyclic, and there is a well-defined

N, root for the entire graph. This implies that the "children" of a
< block (those pointed to from one of the block’s slots) can never
~ be one of its "ancestors." Combined with the fact that the
! reference count of each disk block in the database is known, this
* makes it possible to determine if a block is shared. A block is

- shared if its reference count is greater than one, or if any of
n its ancestors along any path from the root are shared.

‘5 By keeping track of whether a block 1is shared, physical

..’ copying of the block can be deferred until a change is actually

;}4 made to the original or some logical copy. To logically copy a

> block and all of its decendants, one need only increment the

-3

a

%

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « .617) 661.1240

........

vy & TTE e e e . T

B5-AIE(l) .RAPSE (L)

reference count of the top block (making it and all of its
descendants shared); one need not physically copy all the
+ specified blocks. This mechanism of deferring actual copying is
referred to as “virtual" copying. See Figure 3-10.

F;gu:e 3-10, Physical Blocks vs. Logical Blocks:

Physical Blocks vs. Logical Bloecks:

Physical Blocks:

#'s ingide blocks fndicate block ids
- #'s outside blocks indicate reference counts
r = plock is shared {smared flag)

1 1

Logical Blocks:

#'s ins1de blocks indicate which physical block contains data
r s plock is sharea (shared flag) -

B

2 3
- s (pPLs]P LS
) siplelp
s [plo]P
111182292-3
55
INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661.1340

BS-AIE(l) .KAPSE(l)

When a logical block is to be changed, and the logical block
manager determines that it is in fact shared (by keeping track of
whether it or any of its ancestors have multiple references),
then a new block must be allocated to hold the changed data.
Since the changed data will be stored in a new disk block, the
parent of the old block (on the path taken from the root to this
block) must be changed to point to the new block. As before we
must check to see if the parent is shared to see if we can change
the parent in place or if we need to allocate another disk block.
Eventually we will find a parent that is not shared, and can be
updated in place.

Given an unshared parent block, we allocate a new disk block
and copy the contents of the old child of the parent into the
newly allocated block (incrementing the reference counts of all
blocks referred to by slots in the child, and setting the initial
reference count for the new block is set to be one). The parent
is then changed in place to point (via the appropriate slot) to
the new block and the reference count of the o0ld child is
decremented. At this point the new child contains an exact copy
of the contents of the old child, but unlike the old child it is
not shared. Hence, it can be changed in place and the process
repeats (with the new child acting as the parent), until we reach
the original block that was to be changed.

The eventual amount of physical block copying required with
the 1logical copy approach is never more than if the object were
physically copied immediately, and is generally significantly
leas for large, relatively stable objects. The cost of
maintaining reference counts, however, can affect overall system
per formance.

The header of a logical block also records the
TIME_SEQUENCE _NUMBER when the block was last written, which is
useful for system checkpoint and incremental backup (see
3.3.4.2).

3.3.1.1.4.3 Special Requirements

The virtual copy mechanism is central to the design of many
of the RAPSE’s features. It permits multiple copies of stable
objects to be very space-efficient. In this way, for instance, a
category descriptor may be logically contained in thousands of’
objects, but only occupy the space required for one copy. The
virtual copy mechanism is relied upon to efficiently store many
versions of the same object. It is also used to implement the
synchronization access modes (WRITE COPY, WRITE_ORIGINAL), by
gagiggza copy of the object that can be manipulated safely (see

. . .)o

It is essential, therefore, that the virtual copy mechanism
be reliable and efficient.

56

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 » (8171 661-1340

R
A\
e

AN
o

T

LB NAY

u

gt
e A

@g{%’:

s

&
e

{ e diRa: |

s

SRR

-
}

35-AIE(l) .KAPSE (1)
The logical block manager uses both the buffer manager and

the reference count tree manager. It in turn is used only by the
Clump manager (see data clumps and access methods).

3.3.1.2 Device I0
A small number of device objects are created by the system

manager to provide direct and import/export access to physical
1/0 devices or disk files of the host system.

3.3.1.2.1 Terminal I/0

3.3.1.2.1.1 Inputs and Qutputs

The following primitives are available to the KAPSE for terminal
input/output:

INTERMETRICS INCORPORATED « 723 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02128 + (617) 661-1840

A A R e S R e T e T e L

NSk ‘.;;1.‘-.

B5-AIE(l) .KAPSE (1)
Pac. rye TERMINAL IO is

procedure READ TERMINAL (TERM: in INTEGER; ECHO: in BOOLEAN;
DATA: in BUFFER_PTR) ;

-- This procedure sets up a buffer for characters
== to0 be read from the specified terminal,
-=- with or without echoing.
== The buffer will be released when full, or when any
-= ASCII control character is typed (including DEL).
-- NUM_BITS of the associated BUFFER_DATA ;
-- indicates actual number of characters accepted.
-~ With MAX NUM BITS => ASCII.CHARACTER”SIZE,
-= the buffer Is filled as soon as
-= the next character is typed.
-= ASCII control characters are never achoed
-= by READ_TERMINAL, independent of ECHO.

procedure WRITE_TERMINAL (TERM: in INTEGER;
DATA: in BUFFER _PTR)
-- This procedure writes characters to the
-= gpecified terminal.
-=- DATA must have been filled in previously,
-=- and will be drained asynchronously.

procedure SET_TERMINAL INFO(TERM: in INTEGER;
INFO: in TERMINAL INPO _BLOCK) ;
procedure GET TERMINAL INFO(TERM in INTEGER;
INFO: out TERMINAL _INFO_BLOCK) ;
-- These procedures pass along information
-= between the host terminal device driver
-= and the KAPSE terminal handler.
-= In the case of hard-wired terminals, the host
-=- may know the characteristics of the
~-- terminal. For dial-up terminals, the user
-- must in general specify the appropriate
-~ information explicitly wvia SET INPUT INFO
-- and SET OUTPUT_INFO (see *** above),
-- which the RAPSE will then digest and send
-- along via SET_TERMINAL_INFO.

L st s s s A Ra A

end TERMINAL_IO;

-
-

3.3.1.2.1.2 Processing for WM/SP

b el

3.3.1.2.1.3 Processing for PE 0S/32

The KAPSE task on 0S/32 handleg all terminal I/0 for the KAPSE.
Individual user tasks need not be rolled in for echoing to

58

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617} §61-184C

-, o

3
o
%

1 INA

AR

e
*

had

P R

-

e L Y

...................

A W R e Td TN P A e R T

BS-AIE (1) .KAPSE (1)

proceed, and character and line deletion to be processed.
For each user a separate Ada task within the KAPSE handles
the terminal. When an input buffer is complete, the waiting user

program 0S/32 task is activated by sending it a nmessage
containing the characters.

3.3.1.2.1.4 Special Requirements

3.3.1.2.2 Other Device Input/Output and Import/Export

3.3.1.2.2.1 Inputs and Outputs

Device objects (see CREATE DEVICE OBJ above) are used as the
access points for device I/0 and Import and export. Because only

a system manager may create device objects, the correct syntax
for HOST DEVICE NAME need not be known to the normal user, and
may be host-dependent.

The following primitives exist for the KAPSE to read or
write host files or physical I/O devices:

59

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE » CAMBRIDGE, MASSACHUSETTS 02138 + (6171 661-1840

"""" TN T e

. . - -
o . ST et At et Lt Y ,‘\'.‘.'.‘.'.'. DY IR AT T RN vt ot
e A N Y T e e s T TN N T

B5-AIE(l) .KAPSE(l)
Package DEVICE_IO is

type FILE MODE is (IN_MODE, INOUT_MODE, OUT_MODE);
type DEVICE HANDLE is private;

OPEN_DEVICE(DH: in out DEVICE HANDLE;
HOST_DEVICE_NAME: in STRING; MODE: in FILE_MODE) ;

READ_DEVICE(DH: in DEVICE HANDLE; DATA: in BUFFER_PTR) ;
WRITE_DEVICE(DH: in DEVICE_HANDLE; DATA: in BUFFER_PTR) ;

CLOSE_DEVICE(DH: in out DEVICE_HANDLE) ;
-- Whenever a user reads or writes a device
-~ object, the KAPSE retrieves the HOST_DEVICE NAME
-- stored when the device object was created,
-- and passes the request off to these XAPSE/Host
-= interface procedures.

SET_DEVICE_INFO(DH: in DEVICE_HANDLE;
INFO: in DEVICE_INFO_BLOCK) ;

GET_DEVICE INFO(DH: in DEVICE_HANDLE;
TINFO: out DEVICE_INFO BLOCK),
-= A certain amount of device control and status
== information may be set and retrieved using
-~ these calls. These are externally accessible
-~ as RAPSE calls SET_FILE_INFO and GET_FILE_INFO.

end DEVICE_IO;

3.3.1.2.2.2 Processing for vwM/Sp

On the VM/SP the HOST_DEVICE NAME implies the virtual device
address and device type. Using commands to VM/SP CP, a user or
operator can connect what appears to be a virtual punch on one WM
to be a virtual card reader on some other VM. 1In this way,
export/import can be with actual devices, or files on other
operating systems.

3.3.1.2.2.3 Processing for PE 0S/32

On 0S/32 the HOST_DEVICE NAME implies the physical device
mnemonic, or the volume and file name of the host file.

3.3.1.2.2.4 Special Requirements

60

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (317) 867-1840

..........

T T S B T S T T, Vit Wk TR AT TR T, 1 T TUn ST oy

BS-AIE(l) .KAPSE (1)
3.3.1.3 Access Methods and Data Clumps

3.3.1.3.1 Data Clumps

%

J 3.3.1.3.1.1 Inputs

ﬁ

P The routines of the data clump package within the KAPSE take
. as input a specification of the clump to be created, read,

3 written, or otherwise manipulated, in general in the form of a

3 handle on the clump or one of its neighbors. When a simple clump

% is being written, the input includes the data to write into the

3 clump. When a clump is being created, the input includes a

3 specification of the "gize" (block/sub) and "R ind"

(simple/composite) of the clump.

1

" 3.3.1.3.1.2 Processing

% N Recognizing the desireability of objects smaller than a disk

K] block, data clumps (or 3Jjust “clumps”) implement disk storage

y units which can have any size up to a maximum equal to the size
{ of a disk block. Clumps are built on top of logical blocks and
i like logical blocks consist of a data byte portion and a slot
. portion. A 1logical block may be divided up into many clumps
which are constrained to form a well structured hierarchy
(described below). The bytes and slots of a logical block that
belong to a given clump are determined from that clump’s
byte_offset, byte count, slot offset, and slot_count fields.

Clumps are further categorized by their constituents:
"Composite” clumps are those whose contents consist of smaller
clumps. "Simple” clumps are those whose contents are interpreted
directly as a group of bytes and slots. An entire logical block
may be thought of as a clump, with sub-clumps if it |is
> "composite,® or bytes and slots if it is "simple." This top-
iy level clump will be called a "block” clump, while others are
called "sub"-clumps, or simply “clumps.” See Figure 3-11. All
. four combinations of block vs. sub, and simple vs. composite are
- possible:

ol e F R MBS

FTav

a. 8Simple Block Clump -~ Basically just a "logical block"
under a fancier name.

SR
~

b. Composite Block Clump -- A log.cal block made up of sub-

YR S AR
1]

clumps.
z ¢. Simple Sub-Clump -- A constituent of some composite
g clump, whose data is directly interpreted as bytes and
b slots.
i

ST

[N 61

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « |617) 661-1340

.......................

&r“ o asi et e et ainet et S St wd At A A S A S TR . Pt Ll R A - P S S A e
RS

- QA e o SR L - St et

-y T - - ™ " YW T W T o T R
St S S S e e e i dare SUA i T T R T N Y TR e R T e R ARy TAT sy R e L LN
P - o) - IsCIC R S L. Al PRI E i -

B5-AIE(l) .KAPSE (1)

Figure 3-11, Logical Blocks and Clumps:

Logical 3locks and Clumos

[.
Jverlayed Yiew: + _ogrcal 3lock

| [oo
@O | 2= |
/1 \\ R A Y :
/ N\,

3! 2 315 N l
I\ OC)
N .
’ \

Exploded View, Clumps Only:

_‘_J : E = 8lock Clumo
Composite 8lock
Clumo
3]
Simple Sud
Clumo

Q = Sgb Clumd

1

Composite
Sub Clumo

Simple Sud
Clumo
F G
_j S{mlo 3lock _,Emnu 8lock
d. Composite Sub-Clump -- A constituent of some composite

clump, made up of further sub-clumps.

The byte and slot counts of a clump are actually stored with
it in the block. The offsets are derived during in-memory

62

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE +» CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

M e ".',s:,ﬂ.‘ T YA A S

.. R VAT E P
Ll N A YR SR R R e

..

BS~-AIE(l) .KAPSE (1)

processing. Clumps are normally processed sequentially from left
to right within a block, and therefore the slot offset may be

found by counting the number of slots allocated to all clumps to
its "left" in the block.

3.3.1.3.1.3 Qutputs

The routines of the clump package return as output the
handle on a created or located clump, as well the contents of a
simple clump when it is being read. Some routines also report
the size/kind of the clump.

3.3.1.3.1.4 Special Requirements

The maximum size of a block clump is determined by the block
size chosen for the database as a whole. This is allowed to be
host- and medium-dzgendent for efficiency. No user of clumps
should rely on e exact maximum size of block clumps. It is
required that this maximum be at least 500 bytes for all

databases, and this 1lower 1limit may be safely depended-on,
independent of the host.

Sub-clumps are purposely limited to a size that is less than
any anticipated dJdatabase block size, to make the limitation
host-independent. Sub-clumps are designed for rapid left-to-
right processing, and proper use of them requires taking
advantage of this design.

3.3.1.3.2 Access Methods

3.3.1.3.2.1 Inputs

The routines of the access method packages generally take an
identification of the file being manipulated, in the form of a
basic object handle, or a comeonent specifier (garent plus
selector) . If the operation 1is a write to a simple file, the
data to be written is also an input. If the operation is a
f:oat., a specification of the access method for the file is an

nput.

3.3.1.3.2.2 Processing

Data clumps are not normally visible at the user level.
Instead, all data is organized into primitive data files, each
primitive data file managed by some "access method" which
provides for their creation, expansion, modification,
interrogation, compression, and deletion.

63

INTERMETRICS INCORPORATED » 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « {617} 661-1840

v . . e e e e P LT T AR : LU o . . - .

PO TP ST Y - o LT e e e e S e e e N el .
A A Tl T A T TR AL T Sl S S T N S R SRR L U S < .. - t .
o P TL RS AT NN Y. LS . S S Ay e e LA WU I Ay U S

BS~AIE(l) .KAPSE(l)

Access methods use clumps for all data storage purposes,
When a data file is small, a single (composite or simple) clump
is sufficient to represent it. This kind of file is called an
"embedded" file. When a data file grows too large to fit in a
single clump, the access method allocates additional block clumps
and manages them in some kind of multi-way tree structu-e. This
kind of file is called a "multi-block"” file. Multi-block files
have their data spread across a file header clump, a set of leaf
block clumps, and sufficient “internal® block clumps to provide
efficient and complete access to the leaf block clumps.

When a particular file offset is reguested, the multi-way
tree structure 1is walked by the access method, starting at the
top, following down the branch figured to contain the desired
data. The number of disk block references on average is equal to
the height of the tree. The height of the %ree is kept low by
ensuring that each block is at least half full of data, using a
variant of the well-known B*-tree mechanism [Rnuth73]. With an
average branching factor of BF in each block, and a total of N
leaf blocks, the height will be approximately (log N/log BF).

Several different access methods are supported by the XAPSE:

a. Direct Access Method -~ This provides to the user program
an arbitrarily extendable file of bytes, indexed by byte
position, with a user adjustable first- and last-defined
byte position.

By adding bytes to the end of the £file, and removing
bytes from the beginning of the file (i.e. advancing the
first-defined byte position), a direct-access £file can be
used as a FPIFO stream of bytes.

Even short Adad program objects may be efficiently
stored using the direct access method, with the entire
object in a single simple clump (see "simple clumps" above).

b. Text Access Method -~ This provides to the user pregram
an arbitrarily extendable and editable file of ASCII text,
indexed by both character position, and 1line number. The
user may insert and delete characters and lines anywhere in
the file. A single ASCII character, the standard "line-
feed" character is used as a line separator within the file.

By adding characters to the end of the £file, and
deleting characters at the beginning of the file, a text
file may be used as a FIFO stream of characters (or lines).

Short ASCII strings are represented using the text
access method, with the entire file held in a single simple
clump (see "simple clumps" above).

64

INTERMETRICS INCORPORATED « 732 CONCORD AVENUE » CAMBRIDGE, VASSACHUSETTS 02138 » (617! 8611343

__________________ R T T - A e e .

I AP AP AR B P S P Y P VR W i AP VP U WA UE e WA W TN Gyl Sy U YU DU Sy W WOy SpUQr WAse Sy SENY SO W DR SR S S S J

B5-AIE(l) .RAPSE (1)

¢. Key Access Method -- This provides to the user program
a primitive composite file, whose components are objects
identified by an ASCII string key. The key may be as short
as one ASCII character, or as long as 100 ASCII characters.
The components may be any kinds of files. The internals of

the components are managed by their respective access
methods.

d. List Access Method -= This provides to the user program
a primitive composite £file, whose components are objects
indexed by 1list position. The 1list of objects is
arbitrarily extendable, and the list positions are numbered
from one to the number of objects in the list. As with the
Key Access Method, the internals of the components are
managed by their own access methods.

Deletion of objects from the front of the list provides
5 a kind of object FIFO queue.

% Short list files will be represented in a single
£ composite clump, with no additional indirect blocks
~ necessary.

#} e. Extended Access Method -~ This provides to the user program
(j an extended, higher level object, with the structure, kinds
¥ of attributes, and defined operations controlled by its

"category descriptor." This is not really a new access
method, but rather built on top of the above four access
methods.

Internally, an extended object appears as a composite
"list" file (see above), with the first element of the list
by convention being the category descriptor, and the
remaining elements being used for the content and other
attributes of the object, as specified by the descriptor.

L e,

A clump used to represent an entire file, or an file header,
begins with an "access method code, " which specifies it as being
managed by one of the above access methods. Block clumps also
begin with an "access method code,” which specifies which access
method is responsible for handling block overflow.

Lo AP

»

Each access method is responsible for distinguishing files
in embedded single-clump form from those in multi-block form

§Wi§h a header, internal blocks, and leaf blocks). See Figure
-l-

3.3.1.3.2.3 Outputs

The outputs of the routines of the access method packages
include a basic cbject handle on the file if it is being created,
or the data from the file if the operation is a simple file
I "read."

“:-.i! - El‘:; QWi‘J“ii

65

INTERMETRICS INCORPCRATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

BS-AIE(l) .KAPSE (1)
Figure 3-12, Clumps and Files:

Clumps ang Files:

' Clump View:

Header [nfo for Object A \'

SEon] =
Slole G -

1
v

///i

I

H

~

«“

o

a

-

o

-

»
PR —

*iles 3 and O are ‘n
"oecded form

*Files A and C are in
witiglock ‘orm

{ntarnal
Stocss

-———

[¢
1 |
| *]
File Yiew: » Compasite File

[] = Stewle File

L e e

11113229249

66

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE » CAMBRIDGE, MASSACHUSETTS 02138 « i6i7) 561-1840

...........

i 2 ORI i) o8 3 S I g e R N S N - PO T P R T

- WA SENATREY - K ARSI R
g, A G R AN R L N

g

-

B5-AIE(l) .KAPSE (1)

N

s

PR AR AR AP

3.3.1.3.2.4 Special Requirements

o “.r.
AL L

The performance of the access methods are critical to the
performance of the KAPSE database as a whole. The access methods
must be designed to minimize the numbers of blocks accessed to
locate the desired element of a file, as well as minimize the
number of blocks affected when an element is added or removed
% from the file.

WP o &

All access methods are based on a B*-tree [Knuth7 3]
structure, which provides the desirable logarithmic dependency on
the number of elements. The other major determinant of B*-tree
performance is occupancy of the blocks, with both time and space
per formance being improved when the blocks are more nearly
filled. The access methods must be designed to maximize
occupancy of the blocks consistent with the requirements of

PRI

% efficient addition and removal of elements for typical access
Qi pattercns.

d
?. Finally, the "embedded" form of files is essential to the

efficient storage of small objects within the database. The
algorithms within the access methods for determining when to go
to multi-block form must be carefully designed to minimize
internal fragmentation caused by small objects ending up being
allocated an entire block.

ir

\,M,
o

et
eZ LN

AN 4

iy X
ot

3.3.1.4 Simple Objects

A

2

::,

%, 3.3.1,4.1 Inputs and Outputs

% The primary user-visible interface to simple objects is provided
‘3 by the set of standard Ada input/output packages specified in the

(LRM82, 14.1]. These packages are implemented in terms of a more
primitive set of access methods. See 3.3.5.5 for a definition of
the package IO _EXCEPTIONS and the skeletons for the other
language-defined I/0 packages.

CRVGERT

P

A,

Ed

The basic primitives available are as follows:

67

INTERMETRICS INCORPORATED » 733 CONCORD AVENUE » CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

41
-‘\"#
>

R e]
Lot

20 ¢ 3

LA

NN

ORI B oY

IRTRT R KL

-,.'-._‘:n":'.l", 3

)

4" »

8

A
4

ks

BS-AIE(l) .KAPSE (1)

with I0_COMMON; use IO_COMMON;
Package SIMPLE_OBJECTS is

procedure COPY (OLDNAME: in STRING; NEWNAME: in STRING) ;
-- This procedure creates a logical copy of the
-= gpecified object, with identical content and
-- non-distinguishing attributes. The
-- distinguishing attributes of the copy are
-= 1implied by NEWNAME.
-=- COPY involves no actual disk data block copying.
-=- When either the original or copy is later
-- modified, the XAPSE makes actual physical
-= copies of the affected blocks.

procedure DELETE (NAME: in STRING) ;
== Requires DELETE_COMPONENT access on
-- the enclosing composite object.

procedure RENAME (OLDNAME: in STRING; NEWNAME: in STRING) ;

-- Defined to be equivalent to COPY followed by DELETE of
-= OLDNAME.

68

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02128 « {617) 6611840

BS-AIE(1l) .KAPSE (1)

Package DIRECT_ACCESS is
-- Package to provide direct access file (a sequence
-- of storage units).

type FILE TYPE is private;

subtype STORAGE UNIT is Machine Dependent;

type STORAGE ARRAY is array (NATURAL range <>) of STORAGE_UNIT;
-= All data converted to/from an array of storage units.

. procedure CREATE (FILE: in out FILE TYPE; MODE: in FILE_MODE;
NAME: in STRING; FORM: in STRING := "");
procedure OPEN (FILE: in out FILE TYPE; MODE: in FILE_MODE;
- NAME: in STRING; FORM: in STRING := "");
procedure CLOSE (FILE: in out FILE_TYPE);
Create/open/close designated simple object.
-=- The MODE selects input only, output only, or inout.
-- The NAME is a pathname to the object.
-- The FORM is an optional parameter, which
-= supplies additional control info (see below)

procedure WRITE (FILE: in FILE TYPE; ITEM: in STORAGE_ARRAY) ;
procedure READ (FILE: in FILE_TYPE; ITEM: out STORAGE_ARRAY;
LAST: out COUNT);
-- ITEM“length determines amount to READ/WRITE.
-- LAST specifies amount actually READ if reached end
-=- of file (ITEM(LAST) is last valid data).

procedure SET_OFFSET(FILE: in FILE TYPE; TO: in COUNT);
function OFFSET (PILE: in PILE TYPE) return COUNT;
~- SET_OFFSET selects which storage unit within file
-= to read/write next.
-= QFFSET returns offset of storage unit to be
-= next read/written.

function SIZE(FILE: in FILE_TYPE) return COUNT;
-= return count of storage units in file.
end DIRECT ACCESS;

69

INTERMETRICS INCORPORATED « 733 CONCCRD AVENUE « CAMBRIDGE, VASSACHUSETTS 02138 + i§17) 861-1840

<. N . LN o
TP Y Y Y A‘A’_"A'A‘A'A".,

R YE g 20

oy

7 L A e -,

PR SRS AT A N 75 V0. O Ny SN

LI e L e

P YT N At

S g 8 A P

RS ES LEYTE.

: Caui- gt B - e, -, e P N i L
oL -4, e ST SN R A IS R A e T T e . TR S S T R T B

BS-AIE(l) .KAPSE (1)

Package TEXT_ACCESS is

-- Package to provide a text file (a sequence of
- ?$CI§ characters, accessible by character or
- ine) .

procedure CREATE(FILE: in out FILE_TYPE; MODE: in FILE_MODE;
NAME: in STRING; FORM: in STRING := "");

procedure OPEN (FILE: in out FILE_TYPE; MODE: in FILE_MODE;
NAME: in STRING; FORM: in STRING := "");

procedure CLOSE (FILE: in out FILE_TYPE);

procedure WRITE (FILE: in FILE _TYPE; ITEM: in STRING);
procedure READ (FILE: in FILE_TYPE; ITEM: out STRING;
LAST: out COUNT):;
-= ITEM”length determines amount to READ/WRITE.
-=- LAST specifies amount actually READ if reached end
~=~ of f£ile (ITEM(LAST) is last valid data).

procedure READ LINE(FILE: in FILE TYPE; ITEM: out STRING;
LAST: out COUNT);
-- ITEM“length determines maximum amount to READ.
-—- LAST specifies amount actually READ if reached end
-= of line (ITEM(LAST) is last valid data).

procedure SET_OFFSET (FILE: in FILE_TYPE; TO: in COUNT);
function OFFSET (FILE: in FILE_TYPE) return COUNT;
-- SET_OFFSET selects which character within file
-= to read/write next.
-= OFFSET returns offset of character to be
-= next read/written.

procedure SET_LINE (FILE: in FILE_TYPE; TO: in COUNT);
function LINE (PILE: in FILE TYPE) return COUNT:
-=- SET_LINE positions at beginning of selected line.
-=- The first line is always numbered 1l.
-=- LINE returns current line”s number.

procedure SET_COL (FILE: in FILE_TYPE; TO: in COUNT):;

function COL (FILE: in FILE_TYPE) return COQUNT;
-=- SET_COL positions at given column within line.
-= COL returns current column number within line.

function CHAR_COUNT (FILE: in FILE_TYPE) return COUNT;
function LINE _COUNT(FILE: in FILE TYPE) return COUNT; R
-- return count of characters/lines in
== the text file.
end TEXT_ACCESS;

70

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE + CAMBRIDGE, "MASSACHUSETTS 02138 « 1617) 6611340

PN, % e e T * T ® «® e ae™a™ e A e e AT T A T T e
b, -.\ > \v.-’.’\ 4 RN --.'_.'_... .',‘,.‘1__ SN R OISR S Lo o

1 BS-AIE(l) .KAPSE (1)
d

procedure CREATE DEVICE OBJ (NAME: in STRING;
B HOST_DEVICE | NAME: in STRING; ROOT WINDOW: in STRING) ;
=- This procedure is provided for a system
I -- manager to set up an association between
q -= a special database object and
& -=- a host physical I/0 device. The
] -=- HOST_DEVICE NAME is host-dependent.
-= Requires CREATE _COMPONENT access,
-=- as well as a .SYSTEM window on the root
- -= of the databage (restricted to system manager).

end SIMPLE OBJECTS;

3.3.1.4.2 Processing

The objects created by the packages of SIMPLE_OBJECTS are all
gimple "extended” objects, with a default null
CATEGORY DESCRIPTOR, and a CLASS of SIMPLE. The content of the
extended” object is a simple file, either a direct-access file or
a text-access file {see access methods above).

