AD-A133 727 A STUDY OF PROGRAMMER PRDDUCTIVITV HETRICS FOR FLEET
MATERIAL SUPPORT OFFICE (FMSO){U) NAYAL POSTGRADUATE
SCHOOL MONTEREY CA G J HUGHES JUN 83

UNCLARSSIFIED F/G 9/2

S
N
-

-
=

NI ORI L B e A AR LASL RIS PRI A A MR /e iy PRI Ay ALY 5 -

forine

PGl

&
. ‘!’ d

'
]

EE
EEEE

FEEE

W
—

IS

I b e |

FFEEFEE

o

A3

Rl
@

g W e
B 3] ."\b’:vf’g“;‘:

)

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

P S Ol B -)

“
T

§
%
%
»*
i
:

)

PRI DRI Y W P Y TS Y DR IS o7 PR YR OT . S P S,

BT D R N S o T g S =™ oS P 7,0 T e = L T S e L T L S e e T e e e

e W

T P [

- v g

<

-

DTIC FILE COPY

AD-4133 739

NAVAL POSTGRADUATE SCHOOL

Monterey, Galifornia

THESIS

A STUDY OF PROGRAMMER PRODUCTIVITY METRICS
FOR FLEET MATERIAL SUPPORT OFFICE (FMSO)

by

Gary Jack Hughes

June 1983

Thesis Advisor: Dan Boger

Approved for public release; distribution unlimited

...........
.......................................

e e S Sl S G A AL 2 S S AR AL A i T s)t A R S MR e S Al o i M b et e & i e e e e

SECUMTY CLASHPICATION OF THIS PAGE (When Date Bntered)

READ INSTRUCTIONS
Y. TEPSRY NG GOVT ACCEISION NO] 1. RECIPIENT'S CATALOG NUMGER
/] 142 2 r
D boA413372p"
& TITLE (and Subeitie) S. TYPE OF REPORT & PERIOD COVERED
A Study of Programmer Productivity Metrics for Master's Thesis
) Fleet Material Support Office (FMSO) June 1983
§. PERFORMING ORG. REPORT NUMBER
L) ¥ CONTRACT GR GRANT NUMBER(S)
* Gary Jack Hughes
. PR N AMIZATION NAME AND L] . :Rgh.kl‘lolnl.x!ldsrrt:ul“o.)!!g:. TASK

Naval Postgraduate School
Monterey, California 93940

1. CONTROLLING OF FICE NAME AND ADDRESS 12. REPORT DATE
Naval Postgraduate School 1983
Monterey, California 93940 '3. MUMBER OF PAGES
] AODR] 1 from Centrelling Office) | 15. SECURITY CLASS. (of this report)

T8a. DECL ASSIFICATION/ OOWNGRADIN
SCN#DULE owNG ¢

. T C O)

Approved for public release; distribution unlimited

17. OISTRIBUTION STATEMENT (of the abetrast entered in Block 29, I difforent frem Rapert)

6. SUPPLEMENTARY NOTES

[19. KEY WORDS (Continus on rovercs oids /7 necescary and identily by bloch mumber)

Programmer Productivity, Productivity Metrics, Productivity, Programmer
Production Function, Performance Metrics, Programmer Productivity Metric
Comparison

3. ABGTRACT (Cantinus on roverse oids If nesossery and Identily by biock rumber)

The demand for software programs is increasing at an ever faster pace than
supply. As a result, software has become the most expensive part of a
computer system's life cycle costs. Accordingly, software development
efficiency has become a major managerial concern. This paper discusses
the software development process within the context of the production
function. It presents a comparison of various productivity models that
are currently Being discussed in the literature and a test of selected

models, This paper is part of a group of papers which together provide

DD 2% W73 comon or 1 wov e 18 ossoLeTE
$/N 0102- L~ 014- 4601 1 SECURITY CLASBIPICATION OF THIS PAGE (When Dara Entered’

B e U
SECUMTY CLASIIFICATION OF THIS PAGE (Whes Data Enteredd

————

recommendations to the Fleet Material Support Office (FMSO) to enhance its
software development organization.