Most of the processing within the SIMPLE OBJECTS packages
consists of calling the appropriate access method routines.
Bowever, the initial creation requires building the extended
object using a list access file with pre-defined elements for the
CATEGORY DESCRIPTOR, the ACCESS_CONTROL, CONTENT, HISTORY, etc.

Opening an existing object requires the creation of an
extended object handle, with the implicit "offset™ initialized to
the beginning of the file. The handle must be entered in the
table of open file handles associated with the running program
context object.

All operations in packages of the KAPSE/Tool interface must
verify that the proper access controls are applied. The checking
is performed by the access control CPC of KAPSE.ACCECAT (see
3.3. i& as part of its pathname lookup and handle initialization
routines.

The FORM STRING passed to OPEN or CREATE may be used to
convey extra information. The additional information is in the

. form of a label=>value list. WwWith this syntax, it is possible to
specify the following extra information:

71

INTERMETRICS INCORPORATED » 733 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02128 « (617} 651-1840

) '.M—-‘W s Y .7;&“-«!‘ . .—%.».‘-:»J

e eoe Lo vk

XU AV %%

RN 5 Iy

58 LN

Jr e,

ST
[

-
R/

HLIIANS A TN

....................................

BS=AIE(l) .KAPSE (1)

Call Extra labeled FORM specification

CREATE RESERVE_MODE, ACCESS_CONTROL, CATEGORY DESCRIPTOR,
ACCESS_METHOD

OPEN RESERVB_MODE

For example:
OPEN (FILEl, "STREAM OBJECT_l", "RESERVE_MODE=>SHARED STREAM") ;

CREATE (FPILE2, "PUBLIC _INFO_] FILE' 4
'ACCESS_QONTROL->(WORLD=>(READ ADD))");

3.3.1.4.3 Special Requirements

This package, because it is part of the KAPSE/Tool interface
package, must ensure that the access control and synchronization
requirements are met. Lower level packages (such as the access
methods) assume that access control has been checked at the
higher level.

3.3.1.4.4 Interactive/Terminal I/O Extensions

3.3.1.4.4.1 Inputs and Qutputs

As an addition to the facilities of the standard Ada package
TEXT_IO (LRM82, 14.3] (see 3.3.5.5), we make available the random
access by 1line number or character number of the package
SIMPLE_OBJECTS.TEXT ACCESS (see above), and a package to handle
echoing and special character processing:

72

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « 817) 661-1840

- NN
u -;l...-a..@gg.:-,..-...‘.;,nm.,...m.hm_.J

B5-AIE(l) .KAPSE (1)

with TEXT_IO; use TEXT_IO;

with TEXT ACCESS; use TEXT _ACCESS;
Package INTERACTIVE_IO is

type FILE_TYPE is TEXT IO.FILE_TYPE;

procedure SET_ECHO (INPUT: in FILE _TYPE; OUTPUT: in FILE_TYPE);
-- Sets "cursor" and echoing of INPUT at current
== line and column of output. Each character GET from
<= INPUT advances the column of both the INPUT and
== the OUTPUT files (although the column numbers will
== not necessarily be the same).

procedure NO_ECHO(INPUT: in FILE TYPE);
procedure NO_ECHO (OUTPUT: in FILE TYPE);
-= Elther of these calls will break any
-= achoing association.

procedure GET _OUTPUT_INFO(FILE: in FILE_TYPE;
INFO: out OUT?UT INFO_BLOCK) ;

procedure SET_OUTPUT_INFO(FILE: in FILE_TYPE;
INFO: in OUTPUT INFO BLOCK) ;
-- The OUTPOT_INFO_BLOCK retains information such as
-- the terminal’s screen height and width (zero height
== indicates hard copy, zero width indicates FILE_TYPE
-=- is not associated with a physical terminal).

procedure GET_INPUT_INFO(FILE: in FILE_TYPE;
INFO: out INPUT INFQ_BLOCK) ;

procedure SET_INPUT_INPO(FILE: in FILE TYPE;
INPO: in INPUT_INFO_BLOCK) ;
== The INPUT INFO _BLOCK retains information such as
-- the specific keyboard control characters used to
== control the various terminal handling functions.
-=" In addition, the INPUT_INFO_BLOCK records
-~ which characters cause program wakeup when
-= typed (others are buffered up and a control
-= character may be used to delete them
-= before they are received by a program).

end INTERACTIVE_IO;

3.3.1.4.4.2 Processing

All terminal output is actually written to a temporary file in
the program“s context object. The terminal handler normally
keeps the last line of this temporary file as the last 1line on
the screen. However, the user may choose to scroll backward to

73

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSET7S 02138 + (617) §61-1840Q

...
................

0o ‘. A e

L N M LA

- W U, a7,

e St il Tt S MU ARt A S SR L P M PV T U DA YA
A A L e e e T T T N T LI e Te Sl T N e s

BS-AIE(l) .KAPSE (1)

see previous lines of output, or to simply hold the screen inmage
at a particular line. When echoing is set, the terminal handler
makes sure that the current LINE and COL of the output are on the
screen before setting the cursor there and requesting input on
the associated FILE TYPE.

3.3.1.4.4.3 Special Requirements

The SET_ECHO routines must work on terminals with local hardware
echo, full-duplex terminals without local echo, and normal text
files. In all cases, the effects should be meaningful and
analogous.

3.3.1.4.5 Package FORMATTED I0

3.3.1.4.5.1 Inputs and Qutputs

Along with the above adjunct to TEXT_IO, the KAPSE defines a
FORMATTED_IO package to provide the facilities of Fortran-like
FORMAT 1/0:

74

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « 1617) 661-1840

'''''''''''''
............

S)

LN Ea A,

-,

S o P 2

e N i)

o as o Ak e i e

S M

“as A

A i

Ty e Bt B Y -

4

R gt 5

g T

o

-~ p

[o

B5-AIE(l) .KAPSE (1)

with TEXT_IO;
Package FORMATTED IO is

type FORMAT is private;

function CONV_FMT(FMT: in STRING) return FORMAT;
-- GivVen a STRING in Fortran FORMAT syntax, check

-= the correctness of the syntax and compress to
- -- facilitate further use.

procedure FWRITE (FILE: in TEXT_IO.FILE_TYPE; FMT: in FORMAT);
- -= Start output using the given (compressed) FORMAT.

procedure FPUT(ITEM: in STRING) ;
-= This uses the "Aw" format.

procedure FPUT(ITEM: in FLOAT):;
-- This typically uses "Fw.d" formats.

procedure FPPUT(ITEM: in INTEGER) ;
-= This typically uses the "Iw" format.
-=- Continue output, using the next format specifier
-=- from the format specified in the most recent FWRITE call.
== The user may choose to further overload FPUT by writing
-=- versions that take a sequence of INTEGERS or FLOATS or
-- gome useful combination.

procedure FEND;
-~ Terminate output, force characters out to file.

procedure FREAD(PILE: in TEXT _IO.FILE_TYPE; FMT: in FORMAT);
-- Start input using the given (compressed) FORMAT.

procedure FGET(ITEM: out FLOAT):;
-= This typically uses the "Fw.d" format.

procedure FGET(ITEM: out INTEGER) ;
-= This typically uses the "Iw" format.
-- Continue input, using the next format specifier from
-= the FORMAT specified in the most recent FREAD call.
-- The user may choose to further overload FGET by writing
-- versions that take a sequence of INTEGERS or FLOATS
== or some other useful combination.

end FORMATTED_IO;

3.3.1.4.5.2 Processing

The package FORMATTED IO is implemented in Ada, using package
TEXT_I0 and package INPUT _OUTPUT, ensuring that it is easily
transportable to other Ada installations.

[

75

INTERMETRICS INCORPORATED » 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (817) §61.1840

1Y% ‘r‘. " W oA " ' Ty \ *J Y s .‘ '. LN ‘- U3y ".-.‘.- St .\.-."."‘- "'.‘~'..'-.-.\'.‘l'.‘~'..". B ;l.

Ra R .. y '™

‘.\‘ N3 Y v L RO A O e e T AT O T R e e S A T
B B5-AIE (L) .KAPSE (1)
} 3.3.1.4.5.3 Examples
,% declare
&4 Fl: constant FORMAT := CONV_FMT("2I3, F8.2");
oy I,J7,K: INTEGER := 5;
Z: FLOAT := 3.22;
e begin
FWRITE (FILE, Fl) }
: FPUT(I+J); FPUT(25); FPUT(Z); FEND;
i
“ﬂ FWRITE (FILE,CONV_FMT(" “The Answer is “,16//")):
A FPUT (K*127); FEND;
3 end;
kot 3.3.1.4.5.4 Special Requirements
& The package FORMATTED IO need not be within the protection
- boundary surrounding the RAPSE, and hence the actual body of the
- PORMATTED_IO package may be linked directly into user ada
i programs.
.%
‘g 3.3.1.5 Composite Objects

T

3.3.1.5.1 Inputs and OQutputs

-

-

0

C)

The following primitives are available for creating and modifying
composite objects:

O2d G

§ RN

AT A

Y

bl
g

o ¥ i

oy
Nata? 2

X 76

ey

Ll

> INTERMETRICS INCORPORATED « 733 CONCORD AVENUE ¢« CAMBRIDGE, MASSACHUSETTS 02138 » 1617) 661-1840

..........
.............

P T I N P

T T QW DR W U T P W T Y, Y. L S LA SIS YL WL Wl TR G 0 Ty S ST Ai

LR P

B5-AIE(l) .KAPSE (1)
Package COMPOSITE_OBJECTS is

procedure CREATE_COMPOSITE (NAME: in STRING; COMPONENT_DA: in STRING;
FORM: in STRING := "");
-=- COMPONENT DA is a space separated list of attribute
-= labels requxred of all components created in the object.
-- Requires CREATE COMPONENT access on the enclosing
-- composite object.
-~ FORM is used to supply additional category description

type PARTITION_HANDLE is private; -~ Similar to FILE_HANDLE.

procedure OPEN PARTITION(PH: in out PARTITION HANDLE; NAME: in STRING) ;
-- NAME is a specification of a partition,
-= 1like "(PROJECT=>SHUTTLE)" or "*_,CONTROL.*"
~=- Requires LIST_COMPONENT access on the composita
-- object implied by the partition.

procedure CLOSE_PARTITION(PH: in out PARTITION_HANDLE) ;

procedure GET _PARTITION INFO(PH: in PARTITION_HANDLE;
INFO: out PARTITION INFO_BLOCK) ;
-- Returns miscellaneous INFO about the partltion,
== including the number of components currently in
-=- the partition, the FIRST, LAST, and NEXT component
-~ names (in ASCII lexicographic order), etc.

function GET_NEXT_COMPONENT(PH: in PARTITION_HANDLE) return STRING;
-- This returns the name of the next . componernit of the given
-- partition, as a concatenated STRING of distinguishing
-~ attribute values. The names
-= are returned in ASCII lexicographic order.

Operations that create and delete components of a composite
object implicitly modify its content. The name of the object
specified to CREATE and CREATE_COMPOSITE determines the composite
object in which it is created.”

3.3.1.5.2 Processing

The content of a composite object is represented as a keyed
access file, with the concatenation of the distinguishing
attributes as the key. Because a multi-way B-tree keyed access
file is wused, the KAPSE provides fast (log N) access to
components of even large composite objects.

As with simple extended objects (see above), composite
object creation requires the creation of the extended object
using the 1list access methed, to hold the system-defined
attributes such as COMPONENT_DA, ACCESS_CONTROL, CONTENT,
WINDOW_XREF, etc.

[

77

iINTERMETRICS INCORPORATED « 733 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « {617) 661-1840

d

....... - I T EP P -_ Tt B e .-.5_
---------- R LU PP PP R S S S .A-x.s.'...l

[}

LR R0 AT

.
2

v s .
RINANS SRy

3 Ay ORI Y

2

) 3@ L% oy b 4n Joea A pru
<
)

e DA 4 A S AR M ACET A MACHACIEE RO IR o St S DAL R ACK

% L e w PP TTRL 4 W e e, T T, T e T T AR T e

B5-AIE(1l) .KAPSE (1)

3.3.1.5.3 Examples

CREATE_COMPOSITE ("COMP", "MODULE RELEASE_NUM") ;

CREATE (FH, "CCMP.(MODULE=>DISPLAY, RELEASE NUM=>1)", OUT_MODE) ;
CLOSE (FH) ;

OPEN (FH, "COMP.DISPLAY.l", IN MQDE); -- Using positional notation.
CLOSE (FH) ;

OPEN_PARTITION(PH, "COMP.*.l"); -- Scan through partition.

STR := GET_NEXT_COMPONENT (PH) ;

PUT_LINE("First component of COMP is: " & STR):

-- On the user”s terminal should appear:

-= ®Pirst component of CCMP is DISPLAY.1"

CLOSE_PARTITION (PH) ;

3.3.1.5.4 Special Requirements

Because this package is part of the KAPSE/Tool interface, it must
faithfully enforce the KAPSE access control mechanisms. This is
done by routines of the access control CPC (3.3.2.1) as part of
pathname lookup, and extended object handle creation.

78

INTERMETRICS INCORPORATED « 733 CONCCRD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 + (617 861-1840

,,,,,,,

- T)kl aadit and — L aade a4 e aren L R i i sl e i i A e B R O] A~y
e Ll it A - S L AL Sy Wl Nt (it A L e AT W RO RN . IMCRCINCAE I
Py I A Uad A 55, R AR S e T P e N R T et N T e e e . - -

|

3 BS-AIE(l) .KAPSE (1)
e
b
A 3.3.2 Access Control and Category (RAPSE.ACCECAT)
¥
i 3.3.2.1 Window Objects
&

There are two kinds of windows: primary windows and

. secondary windows, Primary windows link an extended object to

its enclosing composite object. Secondary windows allow an

object to be viewed from a location other than the enclosing

extended object. A thorough discussion of the tool interface to

primarcy and secondary windows can be found in 3.2.4.3,
subparagraphs 7 and 8.

- 3.3.2.1.1 Inputs and Outputs

x A secondary window is created by the CREATE WINDOW primitive,

K with parameters as follows:

&Y a. WINDOW PATH Path where the window should be

% created

45

' b. TARGET_PATH Path to the target (relative to the

B creating program” s context object) .

‘ C. PARTITION Partition limitation, if any. This

K- limitation is in addition to any already implicit in

'] TARGET_PATH (i.e. TARGET_PATH”CURRENT_PARTITION).

a; d. TRANSLATION Translation table, expressed as

B " (ext_rolel,ext_role2,...) =>
(int_ rolel, int role2,int _modifier,...), 00" By default,

¥ WINDOW_PATH’CURRENT ROLES are translated into

TARGET PATH CURRENT-kOLES & TARGET_PATHCURRENT_MODIFIERS.
o That Is, the roles held by the creating program via the
@5 WINDOW_PATH are translated to the roles and modifiers held
oA, by the creating program via the TARGET_ PATH. See Path-
- defined attributes in 3.2.4.3.4.

>3 In any case, unless the window creator holds the _OWNER
.4 modifier, it 1is an error if this translation exceeds the
yj , roles or modifiers already held at the target.

pol

- e. COMMON ANCESTOR_PATH Path to the common ancestor
. _ (relative to the creating program”s context object). It is

an error if this is not an ancestor of the window, its
4 target, and the common ancestors of all of the parents of
o the window (see 3.2.4.3.8.4). In this context, an extended
G object is considered an ancestor of itself.

-

79

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02128 « (617) 661-134C

...............
''''' e et e At At A e Y I . .- . 1

. .] - M LI R e I e e S e C e o . e
. A < - 0y . »

............. PRI S S |

B5-AIE(1l) .RAPSE (1)

)
!
s
&

) This parameter will wusually be defaulted. In that
g case, the extended object nearest to the target which
, satisfies the above constraints is chosen as the common
: ancestor.
N
J See Figure 3-13 for an example of a secondary window.
;
i
FPigure 3-13, Secondary Window with Its Common Ancestor:
Y|
4
Secondary Windows and Common Ancestors:
Logical Yiew: = Comoosite Obiacs
A
@ = Simole lbject
:; === 3rirary Adindow
\ “1-1~-1¥ Secondary airdow
b
b
" 5 € F
"1.3.0.5" and
' "A..F" designate the
" same cbhject
N H

S A TN 207 Al

{mplementation View of Secondary Window: \A

r

T} :
Comman == uope_LaseL —w 36032
% ANCENLOF: mamper ORIGTNAL_4ONOOW == "8.0.5"
3 ROLE_TRAFSLATION —ebe
3 KEY1 —#TARGET: “C.F."; SOLE(S,: "TESTER"
(Eyz - vae
|
5 8 c
: "N F
al et
) .
: ®
b
{ 3
3 ==
Secondary lamamond
I dindow: == NODE_LABEL OR COMMOM ANCESTOR —m56432
! KEY —p=KEY1
%
i 111132282-7

S WY

80

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « 1617 561.1840

L A . S A R A e i L SR S S '1*
VTR T e T B T B

B5-AIE(l) .KAPSE(1)

The following user-vigible routines are available for
creating, deleting, querying, and revoking windows, as part of
the KAPSE/Tool interface package WINDOW_OBJECTS:

81

INTERMETRICS INCORPORATED » 733 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « {617) 681-184Q

..................

3 B5-AIE(l) .KAPSE (1) |
£
% Package WINDOW_OBJECTS is

type WINDOW ID STRING is new STRING;
-~ This type is used to identify windows,
i ~= as a path to the common ancestor, and the
7 -- window key there.
K -=- The format of this string is irrelevant (though
-= vwvisible) to the user, because all relevant
-- information is accessible via function calls.

type WINDOW ATTRIBUTE ENUM is
(ORIGINAL WINDOW, TARGET, PARTITION,
ROLE_SET, MODIFIER_SET, PARENTS); -

type WINDOW FLAG ENUM is
(TRANSITORY, HAS_CHILDREN, REVOKED) ;
-= The above two enumerations are used to
-- request information given a WINDOW_ID_STRING
= (see 3.2.4.3.8.2).

procedure CREATE_WINDOW (WINDOW_PATH: in STRING;
TARGET PATH: in STRING;
PARTITION: in STRING := "";
TRANSLATION: in STRING := "";
COMMON_ANCESTOR_PATH: in STRIVG 1= "),
-- This creates a new secondary window, which
-= may later be revoked by a parent window.

procedure DELETE_WINDOW(WINDOW_PATH: in STRING:;
REVOKE_NOW: in BOOLEAN := PFALSE);
-~ This deletes a window, rather than the
-- object viewed through the window.
-=- It is possible to "revoke" the window
== at the same time, which invalidates
-- any copies or descendents.

procedure COPY_WINDOW(OLD_WINDOW: in STRING;
NEW_| "WINDOW: in STRING) ;
-- This makes a copy of an existing window.
-= Copies cannot be individually revoked:
-- when one goes, they all go.

procedure RENAME WINDOW(OLD PATH: in STRING;
NEW__ “PATH: in STRING) ;
-~ This is defined to be equivalent to -
== COPY_WINDOW followed by
-- DELETE_WINDOW (OLD_PATH, FALSE).

function WINDOW_ID(WINDOW_PATH: in STRING;
HIGHEST COMMON_ANCESTOR:
in STRING 7= "“ROOT")
return WINDOW_ID_STRING;
-~ Return WINDOW_ID_STRING associated with

82

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE +« CAMBRIDGE, VASSACHUSETTS 02138 « 1617) 661-1840

.. UL S WY

4 \ < A o Vo e, R W W ST TN T TR e e T T T ey e T T T
Wutﬂﬂﬂsﬁ AT A SR A LA S M R AN A . . T . e |
-

B5-AIE(l) .KAPSE (1)

4

LR

-- window. Routine will fail if cannot read
common ancestor object, or if common ancestor
== above HIGHEST COMMON_ANCESTOR.

T
[}
]

function NEXT CHILD WINDOW (PARENT WINDOW: in STRING;
PREV CHILD ID: in WINDOW _ID_STRING;
HIGHEST_COMMON_ANCESTOR:
in STRING t= "“ROOT")
return WINDOW ID STRING:;
. -~ This function iterates through the "children”
of a window (see 3.2.4.3.8).
-=- In general, the children are those windows
-= which the parent can legitimately revoke.
-= The returned string is an identifier of
-- the child. The window id can be used to
-- find the common ancestor, the path to
== the "ORIGINAL WINDOW," the TARGET, etc.

FL-
]
i

*@ -— (3.2.4.3.8.2),
ﬁ function WINDOW ATTRIBUTE (WINDOW_ID: in WINDOW_ID_STRING;
%l ATTRIBUTE: in WINDOW . ATTRIBUTE _ENUM)
i return STRING;
q function WINDOW_FLAG (WINDOW_ID: in WINDOW_ID_STRING;
X FLAG: in WINDOW_FLAG_ENUM)
return BOOLEAN ;
g -- The above two funttions return information

-= associated with a window, identified
. == by its WINDOW_ID_STRING.
; procedure REVOKE ,_WINDOW (PARENT WINDOW: in STRING:;
[t WINDOW _ID: in WINDOW_ID_STRING;
<) REVOKE | DESCE\IDENTS. in BOOLEAN := TRUE) ;
b

-- Revoke window(s) designated by WINDOW_ID.
== If REVOKE DESCENDENTS is TRUE, revoke all
o -- descendents also.
é == Requires OWNER or _OVERSEER modifier at parent.

end WINDOW_OBJECTS;

This CPC also includes the KAPSE-internal routines to traverse
q windows as part of database pathnames, and to provide window
‘a cross-reference table maintenance during the copying and deleting
A of extended objects which include secondary windows.

b The inputs to the window traversal routine are a handle on
the window, and the current roles, modifiers, and partition

X limitations held outside the window. The outputs of the window

& traversal routine is a handle on the target, with an updated set

gt of roles, modifiers, and partition limitations.

g 83

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 + (6171 681184

y - e A et 2l Hadh el W W Gy Y R s L e T (N TR ETRTATR TR YT T T e e e e e
LA S YAt Al At o BARANA S AL A NN A Mt g . B . R

e
~

-
-

L B
e, dll‘, .
PR

B5-AIE(l) .KAPSE(l)

The inputs to the cross-reference maintenance routines arz
the handle on the object being manipulated, as well as the patha
to the new location if it is being copied. The outputs from the
cross-reference maintenance routines are indications of whether

o the operation is permissible, and updated ANCESTOR_REFS
ﬁ attributes on the objects enclosing the object being deleted or
g created-by-copy.

2,

e g

3.3.2.1.2 Processing

The routines visible as part of the XAPSE/Host interface

s provide the basic creation and deletion operations on windows

E (see 3.2.4.3.8). These operations are implemented using the -
- appropriate access methods to manipulate the list-access filas,

and the direct- and text-access components which are used to
represent the information in primary and secondary windows.

These routines also manage the information recorded in the
. WINDOW XREF attributes of extended objects used as common
ancestors. All four access methods are used to manipulate the
complex structure of this attribute. Generally, a new element
must be added to the attribute at each window <c¢reation, and an
element may be removed at window revocation. When a window is
used as a parent, the appropriate HAS CHILDREN flag must be set.

LY

R

3 The window routines also manage the ANCESTOR_REFS attribute

1 present on each extended object with enclosed secondary windows
which have common ancestors outside of the object. This

attribute is a file keyed by the node labels of these referenced

ancestors, with a count of the number of direct components which

refer to each. As deletions and copies are made, the reference
_ counts in these elements are adjustad. When a new label is added
3 to an ANCESTOR_REFS set, or one is removed because its reference
: count goes to zero, a further adjustment must be made to the

ANCESTOR_REFS attribute of the object enclosing this one. These
} adjustments may propagate all the way up to the labeled ancestor
4 if this use of the common ancestor represents the first or last
<4 use of it in the whole database.

When a copy is to be made, these routines also check whether
the new copy will remain a descendent of all of the ancestors
mentioned in its ANCESTOR_REFS file. If this check fails, then
the copy i3 not performed and an exception is raised in the
user”“s program.

Note that enclosed secondary windows, with common ancestors
also enclosed by an extended object, do not appear in the
ANCESTOR REFS attribute, and hence never interfere with the
ability to copy such an extended object.

84

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 » 617) §61-1320

BRI

740
4

B5-AIE(l) .KAPSE (1)

RN
"c“

3.3.2.1.3 Examples

L RN

I et

1 CREATE_WINDOW (".WORKSPACE", "SHUTTLE.NAVIGATION.INIT"):;
X -~ This creates a convenient shorthand window

_l -=- named .WORKSPACE.
= OPEN (FILE, ".WORKSPACE.SPEC");

. -= This is equivalent to:

-=- QPEN(FILE, "SHUTTLE.NAVIGATION.INIT.SPEC");
CREATE_WINDOW(".RESTRICTED WORKSPACE", ".WORKSPACE",
TRANSLATION => "*a>REVIEWER") ;
. == Create sub-window limiting all to access rights
== given to the REVIEWER role.

=8
o OPEN (FILE2, ".RESTRICTED _WORKSPACE.SPEC") ;
3 -= This may fail if SHUTTLE.NAVIGATION.INIT.SPEC
- -~ doesn“t give READ or ADD access to a REVIEWER.
oY
- CREATE _WINDOW (" .SMALLER VIEW", ".WORKSPACE."
- PARTITION=>" (TEST LEVBL->2)');
N -- The window . +.SMALLER VIEW only lets its user
@ -- gsee objects with attribute TEST_LEVEL having
oo -= a vaiue of 2.
.4 ¢
: 3.3.2.1.4 Special Requirements
-':3« Windows are used heavily in the AIE system to implement

access control, history references, private objects, current
view, etc. It is required that these routines which provide the
fundamental as well as user-visible interfaces to windows work as
efficiently as possible. Special mechanisms are provided to
retain a “cache® record of recently traversed windows, so that
actual walks up and down the database hierarchy can be minimized.

of P

TR

3

- 3.3.2.2 Category and User-defined Attributes

o ‘

" .

X Attributes may in general be any kind of object. As such, the
€. . normal object manipulation routines will work on them.
Y Nevertheless, separate packages have been defined to simplify
- access to certain Kkinds of attributes. In particular, special
- support is provided for numeric- and string-valued attributes and
b for the system-defined attributes (see below, 3.3.2.3, and
iv. 3.3.401)0

X

ir

"‘4.

f 85

B

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE » CAMBRIDGE, MASSACHUSETTS 02138 « ‘617! 661-1840

5 } R

.................

2 AT

B5-AIE(l) .KAPSE (1)

3.3.2.2.1 Category Operations

SIAEARF I ¢/ G

F A

3.3.2.2.1.1 Inputs and Outputs

The CATEGORY DESCRIPTOR attribute is filled in by CREATE and
CREATE_COMPOSITE, both of which can specify a category template

as part of the optional FORM parameter. Complex category
templates may be built up using normal object operations, or may -
be manipulated using one of the following routines designed to

ease the process:

TR RICICIET -

L

Ry

TR

I UTRIRIN TR A

R

PR R RN i

& o Ay

+

EAS A

L

. e R
LT B

INTERMETRICS INCCRPORATED « 733 CONCORD AVENUE « CAMBRIDGE, VASSACHUSETTS 02128 « (617 561-1840

BS-AIE(l) .KAPSE (1)

Package CATEGORY is
type CATEGORY_CLASS is (SIMPLE,COMPOSITE,CONTEXT,WINDOW,DEVICE) ;

procedure CREATE CATEGORY_ TEMPLATE (
TEMPLATE: in STRINGT
IDENTIFIER: in STRING;
CLASS: in CATEGORY_CLASS);
-- Create a category template object,
-= with the given CATEGORY identifier,
-- for the given CLASS of extended object.

procedure DEFINE_VARIABLE ATTRIBUTE (

TEMPLATE: in STRING;
ATT_LABEL: in STRING;
ATT_INDEX: in POSITIVE:

ATT CONSTRAINTS° in STRING := "");
~- Define specified attribute to reside within
-- extended object at specified index.
-~ Extended objects are represented by
== the list access method,
== and ATT_INDEX plus a system-defined offset
-- will be the index into that list.
== The ATT CONSTRAINTS string is interpreted as
-= described below.

procedure DEFINE CONSTANT_ATTRIBUTE (
TEMPLATE : in STRING;
ATT LABEL: in STRING;
CONST_OBJECT NAME: in STRING) ;
-= Specify that attribute will be constant,
== and provide its value by naming object to
-= be copied into slot in descriptor.

procedure DEFINE CONSTANT STRING_ATTRIBUTE (

TEMPLATE: in STRING;

ATT_LABEL: in STRING;

ATT_ “VALUBE: in STRING) ;
-- Specify that attribute will be constant,
~= and provide its value as an ASCII string.
~= This routine is just a convenience,
~=~ and could be defined in terms of
~= DEFINE CONSTANT ATTRIBUTE above.

function CONSTANT_ ATTRIBUTE (
TEMPLATE: in STRING;
ATT_LABEL: in STRING)
return BOOLEAN:;
-~ Returns true if attribute is a constant.

end CATEGORY:;

87

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617} .61.1840Q

»
.
K
O

BS-AIE(l) .KAPSE (1)

3.3.2.2.1.2 Processing

Po? et ol airs KK

A category descriptor is created by copying a category
template object. Both a descriptor, and a template £for a
descriptor have the same form, that of a Kkeyed composite file,
with the attribute 1label being the key. The above routines
translate directly into operations on the category composite
file, and its components.

LTt

When specifying an attribute constraint (ATT_CONSTRAINT ’
above), the 1limitation may be to a list of values (e.g. "source
object executable"”) or to a range of values (e.g. "0 .. 10" or "1
") with "" meaning plus or minus infinity, as appropriate.
“* .. *" restricts the value to be numeric. An attempt to
violate the constraint on an attribute is automatically caught by
the KAPSE, and aborted.

o W

As part of the delivered KAPSE, category templates will be
provided for such common composite objects as an Ada library, a
user mailbox, and a typical user top-level directory.

LA T AL TR D o IO

3.3.2.2.1.3 Special Requirements

3.3.2.2.2 Qperations on Numeric and String-valued Attributes

3.3.2.2.2.1 Inputs and Outputs

RNy P DI LP LY
L]

‘Attribute values which are a simple ASCII string are actually

represented internally as a text file. This allows the strings
to grow arbitrarily long, but makes certain simple operations
clumsy. To alleviate this problem, a separate package is defined
to ease access to such string-valued attributes:

& 5>

package STRING_ATTRIBUTES is

procedure SET_ATTRIBUTE (NAME: in STRING; ATT_LABEL: in STRING; .
ATT_VALUE: in STRING);
-- By setting an attribute value to the null STRING,
-- the attribute is effectively deleted.)
== Requires add/delete access.

P AT

o e 0

38

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617 §61.1840

Ty 9}} . _! .v, -."_J'.'- R 7' RS AT R - -.'-...__. W _..:.. L,

............

BS5-AIE(l) .KAPSE(1l)

function GET_ATTRIBUTE(NAME: in STRING: ATT_LABEL: in STRING)
return STRING;
-- Attribute value returned as null STRING if not
-- previously SET.
-- Numeric-valued attributes returned as their
-- decimal representation.
-- Requires read access.

function GET_ALL ATTRIBUTES (NAME: in STRING) return STRING;
=~ Return all non-null, string- or numeric-valued
== attributes, in a labela>value list.

b end STRING_ATTRIBUTES;

Furthermore, certain attributes are limited to numeric wvalues.
These include certain category-defined attributes, and system-
defined attributes of primitive €files. Also, user-defined
attributes, though generally represented as a string, may
frequently be more easily manipulated as a number. The following
package is provided for the manipulation of such numeric-value
attributes:

Package NUMERIC ATTRIBUTES is

procedure SET ATTRIBUTE (NAME: in STRING; ATT_LABEL: in STRING;
ATT UE: in INTEGER) ;
-= Set the designated attribute to the
-~ gpecified numeric value.
-- If the attribute label is user-defined,
-= 8till use a string to represent its
-= npnumeric value.
-- Requires add/delete access.

function GET ATTRIBUTE (NAME: in STRING; ATT_LABEL: in STRING)
ceturn INTEGER;
-= Return the current value of a numeric-valued
-= attribute,
-=- Exception if attribute does not have a numeric value.
-- Requires read access.

end NUMERIC_ATTRIBUTES;

- 3.3.2.2.2.2 Processing

String and numeric attributes are actually stored as text- or
direct-access files. When SET_ATTRIBUTE or GET ATTRIBUTE is
called, the full pathname of the attribute is™ created by
concatenating NAME and ATT LABEL separated by a "tic"
(apostrophe) , and then the file is located and manipulated with
the appropriate access method (see 3.3.1.3).

89

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, VASSACHUSETTS 02138 + (617) 561-1840

.......................

e et

ErAe

Warave?

L LR

B . L

B5-AIE(Ll) .KAPSE (1)

In the case of SET_ATTRIBUTE, the contents of the ATT_VALUE
string or number are simply written out to the £file, and then the
file is released. For GET_ATTRIBUTE on a string, a string of
length CHAR COUNT (text file) is declared, the characters are read
from the file, the file is released, and the string returned.
For GET_ATTRIBUTE of a number, the attribute is read as a string
if it is text, and then converted using INTEGER“VALUE [LRM].

Given their label as a string, keyed access files are used
to locate the attribute descriptors or values. Hence,

SET_ATTRIBUTE and GET ATTRIBUTE operate rapidly (log N) even when
the number of attributes is large.

GET_ALL_ATTRIBUTES scans the object®s category descriptor
and USER_DEFINED ATTRIBUTES attribute looking for string-valued
attributes, and concatenates strings in the 1label=>value form
together.

3.3.2.2.2.3 Examples

SET ATTRIBUTE ("TEST FILE", "PURPOSE", "FUN");
SET ATTRIBUTE ("TEST_FILE", "CHECK_LEVEL", "l");
SET_ATTRIBUTE ("XY¥2", "PURPOSE", "FUN");

decTare

S: constant STRING := GET_ATTRIBUTE("XYZ", "CHECK_LEVEL");

-- 8 i3 now the null STRING.

AA: constant STRING := GET_ALL_ATTRIBUTES("TEST_FILE“);
begin

PUT_LINE(AA) ;

== Output will be: "PURPOSE=>FUN,CHECK_LEVEL=>1"
end; '

3.3.2.2.2.4 Special Requirements

3.3.2.3 Access Control

3.3.2.3.1 Static Access Control

90

INTERMETRICS INCORPORATED » 733 CONCORD AVENUE » CAMBRIDGE MASSACHUSETTS 02133 « 617 561-1840

ae s L L T Rl LT N e T
S O g Y T L ot

D-A134 @92 COMPUTER PROGRAM DEVELOPHENT SPECIFICHTION FOR ADA 2/2
INTEGRATED ENYIRONMENT. . (U) INTERMETRICS INC CAMBRIDGE
MA 12 NOV 82 IR-678-2 F3@682-86-C-8291

UNCLASSIFIED F/G 8/2 NL

o
EE

FEEEEE E

"EEEE
EEE

e

N

5

SHI4 Mo

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

B5-AIE(l) .KAPSE(l)
3.3.2.3.1.1 Inputs and Outputs

As part of the KAPSE/tool interface, the following primitives are
available for manipulating the extended object attributes
relevant to access control, including ACCESS CONTROL and ROLES,
and implicitly the primary or secondary window used to reach the
extended object:

Package ACCESS_CONTROL is

subtype ROLE STRING is STRING;
subtype ACCESS_RTS_STRING is STRING;

procedure SET_ROLE_ACCESS (OBIJNAME: in STRING;
ROLE: in ROLE STRING;
ACCESS_RTS: in ACCESS_RTS_STRING) ;
-- Set list of access rights associated with given
~= role. Pormat for ACCESS_RTS is
-- comma-separated list of access right
-= names, with operations and channels specified
-- using an embedded list.
-- Requires OWNER modifier, or _OVERSEER modifier
-= with READ access.

function ROLE_ACCESS (OBJNAME: in STRING;

ROLE: in ROLE STRING) .
return ACCESS_RTS_STRING;

-- Return list of access rights associated with

-~ specified role for the designated object.

-=- Returned STRING is comma-separated

-= list of access right names and embedded

-~ list of operations/channels.

-~ Requires READ access to the object.

function ALL_ROLES (OBJNAME: in STRING) return STRING;
-~ Return list of roles with any access rights
-- explicitly defined for this object.
-- Requires READ access to the object.

procedure CREATE ROLE (NEW_ROLE: in ROLE STRING;
WHERE: in STRING) ;
procedure DELETE_ROLE (NEW_ROLE: in ROLE_STRING;
WHERE: in STRING) ;
-- Edit the ROLZES attribute.
== Must have OWNER or read-able _OVERSEER.
-- WHERE must "end” on an extended
-- object, and the last step must be
-= via its primary window.
== Implicit ADOPT_ROLE/ABANDON_ROLE is performed.

91

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE » CAMBRIDGE, MASSACHUSETTS 02138 « (617) 561-1840

MOV S AR W Y ol - G P WA !J

DA AACHAIS DAL IR N VA AR SR e R s MR s st S O A O MR -"TTT*TT*

BS-AIE(l) .KAPSE (1)

procedure ADOPT_ROLE (ROLE: in ROLE_STRING;
WHERE: in STRING := "“CURRENT DATA") ;
procedure ABANDON_ROLE (ROLE: in ROLE_STRING: -
WHERE: in STRING := "“CURRENT_DATA") ;
== ADOPT requires "add" right at window
-- and _OWNER inside target;
== ABANDON requires "delete" at window.

procedure GIVE_ROLE (ROLE: in ROLE_STRING;
TO_ROLE: in ROLE_STRING;
WHERE: in STRING := "’CURRENT_DATA");
<= Requires "add" at window, and giver
-= must hold ROLE (or _OWNER
-=- modifier) at target of window.
-~ TO_ROLE is a role outside the window
-- receiving the additional
-= ROLE inside the target.

procedure SET_MODIFIER (MODIFIER: in MODIFIER_STRING;
WHERE: in STRING := "“CURRENT_DATA";
TO: in BOOLEAN := TRUE);
== Only legal to set _READ ONLY true,
== or to set _OWNER or _OVERSEER false,
== unless already have _OWNER modifier.

end ACCESS_CONTROL;

In addition to this user-visible package, the access control CPC
provides routines for use within t.e KAPSE, to lookup pathnames,
and verify access rights for primitive operations. The inputs
for these routines are generally the pathname, a handle on the
current program context object (where the pathname implicitly
starts), and an identification of what access rights are about to
be exercised.

The outputs from these KAPSE~-internal routines are typically
a handle on the extended object and the particular file selected
by the pathname, or a failure indication 1indicating that an
access control violation has occurred.

3.302.30102 PIOCQ_S_si;n_g -

The access control attribute is represented by a table indexed by
role index, with @ach element identifying the associated access-
rights and operations/channels. The primitive access method
routines (see 3.3.1.3) are used to perform the appropriate
manipulations, after verifying that the running program has the
appropriate access role modifiers/rights.

When the CPC wishes to check the legality of an operation,
it consults the access control attribute of the object, with a
set of roles and the number of the regquired access right. The

92

INTERMETRICS INCORPORATED + 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS €2138 » /617! §61-1840

.,
L Y

v v vy
N A B R R D b 5 b AN I IRl b S D Pl S SC A B S ACR IRt

.........

B5-AIE(l) .KAPSE(1l)

zequired access right must be granted to at least one of the
rales for the chack £o succeed.

The lookup function of this CPC does pathname interpretation
(see 3.2.4.3.3). It implements the rules £for content- and
target-defined attributes (see 3.2.4.3.4) as part of pathname
interpretation. It uses routines of the window object CPC to
locate the target of a window, and translate the roles as
appropriate.

3.3.2.3.1.3 Examples

SET_ROLE_ACCESS ("ALPHA", ROLE=>"WORLD", |
Accsss RTS=>"READ ADD") 3 |
-- Give all users with WORLD window over simple

~- object ALPHA, access rights READ and ADD.

SET ROLE_ACCESS ("BETA", ROLE=>"PROJECT",
"ACCESS _RTS=>"READ,OPERATE=> (LIST,EXTRACT) *)
~-"Give all users with PROJECT role inside
-- object BETA, right to READ, and invoke
-~ the LIST and EXTRACT operations.

TEXT_IO0.PUT(GET ROLES ("BETA").);

-- Will print “PROJECT" if above SET ROLE_ACCESS
== is the only one in effect for BETA.

3.3.2.3.1.4 Special Requirements
This CIC in conjunction with the WINDOW_OBJECT CPC forms the
heart of the KAPSE access protection mechanism. It is required

that this CPC be thoroughly tested to ensure that no

possibilities for protection violation remain within the access
control implementation.

. 3.3.2.3.2 Dynamic Access Synchronization

3.3.2.3.2.1 1Inputs and Qutputs

The following primitives are used to effect synchronization among

multiple Ada programs attempting to access overlapping parts of
the database:

93

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « 6171 661-:840

.............
n L, e I - T . L AR L AT A e et "-"‘J
N W PP A A S AR L N A L PR T Y YR SATIAS SIS IR

R A ALY

I S S "-‘f

o

e s

€ L&

" y&r" o

® o A

-

SA-SEA 2R o

- 3 Sl A b b SR e - Al den i SRvl ‘AL BN S e N T L A T R R T S B SRR
2 £ P e i i e A s eCliu it ier v I Tt OMCIUIMA R R OO K S AP L LR B

B3-AIE(l) .RAPSE (1)

Package ACCESS_SYNCHRONIZATION is
type OBJECT_HANDLE is limited private;

type RESERVE_MODE is (WRITE_ORIGINAL, WRITE COPY, READ_ORIGINAL,
READ COPY, SHARED STREAM, SHARED RANDOM) ;

Reserved objects are referred t« by
object handles, created withia the
context object of the reserving
program.

WRITE ORIGINAL prevents all access except
READ/WRITE_COPY.
READ _ORIGINAL prevents all write access.
READ7WRITE COPY never interferes, but may also be
reading/writing soon-to-be-obsolete data.
SHARED STREAM causes WRITE ORIGINAL reservation
only at the time of actual READ or WRITE.
Stream READ always reads the first defined element of
the object, and then advances FIRST to the next element,
and requires READ/WRITE or CONSUME access.
Stream WRITE always appends a new element at the end of
the object and advances LAST.
SHARED RANDOM causes a reserve (WRITE ORIGINAL
or READ _ORIGINAL) only at the time of actual READ or WRI

procedure RESERVE (EANDLE: in out OBJECT HANDLE;

procedure RELEASE (HANDLE: in out OBJECT_HANDLE) ;

procedure ABORT_RESERVE (HANDLE: in out OBJECT_HANDLE) ;

NAME: in STRING;

MODE: in RESERVE_MODE;

TIME LIMIT: in DURATION := DURATION”LAST) ;
The object named is reserved
according to the given RESERVE MODE.
If the RESERVE is not immediately possible
due to a conflicting RESERVE, the caller is delayed
up to the specified TIME LIMIT, when a TIME OUT
exception will oeccur.

RELEASE after RESERVE for WRITE _ORIGINAL causes
modifications made since the RESERVE to become
permanent.)

RELEASE after READ ORIGINAL allows waiting writers to
proceed to RESERVE.

RELEASE after READ/WRITE_COPY throws away the logical
COPY made for the purpose of private work.

ABORT RESERVE after WRITE_ ORIGINAL returns the
reserved object or partition to its original
pre=-RESERVE state,

For all other modes, ABORT_RESERVE is
equivalent to RELEASE.

94

P et - I S . -
A ot o PO NP I AT SR SAI QR ST WU Shp SN S 4

Faravy

Y .{"‘

4“‘

B5-AIE(1l) .KAPSE (1)

function BANDLE NAME (HANDLE: in OBJECT_HANDLE)
return STRING;
-=- This function returns a pathname string to
-- be used for opening the reserved object,
-= or passing the reserved handle off
-= to a subsidiary program.
-- The pathname is always of the form
-= "“OPEN BANDLES.xx" where xx is an
-- index Into the OPEN_HANDLES list.

end ACCESS_SYNCHRONIZATION;

Besides these explicit synchronization calls, CREAYE of a simple
object, OPEN of a simple object, and OPEN_PARTITION result in
implicit reserves. By default, OPEN for input only and
OPEN_PARTITION do a READ COPY reserve. CREATE and OPEN for
output do an WRITE ORIGINAL reserve. The default reserve may be
overridden by additional information in the FORM STRING passed to
OPEN, providing for READ ORIGINAL reserve instead of READ_COPY,
or selecting SHARED STHEAM or SEARED RANDOM, in which case, an
automatic RESERVE/RELEASE takes place around each READ and WRITE
ocperation to the object.

3.3.2.3.2.2 Processing

After an Ada program performs a RESERVE, it may perform a
sequence of operations using the reserved handle without
interference from other programs. When the sequence is complete,
the program may RELEASE or ABORT RESERVE. Each RESERVE starts by
making a logical COPY of the raserved object. Modifications and
accesses performed between RESERVE and RELEASE use this logical
COPY, preserving the integrity of the original object.

The CPC implements RESERVE/RELEASE at a low level to allow
efficient detection of <conflicting reservations. when
READ/WRITE_ORIGINAL reservation of all or part of an object is
cequested, this CPC determines whether a conflicting reserve is
already in progress. If 30, the new reserve is delayed up to the
TIME LIMIT. If not, this CPC records the reservation, and for
WRITE_ORIGINAL, creates a logical copy where the actual changes
will be wmade. READ/WRITE COPYers never need to check for
conflicting reserve. They simply make a logical copy for their
:wn use of whatever is available, which may be somewhat out of

ate.

3.3.2.3.2.3 Special Requirements
Access synchronization routines are called implicitly by

every open/create operation on simple objects. It is required
that the creation of the reserved handles, including any logical

95

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETS 02138 « (817 661.1840

.-

(AR

)

PO
Yoo Ve R AT AN

PR D T P S N TR U O R EPU U
'f *\',.\-.%.-.,.\'i.'._-'..- OO, :...-‘._._\._ RS _',\‘.\ RN

o PP R L Y

LT TR TR T R TR T 8 T T T e Y T e TR Vg Ve TR T W WYY T ',_‘
- R e T e e A s R

(\ vQ e 4 - ~av. - .-- LA e - % . - . - '

| |
|
1
BS-AIE(l) .KAPSE(1l)
coples, be as efficient as possible to preserve the overall 1
performance of the KAPSE.

i
. <

?

‘?;‘ o
“ L
’ -

96
'm‘\'ERM!TNCStNCORPOHATED ¢ 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « 617 831-1240
IR RN AR N iRa ¥ P ‘ Y - : ot - o RPN NPT SIS I Gr G W e ‘J

PRV I O Ay AR Wk fal A RN AN TN T U JTe w T Ta e e R R T e T Tt e T et T T e S T T . N e

B5-AIE(l) .KAPSE(l)
3.3.3 Multiple Program Management (KAPSE.MULTPROG)

3.3.3.1 Program lLoading

o 3.3.3.1.1 Inputs and Qutputs
By The following package is provided to interface to the host
B loading, initiation, memory-allocation, and time-sharing
ﬂ% ’ facilities, as part of the KAPSE/Host interface:
package PROGRAM_LOADING is

0 procedure LOAD_PROGRAM (LOAD_MODULE NAME: in STRING;

£ ID: out PROGRAM _ID);

R -=- This procedure loads and initiates the designated

i -= program. The returned PROGRAM_ID may

" == be used later to communicate with the

B -- program.
B -- The LOAD_MODULE_NAME is a database pathname

) -- that identifies a simple object suitable for

B -= loading by the host system. The history

b -- attribute of the load module uniquely identifies

g -= the state of its content, and the implementation
- - attempt to share code for multiple executions
o == using the same load module. Extra effort will

oA -= be made to share the code of frequently
g -= executed programs.

‘ procedure UNLOAD_PROGRAM(ID: in PROGRAM_ID) ; h

-- This procedure frees any space allocated to the

R -= program identified by ID, and performs any

b ~= clean-up that may be required on the host

1 -= gystem to eradicate the progranm.
- procedure GET_STORAGE (AMOUNT: in STORAGE AMOUNT;

STORAGE: Out STORAGE _PTR) ;
. -~ This procedure allocates storage of the amount
-= gspecified by the caller, and returns an access
R -= wvalue that identifies the storage that was
- ==~ allocatad.
-= The allocated storage contains inside it a header
-= that indicates the size that was allocated.

: procedure FREE_STORAGE (STORAGE: in STORAGE_PTR) ;
g -- This procedure returns storage tS the system.
i -= The size of the returned storage is
== determined from a field in the header of the
-= gtorage area.

v 97

- INTERMETRICS INCORPORATED «» 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 + (617) §61-184Q

[VI

..........................

B5-AIE(Ll) .RAPSE(1)
end PROGRAM_LOADING ;

3.3.3.1.2 Processing
This CPC has three distinct subdivisions.

a. GET_STORAGE and FREE_STORAGE, which are called by the run-
time system (see 3.3.5.2) in response to requests made by
the program.

b. LOAD_PROGRAM and UNLOAD_PROGRAM, which are called by Program
Invocation routines of KAPSE.MULTPROG (see 3.3.3.3), and are
used to start a program running and to clean-up any residue
left behind by a completed Ada program.

¢. This CPC also guarantees that a program that has been loaded
via LOAD _PROGRAM will be allocated sufficient processing,
memory, and other resources to complete. There 1is no
procedure call associated with this requirement; rather, the
scheduling happens automatically.

3.3.3.1.3 Processing for VM/SP

This CPC allocates memory within the virtual machine, sets
up the segmentation and page maps appropriately, and then loads
the data from the load module into memory. When sharing is
warranted, the pure portion of the load module is separately
loca:.di and multiple invocations of the same program will simply
map it in.

3.3.3.1.4 Processing for PE 0S/32

Unshared Ada programs are initiated by loading a pre-
initialized 0S/32 task image whose sharable pure segment includes
the standard Ada run time system. The start-up code of the task
reads the blocks of code and data into its impure segments.

A limited number of host files are created and allocated
when the XAPSE is installed, for the purpose of holding 0S/32
task images with sharable segments. Wwhen sharing is warranted,
the load module is copied into a file in Task Establisher Task
(TET) format; this file is then used for task loading. These
files are re-used dynamically on a "Least Recently Used" basis.

3.3.3.1.5 Special Requirements

98

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE «» CAMBRIDGE, MASSACHUSETTS 32138 « (877 561-1240

.........

BS-AIE(l) .KAPSE (1)

3.3.3.2 Low Level KAPSE/Program Communication

3.3.3.2.1 Inputs and Qutputs

The following package is part of the KAPSE/Host interface,
and provides the basic mechanism for communication between the
KAPSE and the user programs, in a host-independent manner:

929

INTERMETRICS INCORPORATED - 733 CONCORD AVENUE » CAMBRIDGE, MASSACHUSETTS 02138 « (517) 861-1840

BS-AIE(l).KAPSE (1)
package KAPSE PROGRAM_COMMUNICATION is

type PROGRAM ID is private;
-- The program id for each program is unique,
-=- and is assigned by package PROGRAM_ LOADING
== (see above).

type REQUEST_INDEX is
INTEGER range l..<<Implementation Dependent>>;
-= Bach Ada program is limited to a specific number
-- of outstanding KAPSE_CALLS (the presence of
- mnlti-taskxng implies that there may be several
-~ KAPSE CALL“s outstanding at once). Each
-- KAPSE CALL is associated with an integer that
~-- identifies which of the permitted requests
-= was responsible for the call.