J—
Accessi'ﬁ."‘l For

'ﬁN:'.‘TS sl

v o 4

-4

o " i

%7/¢ \ S ~4

)

'

Op [s e
N3 fr-r .
3 “Te, /li

N\, ?

$- N 0102- LF- 014- 6601

SECURITY CLASSIFICATION OF THIS PAGE(When Date Bntered)

Approved for public release; distribution unlimited

A Study of Programmer Productivity Metrics
for Fleet Material Support Office (FMSO)

by

Gary Jack Hughes
Lieutenant Commander, United States Navy
B.A., Pacific University, 1972

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL
June 1983

Author:

Approved by: :‘ zua,
/'J 7/7)'4—\ ﬁ

Thesis Advisor

Second Reader

ABSTRACT

-

The demand for software programs is increasing at an ever
faster pace than supply. As a result, software has become
the most expensive part of a computer system's life cycle
costs. Accordingly, software development efficiency has
become a major managerial concern. This paper discusses the
software development process within the context of the
production function. It presents a comparison of various
productivity models that are currently being discussed in the
literature and a test of selected models. This paper is part
of a group of papers which together provide recommendations

to the Fleet Material Support Office (FMSO) to enhance its

software development organization,

...........

R SN A Sl VA S A0 i St S bt SR i Sedt et el ol gk it an Al s /i

..........

b1

WAV RS

TABLE OF CONTENTS

e dlonlt Bl B

I. INTRODUCTION 2006000000800 0500000000808 00000 ees0se e 8
II. BACRGROUND ® 0 0000000 000 O Ce e OO0 BORORPNOGEOSOSIOOIOSIOSIOEOINPOSNONOINOSINSTPOSDNS 13

3 A. PRODUCTION FUNCTIONcoeeveencvncacnaocnass 13
3 B. PRODUCTIVITY MEASUREMENTocovveeevcenees 16

C. MEASUREMENT PROBLEMSceceeeesnsnseses 17
D. MANAGEMENT AND PRODUCTIVITY MEASURES 20
E. MANAGEMENT'S PROBLEMococeereosnnccecnens 21

III . umIc COHPARISON ® O 0 O ¢ 08 00O OO GO O OO S EOO BSOS OSSO QOSTSS 24
A. LINBS or CODB ® 0 0000 056000000000 0SDOOOOSOSESPSOIES PSS 26
B L Pmcm chION ® O 0O 900 G000 SO O SO0 OE SO SSPSEPSSTSES 3 5

LECAPL I P L

C. USER PUNCTIONScceccevececccccscccaccacccs 36
D. MODEL RECOMMENDATIONSc.cecececsecncensee 37
3 IV. METRIC TEST voceeeeecccccscconccceossassascanccocne 39
. DEPINITIONS «u..ocoeeeeeeennneeseeasannnneeeaee 39
. TEST PROCEDURES (APPLICATION SOFTWARE) 41
TEST RESULTS (APPLICATION SOPTWARE) 44

. TEST PROCEDURES (MAINTENANCE) ...ccccccecccsees 51
L) TEST RESULTS (MAINTENANCE) e 085 0002500008000 D 53

A
B
¥, o
D
E
P

. MANAGEMENT CONSIDERATIONS ...ccceeccccvcescccece 54
v L] PmDUCTIVITY PEMPBCTIWS ® 09 © 000 0 8O0 OO0 000 LS 5 7
A. mAGmNT ® 0 0 050006060000 00000000 0000000400000 9000 58

BI ENVImNMENT ® © & 5 0 00000000 000000 SE SO0 OSSOSO 62

c. PEOPLE ® 0 0 O ® 0000 OO0 O OO PP O OO0 OSSO0 OO0 S OSSO N PSS CCES 62

" AN,

D. PRxEss ® O 0 0000 000D SO N OO E OO OB OO OO Oe S e NSNS 66
E. IupmmT PROJECTIONS ® 9 9 O 0O "D O8G0 0006 e 0000 00 70