4

I
>

he E AR AT
d

type KAPSE_PACKAGE_ENUM is
(<<List of package id”“s for all
packages exported by KAPSE>>);
-- Each KAPSE interface package is associated with
-= a unique enumeration. The enumeration is used
-- as a discriminant to the MESSAGE_RECORD and
== RESULTS_RECORD types below.

type MESSAGE_RECORD (KIND: KAPSE PACKAGE_ENUM) is <<TBD>>;
-- This type defines the structure of messages
-~ passed via the KAPSE PROGRAM COMMUNICATION
-- routines. The structure varies according
-= t£0 the kind of kapse call.

type RESULTS_RECORD (KIND: KAPSE PACKAGE ENUM) is <<T3D>>;
-- This type defines the structure of results
-- passed via the KAPSE_PROGRAM COMMUNICAEION
-=- routines. The structure varies according
== to the kind of kapse call.

package USER_VERSION is

procedure KAPSE CALL (MESSAGE: in MESSAGE RECORD;
RESULTS: out RESULTS RECORD) ;

-- This procedure signals to the KAPSE via an
== interrupt that a message should be sent
-= across the RAPSE protection boundary.
-= The procedure waits for the KAPSE to send
-~ results back across the protection boundary.
~= The caller is suspended until the results
== hav - been r- ged back.

100

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, VASSACHUSETTS 02138 « /617) 561-1340

.........................
..........
"""""""""""""""

_L_l" ISP ST T AT 0 WAL LT WA Ul W A 'h..\;\ U TPV TS L

BS5-AIE(1l) .KAPSE (1)

end USER_VERSION;

package KAPSE VERSION is

procedure RECEIVE_REQUEST (ID: out PROGRAM_ID;
INDEX: out REQUEST INDEX;
MESSAGE: out MESSAGE RECORD) ;

procedure RETURN RESULTS (ID: in PROGRAM_ID;
INDEX: in REQUEST INDEX;
* RESULTS: in RESULTS RECORD) ;

S e A T a LA Ty

end KAPSE_VERSION;

end KAPSE_PROGRAM_COMMUNICATION;

3.3.3.2.2 Processing

This CPC implements a user "communication task" and a RAPSE
"communication task®" to actually send messages across the KAPSE
protection boundary. These tasks are also part of the KAPSE/Host
interface implementation and are implemented differently on
different hosts. A table outlining the processing done on each
side of the protection boundary follows:

101

INTERMETRICS INCORPORATED « 732 CONCORD AVENUE +« CAMBRIDGE, MASSACHUSETTS 02138 « 1817) 661.1840

B5~-AIE(l) .RAPSE (1)

KAPSE/Program Communicaton Mechanism

Program :
* KAPSE_CALL:

1) KAPSE CALL makes an entry call on the user
communication task to send the message and
the results address to the KAPSE. The
request index is returned.

2) The user communication task determines the
program id of the caller, finds an
available request index, and sends the

,3 program id, the request index, the
W message and the results address to the
‘% KAPSE. It returns the allocated request

index to the caller.

3) The RAPSE CALL makes an entry call on the
the member indicated by the request index
of the GetResults entry of the user
communication task and is normally blocked.

4) A message interrupt causes the user
communication task to do an accept on
the entry member associated with

; the request index for the completed
R : KAPSE_CALL.

S) Awoken by the end of rendezvous, the
KAPSE_CALL returns to the caller.

KAPSE:
* RECEIVE_REQUEST

1) A "secver" task calls RECEIVE REQUEST which
does an entry call on the KAPSE communication

task”s "GetRequest” entry and is normally
blocked.

2) A message interrupt causes a call to be made
- on the KAPSE communication task which
copies the message across the KAPSE protection
boundary into the KAPSE.

3) The KAPSE communication task then doces an
accept on its GetRequest entry and provides the

102

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, WASSACHUSETTS 02138 « 617) 661.1840

. - St eoe T e LT et Lt e
DI W W W) [P AP WO WP LI AP A WAL I W X

...............

B5-AIE(l) .KAPSE(1)

caller with the program id, the request index,

the message, and the result address of the
associated message.

4) The server, awoken by the accept, services the
request (as specified in the message).

* RETURN_RESULTS

S) Server calls RETURN_RESULTS which does an entry
call on the KAPSE communication task’s
"SendResults” entry which copies the results
back into the user”s space and causes a
message interrupt (tagged with the request
index) to be sent to the appropriate program.

3.3.3.2.3 Processing for WM/SP

The KAPSE/Host interface under VM/SP implements this
KAPSE/user program communication using the SVC instruction. The
KAPSE/Host interface has direct access to the address space of
the user program, so the data may be copied across using the MVC
instruction.

3.3.3.2.4 Processing for PE 05/32

Communication between the KAPSE 0S/32 task and user program
08/32 tasks use the 0S/32 task message facility. Pseudo
interrupts are provided to the receiving task when a message is

ready.

Por large transfers, 0S/32 provides the ability to send and
receive open file handles. If the overhead of messages becomes
unwieldy in a running MAPSE, it will be possible to switch to a
method of data transfer involving writing to a scratch file from
one task, and then reading the data back in the receiving task.

3.3.3.2.5 Special Requirements

The KAPSE_PROGRAM_COMMUNICATION package is used for all
communication between the KAPSE and user programs, and is
critical to the efficiency of KAPSE system calls in general.

103

INTERMETRICS INCORPORATED +« 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 » :617) 661-1840

e J“Al

INTERMETRICS INCORPORATED » 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (6171 661-1840

B5-AIE(l) .KAPSE (1)

3.3.3.3 Program Invocation and Control

3.3.3.3.1 Program Context

3.3.3.3.1.1 Inputs and Qutputs

Each activation of a program has associated with it exactly one
program context object. The following primitives are available
to create new activations of a program with 1its new context
object, as well as suspend and resume the running program. The
context object is initialized from parameters, windows, and other
attributes inherited from the invoker, and with a window back on
the executable program ocbiect.

104

......................................) .
s e . - . - e . - > et . .o C e . P . . . R LT . N L
BN A A L B UL . e T e e e e
: : A tedech, P P A A PV U U L L T L PRV, R,

B5~-AIE(l) .KAPSE(l)
Package PROGRAM_INVOCATION is

subtype PARAMS_STRING is STRING;
subtype RESULTS STRING is STRING:

function CALL PROGRAM (PROGRAM_PATH: in STRING;
PARAMETERS: in PARAMS STRING;
CONTEXT NAME: in STRING := " ,SUB_CONTEXT";
STD_IN:™ in TEXT_IO.FILE TYPE :=
CURRENT_INPUT;
STD_OUT: in TEXT _IO.FILE TYPE :=
CURRENT _QUTPUT)

return RESULTS_STRING;

-- This function invokes an executable program

‘== context or command language script as

==~ though it were a sub-program of

== the calling progranm.

-- PROGRAM PATH is the access path to the program/script.

== PARMMETERS is a comma-separated

-= list of parameters for the

== program, using positional or keyword

- mtation (‘go' A'B'mm.w').

-- The optional parameter CONTEXT NAME specifies

-~ the LOCAL _NAME for the context object

-- created for the called program.

-=- The returned RESULTS STRING is a

-~ comma-separated list of the out parameter

== values of the called program.

-- If the called program is actually a function,

-= the result is returned as though it were

-= an out parameter labeled RETURN

-= (eg., "RETURN=>1423"),

-=- By default, the current text input and output for

-=- the calling program become the standard

== text input and output for the called program.

== All attributes of the caller”s context with

~- INHERIT flag set are copied

== into the sub-context created.

B Oy

LR A

function PROGRAM_SEARCH (PROG_NAME: in STRING) return STRING;

-- This Tunction looks for an executable program
-~ context or command language script with
== name PROG_NAME in each of the composite
== objects specified in the caller’s PROGRAM SEARCH _LIST.
-- The returned STRING is the full access path to
== the program context of script, ready to
== be passed to CALL_PROGRAM above.

- -= The PROGRAM SEARCH LIST is an attribute of
== the caller”s context object. It is set using
== SET ATTRIBUTE and specified as a
-= comma-separated list of composite object names.

O,
Vet e

T

108

INTERMETRICS INCORPORATED » 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (817} 661-1840

.
.........................

e A At -t e e e i S, S L RS R S T S

P St P A A A L L L B B R SR N S

P C et et e L AR)
*at ‘et Pt A AR S R ARt . .

ﬁ? B5-AIE(l) .KAPSE(1l)
N

procedure INITIATE_PROGRAM (PROGRAM_PATH: in STRING:

PARAMETERS: in PARAMS_STRING;
CONTEXT NAME: in STRING;
STD_IN: in TEXT _IO.FILE_TYPE;
STD OQUT: in TEXT 10 .FILE _TYPE) ;

-- This procedure invokes a program or

== script exactly like CALL_PROGRAM,

-- except that the caller is not suspended

== until completion, and no defaults are

== provided for CONTEXT NAME, STD_IN, or

function AWAIT PROGRAM(CONTEXT NAME: in STRING;
TIME LIMIT: in DURATION :=
DURATION” LAST)
return RESULTS_STRING;
-- This function waits for the completion
-- of the specified program context object,
== up to the specified TIME LIMIT.
-- The returned STRING is as in CALL_PROGRAM.

procedure EXIT PROGRAM(RESULTS: in RESULTS_STRING;
ABORT SUB_QONTEXTS: in BOOLEAN := FALSE) ;
-- This procedure exits a program, either
-= waits for its sub-contexts or aborts them,
-= and then returns the results to the invoker.

procedure SUSPEND_PROGRAM (CONTEXT NAME: in STRING) ;
-~ The program executing in the named context is stopped,
-- allowing the state of the execution to be examined,

:Q == or a debugger to be initiated to control or trace

v -=- further execution of the program.

B -- Normal tasks of the program are made dormant, but

. == the run-time system continues to respond to inter-
-= program communication on channels zero and one.

o procedure RESUME PROGRAM (CONTEXT NAME: in STRING) ;

£ -~ The program associated with the named context is

% -= restarted. The program must have been previously

;: -- injtiated and then suspended.

o (continued bhelow)

3

N 3.3.3.3.1.2 Processing

-t A program context is a composite object using a single component

5 distinguishing attribute LOCAL NAME and with certain standard

g windows and objects as components. In particular, every context

e includes a window attribute labeled CURRENT DATA, which provides

Ry the main link to the permanent part of the database. The

. CURRENT DATA window may be shifted to view other parts of the

:é

B 106

5

, INTERMETRICS INCORPORATED « 733 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02128 » i617! 681-1840

»

- - - LIPS)
i P O b NV e

.-1..1‘~’-"" .

B5~-AIE(l) .KAPSE (1)

database using the CHANGE VIEW primitive (see 3.3.3.6 below). A

running program has an implicit OWNER window on its procgram
context.

The program integration facility ([AIE(l).PIF(l)] creates
executable program objects and by default deposits them in their
associated Ada program library. If the program is to be used by
many users, it will be copied to a central cepository of
executable programs (eg., TOOLS component of the root). When an

. executable program is called or initiated, this CPC creates a new
context aobject with a window attribute 1labeled PROGRAM whose
target is the executable program object, allowing the running

- program to refer to attributes of the program object via a
pathname like "“PROGRAM“HELP_FILE."

ot BRIV W,

When a command language script is called, the KAPSE invokes
the command language processor identified by the PROCESSOR
attribute of the program object, and passes the name of the
object containing the script as an additional parameter.

3.3.3.3.1.3 Special Requirements

Program invocation is used heavily within the AIE, because
of the basic toolkit approach. Sophisticated tools can be built
up out of simpler fragments using program invocation as the
primary cowposition technique. It is required that the
implementation of program invocation be as time-efficient as
possible to preserve overall performance of the AIE.

3.3.3.3.2 Parameter Passing

3.3.3.3.2.1 Inputs and Qutputs

Parameters are passed to a program context by CALL PROGRAM and
INITIATE_PROGRAM (see above) as a comma~separated list using
positional or keyword notation. For example:

CALL_PROGRAM ("COMPILE®, “QSORT,MYLIB,OPTIM=>TIME");

. Inteznally, these parameters are passed as the value of an
attribute of the created program context, labeled PARAMETERS.
This attribute is then retrieved by the called program”s preamble
{AIE(1).PIF(1)], by GET ATTRIBUTE(".", "PARAMETERS").

At the end of execution, values of out parameters are
rewritten by the called program to the RESULTS attribute using

SET ATTRIBUTE, and are returned to the caller as the results
string of CALL PROGRAM or AWAIT _PROGRAM. If the called program

107

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02128 » (617) 661-1840

.........................

BS-AIE(l) .RAPSE (1)

is a function, the returned string is of the form
"RETURN=>return_value." If the program ends due to an unhandled
exception, the returned string will be "EXCEPTION=>exception_id."

The following function is defined to facilitate extracting a
single parameter from the string returned by GET_ATTRIBUTE,
CALL_PROGRAM, or AWAIT PROGRAM:

function PICK_PARAM(PARAMETERS: in STRING; PARAM NAME: in STRING;
POSITION: in INTEGER := 0; DEFAULT: in STRING := "")
3 return STRING;
s -= This function extracts the specified parameter from
: == the given parameter string, as might be returned
-- by GET ATTRIBUTE(".", "PARAMETERS").
-=- PARAM_NAME may be null or POSITION may be zero,
-- but not both. The DEFAULT string is returned if
-=- no parameter is present in PARAMETERS at the
-- designated POSITION or labeled by the
-=- specified PARAM_NAME.

3.3.3.3.2.2 Processing

" The list of parameters is represented as the attribute PARAMETERS
of the program context object. The function PICK_PARAM is
provided to parse the parameter 1list, and does so by simply

: scanning through the PARAMETERS string supplied, looking for

] "PARAM_NAME =>" if PARAM NAME is not null, or the unlabeled

: argument number POSITION. If neither is present, the supplied
DEFAULT string is returned.

3.3.3.3.2.3 Special Requirements

3.3.3.3.3 Private Object Operations

3.3.3.3.3.1 Inputs and OQutputs

The following primitives are available for creating and invoking
private object operations:

108

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02128 « (6171 561-1840

R TP W YU e W P WP Y Y

v e o 2 > B . a0d T P L sadbanil A
Lo gt el At A A v,y VeV LU RS A A R AP T S R

B5-AIE(l) .KAPSE (1)

function INVOKE_OPERATION(PRIV_OBJ: in STRING:
OPERATION: in STRING;
PARAMETERS: in PARAMS STRING:;
CONTEXT_NAME: in STRING := ".SUB__CONTEXT";
STD_IN: in TEXT_IO.FILE_TYPE :=
CURRENT INPUT:;
STD_OUT: in TEXT_IO.FILE_TYFE :=
CURRENT OUTPUT)
return RESULTS_STRING;
== This routine attempts to invoke the specified
-=- operation.
. -- The operation will fail if the PRIV_OBJ does
-= not have an OPERATIONS attribute,
-= or the caller dces not have access to it.
-- The returned RESULTS STRING is the
-=- out parameters or the return value
~- of the operation.

end PROGRAM_INVOCATION;

3.3.3.3.3.2 Processing

Private objects are simply objects with an OPERATIONS attribute,
which 1is a window on a composite object full of operations (i.e.
executable program objects). When the user calls
INVOKE OPERATION, the KAPSE constructs the pathname for the
operation context object as PRIV OBJ & "“OPERATIONS." &
OPERATION., It then creates a context object, gives it a window
on PRIV OBJ called "“IMPLICIT OBJECT" of role "OWNER," and
prepends ““IMPLICIT OBJECT," to the parameter 1list (e.g. if
PARAMETERS is "A,B" then it passes "“IMPLICIT OBJECT,A,B" as the
full parameter list to the operation).

3.3.3.3.3.3 Special Requirements

3.3.3.3.4 Interprogram Communication

' 3.3.3.3.4.1 Inputs and Qutputs

Interprogram communication is performed by special operations on
the associated program context objects. The routines of this
package provide the equivalent of an inter-program rendezvous,
receiving the parameters, and returning results, in analogy with
task entry calls, just as CALL PROGRAM provides an analogy to
subprogram calls.

109

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (817) 561-1840

BS-AIE(l) .KAPSE(l)
ER This package is part of the KAPSE/Tool interface:

- with PROGRAM_INVOCATION; use PROGRAM_ INVOCATION;
Package INTER_PROGRAM_COMMUNICATION Is

function IPC_ACCEPT (CHANNEL NAME: in STRING;
TIME LIMIT: in DURATION :=
DURATION’ LAST)
return PARAMS STRING;
-- This routine accepts the next waiting
== IPC_ENTRY CALL for this channel.
-- If none are already waiting, this
-~ will suspend up to the TIME LIMIT.

e Ry
- ot b I T R

procedure IPC_END_RENDEZVOUS (CHANNEL NAME: in STRING;
RESULTS: in RESULTS_STRING) ;
~- This routine is called after an IPC ACCEP'I',
== to allow the IPC ENTRY CALL to proceed,
-- with the RESULTS provided.

e

function 1IPC _ENTRY_CALL (CONTEXT NAME: in STRING;
CHANNEL 1 _NAME: in STRING;

2 TIME_LIMIT° in DURATION :=

DURATION” LAST;

g PARAMS: in PARAMS STRING)

' . return RESULTS STRING;

== This routine sends the PARAMS to

== the designated context via the

== named channel. It is delayed until

~= the entry call is accepted, and

== the rendezvous is ended.

==~ Requires COMMUNICATE access over the

-- designated channel,

-=- on the specified program context object.

procedure IPC_SELECT() ;
-= IPC Select statement <<TBD>>

- end INTER_PROGRAM_ COMMUNICATION;

LT

3.3.3.3.4.2 Processing

These interprogram communication primitives necessarily rely on

the communicating programs agreeing on the format and
interpretation of the PARAMS_STRING and RESULTS_STRING. From the
3 KAPSE point of view, these are 3just character strings. A
RA TIME LIMIT of zero results in a conditional ACCEPT or ENTRY call.
g A TIME LIMIT of DURATION’LAST (the default) results in an
effectiVely un-timed call. If a single program wishes to receive
ENTRY calls on many channels simultaneously, it may execute the

- 110

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIOGE, MASSACHUSETTS 02128 » (617! 661.1840

LA 'S "; 4 ."' ,)' q \f LS. ~< - *‘ \1 “! ,.1 “l ,\1'\‘(..1'_\~‘\-"'.'. -.
+ " “ i g Al A L}

1
xS0
+
.
[}
L]
.
.
.
3
.
t
»
»
B
.
.
.
»
.
.
'
s

20y

B5-AIE(l) .KAPSE (1)

IPC_ACCEPT calls from separate Ada tasks, or wuse the <<TBD>>
IPC_SELECT.

A "y
APV Vs &

Certain channel names starting with an underscore (_CONTROL
and DEBUG) are reserved for the Ada Run Time System (KAPSE.RTS)
and the Debugger Support Routines (see below). :

.»"lfé’y:‘;gl"

3.3.3.3.4.3 Special Requirements

>
e ey ot

’,
T

L

- 3.3.3.3.5 Debugging and Control Interface

3.3.3.3.5.1 Inputs and OQutputs

& '7‘

¥ A<a

The following procedures are available to a debugger for
inspecting, controlling, and modifying a suspended program:

Q7P

a

’ T

111

TR

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

.2

-
-t

......................
..................
..............

>
:

............................... Lo T
""" IR YRR WP YO . WOV RS S Y

At o A S Rdin st b A Ad

BS=AIE(l) .KAPSE (1)

Package DEBUGGER_INTERFACE is
type PROGRMM_STATE is <<TBD>>;

procedure SET CURRENT DEBUGGED_CONTEXT (PROG_CTX: in STRING) ;
-- This procedure is called once to specify
-- which program context is being debugged,

procedure GET PROGRAM_STATE (STATE: out PROGRAM_STATE) ;
-- Retrieve the current state of the
-=- debugged program, including the program
--= counter and stack pointer.

ptocedure CONTINUE (STATE: in out PROGRAM_STATE);
-- Allow the debugged program to continue.
-- This procedure returns when the debugged
-~ program reaches a breakpoint trap.

procedure SET PROGRAM DATA (ADDRESS: in ADDR_TYPE;
DATA: in STORAGE_ARRAY) ;
-= Store the array of storage units at the designated
-= address in the debugged program.

procedure GET_PROGRAM_DATA (ADDRESS: in ADDR_TYPE;
DATA: out STORAGE | _ARRAY) ;
-=- Retrieve into the array of stor age units
~-= from the designated address in the
-= debugged progranm.

procedure SET _ECP_BREAKPOINT (ADDRESS: in ADDR_TYPE;
ON_OFF: in BOOLEAN) ;
-- Activate or deactivate a breakpoint at
-- the designated execution control point,
-= according to ON_OFF.

procedure SET EXCEPTION_BREAKPOINT (EXCEPTION_ID: in INTEGER;
ON_OFF: in BOOLEAN := TRUE) ;
--= Associate or digsassociate a breakpoint
<= with the specified exception.

type BREAK_GROUP is (ALL_STATEMENTS,
ALL_CALLS,
ALL_EXCEPTIONS,
UNHENDLED_EXCEPTIONS,
oo+ <<TBD>>) ;

- procedure SET_GROUP _BREAKPOINT (GROUP: BREAK_GROUP;
ON_OFP: in BOOLEAN := TRUE);
-= Asgociate or disassociate a breakpoint with
-- the specified group of execution control
~-=- points or exceptions.

112

INTERMETRICS INCORPORATED » 733 CONCORO AVENUE » CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-7840

...

B5-AIE(l) .KAPSE (1)
end DEBUGGER_INTERFACE;

3.3.3.3.5.2 Processing

The above procedures are implemented using inter-program
communication primitives. When a program is suspended, all of
its normal tasks are made dormant, but a Debugger Support task
remains responsive to inter-program communication on channel
" DEBUG." The Debugger Support task performs the requested
operations on the debugger“s behalf. See [AIE(l).DBUG(l)] for a
more complete discussion of the debugging interface.

3.3.3.3.5.3 Special Requirements

3.3.3.4 KAPSE/RAPSE Communication _
3.3.3.4.1 Inputs and Outputs

This CPC will provide a <<TBD>> interface for communication
between KAPSES on separate (virtural) machines. The interface
will be as close as possible to the interface provided by
KAPSE PROGRAM_ COMMUNICATION.
3.3.3.4.2 Processing on VM/SP
All communication between virtual machines is accomplished using
the Inter-User Communication Vehicle or the Virtual Machine
Communication Facility (IBM81]. Both of these methods provide an
interrupt to the receiving VM when a message is ready. The data
is copied using a fast memory &0 memory transfer.
3.3.3.4.3 Processing on 0S/32

<<TBD>>

3.3.3.4.4 Special Requirements

3.3.3.5 Terminal Screen Manager

113

................................
..............

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 » (617) §81-184Q

T U T T W A T e ar e T amd T e, T Y Nt Ve e #
.- . e N

Lo A Paién S ot IR WA ARSI NN

B5-AIE(l) .KAPSE(1)
3.3.3.5.1 Inputs and Outputs

The KAPSE provides a standard set of terminal control facilities,
directly available to the interactive MAPSE user:

ASCII Key Code Terminal Control Function

Control-S Stop terminal output.
(XOFF) Enter Scroll Control Mode.
(see below)
Control-Q Exit Scroll Control Mode.
{XON) Re-start terminal output.
Control-C Interrupt running program,
(ETX) Give control to program catching
or BREAK input interrupts.
Control-H Erase previous entered character.
{(Backapace)
Control-X Erase entire line entered.
(Cancel)

Scroll Control Mode is provided for terminal users to review
output which has gone off the screen of a video terminal, or was
illegible or lost from the printout of a hardcopy terminal.

In Scroll Control Mode, -the terminal handler recognizes the
following small number of commands:

ASCII Key Code Scroll Control Mode Function

B *Back"™ ~-- Scroll the screen backward half
of a screen-ful, or simply retype the
previous line on a hardcopy terminal.

digit B Go back specified number of half screens
or lines, and redisplay.

-4 *Porward" -- Scroll the screen forward half
of a screen-ful, or simply retype the
- next line which had been typed on a hardcopy
terminal.

digit P Go forward specified number of half screens
or lines, and redisplay.

114

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIOGE, MASSACHUSETTS 02138 » 6171 66

1.1840

4 e dorv-vaial Sul SRR A DA, e S ARt g il SOl I S AR A1 B S R e R

§

#

: BS5-AIE(1l) .KAPSE (1)
H Control-C Exit Scroll Control Mode and Interrupt

3y or BREAK program as above.

Control-Q Exit Scroll Control Mode, return to display
of current terminal output. .

”ﬁ%%‘.' { 5o

On terminals without normal ASCII keyboards, the user may define
alternate character sequences to replace the ASCII control
characters. On half-duplex systems, all control characters (or
sagquences) must be preceded by an attention key, and terminated
. by the end-of-line character so that characters are received by
the KAPSE.

AT 0K,
J

3.3.3.5.2 Processing

Scroll Control Mode is possible because all terminal output is
savod temporarily in the context object attribute
“TERMINAL OUTPUT. At the end of program execution, this

component may be saved if the output is considered valuable.

P Y I

¢ty S

‘

el e

In addition, all terminal input to a program is stored
temporarily in the context object attribute “TERMINAL_INPUT, so
that historical records of program invocation can be “complete.
At the end of program execution, a user may copy the

!!RHINAL INPUT component into a more permanent part of the
database "to avoid having to re-enter the same input if the
program is re-run at a later time. From the point of view of
history, “TERMINAL INPUT is treated as a source object.

Ry

It is expected that the terminal handler will be enhanced to
: support multiple programs simultaneously on separate parts of the
screen, with additional control characters for moving between the
various screen windows.

et ol

..

- 3.3.3.5.3 Special Requirements

:g 3.3.3.6 Login/logout and User Context

fg »

‘ 3.3.3.6.1 Login/lLogqout and User Context Management
s . —_—

1

*

e

v’ ;

é 11s

A

- INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) §61-1840
3

.

e e e

L R N R L C LK

..........

%y
R BS-AIE(1) .KAPSE (1)
R 3.3.3.6.1.1 Inputs and Outputs
i
e Package USER_CONTEXT is
o procedure LOGIN(USER_NAME: in STRING;
N USER_PASSWORD: in STRING) ;
% Z- This routine locates the user’s
e -- top-level directory ("“ROOT.USERS." & USER_NAME),
. -= encrypts and compares the password,
I -= and then initiates the user”s initial
;3 -- command processor.
23 procedure LOGOUT;
S -= This ends the current session, and
-~ logs the user out.
o
; function CURRENT USER_NAME return STRING;
-- This function returns the current USER_NAME
éﬁ -= as specified to LOGIN.
- procedure CHANGE_VIEW(PARTITION: in STRING) ;
P == This procedure redefines the “CURRENT DATA
™ -=- window to refer to the newly selected
23 -~ PARTITION.
23) -- It is implemented using standard window
e, -~ operations (i.e., CREATE WINDOW)
> procedure CHANGE PASSWORD (PASSWORD: in STRING) ;
X -~ This is meant to be suggestive. Change
?ﬁ) -- password actually turns off echoing
k8, -= and requests the new password direactly
LA -~ from the user”s terminal. After
B -=- confirmation, the new password is
, -~ stored as the value of the USER_PASSWORD
;g == attribute of "“TOP LEVEL_DATA." (see below).
3 end USER_CONTEXT;
2
- X
>

-

KR AN,

3.3.3.6.1.2 Processing

When a user logs into the KAPSE, the LOGIN system requests a
USER_NAME and a USER_PASSWORD (not echoed). The USER NAME is
used to select a component from the USERS composite object, The
password is encrypted using a non-invertible function and
compared with the USER_PASSWORD attribute of this component. If
B the value matches, the component is taken to be the user”s top-
j§ level directory (composite object), within which, by convention,
% exists an attribute named INITIAL PROGRAM CONTEXT, which
2 specifies what command processor is to be invoked on the user’s
behalf, with standard text input and output connected to the

+ e g CE AT

=

T, A] \;"'
e &

g 116

- INTEAMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « 6171 661.1840

BS-AIE(l) .RAPSE (1)

user”s terminal. The INITIAL PROGRAM_CONTEXT normally identifies
the executable program for a full command language processor, but
may specify a more restrictive program designed to provide a user
with a more controlled environment (e.g., text editing only).

No additional primitives are needed to manipulate the USERS
composite object, or its components. Nevertheless, only users
with an appropriate window on the USERS composite object can add
new users to the system. Individual users may change their own

. USER_PASSWORD attribute, but not their USER_NAME.

When the MAPSE is initially installed, there is a single
< component of USERS named SYSTEM MANAGER, with password SYSTEM.
The SYSTEM MANAGER composite object has an
INITIAL PROGRAM CONTEXT with a SYSTEM window on the root of the
entire database. The first action after installation should be
to change the SYSTEM MANAGER password.

Although a sophisticated user or project manager could
create for themselves an arbitrary INITIAL_PROGRAM_CONTEXT
(limited of course by their access rights), most users will
choose to follow the APSE standard for program contexts
attributes, which include the following:

Standard program-context attributes:

String Attributes Value

PROGRAM_SEARCE_LIST => "“TOOLS., CURRENT DATA."

PARAMETERS => W
==~ NOo parameters to top-level
-= context.
=> "“NAME=>ABC,COUNT=>3"
-= Example of parameters to
-= lower-level context.
RESULTS => "
-- Empty string while still
-= active,
=> %, ,NUM_ERRORS=>5"
. == Qut parameters after
-=- the program completes.
=> “RETURN=>3.1415"
- : -= Result of completed
-- "function" program.

117

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 6611840

...
..............................

;. oy A3 Do v £ S At & A - A AR e A TR T e R A e S S S e Ty e
¥ 1
™~
_1'.. B5-AIE(l) .KAPSE(1)

e
o CONTEXT_STATE => “TERMINATED"

;1 -=- State of program context

i -=- after termination.

e => “ABORTED"

uﬂ ~-- State of program context

b -- abnormally terminated.

i => “COMPLETED"

oy -- State of program context

e -=- which has completed

. -=- processing but which

i -=- is waiting for its

,24 -= subcontexts to complete.

x => "RUNNING®

R -= State of program context
-= actively running.

. => “SUSPENDED"

*3 -~ State of program context

¥ ' -~ suspended by user.
% -= Context is waiting for

) -= debugging commands,

~ -= restart, or termination.
7

}Eﬁ Window Attributes Typical Target

= .

S “CURRENT_DATA User”s top-level composite object
o “TOP_LEVEL DATA User‘s top-level composite object
% “ROOT Root of database
i’k “TOOLS TOOLS component of ROOT
" “CALLER_CONTEXT Context of invoker
M
o]

%; “ PROGRAM The executable program object
1)

:i Other Attributes Value

iR “TERMINAL INPUT Simple text object

3 “TERMINAL OUT?UT Simple text object

¥ --"These two objects are managed by the
% == KAPSE terminal handler. Program
b, -- I/0 are connected to these text
-

-=- obJects, with TERMINAL INPUT lengthened,
- == and TERMINAL OUTPUT displayed
by the terminal handler under
keyboard control.

L&

IS A
4
i

2 RE AL s¥ 2%y
y B

S

R
R

s

118

L

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE » CAMBRIDGE, MASSACHUSETTS 02138 « (6171 561.1340

i

;;4; o

% ,. ,‘! L '-. L Pl -'} R q. RS .-.'_'..“..."... -._;-‘v‘.:-_.‘-_.. ol Cete e o U e - _., _ L ._-' ‘-') e : . ‘1
S

B5-AIE(l) .KAPSE (1)

“OPEN_HANDLES List of reserved handles
== Each open file (or partition) handle
== is represented by a reserved handle
== on the opened object (or partition),
== created within this list.
-- OPEN_FILE HANDLES.l and OPEN_FILE HANDLES.2
-- are always associated with standard text
-= input and output, respectively.

» “suB CONTEXT Program context object
This attribute is used by default to

== hold the context object for a program
== called as a sub~-progranm.

== The PARAMETERS attribute of the context
== is the parameters to this sub-program.

The program context captures in one object the information the
KAPSE needs to know about a running Ada program.

3.3.3.6.1.3 Special Requirements

The LOGIN procedure provides the primary protection against
unauthorized access to the AIE. Therefore, it is required that
the encryption algorithm of LOGIN be thoroughly tested for non-
invertibility and for resigstance to other code-breaking
techniques.

3 -3 u3 .6 02 - UlQ:__A_g_C_Oﬂﬂting
<<TBD>>

3.3.3.7 Inter-User Mail System

3.3.3.7.1 1Inputs and Qutputs

The following programs are available for sending and receiving
inter-user mail:

119

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 561-1840

..................

.......
. .

AR SR . D S e e s e

BS-AIE(l) .KAPSE (1)

X PCPOL A

Package MAIL SYSTEM is

procedure SEND MAIL(TO USER: in STRING; SUBJECT: in STRING;
MESSAGE OBJ: in STRING; MAIL SEQ _NUM: out INTEGER) ;

-=- T™is program sends mall to the designated user.

-=- The program constructs a path as

-= *"“ROOT.USERS."” & TO USER & ".MAILBOX"

== and attempts to invoke the operation

-- SEND on this private object. .
H -= If the caller lacks sufficient access
0 -= rights through this path, SEND _MAIL will fail.
‘ In addition, this requires a window allowing 1
-~ READ of the MESSAGE ORJ.
-- The returned MAIL SEJ_NUM may be used to check
-- if the mail has Deen read.

NEETIRG

pil b

5!
L3

-

function SEND_MAIL _CHECK (TO_USER: in STRING;

MAIL_SEQ | NuM: In INTEGER)

return BOOLEAN;
-=- This function indicates whether the message
== with the specified MAIL SEQ_NUM has been
-~ read.
-= This function simply fails if the message
-= was not sent by the caller.

WX

« 2

.t S .
ML DA

function CHECK MAIL return INTEGER;
-- Thig function returns a count of the number
-- of message objects in the user”s MAILBOX.
-- The path to the mailbox is assumed to be
- "TOP LEVEL_DATA .MAILBOX"

I A5

procedure READ MAIL(MESSAGE OBJ: in STRING)
-~ The next message in the user”’s mailbox is
-~ i3 copied into the specified MESSAGE_OBJ.
-- The following non-distinguishing attributes
of this MESSAGE OBJ will have appropriate values:

2

& s aues
]
[}

-= FROM => USER_NAME of SENDer,

-=- SUBJECT => SUBJECT as specified by SENDer,
== MAIL_SEQ_NUM => Mail sequence number of this
- message.

end MAIL SYSTEM;

W AL

3.3.3.7.2 Processing

Mail is implemented using private object operations. When a new
user is added to the system, the system manager creates a private
object called MAILBOX in the user’s top-level composite object by
copying the standard system mailbox template. Each of the MAIL

i &

O

sl

120

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, VASSACHUSETTS 02138 « (617) 661-1840

> € o

....... Padint e At St MadSdC R T A A T N A TG) de. thatn
................ B PR * . A - - . . . - - - -

B5~-AIE(Ll) .RAPSE (1)

subprograms given above simply invoke the appropriate operation
of a mailbox private object.

For example, SEND _MAIL could be written in Ada as
toll_ows:

procedure SEND MAIL(TO _USER: in STRING; SUBJECT: in STRING;
MESSAGE OBJ: in STRING; MAIL SEQ NUM: out INTEGER) is
* MAIL PATH: constant STRING :=

*"“ROOT.USERS.” & TO USER & ".MAILBOX";

' MAIL_PARAMS: constant STRING :=
= “FROM_USER=>" § CURRENT USER_NAME &
" ,SUBJECT=>" & SUBJECT &

" /MESSAGE_OBJ=>" & MESSAGE_OBJ;
begin

MAIL_SEQ NUM :=
INTEGER® VALUE (PICK_PARAM (
INVOKE_OPERATION

PRIV OBJ => MAIL PATH,
OPERATION => "SEND",

PARAMETERS => MAIL PARAMS
) .
"MATL SEQ_NUM®

)):

end SEND_MAIL;

3.3.3.7.3 Special Requirements

121

. INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617 651-1840

- . - EERS T T S R S Tt LT - - " - - . - . PN
Smlalnd s ol a e B lon B B nlhn B atio a2t a" a" .t A"

o

*,

2ANAY,

3.1

TR K
‘l

R ¢

2 8

7

i

e

, i

AU M)

-~

_& L

R

e fol

T

\ 68

-0"‘.';'." 2, !“l 2r ey v

~ 2

AL

"3..-5{'- A

i
A

a7k o TR TE TN

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (817) 661-184Q

PAR A i

(e in Sarao et o gl Al il L e S

BS~AIE(l) .KAPSE (1)
3.3.4 Bistory and Archiving (XAPSE.HISTARCH)

3.3.4.1 History and Archiving Operations

History records manipulations of objects, and provides for
the reconstruction of previous states of objects.

3.3.4.1.1 Inputs and Outputs
History is recorded automatically while programs execute.

History is made available to tools via the KAPSE/Tool interface
package HISTORY:

122

...............

o v FURPERP WA SN UL Tt PN SR SIS P G GN S NN G I IS AP I SRR S IR ORI S S N S St L'Lnl

<o

{'.; BS-AIE(l) .KAPSE(1)

v

- with CALENDAR; -- Defines type TIME.

hoa Package HISTORY is

A type HISTORY CLASS is (SOURCE, DERIVED) ;

X type HISTORY REF (CLASS: HISTORY CLASS := DERIVED) is private;

N type HISTORY REF_ARRAY is array'(POSI'rIVE range <>) of HISTORY_ REF;
§ function GET HISTORY REF (NAME: in STRING) return HISTORY REF;

-- get current "STATE" of object.

procedure RECREATE (STATE: in HISTORY _REF (CLASS=>SOURCE) ;
NAME: in STRING) ;
== Given the "STATE" of a source object, recreate
-=- jits content and user attributes in a new database
-= oObject with the given NAME.

ASs 1 p %))0
B

procedure NEW SOURCE ARCHIVE (SOUEE OBT: in STRING) ;
-= This creates a new source archive with
== SOURCE OBJ as its state number oOne.

ath Y

procedure OLD_SOURCE ARCHIVE (SOURCE OBJ: in STRING;
STATE: in HISTORY REP (CLASS=>SOURCE));

== This specifies that SOURCE OBJ is a .

-- revision of STATE, and should be |

-- assigned to the same source archive.

‘4’3‘ ,’.'ﬁ..‘.;.:f" .

l
function GET DIRECT CONSTITUENTS (STATE: in HISTORY_REF)
return HISTORY REP ARRAY;
4 -= Given STATE, return list of states from which
S, == this state was directly derived. If object is
v -=- a source object, no more than one state is
\ -= returned -—— that of the direct predecessor
?é == to this state.
L function GET_SOURCE CONSTITUENTS (STATE: in HISTORY_REF)
: return HISTORY REF_ARRAY;
‘ -=- Given STATE, return list of source states from
N == which this state was derived, directly or
ny -=- indirectly. Derived object states are included
- == in list only if their history was off-line
. -= and thus could not be traced immediately.
:';'3 function GET_HISTORY PARAMETERS (STATE: in HISTORY_REF)
N return STRING;
b == Por derived object state, return STRING
a == with parameters provided at
j -= invocation of program producing STATE.
7o ' -- Por source object state, return list
<3 == of the user attributes of the object
%) == at time of merge into archive.
-3 -~ STRING is returned in (label=>value,...) format.
o
- procedure HISTORY ACTIVATE (STATE: in HISTORY_ REF;
Y
4
X 123
4 ; .
INTERMETRICS INCORPORATED + 733 CONCORD AVENUE » CAMBRIDGE, MASSACHUSETTS 02138 « (617) 6811840
WS WY Y ‘;’L‘;.l: e R R A A S S .L

BS~-AIE(l) .KAPSE (1)

TIME_LIMIT: in DURATION) ;
-=- This procedures requests that a particular history
-=- gcript or archive be activated (brought on-line).
Depending on bulk-storage hardware, this may occur
-~ immediately or await operator attention, up to the
-~ gpecified TIME LIMIT.

function HISTORY ON LINE(STATE: in HISTORY_ REF) return BOOLEAN;
-- This Function returns TRUE if the referenced history
-= script or archive is now active (on-line).

function HISTORY_TIME(STATE: in HISTORY_REF)
return CALENDAR.TIME;
function HISTORY MAKER (STATE: in HISTORY_REF)
return STRINS;
== The above two functions return the time/date and
-- USER_NAME associated with the specified script
-= Or source archive STATE.

3.3.4.1.2 Processing

The history attribute of a database object represents its
"state,* and consists of a an index and a window on either a
source archive for a source object, or a program invocation
script for a derived object (see 3.2.4.3.9). The index is used
to zelect one state from all the states associated with the same
source archive or script.

Scripts and archives are exteneded objects created within
the SYSTEM component of the ROOT composite object, with
attributes to indicate whether the content i3 present, or has
been moved off-line to tape. When the script or source archive
is moved off-line, its content is copied to tape and then
deleted, and its attributes are set up to identify which tape
holds the data.

If the referenced history is off-line, many of the above
primitives will fail. The primitives HISTORY_ACTIVATE and
HISTORY ON_LINE may be used to affect or check the on-line status
of a particular source archive or script.

All ocbjects when initially created are treated as derived
objects, with a HISTORY that refers to a program invocation
script. The primitives NEW_SOURCE ARCHIVE and OLD SOURCE ARCHIVE
may be used to replace ~the BISTORY attribute’s window on the
script by a read-only window on a source archive. Source
archives are used for maintaining multiple states of the same
basic text, where the content itself is more important than the
script of the program invocation used to create the content. The
date, time, and USER_NAME from the program invocation script are

124

INTERMETRICS INCORPORATED » 733 CONCORD AVENUE « CAMBRIOGE, MASSACHUSETTS 02138 « (617) 661-1840

...........
...............
.................................
......................

23005 F N

R

o

AT SR AV

Fre.

P e R N P W W aTad VeV w T T e

AT s Tt St Mt S st ugn St MM ACI A IV S AP N S R R A

» D i o B e I et e e T et

B5-AIE(l) .KAPSE (1)

transferred to the source archive for each of its component
states.

The source archive is stored in a form allowing the
efficient reconstruction of any of the component states, while
minimizing the space necessary to represent the multiple states.

Bistory scripts for derived objects are created
automatically while programs execute. The program invocation
script first records the date, time, USER NAME, and parameters.
The count of modified objects is initialized to zero. As any
database object is opened/created for reading or writing, a
read-only window is entered in the script referring to the
object, plus a copy of its pre-existing history attribute (if
any) . When an object which has been modified is closed, the
count of modified objects is incremented, and the object’s
history attribute is updated to include a read-only window on the
script, and the current modification count as the history index.

3.3.4.1.3 Special Requirements

The space occupied by history scripts and source archives,
as well as the time required to record them (for scripts), or
insert in/extract from them (for archives) must be as small as
possible to preserve overall performance of the KAPSE,

3.3.4.2 Backup and Recovery _

An important design feature of the KAPSE is that backup
and incremental recovery can be performed while the system is up
and running. The tape (or bulk-storage) backup program begins by
simply doing a READ COPY reserve of the root of the entire
database. After that operation, the backup program may progress
at its own pace through the hierarchy of objects, knowing that
the data it reads reflects an internally consistent snap shot of
the entire database.

3.3.4.2.1 Inputs and Outputs

The following system programs are available for full and
incremental backup, and incremental recovery:

125

INTEAMETRICS INCORPORATED - 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 561-1840

.......
..................

PR A S i - 3 i At i TR e i S S A A AN A AR ASLIENS P AL A A A

BS-AIE(l) .KAPSE (1)
Package BACKUP RECOVERY is

procedure FULL BACKUP (TIMESTAMP: out TIME SEQ_NUMBER) ;
-- This program copies a snapshot of the entire
-- database to the tapes mounted by the operator.
== TIMESTAMP is the maximum time sSequence number
== of any of the blocks transferred to tape.

procedure INCREMENTAL_BACKUP(BASE LINE: in TIME_SEQ_NUMBER;
TIMESTAMP: out TIME SEQ NUMBBR), "
-- This program copies blocks to tape that have been
-- modified since the BASE_LINE time sequence number.
-- It also copies any block superior to a block that
== hasg been modified, to ensure that the copy on
-=- tape is a connected DAG (directed acyclic graph).

érocedute RECOVERY (OLDNAME: in STRING; NEWNAME: in STRING;
TIMESTAMP: in TIME SEQ_ NUMBER) ;
-- This program attempts to re-create as NEWNAME

-- the specified object as it was at the specified
-= time sequence number.

end BACKUP_RECOVERY;

3.3.4.2.2 Processing

The KAPSE maintains an index of all backup tapes, indicating the
range of time sequence numbers appearing on the tape. Each
backup tape includes a header identifying its range. The rest of
the tape is in a standard format with each block including its
BLOCK_ID and reference count from when the block was dumped from
disk.” The blocks are topologically sorted before being dumped so
that any element of the hierarchy on the tape may be located in a
single sequential scan through the tape.

On recovery, the KAPSE instructs the operator to mount
the appropriate incremental and full backup tapes, in order from
latest to earliest, until the £full content of the specified
object has Dbeen reconstructed as of the requested time sequence
number.

3.3.4.2.3 Special Requirements

126

INTERMETRICS INCORPORATED » 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-184Q

.....
..... AP R I A Nt e e e T St ot A
bt 5 O DIV S W T S ST T VAL VAT VP U U WA WA . PR LA LI) LA WPy el s M L. V. SN VR ST S WA WY WO WILAP W AE VI DIPA SEO DR

+ 4
oy

.(«—‘ N‘.- "y'-'.‘r?'.*~'£¢.'v ~ ..v \. ‘.-_..;". .
<~ S A A E

..

BS-AIE(l) .KAPSE (1)

3.3.4.3 Configuration Management Support

Configuration reporting and management are not separable from the
rast of the KAPSE databage facilities, but are rather integral to
the reporting and management of attributes and partitions. The
following KAPSE primitives, described in other sections of this
document, are particularly relavant:

KAPSE Primitive

Section of this document

SET_ATTRIBUTE 3.3.2.2
GET_ALL_ATTRIBUTES

CREATE_WINDOW 3.3.2.1
OPEN_PARTITION 3.3.1.5
GET_NEXT_COMPONENT
SET_ROLE_ACCESS 3.3.2.3.1

GET ROLE_ACCESS
GET_ROLES

GET DIRECT CONSTITUENTS 3.3.4.1
GET_SOURCE CONSTITUENTS

GET_HISTORY_REFS

In addition to the above primitives, a small set of standard
MAPSE tools are provided to exemplify the use of the facilities.

3.3.4.3.1 Partition Listing Tool

3.3.4.3.1.1 Inputs

and Qutputs

This tool is designed to produce the configuration and attribute

reports required by

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE » CAMBRIDGE, MASSACHUSETTS 02138 « (617) 681-1840

the [SOW80]:

127

““““““

LA T A W oy T AL NSNS S EALS LA AR AR R RN AR

; BS-AIE(l) .RAPSE (1)

3 procedure LIST PARTITION (PARTITION: in STRING := "'CUR.RENT_DATA.";
ATTRIBUTES: in STRING := "");

-- This program prints on the standard text

-= output the distinguishing attributes
, -= (ie., names) of all of the components of the
Qq -~ gpecified partition, as well as the requested
L2 -- non-distinguishing attributes, specified in

== the parameter ATTRIBUTES as a

" -~ comma-separated list of attribute labels.
3? -~ If ATTRIBUTES is "*" then all non-null
o attributes of the components are printed.
-~ If ATTRIBUTES is null then no non-distinguishing
-- attributes are printed.
Notice that by default, the program lists only the
-=- distinguishing attributes of all of the components
== of the partition implied by the .CURRENT DATA

iy,

-= window. »
¥
j} This program may be used to list attributes of:
A 1. The components of a composite object
g: (ie., a configuration);
:ﬁ 2. Some subset of the components, which satisfy a
K- more complicated partition specification;
Y 3. A single simple object.

3.3.4.3.1.2 Processing

The program LIST_PARTITION is implemented using the RAPSE
primitives OPEN_PARTITION, GET_NEXT_COMPONENT, and
GET_ALL_ATTRIBUTES.

e Y

o
oy

3.3.4.3.1.3 Examples

‘

.x
3y
Lr?

-—

-

ORI

—h s e

b

128

S e
s Y

[W

s.

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

.........
...................
.....................
......................

X
&
X
A
A

.
hY
.'
]
'«

-~ ~

%‘a—)’;

B5-AIE(l) .KAPSE(1)

SET_ATTRIBUTE ("ALPHA", "PURPOSE", "FUN"):;
SET_ATTRIBUTE ("ALPHA", "CHECK_LEVEL", "2");
SET_ATTRIBUTE ("BETA", "PURPOSE", "WORK") ;

AR,

B2 SET ATTRIBUTE ("BETA", *CHECK LEVEL®, "2");

£ SET_ATTRIBUTE ("GAMMA®, "PURPOSE", "FUN");

£ LIST_PARTITION (" (CHECK_LEVEL=>2)", "PURPOSE");

' -- The following would appear on the standard output:
2 -- Partition (CHECK_LEVEL=>2) Attributes PURPOSE
& ~= ALPHA PURPOSE=>FUN

S -~ BETA PURPOSE=>WORK

2 LIST_PARTITION (" (PURPOSE=>FUN)*, "CHECK_LEVEL") ;

N : -- The following would appear:

Ly

% -- Partition (PURPOSE=>FUN) Attributes CHECK_LEVEL
-4 -=- ALPHA CHECK_LEVEL=>2

%) ~-= GAMMA No CHECK_LEVEL

R
v

LIST_PARTITION; -- Use the defaults
-- The following might appear:

-= Partition “CURRENT DATA.

-= ALPHA
-= SETA
-~ DELTA
i == GAMMA
o -= KAPPA
%
3:,;’ -- Notice that all partitions are sorted in ASCII
s -= lexicographic order.
5 3.3.4.3.1.4 Special Requirements
I
i

3.3.4.3.2 A Configuration Management Facility
3.3.4.3.2.1 Inputs and Outputs

"

This set of tools provides a simple configuration management
. facility:

3
g

3 .'v’:‘;ﬁ

129

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 6811840

EES

T e A e

..................

' BS-AIE(l) .KAPSE (1)

o

3

function MOST_RECENT (PARTITION: STRING; ATTRIBUTE LABEL: STRING)

return STRING;
-- This program scans the designated partition for the item
-=- with the largest value for the specified
-- attribute, and returns that value as a string.
-= The presumption is that the designated attribute is
-= being used as a revision number, and the desire is
-= to determine the most recent revision.

IR

R

procedure ITEM _RESERVE (ITEM_NAME: STRING; WINDOW_PATH: STRING) ;
-- ThiS tool reserves the item with the Specified name,
and creates a window at WINDOW _PATH through which
-- the item can be created/edited as necessary.
-= The ITEM NAME may be the name of an existing object,
. -- or it may be a name generated by determining
3 == the MOST_RECENT revision and incrementing the revision
. -~ attribute value to create a new name, or by assigning
; -- it a new value for some version-like distinguishing
e -- attribute.
-= A copy of the state of the object is made for fallback
-= on ABORT (see below).
-- This program will exit with an error if the ITEM is
-= already reserved, or the user does not have rights
== tO reserve it.

ANk)

T3 RG PEE P
i
]

procedure ITEM _RELEASE (WINDOW_PATH: STRING) ;
-- This tool deletes/Tevokes the desxgnated window, and
-~ releases the item associated with it for access by
-= others via ITEM_RESERVE. The fallback copy is deleted.

3

v

)

procedure ITEM_ABORT RESERVE (WINDOW_PATH: STRING) ;
-= This tool aborts the reservation of the associated
-~ jitem, and restores it to the fallback state.

function WHO_HAS _IT(ITEM_NAME: STRING) return STRING;
-- This tool returns the USER_NAME of
-= the user who performed the reserve on the item,
-= or returns the null string if the item is not
-= reserved.