By

VI. CONCLUSION AND RECOMMENDATIONS ...cccccccceccecssee 72

"Q-l<.l ‘l ® 2 I

’ APPENDIX A: ALBRECHT'S DEFINITIONS AND WORKSHEET 74

;é APPENDIX B: RRMIS DATA ..ccvveeececnsccaccnascnsacnscens 16
:§ APPENDIX C: BOEHM'S MOEDL DATAcoeeovevenncennnnens 77
N APPENDIX D: JOHNSON'S MODEL DATA ...cc.ceveeecscecnnccss 19
% APPENDIX E: ALBRECHT'S MODEL DATAc..ccoceeeecesses 80
i APPENDIX F: CONFIDENCE INTERVALS (JOHNSON'S MODEL) 81
- APPENDIX G: CONFIDENCE INTERVALS (ALBRECHT'S MODEL) 82
3 APPENDIX H: MISIL MAINTENANCE DATAcccooeeeeeeeens 83
23 APPENDIX I: JOHNSON'S MODEL DATA (MAINTENANCE) 84

LIST or mmcgs OO0 OO0 00 000 0SO LSO 0O OLsNLOOOOSEOSDOSDSPOSOSGSTS 85
BIBLIOGMPHY ® O O 0O 09SO OGO OO PP OSSO O S OO OP OO0 OO SE NSNS SO 88

SN AL

INITI“ DISTRIBUTION LIST ® 0 00000000 00 0O 0SSO OO SO OOS DSOS EOSTLES 92

g -
CAS

KX ~ Ty
2, L A s 2 >

Y SO

o

a a8

S bty AR 3

LIST OF FIGURES

g

(Y

e,

(]
ot

3.1 PIOblems with Lines of code e O @ ® 00000000000 PO SO E e 28

A

4.1 BEstimated to Actual Productivity
Regression (Boehm's Model)cecceeeccasccccces 45

4.2 Lines of Code to Program Size Regression ...ccecceee 47

RV

-t

4.3 Punction Points to Program Size Regression ...c.c.ec. 49

RAFLR

4.4 PFunction Points to Program Size Regression 50

’ 3
.‘.).)

5.1 Range of Individual Differences in
Programming Performancecccoeoevseccscscsscsccss 63

i«
'I_.-l.:‘l ’

i

S.2 Ranking of Programming Performance on
rive objectivesl....................t...‘... 65

AR

WA

OO

-

\»1 BT
A R ARy

v
N

e RN

\:I;‘

X
~

B!
S

\

IR "N =X~ F T IETORE ISR O T

{ <ot]

LR

YR :
L RE

b Ru X

s s

I. INTRODUCTION

ERAAKKS

. The increasing use and complexity of computers coupled
with the rising costs of programmers has created a situation

that now demands management attention be focused upon

3 ,“..a.'-..‘

computer and programmer performance. This is true in both

lg the public and private sector. Scrutiny is now directed in
-g several areas. First, computer centers, historically an
i overhead cost, must now show their worth and compete head-to-
,i head with other organizational endeavors for scarce
3 operating and investment dollars. Their costs must be
f compared against their returned value and their cost/benefit
;g ratios must be compared against organizational and industry-
é wide standards. These comparisons give management an
;“ indication of and a perspective on in-house performance. In
% essence, they tell management if they are getting their
% money's worth. A second related area of managerial attention
. has been in the installation of recommended improvements.
% Because the expenditures in software development are so
é large, lower management must now closely monitor the benefits
:' of the improvement to make sure they are actually received.
§ No longer will upper management allow new equipment
‘§ 4 justifications to end at decision time. They must now
t: weather the test of reality. They must return the expected
!