3.3.4.3.2.2 Processing

 REGAGE

o~
&

?5 The processing of these tools can all be quite easily
; defined using the primitives of the KAPSE/Tool interface,
L2 especially those primitives identified at the beginning of this
- section. In general, they create and delete windows on the
" partition which includes exactly the item being reserved, and
34 record in user-defined non-distinguishing attributes of the item
ﬁ the fact that it is reserved, and a fall-back copy of it.

o Note .that this notion of "RESERVE" persists across program
> executions, while the RESERVE of the KAPSE/Tool inter face package
¥

h 130

. INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (817) 661-1840

Y TN W Ty e T VR EEY LV LYWL TN Ty . e L Ty e
L 3 B Wl it b Sl b 4 e A Ve A A Rt VL SR R A e S A e A A o S :

B5-AIE(l) .KAPSE (1)

ACCESS_SYNCHRONIZATION (3.3.2,3) only applies while a program is
running, and is automatically released when the program exits.
Nevertheless, the primitives provided by the KAPSE are essential
to safely implementing a persistent reservation, if only to

ensure that two independent programs do not accomplish the
ITEM_RESERVE simultaneously.

o hoh o Bk ar gy
A}

131

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617 561.1840

- = bl 2 2 ‘_L-..;A_-“_A.L'A_.kggi

BS-AIE(l) .RAPSE (1)
3.3.5 Run-time System (RAPSE.RTS)

3.3.5.1 Unit Execution Support

The following sections describe the technigques used to
support the execution of Ada subprograms and blocks on IBM 4341
VM/SP systems. The subprogram calling conventions used are not
compatible with existing IBM 4341 conventions; special interface
coding will be required if subprograms compiled by other language
processors are to be called.

3.3.5.1.1 1Inputs

3.3.5.1.1.1 Call Frames

A call frame is a contiguous block of storage, normally
allocated on the primary stack, which contains the saved
registers, parameters, and static-sized local variables
asgsociated with a particular subprogram or entry invocation. A
typical call frame is laid out as follows:

P

. v = - = > L +
register save !
frame header area
b + - + parameter i
| spill area | | area
+ + = > 4= -

local storage
area

+

subprogram
communication
area

e e
\ “-*

The fields in a call frame contain the following information:

1. Prame Header. A frame header contains a register save area

and parameter area. The register save area is used to store

- the contents of general registers which must be preserved

across the execution of the unit. These registers are saved

on entry and restored on exit. The parameter area contains

actual parameter values and references. The size and layout

of the parameter area is dependent on the number and type of
formal parameters specified for the subprogram.

132

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02128 « (817) 561-1340

Nt e, e e e . T T T Loa el e el et . - . . . -
L T e T e T e et L T T N I L I S R Tt e - .
. . ®a iy e AR IR WL SR | I A T T A T S R N . - et .
Bechacih >y PN G S Y~

Ay A

aY s el

RN AN, AR

AL S0 ey S R sttt 2 5% €
v

(T3

0 0 W et

L T S

Ot W TR AR

~

DL SAN N E A A

EVRTR TS o W A

e — pod T T Tl T TR e TR e TR e YUY T e Y .Y
£ Aol ek g Nt ahh Mg AN g f;r‘q',i',t".-.r.'.'.'.‘«'.'."_".'.'.-. A R A ‘

B5-AIE(l) .RAPSE (1)

2. Spill Area. The spill area is used by the generated cocde to
temporarily store the contents of registers when they are
needed for other purposes. The size of the spill area
needed is statically determined by the compiler.

3. Local Storage Area. The local storage area contains all
statically-sized (i.e. those whose size is known at compile
time) local variables. The local storage area also contains
pointers to dynamically-sized local variables for which
space has been allocated on the secondary stack.

4. Subprogram Communication Area. The subprogram communication
area is required 1n a call frame if any non=-static
subprograms are called from within the body of the current
subprogram. The communication area is used to store the
frame headers for these called subprograms, and has a pre-
allocated size sufficient to contain the largest of the
headers.

3.3.5.1.1.2 Parameter Passing

The method used to pass a parameter is dependent on the type
declared for the formal:

1. Scalar or access. Passed by copy.

2. Constrained record or array. If the values are § bytes or
Tess In length, pass by copy, otherwise pass by reference
(address) .

3. Unconstrained record. Passed by reference, If the actual
parameter value 1s constrained, the caller sets a flag in
the reference, the formal parameter then inherits the
constraints which applied to the actual.

4. Unconstrained array. Passed by reference. A descriptor for
the array must bDe provided by the caller, a reference to the
descriptor is passed as an additional implicit parameter.

S. Task. Passed by reference (address of 1TCB).

The parameters are passed in the parameter area, with those
needing double-word alignment (long floating values) first,
full-word alignment (references, access values, integers, etc.)
second, and half-word alignment (enumeration, short integer
values) last.

- Scalar values less than 16 bits in length (enumeration and
boolean types) are passed right-justified and zero padded in a 16
bit half-word.

References consist of a 24 bit memory address right
justified in a 32 bit full-word. References to unconstrained

133

INTERMETRICS INCORPORATED « 733 COMCCRD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 » 1617) 661-1840

B5-AIE(1l) .RAPSE (1)

record types contain a constrained flag in the leftmost (sign)
bit of the word.

3.3.5.1.1.3 Unit Data Area

Bach subprogram body is preceded by a unit data area which
contains static information specific to that body. The unit data
area contains the following fields:

unit type

call frame size

frame header size

cxéoption map ptr

exit code address

— 111t

+—+—+—+—+—+

The executable code for a unit begins at a fixed (for all units)
offset from the beginning of its unit data area.

3.3.5.1.1.4 Register Usage

The operations provided use the following registers for
passing parameters:

req. normal use
CODE Code base register.

GLBL Global base register.
FRAME Pointer to current call frame,

RET Subprogram return address.

SBC Static back chain.

UDA Pointer to unit data area for current unit.
SCA Pointer to subprogram communication area in

current call frame.

3.3.5.1.1.5 Execution Support Operations

The following operations are provided to support the
execution of executable units:

134

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02128 « (617) 661-184C

.. N .
T N T St S

talalatafalateteley.s.n

B5-AIE (1) .KAPSE (1)

oper. parameters description

SAVREG SCA, FRAME, UDA Save caller”s registers.

RSTREG FRAME Restore caller”“s registers.
SUBCALL UDA, SBC, SCA, RET Call subprogran.

GENPASS UDA, SBC, SCA, RET Pass generic subprogram parameter.

GENCALL UDA, SBC, SCA, CODE, RET Call generic subprogram parameter.

3.3.5.1.2 Processing

3.3.5.1.2.1 Subprogram Calls

SUBCALL is used to call subprograms which £follow the
standard Ada calling conventions. Prior to executing a SUBCALL,
UDA must contain the address of the unit data area for the
subprogram, and SBC contains the address of the call frame
belonging to the static parent of the subprogram (when needed).
SUBCALL loads the address of the instruction following the
SUBCALL into RET, and branches to the body of the indicated
subprogram (which is at a fixed offset relative to UDA).

All general registers, other than the designated
temporaries, are preserved across a SUBCALL. All of the floating
point registers are considered to be temporary, so they must be
saved by the caller as needed.

3.3.5.1.2.2 Subprogram Prologue Code

Prologue code precedes the code which actually implements
the body of a subprogram. The standard prologue executes SAVREG
to save the caller”s general registers in the caller”s subprogram
communication area. ALFRAME (see Storage Management) is then
Ccalled to allocate the subprograms ca rame on the primary
stack. Following the prologue code, FRAME contains the address
of the call frame, and CODE has been loaded with the base address
of the first subprogram code section.

3.3.5.1.2.3 Subprogram Code Sections

A subprogram body consists of one or more code sections.
Each code section is a maximum of 4096 bytes long and consists of
a series of instructions followed by the literal pool for that
section, Base register CODE always points to the beginning of
the current code section, and must be set up prior to entering a
new section.

135

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE » CAMBRIDGE, MASSACHUSETTS 02138 » (617! 661-1340

v'-‘.-"-'q'-

- - e e . -
- - - e - 0 -
\‘.&'\‘-'.'q't'-""-\'\1'.~.-~'.‘ ST PR i Tt gt ‘a : .
PN TN TN VU T TR R RO Y NS PG T W . S Py Loades tal P kY P SO S

BS-AIE(l) .XKAPSE (1)
3.3.5.1.2.4 Subprogram Exit Code

The normal exit code executes RSTREG to restore the caller”s

LAY registers, then returns control to the next instruction in the
;ﬁ‘ caller’s code (which is pointed to by RET). A call ¢to RLSTKSEG
is automatically executed if the subprograms call frame was the

. last one in the current stack segment.

The address of the normal exit code is stored in the unit
- data area so that it will be available to the exception handling
R mechanism.
%
X 3.3.5.1.2.5 Static Subprograms

The call frame for a static subprogram is allocated in
static storage rather than on the primary stack. The caller
stores the actual parameters directly in the preallocated frame.
When calling a static subprogram, SCA must be loaded with the
address of this frame; the calling sequence is otherwise
identical to that for normal subprograms.

In addition to the statically allocated frame, a static
subprogram requires a vestigial call frame on the primary stack,
consisting only of a subprogram communication area, if normal
subprograms are called from within the body. If no such calls
are made, the code to allocate a frame on the stack may be
omitted from the prologue.

3.3.5.1.2.6 Generic Subprogram Parameters

Ada permits entries or procedures to be used interchangeably
as actuals for generic formal subprogram parameters (sSee Generic
Instantiation). 1Inside an instantiation, it is not possible to

stinguis between the two cases. Two operations are provided
pernit transparent implementation of calls to generic subprogram
parameters. GENPASS is executed to pass an actual entry or
procedure to a newly instantiated generic. Prior to executing
GENPASS, UDA, SCA, and SBC must be loaded with the information

L LT
S

(.3

o

L}

- needed when the actual entry or procedure is called. GENPASS

1y stores the contents of these registers in the generic subprogram

‘,ﬁ paramster descriptor corresponding to the parameter.

:e GENCALL is executed to actually call the parameter. UDA,

T SCA, and SBC are reloaded from the parameter descriptor, and
control is passed to the actual procedure or entry.

4

.54

i 3.3.5.1.3 OQutputs

ﬁ: A function subprogram returns a scalar value in one of the

o~ following registers:

X,

11;1

136

:‘{\E"(“- .

INTERMETRICS INCORPORATED » 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « {617) 861-1840

L%
L
&
%
s

I y

R P SR W VA

B5-AIE(1}).KAPSE (1)

VAL Integer, enumeration, fixed point or
access values.
PPVAL Ploating point values.

Non-scalar values are returned as follows:

1. Const:ainod array or record. Space for the result is
preallocated” by the caller, address passed to function via
an implicit parameter.

2. Unconstrained record. Result allocated by function on
secondary stack, address returned to caller via an implicit
parameter.

3. Unconstrained a:ra&. Same as unconstrained record types, in
adaltion, arrzay descriptor is returned to caller using a
- second implicit parameter.

3.3.5.1.4 Special Requirements

Due to the special interfaces required and to achieve a
reasonable level of efficiency, all unit execution support
operations will be implemented in IBM 4341 machine language.

3.3.5.2 Storage Management

The following run-time storage structures are used to
support the execution of compiled Ada code:

1. Storaqe ment. A storage segment is a contigucus block of
memory s a multiple of PAGESZ (a compiler parameter)

bytes in longth. Storage segqments are used to implement
stacks and heaps. .

2. Primary Stack. Primary stacks are used exclusively for the
storage oOf call frames (see Unit Execution Support)
following normal stack discipline. "Each task In a program
(and the main subprogram) has a primary stack associated
with it.

ondary Stack. Secondary stacks are used for the storage
- of loca§ “variables and function return values whose size
could not be determined at compile-time. A secondary stack
is managed using a mark/release strategy. A main program
and each of the executable tasks within the program has a
secondary stack associated with it.

4. Collections. A collection is used for the storage of access
data (1.e. data referenced by access values) associated with
an access type which was defined with a STORAGE_SIZE clause.
Storage for individual data items within a collection can
not be reclaimed; the storage occupied by the entire

137

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « 617) 661-1840

?.‘s'l“n'c PR I
al

B5-AIE(1l) .KAPSE (1)

4
1 collection is reclaimed on exit from the unit in which the
. type was declared.

5. Controlled Heap. Access data belonging to a type for which

a CONTROLLED pragma has been supplied is allocated on the

controlled heap. Controlled heap data is not automatically

reclaimed; the user may explicitly deallocate such data

) using an UNCHECKED DEALLOCATION procedure which has been
- instantiated for the type.

6. Checkpoint Heap. Access data belonging to a type for which

a EKEK‘EELEKE% pragma has been supplied is allocated on the

g checkpoint heap. The user may mark the checkpoint heap

using the supplied MARK procedure. The user may at some

later time call the RELEASE procedure to reclaim storage
allocated after the corresponding call to MARK.

- 7. Default H . For an access type, the user may specify at
) most one % the three preceding storage categories (through
Kl a STORAGE SIZE clause, or a CONTROLLED or MARK RELEASE

pragma). If none of these categorles is specified, data is
allocated on the default heap. The default heap is
allocate-only, storage can not be reclaimed through user
action or automatically.

3.3.5.2.1 Inputs and OQutputs

The storage management package implements a variety of low-

level operations which are invoked by the generated code. A user

X visible package is also provided which allows the user to mark
', and subsequently release storage on the checkpoint heap.

3.3.5.2.1.1 Register Usage

The low~level operations use the following registers for

; passing parameters:
req. normal use
SIZE Size of object (in bytes).
PTR Pointer to object (address).
VAL Function return value.

DESC Pointer to collection descriptor.
FRAME Pointer to current call frame.

SCA Pointer to subprogram communication area in
- current call frame.
UDA Pointer to unit data area for current unit.
138

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « 16171 661-1240

B5-AIE(l) .KAPSE(1l)

3.3.9.2.1.2 Primitive Storage Operations

oper. registers description
ALPAGES SIZIE, PTR Allocate a block of memory pages.
ALSEG SIZR, PTR Allocate a storage segment.
RLSDG SIZE, PTR Release (deallocate) a storage segment.
3.3.5.2.1.3 Stack Operations

oper. registers description

- ALFRAME SCA, UDA, FRAME Allocate a call frame on primary stack.
RLSTKSEG SCA, FRAME Release a primary stack segment.
MKSECSTX PTR Mark secondary stack.
ALSECOBJ SIZE, PTR Allocate object on secondary stack.
RLSECSTK PTR Release secondary stack storage.

CPSECSTK VAL, PTR, SIZE Copy secondary stack object.
3.3.5.2.1.4 Heap Operations

oper. registers description

ALCOLOBJ DESC, SIZE, PTR Allocate object in collection.
ALCTLOBJ SIZE, PTR Allocate object on controlled heap.
RICTLOBJ SIZE, PTR Release controlled heap object
ALCHKOBJ SIZE, PTR Allocate object on checkpoint heap.
ALOBJECT SIZE, PTR Allocate object on deiault heap.

3.3.5.2.1.5 User Checkpoint Heap Operations

package MARK RELEASE is
type CHECKPOINT is limited private;
exception RELEASE ERROR;
procedure MARK (CP: out CHECKPOINT);
procedure RELEASE (CP: CHECKPOINT);
end MARK_ RELEASE;

3.3.5.2.2 Processing

3.3.5.2.2.1 Primitive Operations

’ A two-level storage management scheme will be used to
minimize the effects of storage fragmentation. The operations
discussed in this section manipulate storage segments, which are
a fundamental storage structure used to implement both stacks and
heaps. Storage segments are always allocated in increments of
the host machines page size (4096 bytes on the IBM 4341). A pool
of free storage segments is maintained on a program wide basis.
When this pool is exhausted, additional memory is obtained
directly from the host operating systen. .

139

LT I I T S T T SRS U Y I IR R IR .
L PN TS TP DAL W WO UL S P G PV, 1P NP AP DR AP WAR SN S I

- oW T Ty W T W T e 4T e YT e T e &

BS-AIE(l) .KAPSE (1)

ALPAGES is called to obtain a contiguous block of wvirtual
memory pages. On entry, SIZE is expected to contain the size of
the block needed (which should be a multiple of PAGESZ bytes).
The block of memory is obtained through a request to the host
operating system (VM/SP). The base address of the block is
returned in PTR.

DIONOp

SIS L DA S 5%

ALSEG is called to obtain a storage segment. On entry, SIZE
is expected to contain the size of the segment (which should be a
multiple of PAGESZ bytes). If the free segment pool contains a
. segmeant of at least the requested size, then that segment will be
» returned. Otherwise, ALPAGES is called to obtain additional
memory. If ALPAGES is unable to obtain additional memory,
N STORAGE ERROR is raised. The base address of the segment is
s returned in PTR.

. RLSEG is called to release a storage segment which is no
¢ longer in use. On entry, SIZE must contain the size of the
1 segment (which must be the value specified when the segment was
> allocated) , and PTR must contain the base address of the segment.
The segment is returned to the free segment pool.

A 3.3.5.2.2.2 Stack Operations

! A primary stack consists of zero or more, not necessarily

: contiguous, storage segments. Call frames are normally allocated
on the primary stack on entry to subprograms, accept bodies, and
other executable units. A call frame must fit entirely within a
single stack segment to avoid addressing problems.

-

ALFRAME is called to allocate a call frame on the current
primary stack. On entry, SCA is expected to contain the address
of the subprogram communication area (see Unit Execution Support)
in the call frame of the calling unit, and UDA should contain the
N address of the unit data area for the current (called) unit. The
size of the stack frame needed is obtained from the unit data
area. The new frame is allocated starting at the base of
caller’s communication area. If there is not sufficient room in
the current segment to allocate the frame, a new segment is
obtained by calling ALSEG, the caller”s communication area is
copied to the beginning of that segment, and the frame is then
allocated. The base address of the frame is returned in FRAME.)

"1 Y g P

8.

Call frames are implicitly deallocated on exit £from the

’ units where they were allocated. When the last frame in a

: segment is deallocated, RLSTKSEG is called to return the segment
to the free pool (through a call to RLSEG).

A secondary stack consists of zero or more storage segments.
/! It is normally marked on entry to, and released on exit from,
- executable units and blocks which contain dynamically-sized local
s variables and do not return a dynamically-sized result. An

3 140

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CANMBRIDGE, MASSACHUSETTS 02138 » (617} 661-1340

- YT VNV T TN TRV s YT w
W e T L L T T e e, Ty (S, T v owR b Al R v '.».’..'._‘q

B5-AIE(l) .KAPSE (1)

object allocated on the secondary stack must reside entirely
within a single storage segment.

MKSECSTK is called to obtain the current secondary stack
mark. On entry, PTR must contain the address of a location which
will receive the mark. Pointers to the current secondary stack
segment and the next available byte within that segment are
stored at that location.

- ALSECOBJ is called to allocate an object on the current
secondary stack. On entry, SIZE must contain the size of the
object in bytes. If there is sufficient room in the current

. secondary stack segment, then the object is allocated there.

- QOtherwise, a2 new secondary stack segment is obtained through a
call to ALSEG, and the object is allocated at the beginning of
that segment. The address of the allocated object is returned in
PTR.

RLSECSTK is called to release the storage allocated on the
current secondary stack since an earlier call to MKSECSTK. On
entry, PTR must contain the address of the location where the
mark was stored. Secondary stack segments allocated since the
mark was set are released through calls to RLSEG, then the
secondary stack pointers are reset specified by the mark.

A special case in Ada is the declaration of a constant whose
size is known only after "the initialization expression is
evaluated. Since space for the constant can not be allocated on
the secondary stack before the expression is evaluated, CPSECSTX
is called after evaluation to copy the constant to a mark which
was set prior to evaluation. On entry, SIZE must contain the
actual size of the constant, VAL must contain the address at
which the constant was left following evaluation, and PTR must
point to the location of a secondary stack mark which was set
before evaluation. If there is sufficient room in the secondary
stack segment indicated by the mark, the constant is copied
there. Otherwise, a new secondary stack segment is obtained and
the constant is copied to it. Any unused segments in the
secondary stack following the mark are then released through
calls to RLSEG. The new address of the constant is returned in
VAL.

3.3.5.2.2.3 Heap Operations

The allocation operations described in this section are used

to implement allocators (new operators) for the corresponding
categories of access types.

A fixed amount of space is allocated for a collection when
the access type definition is elaborated. The space may be

allocated in static storage, in a call frame, or on the secondary
stack, depending on where the type was declared, and whether the

141

INTERMETRICS INCORPORATED » 733 CCNCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

e s i
P W R N N .

BS-AIE(l) .KAPSE (1)

size of the collection could be statically determined. A
collection descriptor is constructed at the beginning of the
allocated space. This descriptor contains an allocation pointer,
which initially points to the first free location within the
collection, and a pointer to the end of the collection.

ALCOLOBJ is called to allocate an object within a
collection. On entry, DESC must contain the address of the
collection descriptor, and SIZE must contain the size of the
object in bytes. If sufficient space remains in the collection,
the object is allocated, and its address is returned in PTR.
Otherwise, STORAGE_ERROR is raised.

An UNCHECKED DEALLOCATION procedure may be instantiated for
an access type which is implemented using a collection. The only
effect is to clear the specified access variable.

The controlled heap is implemented using 2zero or more
storage segments. The size of the controlled heap may be
expanded through allocation of additional segments, however,
these segments are never reclaimed. A pool of the free objects
within the segments is maintained for the entire program.

ALCTLOBJ is called to allocate an object in the controlled
heap. On entry, SIZE must contain the size of the object in
bytes. If there is an object in the free pool of at least the
specified size, that object is removed from the free pool.
Otherwise, a new segment is obtained by calling ALSEG, the object
is allocated within that segment, and any excess space is added
to the free pool. The address of the object is returned in PTR.

RLCTLOBY is called to deallocate an object previously
allocated using ALCTLOBJ. On entry, SIZE must contain the size
of the object (which must be the value specified when the object
was allocated), and PTR the address of the object. The object is
returned to the free object pool.

- Instantiation of an UNCHECKED DEALLOCATION procedure for a
controlled access type results in the generation of a routine
which calls RLCTLOBJ to deallocate the specified object, then
Clears the access variable,

The checkpoint heap is implemented using =zero or more
storage segments. Storage allocated to the checkpoint heap may
be explicitly reclaimed by the user through calls to the
procedures provided in package MARK_RELEASE, which is described
in the next section.

) ALCHKOBJ is called to allocate an cbject in the checkpoint
heap. On entry, SIZE must contain the size of the object in
bytes. If there is sufficient room in the current checkpoint

heap segment, the object is allocated there. Otherwise, a new
segment for the checkpoint heap is obtained through a call o

142
INTERMETRICS INCORPORATED « 733 CONCORD AVENUE » CAMBRIDGE, MASSACHUSETTS 02138 + i817) 661-184C

b A e A M T T
- - - - - -t - " . - - - - -

B5-AIE(1l) .KAPSE(l)

ALSEG, and the object 1is allocated at the beginning of that
segment. The address of the object is returned in PTR.

Instantiation of an UNCHECKED DEALLOCATION procedure for a
checkpoint access type results in the generation of a routine
which simply clears the specified access variable.

The default heap is implemented using zero or more storage
segments. Space allocated for the default heap can not be
reclaimed. ALOBJECT is called to allocate an object in the
default heap. On entry, SIZE must contain the size of the object
in bytes. 1If there is sufficient room in the current default
heap segment, the object is allocated there. Otherwise, a new
segment is allocated for the default heap, and the object is
allocated at the beginning of that segment. The address of the
object is returned in PTR.

Instantiation of an UNCHECKED_DEALLOCATION procedure for a
default access type results in the generation of a routine which
simply clears the specified access variable.

3.3.5.2.2.4 User Checkpoint Heap Operations

Package MARK RELEASE is visible to the user, and the
procedures contained within may be called to manage the storage
associated with the checkpoint heap. MARK is called to obtain
the current checkpoint heap mark. The parameter must be a
variable of type CHECKPQINT. Pointers to the current checkpoint
heap segment and the next available byte within that segment are
stored in the variable.

RELEASE is called to reclaim the storage occupied by
checkpoint heap objects allocated since the specified CHECKPOINT
variable was set. Any checkpoint heap segments which are no
longer needed are released through calls to RLSEG, and the
checkpoint heap pointers are reset to the values indicated in the
variable. If the variable does not contain a valid mark within
the checkpoint heap, RELEASE ERROR is raised.

3.3.5.2.3 Special Requirements

Due to the special interfaces required’ and to achieve a

reasonable level of efficiency, all storage management operations
’ will be implemented in IBM 4341 machine language.

3.3.5.3 Tasking Support

The AdaTasking package impleients Ada tasking operations by
providing a number of types, objects, and low-level operations to
compiled code. Compiled Ada code executes each Aada tasking

143

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02128 + {§17) 661-1840

 ani el Sk - LRI B SNt S S ST AT A i St A W N R S e VA St S St St Sl It i A Y "'.‘.‘,“"_1
LRSI} R U R P VL N T A e [-

)
o el

3
L]

B5-AIZ(1) .KAPSE (1)

construct by calling one or more of the operations in the

package. The AdaTasking package also contains internal types,

objects, and operations which support the implementation of

tasking operations, but are not available outside the package.

) These internal operations perform functions such as queue and

§ list management, task scheduling, and context-switching between
tasks.

30 320k
LA R A S

Ada identifiers defined in this section are given in mixed upper

: and lower case. Machine language identifiers, and Ada

5 identifiers defined in language standard packages are given in
< upper case.

3.3.5.3.1 Inputs
Interfacing between compiled code and the AdaTasking package

utilizes the following types of data, in addition to items
described in Special Calling Segquences:

dakr 04

% A list of dependent tasks for each master, and lists of
by unactivated tasks for allocators:

type TaskListType is private;
3 type TaskListPtr is access TaskListType;

! A task type descriptor for each task type:
< type TaskTypeDescriptor is private;
’ type TaskTypePtr is access TaskTypeDescriptor;

A task Control Block for each task:
type TaskControlBlock is private;
type TCBptr is access TaskControl3lock;

A unique index (l..MaxEntry) for each simple entry and each
member of an entry family in a task:
type EntryIndex is private;

Unit Data Areas for each task body’s code, for each ACCEPT
body“s code, and for each entry:

type UnitDataArea is private;

type UDAptr is access UnitDataArea;

4 Y

Task priorities, from PRAGMA PRIORITY statements:
type PriorityNumber is private;

S R

Delays and time limits:
type DURATION is private; -- In package STANDARD.