%

'

S

X

N e A e A e NN e .

v DL P . . . e .
A M - - . - - - -
WA S VG R SR R vy N AP

’ ¥ O N -“:

LS
%

A

e,

2
»
--\.
X
\'
o ¢
PEN
gl
InYs
e]
W
)

»
*
LN

3
-ty

benefits. A final area of concern is the schedule.
Traditionally, cost over runs on computer projects were
expected, even planned for by management. However, as costs
continue to climb, the tolerance is diminishing. Management
must now control the development effort to a greater extent.
They must know if they are on schedule, and if not, what the
ramifications are. To do this, management must know how long
the development time is, how much it will cost and the
critical path. All these managerial concerns require quality
and quantity measures to be made on program and programmer
performance. Productivity must be measured and put into
proper perspective if an organization is going to compete in
today's environment.

Reflective of this changing environment has been the
edicts of Congress. The Federal Register of 5 April 1979
[Ref. 1) highlights this new emphasis in its discussion of
revised Federal policy concerning the acquisition of
commercial and industrial products and services (change to
OMB Circular A-76). Simply stated, where possible, the
government's policy is now one of reliance on the private
sector for goods and services, giving proper attention to
relative costs. What this means to the manager of a
government~owned and run general purpose computer center or
software house is lite-ally direct competition with their

private counterparts. .u ‘ac , they both submit bids on the

.......................................

2%s%a

ONATS { e

work. If the private firm can produce the same product for
less money they will be awarded the contract. For both
managers, submission of the bid requires knowing what
resources are consumed in the production of a specific
project. All inputs must be considered. 1In software
5} development the primary input is programming effort.
Therefore, the productivity of the programmers must be known.
No longer can government software houses guess at their
ol productivity. They must know precisely or they will be out
of business.

Another concern for the government manager is the
programmers themselves. The demand for programmer services
is much greater than the supply and the situation is getting

worse. According to James Martin, this is “the most serious

O,

.r““:
A AP 2V

constraint slowing down effective use of computers..."”
[Ref. 2). In order to compete effectively, a manager of an
% ADP center must get the best programmers available. This

requires individual programmer performance measurement and

. (3 s
LY A

oy evaluation.
A second area of Congressional focus has been on

governmental ADP managers and their control of software

| ol DRI Wl

conversions during system upgrades. Historically, the

o
B

performance has been terrible [Ref. 3]. Cost over runs,

later followed by conversion failures, have typified the

e Pl
LUK WL N e A

government's record. Erroneous productivity projections were

o 10

v 4" . P L T S . St
LSO SO O T VoA WA ST S S A S Vil I S S SR S SO

often found to be one of the major underlying problems. The
amount of effort and expertise required to do the conversion
was under estimated and the productivity of the workers
assigned over estimated. Accurate productivity projections
would have resulted in better planning estimates and in
tighter control of the conversion process. Managers of
computer centers and software houses must realize that
productivity measurements are critical, even essential, to
control of the software development effort.

All of the above problems and concerns apply to the Fleet
Material Support Office (FMSO). As a mass producer of
general purpose software programs (approximately 8000) they
face competition from the private sector for the work they
perform. During The development phase of individual
programs, they face schedule and cost problems that must be
controlled. As the employer of several hundred programmers,
they face a monumental task of performance rating and
evaluation. For these reasons, programmer productivity must
be measured at FMSO,

An insight into how FMSO can come to grips with the above
discussed problems is the purpose of this paper. As a first
step, productivity in a generic sense will be addressed
within the framework of the production function. With that
background as a foundation, the various programmer

productivity metrics currently found in the literature will

be reviewed, analyzed, and compared. Selected models will be

_—y.
.

tested using FMSO data in order to measure their predictive

abilities. Conclusions and recommendations will be drawn and

o Y57 %
LA

O Y
AR TR
PR |

presented for FMSO's consideration and adoption based upon

the results of the test.

.
PR

St DN

. « 2 s+ N

B
. ‘-'.
2t

<y
RN

12

wr.;,
v @ ESS S

! Y
J" !
.
Y

l._
L]
&
s
LY
.
Y

................................
........................