Y

4 ° Interrupts:
a type InterruptType is private;

Work spaces for certain tasking operations:
type SelectRecord is private;

144

y
;
e

1]
E1

INTERMETRICS INCORPORATED » 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 + 617! 661.184C

; e I Ve TR It -_-4 --------------- .t T e Tt .
Rl st -’I" ‘-" .-.(‘,, . e e e T e e T L

.lLl!!L‘LA P VI WP PE UL P

...................................

BS-AIE(l) .KAPSE (1)
3.3.5.3.1.1 Task Body Unit Data Area

Each task body may contain some executable code. Associated
with this code is a Unit Data Area (UDA), which describes the
stack frame, exception map, and starting code address for the
task body. The format for this Unit Data Area is identical to
the Unit Data Area for subprograms (see Unit Execution Support).

i 3.3.5.3.1.2 ACCEPT Body Unit Data Area
S

Each simple ACCEPT statement and each ACCEPT alternative of
a SELECTIVE WAIT may have code in an ACCEPT body. Associated
with this code is a Unit Data Area, which describes the stack
frame, exception map, and starting code address for the ACCEPT
body. The format for this Unit Data Area is identical to the
Unit Data Area for subprograms (see Unit Execution Support).

3.3.5.3.1.3 Entry Unit Data Area

Associated with each entry in a task type is an additional
Unit Data Area, which specifies the stack space required for the
entry”s parameters. The tasking package uses this UDA for any
entry call for which no corresponding ACCEPT has yet been
executed. In addition to the Unit Data is a unique integer index
for the entry. In the case of entry families, it is the index
preceding the first family member.

3.3.5.3.1.4 Task Control Block

Bach task has a task control block (TCB), and is identified
by a pointer to that TCB. The TCB contains run-time information
about the task, including:

Task status,

Delay information,

Code and stack context (when not running),
, Links on queues and lists,

The set of currently open entries,

Information for each entry:

The queue of callers waiting on the entry,
If the entry is open, a UDA pointer to the ACCEPT body.

145

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSET TS 02138 » (517) 661-1840

AL WS VPO WG R PR T N WP R v e PR,

B5-AIE(l) .KAPSE(l)
3.3.5.3.1.5 Dependency List

All dependent subtasks of a master (subprogram, task, block,
or library package) are kept on a dependency list for that
- master. The tasking package uses this 1list to determine when
SN tasks can be terminated, whether a block can be exited, and which
- subtasks are affected by an ABORT statement.

ii 3.3.5.3.1.6 Special Calling Segquences

= All AdaTasking operations not listed in this section are
N called from compiled code with the normal subprogram calling
s sequence (see Unit Execution Support). The following operations
o2 require special calling sequences from compiled code. The
- calling sequences are described fully in the sections following.

<§ gpef. Parameters Description
” SECALL SCA, CLD, UDA, RET Simple single entry call.

' SFCALL SCA, CLD, UDA, EFI, RET Simple family entry call.

:ﬁ TECALL SCA, CLD, UDA, DELAY, RET Timed single entry call.
J TPCALL SCA, CLD, UDA, EFI, DELAY, RET Timed family entry call.

= TACCEPT ENT, UDA Simple accept statement.

i SELCLR SSI Get caller (selective wait).
Iﬁ ENDRND ASP, CLR, RET End of rendezvous.

. The registers used to pass parameters to these operations are as
- follows:

g UDA Address of an entry”s Unit Data Area.

. RET A return address.
-i sca Address of the Subprogram Communication Area (see
% Unit Execution Support).
e CLR Address of the calling task”s Task Control Block.
») CcLD Address of the called task®s Task Control Block.
és ASP Accepting (called) task”s Saved Priority.
.f DELAY Delay time, in clock ticks.

146

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02128 « (617} 361-1840

B5-AIE (1) .XAPSE (1)

EFI Index (member number) within an entry family.
ENT Absolute entry index (there is a unique index for
each entry and each family member within a task).
b 8sI Address of a work area of type SelectRecord, used
3 to accumulate information for a SELECTIVE WAIT
. statement.

3.3.5.3.1.7 Notation Conventions

-
prafely)

“ The following sections describe the calling sequences which
the compiler must produce in the compiled code. Most of these
are descriptions of machine instructions. Portions which are
described using Ada syntax (terminated by semicolons) indicate
that normal code is generated for the Ada constructs used.

A b
Y5

In addition to the types listed under Inputs, the following
abbreviations are used:

?
—n W

An integer (greater than Q). For a SELECT
statement, it specifies one of the alternatives.

=}

3

é T A task name.
Y
cn A conditional expression (a guard).
§ En Name of a simple entry, or family member.
s In Absolute index of an entry or family member. The
N task’s first catry has an index of 1, the second
; 2, etc. Bach family member also has a unigque
. index.
%
i Dn Delay time or time limit, in seconds.
[
% n A list of formal parameters.
Body_n The sequence of statements in an ACCEPT body.
- The body is null if there are no statements

between the DO and the END, or if the DO and the
END are missing.

A

Code_n Any other (possibly null) sequence of statements.
o - aAn Address of a Unit Data Area or code for one of
2 the alternatives of a SELECTIVE WAIT.
% cr Clock frequency, in ticks per second
; 147
i
#

INTERMETRICS INCORPORATED » 733 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 » (617) 651-1840

Sy

.....

B5-AIE(l) .KAPSE (1)

SelectInfo A work area used by the operations which set up a
SELECTIVE WAIT. It is of type SelectRecord.

Branch to X An unconditional branch to a code location
labelled X (IBM 4341 "B" instruction).

Branch to X,

Link R An unconditional branch to a code location
labelled X, after saving the address following
the branch instruction in register R (IBM 4341 4

"BAL" instruction).

3.3.5.3.1.8 Simple Entry Calls

Refer to Processing for a general description of rendezvous
implementation.

The format of a simple entry call in ada is as follows:
T.El1 (Pl); == Call task T, entry El, with parameter Pl.

The compiler-generated code for an entry call is similar to
that for a procedure call (see Unit Execution Support), but
requires different register values, and branches to tasking
operations rather than directly to a code prologue.

There are three types of entry calls: simple, ¢timed, and
conditional. For each of these types, the called entry may be a
simple entry, or a member of an entry family.

In each of the six possible combinations, any non-register
parameters must be copied to the Subprogram Communication Area,
and the following registers must be set:

SCA = Address of the Subprogram Communication Area.
CLD = Address of the called task”“s Task Control Block.

In addition to SCA and CLD, a simple entry call to a single
entry requires the following:

UDA = Address of the called entry”s Unit Data Area.
Branch to SECALL, link RET (return address).

In addition to SCA and CLD, a simple entry call to an entry
family member requires the following:

148

INTERMETRICS INCORPORATED » 733 CONCORD AVENUE » CAMBRIDGE, IASSACHUSETTS 02128 + (617) 851-1840

--
......................

...........

Ve

B5-AIE(1l) .KAPSE (1)

5

h.:i UDA = Address of the called entry family”s Unit Data Area.
EFI = The index of the member within the family.

v Branch to SFCALL, link RET (return address).

3.3.5.3.1.9 Timed Entry Calls

A timed entry call in Ada has the following format:

q - select
; T.El (Pl); -~ Call task T, entry El, with parameter Pl.
Sl; -= Code following the call (possibly NULL).
” or
delay D2; -=- Delay time D2 is in seconds.

82; -= Code following delay (possibly NULL).
-end select;

The compiled code for timed entry calls is similar to that
for simple entry calls (see the preceding section).

In addition to SCA and CLD, a timed call to a single entry
requires the following:

UDA = Address of the called entry“s Unit Data Area.
DELAY = Delay amount, in clock ticks.
Branch to TECALL, link RET (return address).

In addition to SCA and CLD, a timed call to an entry family
member requires the following:

UDA = Address of the called entry“s Unit Data Area.
EPI = The index of the member within the family.
DELAY = Delay amount, in clock ticks.

Branch to TFCALL, link RET (return address).

TECALL and TPCALL each return a function value in the normal
way (see Unit Execution Support). The return value is BOOLEAN
g TRUE if the entry was successfully called, or FALSE if the delay
time expired. If code for Sl or S2 is present, the code
following the call to TECALL or TFCALL must test this value, and
wxecute the code for Sl or S2 accordingly.

149

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, 'AASSACHUSETTS 52138 » (617) 561-1840

BS-AIE(l) .RKAPSE (1)

3.3.5.3.1.10 Timed Entry Calls
A conditional entry call in Ada has the following format:

select
T.BE1 (Pl); -= Call task T, entry El, with parameter Pl.
Sl; == Code following the call (possibly NULL).
else
S2; -~ Executed if no acceptor (possibly NULL).

end si2lect;

The compiled code for conditional entry calls is identical
to that for timed entry calls (see the preceding section), except
that the value for DELAY must be 0 in both cases. TECALL and
TPCALL will return TRUE if the entry was called, or FALSE if the
ELSE is to be taken.

3.3.5.3.1.11 Simple Accept Statements

Refer to Processing for a general description of rendezvous
implementation.

Code for an ACCEPT body resembles that for a procedure body
(see Unit Execution Sg&gort), in that it has a Unit Data Area and
code.” HOwever, there is no prologue, and at the end of the
ACCEPT body“s code is a Branch-and-Link to ENDRND, rather than a
return to the caller.
The simple ACCEPT statement may be in two possible forms:
accept El (Pl); ~=- Null ACCEPT body.
aécopt El (Pl) do
Body_1; -= Code of ACCEPT body.
end El;
The generated code for a simple ACCEPT statement is as follows:
ENT = Absolute index of the entry or family member.
UDA = Al (Address of the ACCEPT body“s Unit Data Area).
Branch to TACCEPT.
Al: <Unit Data Area for ACCEPT body>
- Body_l; -- May be null
Branch to ENDRND, link RET (return address).

<Code following ACCEPT body>

150

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

AT AT TR TI T TR TN .';-'-."-C.!—‘.'-'- -

3.3.5.3.1.12 Selactive Wait Statement

.....

Pl i i S S P

. B5-AIE(1l) .KAPSE (1)

The following is an example. of Ada
ACCEPT

selective wait with only
corresponding generated code:

Ada Source

- e e e b oF e a»

select
when Cl =>

InitSelect (SelectInfo);

for a
and the

source code
alternatives,

Generated Code

accept E1 (Pl) do if Cl1 then
Body_1L; SetOpen (I1l, Al, Selectinfo):
end; endif;
Code_1;
or if C2 then
when C2 => SetOpen (I2, A2, SelectlInfo);
accept B2 (P2) do endif;
Body_2;
end; if C3 then
Code_2; SetOpen (I3, A3, SelectlInfo);
or endif;
when C3 =>
accept E3 (P3) do SSI = Address (Selectinfo)
Body_3; Branch to SELCLR
end;
Code_3; Al: <UDA for Alternative 1>
Body_1;
end select; Branch to ENDRND, Link RET
Code 1;
Branch to ES
A2: <UDA for Alternative 2>
Body_2;
Branch to ENDRND, Link RET
Code_2; :
Branch to ES
A3: <UDA for Alternative 3>
Body_3;
Branch to ENDRND, Link RET
Code_3;
ES: <End of Select Statement>
151

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02128 « (617! §61-1840

o

BS5-AIE(l) .KAPSE (1)
3.3.5.3.1.13 Selective Wait with Delay Alternatives

The following is an example of Ada source code for a
selective wait with DELAY alternatives, and the corresponding
generated code:

Ada Source Generated Code
select InitSelect (SelectInfo):; -
when Cl =>
accept E1 (Pl) do if C1 then
Body_1; SetOpen (Il, Al, SelectInfo);
end; endif;
Code 1;
or - if C2 then
when C2 => SetDelay (D2*CF,A2,SelectInfo);
delay D2; endif;
Code_2;
or if C3 then
when C3 => SetDelay (D3*CF,A3,SelectInfo);
delay D3; endif;
Code_3;
or if C4 then
when C4 =»> SetOpen (I4, A4, SelectlInfo);
accept E4 (P4) do endif;
Body_4;
end; SSI = Address (SelectInfo)
Code 4; Branch to SELCLR

end select;
Al: <UDA for Alternative 1>
Body_3;
Branch to ENDRND, Link RET
Code_3;
Branch to ES

A2: Code_2;
Branch to ES

A3: Code_3;
Branch to ES

A4: <UDA for Alternative 4>
Body_4;
Branch to ENDRND, Link RET
Cod0_4;

- ES: <End of Select Statement>

152

INTERMETRICS INCORPORATED » 733 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

~ s .

AT AT ASUCRSEIN AR LN L . "-.,‘\-.‘:’. e e e I I e “'— B DS _“..‘. o I
4 i - PRI W RS ML R N W R, L TR A SN N ST IR AL D AT R

G e i it e Bt BOCS ERLFI M MC A A MELIMDOI AN

B5-AIE(l) .RAPSE (1)

3.3.5.3.1.14 Selective Wait with Else

code:
Ada Source

select
when Cl =>
accept E1 (Pl) do
Body_1;
end;
Code_1;
or
"when C2 =>
accept E2 (P2) do
Body_2;
end;
Code_2;
else

Code_3;

end select;

.

INTERMETRICS INCORPORATED «» 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

e g e e M e e e e e e v. . o= = ~

The following is an example of Ada source code for a
selective wait with an ELSE case, and the corresponding generated

Generated Code

InitSelect (SelectInfo);

if Cl then
SetOpen (Il, Al, SelectInfo);
endif;

if C2 then
SetOpen (I2, A2, SelectlInfo):
endif;

SetDelay (0, A3, SelectInfo):
== Zero delay = ELSE

SSI = Address (SelectInfo)
Branch to SELCLR

Al: <UDA for Alternative 1>
Body_1;
Branch “o ENDRND, Link RET
Code_l1;
Branch to ES

A2: <UDA for Alternative 2>
Body_2;
Branch to ENDRND, Link RET
Code_2;
Branch to ES

A3: Code_3;

ES: <End of Select Statement>

153

LIS W W VR BN W VW I

L N IS WA WL W

T Y T T e T T S T I R S TR ATE TR A e S

B5~AIE(l) .RAPSE (1)

3.3.5.3.1.15 Selective Wait with Terminate Alternative

The following is an example of Ada source code for a
selective wait with a TERMINATE alternative, and the
corresponding generated code:

Ada Source Generated Code
select InitSelact (SelectlInfo):;
when Cl =>
accept E1 (Pl) do if Cl1 then
Body _1; SetOpen (Il, Al, SelectInfo):;
end; andif;
Codo_l;
or if C2 then
when C2 => SetOpen (I2, A2, SelectInfo):
accept B2 (P2) do endif;
Body_2;
end; if C3 then
Code_2; SetTerminate;
or endif;
when C3 =>
terminate; SSI = Address (SelectlInfo)

Branch to SELCLR
end select;
Al: <UDA for Alternative 1>
Body_1;
Branch to ENDRND, Link RET
Code 1;
Branch to ES

A2: <UDA for Alternative 2>
Body_2;
Branch to ENDRND, Link RET
Code 2;
Branch to ES

ES: <End of Select Statement>

154

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

.. -.;,.., P et
. St - . LSRR A e Y . . @ o . PR T TR
0 i v DL I IPLAPUN SO W W N R G X FUR I L] o e S

0 - : PN A T T A R T Ty
gy gk ot ek A v el 3N L eI i e st AR A A R e T 2 I D i R) . D B e e I

B5-AIE(l) .KAPSE (1)

¥os 02 1
RN

RN R TS

ﬁﬁ 3.3.5.3.1.16 Tasking Initialization Operations
ok
e The operations listed below perform all scheduler, task, and
task list initialization.
g% §tacedu:e StartScheduler -- Initialize AdaTasking package.
B procedure InitList (-= Initialize a dependency list.
i Dependents: in TaskListPtr
- .)3
function CreateTask (-=- Create a task on a dependency list.
N List: TaskListPtr; -=- Activation list.
Master: TaskListPtr: -- Dependency list.
Code: UDAptr; -- Task body UDA location.

-Descriptor: TaskTypePtr;

s Priority: PriorityNumber

s)

s rteturn TCBptr; -- Returns pointer to new TCB.

g

@ procedure ActivateTasks (-- Activate all tasks on a list.

- List: in TaskListPptr -~ List to activate.

)3 :

o -=| Each block, subprogram, task, and library package with

B «={ directly dependent tasks must call ActivateList as its

s -=| first executable statement (immediately after

“Ho --| establishing the exception handlers for the block). 1In
-=! addition, ActivateList must be called for each list of

. -=| tasks created by an allocator.

”t?‘,

e

&

5; 3.3.5.3.1.17 Task Termination Operations

. The tasking operations in this group implement task

W termination and abort.

b8

3 procedure TaskWait (-- Wait for dependents to terminate.

'ﬁ} Dependents: in TaskListPtr -- List of dependents.

i)3

el -=| Every block, subprogram, and task with directly

. -=! dependent tasks must call TaskWait as its last

i3 ~-=| executable statement. '

7

5& R procedure AbortTask (-- Ada ABORT statement.

o Task: in ICBptr -~ Task to be aborted.

-)3

B

By

e 155

- INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « '617) 6581-1340

- - ~ :‘ -------
................................

BS-AIE(l) .KAPSE (1)
3.3.5.3.1.18 Simple Delay Operation

The tasking operation in this section handles delays. This
operation is called via the normal subprogram calling sequence
(see Unit Execution Support).

procedure TaskDelay (-- Ada DELAY statement.
Amount: in Duration -=- Delay in clock ticks.
)

3.3.5.3.1.19 Interrupt Operations

R
-

The operations described in this section control the
association of interrupts with task entries.
-§ procedure CatchInterrupt (-- Declare interrupt handler.
® Task: in TCBptr; -~ Task to handle it.
X Entry: in EntryIndex; -- Entry within task.
i Interrupt: in InterruptType: -- The interrupt.

) s
-= Called for each interrupt address clause,
-= at the activation of the task.

function Pseudolnterrupt (-- Simulate an interrupt.
Interrupt: InterruptType;
)
teturn BOQLEAN; -- PFALSE if the interrupt
i == is not being handled.
¥
)
& 3.3.5.3.1.20 Task and Entry Attributes
> " These tasking operations provide values for task and entry
¥ attributes, with the exception of SIZE, STORAGE_SI2E, and
,g ADDRESS.
b3
RS function IsCallable (== Attribute T’CALLABLE.
- Task: TCBptr
.)
g return BOOLEAN; 1
3 --| TRUE if the task exists and is neither completed,
% ~-| terminated, nor abnormal.
? function IsTerminated (-- Attribute T TERMINATED.
Task: TCBptr
g)
i return BOOLEAN; -- TRUE if the task is terminated.
";1
2
Pl .
&
%
R4 156
5
1’4
- INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 + (617) 681-1840

w

;%

s

1

v Oy
.

v v v o LA ~Rte et ey Rt ean e Ban aomaatoun St S b S b - AR A A R A M Sl it I
e Al 4 A0 At SRS Sdarhiuiva it A An i as kAN St N - PR L.

BS-AIE(l).KAPSE (1)
function CallerCount (-=- Attribute E“COUNT.

Task: TCBptr;

Entry: EntryIndex;

)

ceturn Count; -= Number of callers on entry.

3.3.5.3.1.21 Debug Support Operations

The following is a partial list of operations which will be
provided to support the debugger.

2 procedure Suspend (-- Suspend low priority tasks.
Limit: in PriorityNumber
):
-=| Causes the scheduler to ignore tasks with
-=| priority less than or equal to the limit.

procedure Resume -= Cancel Suspend.
H
-=-| Causes the scheduler to consider all runnable
-=| tasks.

3.3.5.3.1.22 QOther Tasking Support Operations

procedure GiveUpProcessor -- Give control to scheduler.
?

function MyTCBP -= Return TICBptr of running task.
return TCBptr:;

AT a oS ok T

Vo i il My

M N

157

St Nah

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617} 561-1340

o,

o

y M

I

24

»
' A

W

.::,“
s

14

Mt 34

'y
4

.............

BS~-AIE(l) .RAPSE (1)

3.3.5.3.2 Processing

3.3.5.3.2.1 Queues and Lists of Tasks

A globally accessible variable contains a pointer to the
current running task TCB.

The running task, tasks waiting for a caller (not delayed),
calling tasks in rendezvous, and tasks waiting for their
dependents to terminate are on no gqueue (but are still on a
dependency 1list). All other tasks are also on either an
activation list, a runnable task queue, an entry call Qqueue, or
the delay queue.

3.3;5.3.2.2 Task Creation

For each task to be created, CreateTask allocates and
initializes a TCB, and places it on the specified activation
list. There are separate activation lists for the current master
and for allocators.

3.3.5.3.2.3 Task Activation

At the end of each allocator, and after the BEGIN of a
block, ActivateTasks is called to activate each task on the
corresponding activation 1list, and to add them to the appropriate
dependency list. If any tasks complete due to exceptions during
activation, ActivateTasks raises TASKING_ERROR.

3.3.5.3.2.4 Task Termination

When a task terminates, or when it opens a TERMINATE
alternative by calling SetTerminate, or when a master completes
and calls TaskWait, the master”s dependency list is checked. If
the master is completed, and there are no non-terminable tasks,
then all tasks on the dependency 1list and its sublists are
terminated. Any task waiting for a ligt thus terminated is made
cunnable, so that it can leave its current block.

3.3.5.3.2.5 Call, Accept, and Rendezvous

In order to minimize scheduling overhead and stack frame
allocation, at the beginning and end of a rendezvous, entry calls
are made as much as possible like procedure calls. If the called
entry is open when an entry call is made, the rendezvous is
started immediately with no scheduling operations. At the end of
the rendezvous, the higher priority task continues to execute;

158

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (817) 661-1840

BS5-AIE (1) .KAPSE (1)

g , the only required scheduling operation is to make the other task

P cunnable.

‘r The ACCEPT body is executed as if it were a procedure; i.e.

Ko the caller”s primary and secondary stack are used to execute the

Eﬁ ACCEPT body“s code. However, in order to preserve the identity

N of the acceptor as the running task, the acceptor®s Task Control

R Block is used. 1In addition, the acceptor”s static link is useg,

o4 8o that scoping is correct within the ACCEPT body. The priority
used within the rendezvous is the higher of the two.

g

S At the end of the ACCEPT body is a branch (and 1link) ¢to

A8 ENDRND, which ends the rendezvous. If the caller has higher

L priority, the acceptor is set runnable, to continue with the code

%, following the ACCEPT body, and a RETURN is made to the caller,
thus completing the entry call. If the acceptor has higher

xS priority, the caller is set runnable, to continue by executing a

o RETURN, and the acceptor continues immediately with the code

o following the ACCEPT body.

o

?% Figures 3-14 and 3-15 summarjize the task state transitions

— and queues for entry calls and accept”s.

) .

Ry 3.3.5.3.2.6 Interrupts

;5 Interrupts are equivalent to simple entry calls, in that

B : interrupts which occur while an interrupt entzry is closed are

- queued. However, if the task with the interrupt entry 1is

unactivated or terminated, the interrupts are ignored.

¥x A call to Catchinterrupt creates an entry in an interrupt

b table: for each interrupt, the TCB address and the entry index of

o the intarrupt entry are insertad.

e When an interrupt occurs for which there is a table entry, a

Y counter for that interrupt is incremented, and a call to the

gﬁ ' entry is made. Interrupts which occur while a previous interrupt

ﬁg is being serviced cause their counters to be incremented, but

et cause no additional entry call. After every return from an

- intercupt entry call, the counter is decremented. If it is non-

o zZero, another entry call is made to service the pending

fﬁ - interrupt, and so on until the counter goes to zero.

& When a task with interrupt entries terminates, its entries

Lo are removed from the interrupt table. Further occurrences of

R these interrupts will then be ignored.

;‘}Jﬂ .

32

G

i 159

INTERMETRICS INCORPORATED + 733 CONCORD AVENUE » CAMBRIDGE, MASSACHUSETTS 2138 « (617) 361-1840

e e N T P e D I I St A R P TR Ir RV T TS U AP SN N St P PR S R
% | 9 J o'y, o, D T T T I T . -
T s (‘:,, AR A~ N, *#',.-‘. - v '-.‘- Te s AR e BT I RS RS . , P A

.
W

w
v Iy

LN AT, e

. BS~-AIE(l).KAPSE (1)
. Figure 3-14, State Transitions (Caller):
‘é.
‘@ |
) STATE TRANSITIONS (CALLER)
5
3 UNACTIVATED
L7
i
lBEGIN OR ALLOCATOR
N ,
23 AcCEPTOR HIGHER RUNNABLE [
i (PRIQRITY
b4 | CUEUE) DeLay
N SCHEDULER - ExPIRY
gﬁ c } GIveur
; ALLER HIGHER
g = RUNNING —

END RENE EZVOUuSs CO NDITIONAL

& CALL OR
31‘ Detay = B
< ~ No ACCEFTOR {L
e f\'CCEPTOR kAT TING
4 | ATTING LSIMFLE TIMED
KAIT FOR TIMED WALT
o CALLER IN ACCEPT FOR ACCEPT
RENDEZVOUS (ENTRY CUEUE) (ENTRY QUELE,
DELAY QUEUE)
ke f ACCEFT
- ~—
102982389-2
s
e
15, 160
i
-~ INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 6611840
?'u_"

T RED

ot el woi’ 10 I 200, >

el s

o e
. g

et RE e

o e W s

K
Kl

- PG
8”-: “

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE » CAMBRIOGE, MASSACHUSETTS 02138 « (617) 661.1840

AP A
i

......

A

B5S~AIE(l)

.KAPSE (1)

Figure 3-15, State Transitions (Acceptor):

STATE TRANSITIONS (ACCEPTOR)

UNACTIVATED
I BecIN OR ALLOCATOR
CALLER HIGHER RUNNABLE
~ (ER:OR;TY r— DELAY
LELE EXPIRY
SCHEDULERL
GIVEUP
ACCEPTOR ernﬂ_ RUNNING
g
ND ReNDEzvous
ELSE or
RUNNING CALLER WAITING DerAy
ﬁIN n <=f
ENDEZVOUS) No CALLER
A WaITING
No Open TERMINATE,
No Open DeLay DeLay
No ELSE LTERNATIVE
WAIT FOR TERMINABLE TIMED WAIT
CALLER WAIT FOR FOR CALLER
e1AY QUEUE)
CALL CaLL ASTER CaLL
COMPLETE,
SIBLINGS
ERMINABLE
TERMINATED
! ;
161 102982389-1

-

-

AN A AT A R
LY A

''''''''''''''''''''''''''''''
P WG WA W W WO WA WA Yy Wy W W

oo e eSS o B B o

DR My

BS-AIE(l) .XAPSE (1)

3 3.3.5.3.3 Qutputs

i Nearly all AdaTasking operations produce changes in the
gtate of the scheduler. Those listed below produce tangible

: outputs (see Inputs for a full description).