...............

TN
P
.&:....._.

R

II. BACKGROUND

%
S% Generally speaking, productivity is defined as the
2 . relationship between the volume of services or goods produced
S% ' and the physical inputs required in their production. It is
;E a ratio of output divided by input. Since it is a time
. sensitive measurement, comparison of two or more ratios can
i;: reveal characteristics to the software manager that are of
‘gs major managerial concern. Productivity decline, stability
2] and growth trends, and efficiency measures can be important
ﬁf indicators to management of long and short range
:i organizational well being. They can identify levels within
- the organizaton that need attention and the consequences of
? change. For these and other reasons, it is imperative that
E; the software manager understand the underpinning concepts
;t: that support productivity measurements.
24
';:j A, PRODUCTION FUNCTION
Ef Underlying the input-to-output relationship is the
i concept of the production function, which is the notion that
;; the physical unit of output is dependent upon the inputs used
’;: in the production process and the efficiency in which they
}é are utilized. The inputs are normally categorized into three
ii classifications: labor, capital and materials. There are two
%3 types of productivity ratios used: total and partial

A Xa
s

el

13

.“

* .
o

O
....... e . . e, . .- L . e
-ks.'n O .',.--\-. S e AR S T o T e

% p
3
E productivity ratios. A total factor productivity ratio
. includes all of the inputs while a partial factor
§ productivity ratio usually addresses a single input. Inputs
§ that are consumed in the production process are considered
. consolidated and consigned to the produced output. The degree
%ﬁ of consumption provides an indication as to the efficiency of
i the overall function.
l\ The measured output in the production function should
Eé always be a final and not an intermediate product. As an
';E example, the output measured for the production function of a
s farm should be the food actually produced and not the acreage
§ planted. The amount each acre produces is a single process
% within the function (very disaggregated product) and the use
2 of this value as a productivity indicator can be misleading.
‘ﬁ Another characteristic of a production function is that
given quaﬁtities of output can usually be produced with
) differing combinations of inputs. Less water and more
% fertilizer can produce the same amount of food. An optimal
%

combination of the inputs will provide a least cost solution

for producing outputs with the same marginal value. There

S

is, then, a point where the amount of additional fertilizer
= necessary to replace a unit of water will cost more than the
amount saved. Consequently, the mix of inputs is considered
optimal when their marginal cost/value ratios are equal.

Therefore, the ratio of the cost of the water used to what it

~
~
o’
" 14
2)
.

AN A0 SN A b A aON KT Rl AR AR SRS R A AN P e T e e e e T T TS TR TN T AT 1

AL R e, L oIl AL gl 2SR AN AR SR S A A il ol oAl A VIR AN A e G 0 S At e R e PO AN IS A A e I S e Sl

will produce is equal to the ratio of the cost of fertilizer
used and what it will produce.

Over time the optimal mix of inputs is not stable.
According to Kendrick, it will alter as a result of changing
relative input prices, increasing technical knowledge or
differing quantities of received output (if returns to scale
are not constant) [Ref. 4]. Since the optimal mix changes,
ratios of output to a single input (partial factor
productivity ratio) should not be used to measure and compare
productivity efficiency. Therefore, food produced per man-
hour of labor should not be used as a measurement of
productivity for the farm example. This can be a misleading
measurement for several reasons. First, labor can be
substituted for or by other inputs (non-optimal solution).
Secondly, this tradeoff may affect the influence other inputs
have on the output. Finally, changes in the efficiency of
the production function can affect such measurements. The
use of total factor productivity ratios allows input
categories, such as labor, to be further broken down (skill
level, work type, etc.), which in turn can facilitate better
managerial analysis and problem identification. As a rule,
inputs should be specifically identified if their physical
characteristics and/or prices differ substantially from other

inputs.

15

.......................

ClPCaane "
...............