X function TECALL -~ Timed entry call.

L function TFCALL == Timed family member call.

g procedure InitList ~-- Initialize a task list.

procedure CreateTask -- Create a task on a list.

procedure ActivateTasks -= Activate tasks on a list.

§ function PseudoInterrupt =-- Simulate a hardware interrupt.

% function 1IsCallable -~ Attribute T°CALLABLE.

3 function IsTerminated -= Attribute T“TERMINATED.

g function CallerCount -= Attribute E“COUNT.

function MyTCBP -~ Return TCB of running task.

3.3.5.3.4 Special Requirements

,. The following registers are set before entering an ACCEPT
é body, and must be preserved (or restored) at the end of the body:
X
‘Q ASP Acceptor’s Saved Priority.
y

CLR Pointer to caller”s Task Control Block.

‘ Due to the special interfaces required, and to maximize the
3 efficiency of rendezvous operations, the operations listed in
¥ Special Calling Sequences, which support entry calls, accept
statements, and selective waits will be implemented in IBM 4341
machine language.

3.3.5.4 Exception Handling

The following sections discuss the implementation of the Ada
exception handling mechanisms.

1

4

3 3.3.5.4.1 Inputs and Outputs :
The exception handling package implements a variety of low-

» level operations which are invoked by the generated code.

S

q

162

T

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

——— F B ~ - A nrll it o o “odi el ad - W e -
LA S Sttt Sl At AN AL I Sl il RN Tl et SRR M M -t - e

BS-~AIE(l) .KAPSE (1)
3.3.5.4.1.1 Exception Identifiers

Each exception name declared within a program is assigned a
unique 32 bit exception identifier. Exceptions in Ada are, in
effect, statically declared; an exception declared in a recursive
subprogram is the same exception for each recursive invocation.

3.3.5.4.1.2 Register Usage

! The low-level operations use the following registers for
passing parameters:

- reg. normal use

u EXC Current exception identifier.
LoC Location at which exception was raised.
RET Subpregram return address.

FRAME Pointer to current call frame.

3.3.5.4.1.3 Exception Handling Operations

oper. registers description

RAISE EXC, FRAME, RET, LOC Raise exception.

PRCALLER EXC, FRAME, LOC Propagate exception to caller.

PRRENDV EXC, FRAME, LOC Propagate out of rendezvous.

EXABORT Abort task due to unhandled
exception.

3.3.5.4.1.4 Exception Maps

The compiler generates an exception map for for each
executable subprogram, package, generic and task unit. A unit
may have several handlers associated with it, since nested blocks
and inline subprograms execute on the call frame belonging to the
containing unit. A pointer to the map is contained in the unit
data area (see Unit Execution Suggo:t) associated with the body.
The map consists of a sequence o ouble-word entries, where the
first word contains the address of the last instruction to which
this particular entry applies, and the second word contains the
address of the corresponding exception handling code. The

. entries are sorted in order of instruction address:

163

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02128 + 617} 661-1840

.................... R)
................ PR PR
--------- R R S e .
.

P . L T R PR . L
LR IS ST G Tl SN W W N R W YRD U YL DL W SO PRI DU A A A A A A

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

sJ‘?r'
iﬁ BS~AIE(l) .KAPSE (1)
g procedure A is
y% oo -- elaboration code for procedure
i {instruction a)
N begin
}{ e ea
4 declare
&y cee ~=- elaboration code for nested block
i {b)
et begin
s (el
W exception -- hl
;}“ o 9 0
o
s end;
t‘fg eecs '
(41
A exception -= h2
s [e]
:vg end A;
i instruction handler
e a PRCALLER
b h2
%ﬁ c hl
n d h2
i e PRCALLER
}z 3.3.5.4.1.5 Hardware Detected Exceptions
;% The IBM 4341 hardware is capable of detecting a number of
1 exceptions. The following hardware exceptions are intercepted by
G the run-time system and cause NUMERIC_ERROR to be raised:
exponent underflow
e exponent overflow
K> floating point divide
g significance
i fixed point divide
- fixed point overflow
R, All other hardware detected exceptions cause PROGRAM_ERROR to be
Gl raised. '
RE
¥
gt
! 3.3.5.4.2 Processing
e .
&
J.‘."
B
&
oo 164
]

B5-AIE(l) .KAPSE (1)

3.3.5.4.2.1 Raising an Exception

When a raise statement with an exception name specified 1is
seen by the compiler, code is generated to load the corresponding
exception identifier into EXC, load the current program counter
into LOC, and then branch to RAISE. A raise statement with no
exception name differs only in that the exception identifier for
the exception in progress is loaded into EXC. When a hardware
detected exception occurs, the intercept routine loads the
exception identifier for NUMERIC_ERROR or PROGRAM ERROR into EXC,
loads the address of the interrupted instruction into LOC, then
branches to RAISE.

Upon entering RAISE, the current call frame (addressed by
FRAME) s examined to obtain the address of the unit data area,
which was saved in the call frame on entry to the unit. The
address of the exception map is then obtained from the unit data
area. If LOC currently points to an instruction within a run-
time routine, then LOC is loaded with the address at which the
run-time routine was called, which should be in RET. The
exception map is then scanned for the £irst entry with an
instruction address greater than LOC. When the entry is located,
control is passed to the corresponding handler.

3.3.5.4.2.2 Exception Handlers

The code generated by the compiler for a set of exception
handlers first performs a series of tests to determine if EXC
specifies an exception for which the user has provided an
explicit handler. If so, the corresponding code is executed. 1If
not, and a handler was provided for the others choice, that code
is executed. If the user did not provide an others choice, the
compiler generates a branch back to the RAISE “routine, causing
the exception to be propagated to the enclosing exception frame;
the contents of EXC and LOC are not disturbed.

When execution of a handler is completed without propagating
an exception to a containing exception frame, control is passed
to the normal exit code for that block or unit. When an
exception is to be propagated out of the handler, the compiler
generates code to, when needed, perform a dependent task wait,
release secondary stack storage, and/or release the current
primary stack frame, prior to branching to RAISE. If the wuser
has not provided an exception handler for a block or inline
subprogram which has dependent tasks, the compiler generates a
hangéor which performs the dependent task wait, then branches to
RAISE.

165

INTERMETRICS INCORPORATED ¢ 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 861-1840

BS~-AIE(l) .KAPSE(1l)

%‘ 3.3.5.4.2.3 Propagating'cut of a Called Subprogram

An entry in an exception map specifying PRCALLER as the
handler is used to cause propagation of an exception out of a
called subprogram. PRCALLER loads the contents of the return
address field in the current call frame into LOC, stores the
address of RAISE in the return address field, obtains the address
& of the normal exit code for the subprogram from the unit data
! area, then branches to that address. The exit code will, when

needed, perform a dependent task wait and/or release secondary
- stack storage, restore the caller”s registers, then pass control !

51 to the address indicated in return address field, which is now
2 RAISE.

3.3.5.4.2.4 Propagating Out of a Rendezvous

An entry in an exception map specifying PRRENDV as the
te handler is used to cause propagation of an exception out of a
X rendezvous. Such an entry is always provided £for the last
;! instruction in an accept body. PRRENDV calls a tasking support
routine to propagate the exception to the participating tasks.

3.3.5.4.2.5 Unhandled Exceptions

An entry in an exception map specifying EXABORT as the
handler is used to force completion of a task which has an
unhandled exception. Such an entry is always provided for the
last instruction in a task body. EXABORT obtains the address of
the normal exit code for the task from the task”s unit data area,
then passes control to it.

If an exception is propagated out of the main subprogram, a
post-mortem routine is called which will display the information
concerning the state of the program at the point at which the
exception was raised, then pass control to the debugger (when
present) .

3.3.5.4.3 Special Requirements

Due to the special interfaces required and to achieve a p
reasonable level of efficiency, all storage management operations
will be implemented in IBM 4341 machine language.,

}.3.5.5 Lanquage-defined Packages

166

INTERMETRICS INCORPORATED + 733 CONCORD AVENUE » CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

PR W W TS (PO P . | UL TSNP, WL SRP SR WEVE UL Wi Wt .4}

- W e N . T W N T T N YT % F T TS TE T ¥FVe™ - W s Y.
....... ASAA SSARAAASIR S LRSS R 2 . o e -

. S AN e < e - 1 - PR S A S A M S T A S A AR A" ST A i R e Rt e I A
- oA A A ARy B DA T A M R R L N L R AR AN R T AL Y FE N

B5-AIE(l) .KAPSE (1)
3.3.5.5.1 Standard Input/Output Packages

3.3.5.5.1.1 Inputs and Outputs

‘. The KAPSE will implement the complete set of Ada Language
' Standard Input/Output packages. The specifications given in
chapter 14 of the Ada Language Reference Manual will serve as the
official definition of these standard input/output Packages. The
headers of the specifications of these packages are given here
for reference:

‘e

package IO_EXCEPTIONS is

NAME ERROR : exception:
USE_ERROR : exception;
STATUS ERROR : exception;
MODE ¢ exception;
DEVICE_ERROR : exception;
END_ERROR s exception;
D ERROR : exception;
LAYOUT ERROR : exception;

end IO_EXCEPTIONS;

with I0_EXCEPTIONS;
generic™
type ELEMENT TYPE is private;
package SEQUEMTIAL IO is
type PILE TYPE is limited private;
type PILE MODE is (IN _PILE, INOUT _FILE, OUT FILE);
type COUNT is range 0”.. Implementation_DefIned:

end SEQUENTIAL_IO;

with IO xxczrrxous;
genecic™
type ELEMENT TYPE is private;
package DIRECT I0 is
e type PYLE TYPE is limited private;
_ type PILE MODE is (IN_FILE, INOUT ' _FILE, OUT _FILE);
type COURT is range 0”.. Implementation DefIned;

end DIRECT 10;

167

f"'f t INTERMETRICS INCORPORATED » 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

I S T N S ALY

- - . - . ‘o : - . . .
o . LAY Mgt Ta WL ot RO
..... n" A RN v s e et 1- Y -\\;‘ PR, Y

e :""‘?“‘k w‘ “ 1"‘\" AR ~

-4

L YAl

$acen VAC

[o3

o s

b3
22N 4

LR %L,

i o N

SO NN M R

B R G L

L

e K KR

R e

BS-AIE(1l) .KAPSE(l)

with IO_EXCEPTIONS;
package TEXT IO is
type FILE TYPE is limited private;
type FILE MODE is (IN _FILE, INOUT _FILE, OUT FILE),
type COUNT is range 0 .. Implementation Deflned;
subtype FIELD is INTEGER range 0 .. ImpIémentatxon Defined;
subtype NUMBER _BASE is INTEGER range 2 .. 16;

generic
type NUM is range <>;

package INTEGER_IO is
DEFAULT | WIDTE : FIELD := NUM“WIDTH;
DE?AULE_;ASE : NUMBER_BASE := 10;

end INTEGER_IO;
end TEXT 10;

package LOW_LEVEL_IO is
-~ declarations of the possible types for DEVICE and DATA;
-- declarations of the overloaded procedures for these types:
procedure SEND_CONTROL (DEVICE: device type;
DATA: in out aata type) ;
procedure RECEIVE_CONTROL (DEVICE: device type;
4 DATA: in"out data type);
end;

3.3.5.5.1.2 Processing

Internally, all operations are converted to operations on
storage unit arrays, allowing arbitrary types of objects to be
handled. The conversion to standard types is made within the
generic body of the package, while the bulk of the processing is
done in a non-generic package to avoid multiple instantiations.

3.3.5.5.1.3 Special Requirements

3.3.5.5.2 Calendar Package

}.3.5.5.2.1 Inputs and Outputs

The KAPSE will implement the complete Ada Language Standard
Calendar package. The specifications given in chapter 9 of the
Ada Language Reference Manual will serve as the official
definition of this package. The header of the specification of

168

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 » (617} 6681-1840

BS-AIE(l) .KAPSE(1)

this package is given here for reference:

package CALENDAR is
type TIME is private;

subtype YEAR_NUMBER is INTEGER range 1901 .. 2099;
subtype MONTH NUMBER is INTEGER range 1 .. 12;
subtype DAY NUMBER is INTEGER range 1 .. 31;

end CALENDAR;

3.3.5.5.2.2 Processing

All CALENDAR operation will be implemented using well-known
algorithms, such as described in D. E. Knuth, The Art of Computer
Prgg:amning, Vol. 1l: FUNDAMENTAL ALGORITHMS, Addison Wesley,
1975, pp 155 - 156. The basic unit for conversions will be type
DURATION, which will be one clock tick (SYSTEM.TICK).

3.3.9.5.2.3 Special Requirements

3.3.5.6 Type Support Routines

Type support consists of a set of subroutines used by
compiler generated code to do simple operations on typed objects.
Type support run-time routines include: arithmetic on reals,
image and value functions for discrete types, and POS, VAL, SUCC,
and PRED functions for enumeration types with representation
specs. These should not be confused with compiler generated
routines for doing operations on objects of a particular type,
such as array indexing routines.

3.3.5.6.1 Inputs and Outputs

Type support routines take as input and return as output
3 scalar values, pointers to run~time system data structures that
describe the mappings needed to convert position number to
enumeration values, and position number to the string image of an

s enumeration value.

The arithmetic subprograms on reals include: add, subtract,
hegate, multiply, divide, and power, for the built-in types
float, and long float as well as the built-in fixed point types.
There are 32 built-in fixed point types, one for each possible
position of the binary point in a 32-bit machine word. There is
J one set of arithmetic run-time subprograms for all fixed point

169

INTERMETRICS INCORPORATED » 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

.................

v

.
2

PRI RTRNAEY S

BS~AIE(1l) .RAPSE (1)

* VS

types; these routines take, in addition to their normal
arguments, the position of the binary point of each argument.

e w800

oy

There are IMAGE, VALUE, and “WIDTH functions for each of the
built-in numeric types: SHORT INTEGER, INTEGER, FLOAT, and
LONG_FLOAT, as well as one pair for the built-in fixed point |
types. Additionally, there is a set of conversion routines;
there is one member in this set for each pair of built-in numeric
types. ‘

Y) . . . '
AT AR AL Y

There are IMAGE, VALUE, and@ “WIDTH functions for natural
machine storage unit size of enumeration types, byte, half word,
and word. These routines take, in addition to the object or
string passed, a pointer to a data structure, generated by the
compiler, which maybe used to guide the mapping between string
representation to position number.

AR

o There is a set of routines - POS, VAL, SUCC, and PRED - for
each natural machine storage unit. Byte, half word, and word,
are provided for manipulating enumeration types that have
received representation specfications. Like the IMAGE and VALUE
functions for an enumeration type, these functions take an
additional parameter: a pointer to a data structure generated by
the compiler, that can guide the mapping between position number
and a the user-specfied representation number.

Fak it

LI X

i TR

3.3.5.6.2 Processing

b The conversion and numeric operations are implemented in the
usual manner. Where it is appropriate, the code for them is

% inserted inline by the back end during code generation. On a

ﬁ machine with hardware support for such functions the operations

% are generated by the compiler and no use is made of the run-time
system routines.

The enumeration mapping functions, for conversion to and
from strings, and for conversion to and from position number, use
maps generated by the compiler for each particular enumeration
type. Consider a possible string to position number map built
for this enumeration type:

cE AL I

4

o type color is (red,white,blue); | ‘ l
This map might be an instance of the following data structure:

r type literal image is record

f, . image _offset: integer;

At image _width: integer;

9 end literal_image;

% type literal_images is array (integer range <>) of literal_image;

:
; 170

INTERMETRICS INCORPORATED » 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

- A - L]
%,
v

LR I N e I
. 2% q L)L P ey ~

gi‘“““ g™ g W W WY i NaNaataNw ¥ c N u'a ..x-»:\--\-(________ AL B R
4
% B5=-AIE(l) .KAPSE (1)
? type enumeration_image_map (
& string_space: integer,
A enum_length: integer
‘)
is record
é map: literal images (l..enum_length);
% images: string (l..string_space);
% end enumeration_image map:;
7
- The particular map for this enumeration would then be the data
N - structure generated by the compiler for this aggregate:
§ _ colo:_im?ge_ys_pos_papz enumeration_image map :=
3
§ string_space => 11,
¥ enum_length => 3,
Pairs_mP => ((L,3), (4,5), (9,4))., -~ (posn,width)
g images => "redwhiteblue"
,§)3
g
E: The STORAGE phase of the compiler generates this
“ "enumeration_image map,” for each enumeration type. The actual
implementation may differ in detail from the one described here.
5 3.3.5.6.3 Special Requirements
%
K
§
3
g >
4
» IR

171

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « i817) 561-1840

e e ® e e e et e e b e Mt st . e e e R S E T T B
L AN R L S AP LIS I AP SR UL S UL UL PN T T IRUL S AR A LI PR P R AN B T,

- . ®
T p O R LIRS PR) . NN
o Lo o “® g e ? g Wie &y o' o . " S NP S AP LA TR R T

Lo e

LROIRLY WA B Y ot
L "",""-"»,(R

;»;.*J
i"

Y il et haver e ihner 2t Jhelt At 4 T (it Rt A P e
!ru!a-"."r‘*-'.."(."('.‘.ﬂ-‘.'.--'.'.'.l.' ------------ T S e e R I i S
.

BS~AIE(l) .KAPSE(1)
3.4 Adaptation and Rehosting

3.4.1 Installation parameters

The following parameters must be supplied as part of installing a
KAPSE on a particular host:

. 1. The block size;
’ 2. The number of block buffers in the buffer cache:;
k- 3. The maximum number of simultaneous users;

2 4. The maximum number of simultaneous programs.

3.4.2 QOperation parameters

The following parameters may be adjusted on a running KAPSE to
reflect a changing operational environment:

2 1. The maximum memory allocation per program;

gj 2. The limit on number of simultaneous

w3l programs per usecr;
3. Host-dependent scheduling parameters;
4. The names and numbers of device objects (see **¥*),
5. Processing and disk budgets (see *#*),

3.4.3 Rehosting Requirements

Rehosting the KAPSE will require retargeting the Ada compiler and
re~-implemting the KAPSE/Host interface. The KAPSE/Host interface
has been kept as simple and low-level as possible to facilitate
rehosting to a new host system or bare machine.

Any host must provide some kind of direct access disk or
other on-line storage device. The host must also provide some
kind of asynchronous pseudo interrupt to implement ada real-time
constructs and inter-program communication.

3.5 Capacity

KAPSE performance will vary according to user load and host
system speed and capacity. 1In addition to the above installation
and operation parameters, the following parameters will have a
significant impact on throughput and response time:

172

INTERMETRICS INCORPORATED + 733 CONCORD AVENUE » CAMBRIDGE, MASSACHUSETTS 02138 « :617) §81.1840

St Y b St Tt e B i et i i A g AL S Y .? T LTS ,)"v PR '_'v"-v‘. AT ?'._‘—._'7',(-v' - ~.--._1

B5~AIE(l) .KAPSE (1)

1. The current number of simultaneous programs;

2, The amount of database access;

3. The locality of database access;

4. The amount of inter~program communication;

5. The number of simultaneous interactive users.
¢
i

173

INTEAMETRICS INCORPORATED + 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « .617) 551-1840

et et T - L - - . P S e e e T

LN B (e R PSP PR A R N DR AR S . C e e Ce e . . e T el
o haaisndls PP D D TP IS SPU LA U S T YRR G WS- S, Q- SR I S e e .t--t.-.,..-.;‘.‘...-,_.-fj

LS S S SIS el M DA M, S A e A S O S e

-

sk AL TR CU L YA LR RN I SO AT S RN

-

r

BS-AIE (1) .KAPSE (1)

v i e,

This page left blank intentionally.

LR LA s - W H Ao WA v

T et Wk el

ol N0

T O S

174

INTERMETRICS INCORPORATED » 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 » 1617, 661-1340

0

P i I T AT m® A AT e el e
! ")"‘.‘)"K"i.‘,".’u "\\ .."" RN

P R R RSP .
ARSI Y S S AT e e e e e e e N e AN Y
el = FARE VL WA W U WO W WA W W VR WA YT W R G W W W Wy

g N

L
7

O RRRT LN

&

B5-AIE(l) .KAPSE (1)

4. QUALITY ASSURANCE PROVISIONS

4.1 Introduction

Because the KAPSE serves as the guardian of the entire
database, the testing and validation procedure must be very
intensive. The general approach is to use automation and
parallel efforts to achieve a high level of confidence in a short
time. These activities are illustrated below:

KAPSE Sub-Project

iz joocseran
SEpLLeE
= nzecoaces ‘aentae REPSEL wosm

‘A T Tase 71 Tast S e | \
Sen See Set T"‘Z?""'
Rl Jsliagili=y /
Test //
CGarzalispzion

2lan

—JP '-u.z. = ?m /

ﬁ
7V

miler F i
Testung Inesqracisn Taune
siamolizal !
Teginy
2Tt
175

INTERMETRICS INCORPORATED + 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 + (817! 261.1840

o 3@

AP S h

* Y W ol T ot -t

YA Pl N T W

“hr Al el & N T

Ty

-y

Y A e
PRoltic o o 30 B it 28 4 % =

BS-AIE(l) .KAPSE (1)

4.2 Test Requirements

4.2.1 Ada Machine Testing

The Run-Time System or "Ada machine" consists of
implenentations of all routines called implicitly by Aada
programs, and the specifications and bodies of all subprograms
defined by the standard environment. It includes storage
management, tasking, exception handling, unit execution support,
and type support routines. The Ada machine test consists of the
ACYC compiler validation set.

4.2.2 Production Input/Qutput Tests

The next test/production phase covers |basic database
functions below the user level. These include the following
functions:

a. KAPSE/Host interfaces;

b. Physical disk block allocation, reference counting, and
read/write;

¢. Logical disk block read/copy/write, with Jjoin-counting and
automatic copy=-on-write;

d. Data clumps and access methods, used to implement primitive
files;) '

e. Primary windows on extended attributed objects:;
f. User-defined attributes;

g. Path names via distinguishing attributes, c¢reating and
deleting simple object components of composite objects;

h. Primitive program invocation facilities;
i. A primitive history attribute, logging all KAPSE calls.

When the units listed above have been tested individually, the
project begins to develop the production softwzre on the system
developed so far, rather than the bootstrap environment.
Database integrity is the responsibility of a juman software
librarian, who does manual backups daily. "Self-use," or further
development of the KAPSE on the RAPSE is the primary form of
integration testing at this point.

2.2.3 KAPSE Version 1 Test Case Generation
The scripts saved during this phase, especially those which

failed or caused a system crash, will become the primary set of
regression tests. The MAPSE project manager will run the

176

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (517) 661-1840

- -
.....

A e

LR AN, AN

R e AT
i e Yo S

Uy 3 i

>

WP
R

T
i

SRR R

B

wP

BS-AIE(l) .KAPSE(1)

regression and other tests and commit the entire KAPSE/MAPSE
project to the use of "KAPSE-1l" as a development system, after
the following additional features have been developed:

a. Category-defined attributes;

b. All remaining operations on components of composite objects:;
c. Partitions and secondary windows;

d. Access control via roles and access control attribute;

e. Automatic backup and recovery.

The combined set of unit, integration, and regression tests
developed by this point are a proposed AIE validation set (PAVS).
They are used as an acceptance test for new releases of the KAPSE
to the rest of the AIE project. A program will be developed to
automatically run test suites once, or repeatedly, and check for
correct execution of all tests.

4.2.4 Kl Reliability Test

The PAVS tests will be run cyclicly on the version 1 KAPSE
for two weeks without crashing. It is estimated that four weeks
of calendar time will be needed to debug version 1 to the point
of surviving two weeks. This reliability testing overlaps
additional development work in the areas of:

a. Pull history and archiving support;
b. Configuration management tools;

¢. Full program invocation and control, including private
objects;

d. Login/logout processing with user budgets and accounting;
e. System operation and maintenance procedures;

£. Pull terminal screen management software.

4.2.5 Pull Punction Testing

After incorporating any changes indicated by the outcome of
Kl reliability testing, and the list of new developments above,
KAPSE version two and test set K2 are developed. Set K2 includes
K1, specific unit tests for the new features, scripts saved from
all K1 crashes, and other tests which will be required for
government acceptance. Testing and debugging are continued until
all K2 tests have been passed. Next the KAPSE is recompiled with
the production compiler, and set K2 is repeated. RAPSE version
three consigts of version two as recompiled and re-debugged with

177

AW

INTERMETRICS INCORPORATED » 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617} 661-1840

. . .
S L. e,
b T WP T T M, e e e e et e P T ATl
;Af*_\qufg_\f:a 1 ".__: v\\ ARSI e e e _-.-".- S A I P SR L .t.\:l

YO

e

B2 -

M

2
o

3 it S A RS N

TSk

Lo e

-y

LA AL ST IS

LS

RS

-, XN

INTERMETRICS INCORPORATED + 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

......

€ A G LA UL IUIRIE R U SR S EIGRARTMEIUETUR AN ATERTRT T AT AT

B5~-AIE(l) .KAPSE (1)
respect to test set K2.

4.2.6 XAPSE Version 3 Testing

Version three testing will proceed as three parallel
efforts: The first will be the capacity and reliability test,
consisting of running the full K2 set continuously for two weeks
with a database constantly growing in number of obijects, users,
categories, etc. At the same time, there will be diabolical
testing, consisting of giving skilled programers specific
instruction and motivation to find ways to defeat access
controls, corrupt the database, etc. And finally, as programmers
make corrections and performance improvements, they will perform
development testing.

4.3 Acceptance Requirements

The acceptance test consists of the K2 set, the capacity and
reliability test, the scripts generated during successful and
unsuccessful diabolical tests, and throughput tests to measure
per formance against the level A requirements.

178

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE » CAMBRIDGE, MASSACHUSETTS 02128 + (817) 861-1840

o Smcroaver U - 7 W 2 9

F3

af £

¢
P
X
k
!»;z
t.

e ¥

4

LS

-

read

b4

AV AT VUL g NP ottan. -
v ! i ’ .

claas-t