B. PRODUCTIVITY MEASUREMENT

Changes in productivity are determined through
comparison, either with other productivity measures or
historical data. Total factor productivity changes are often
defined in the literature as changes in production
efficiency. These changes may be the result of changing
technology, changes in the scale of output and/or changes in
the rate of utilization of capacity [Ref. 5]. New

innovations in technology allow more efficient conversion of

inputs to outputs. Managerial decisions that cause changes in
the volume of output can bring about efficiency improvements
which are explained within the principles of economies of
scale. Additionally, changes in the rate and mixture of
inputs will cause more or less efficient use of those inputs.
All of these factors alter the efficiency of the production
function accordingly. Changes in productivity can be
influenced by both short and long range factors. In the
short run, changes in output capacity requirements will
directly affect the productivity ratio because of the
somewhat fixed nature of the inputs. The number of people
employed, the materials currently on order or stocked for
production and the physical plant form temporary constraints
on the éroduction function. These constraints take time to

change. Daily fluctuations in output demand must work within

their confines, Additional elements that can cause short run

K .- B
NN T T Y R

productivity changes are learning curve factors as employees
adapt to physical and organizational change. Long run
< changes in productivity can be attributed to the changing
i quality of the inputs over time or by managerial initiatives,
such as decisions which bring about changes in the scale of
output [Ref. 61]. Some short range factors, such as
organizational change, may cause temporary losses of
productivity yet ultimately result in long term gains.
= Collected historical data on the degree of influence that
particular changes have on the production function can be a

valuable managerial decision making tool.

’ .
) AR s
L S

C. MEASUREMENT PROBLEMS

1. &
.

One of the major problems in measuring productivity is

the lack of a single concept of efficiency. This unclear

Py
‘.-“ -" e : a '

definition is partly attributable to the multidimensionality

of the inputs and outputs. It is often difficult to
determine what is and is not an input or output. Equally
confusing can be the categorization of the inputs into
heterogeneous atomic elements. The labor input illustrates
this problem. Labor can be broken down into many different
job types and skill levels. Inclusion of all the subunits is
} impractical and probably impossible. Management must,
therefore, decide what segregations and aggregations of
inputs are to be used because it will affect later analysis.

In that regard, management will have to distinguish between

af el

PRI L D L Y

core and peripheral inputs; and within the peripheral inputs,
those to be included in the productivity ratio. For example,
should the electricity being used to light the offices and
the production plant be included (or pro rated) as input to
the production process? These and other problems of
5: measurement must be decided by management.

A second problem in measuring productivity is the
changing nature of the inputs and outputs over time. Quality
changes in the inputs can affect the production function's
efficiency or the output quantity. Conversely, changes in
the quality of the outputs suggest changes in the production
function or in the input quality. Differences of quality in
inputs and outputs are hard to detect. When detected, they
are hard to measure. When measured, their influences are
hard to determine. The elusiveness of this variable
complicates the compariability of productivity ratios through
time.

A third problem is imprecise productivity measuring
tools. Often the input or output simply cannot be measured
by standard means. Its value is abstract and difficult to
determine. This is often the case in the public sector
(service~oriented organizations), ie., police departments,
politicians, etc.. When inputs and outputs cannot accurately
be measured, and management substitutes measurable

intermediate outputs as indicators by which to judge

18

..

S R T Y LW LT TN L At et T et ey ey T T T TR T AR e a e e v e e ey
ERCARC A it b i it P N A R R P SO P A S N A L R A R

performance, gaming can occur. An example of gaming can be
found when secretaries are evaluated on the number of pages
they type. The percentage of "white space” on the typed
N documents will increase as they try to type less on more
pages.
é Confusion of technical efficiency with economic
efficiency is another problem. Given output levels can be
produced using various input mixes. The selected input mix
is considered technically efficient if it minimizes the input
requirements. For example, if a dam, requires as a minimum
ten laborers with heavy equipment for construction, the use
of eleven laborers with heavy equipment is a feasible yet
f technically inefficient solution. For a given output level,
there can be numerous solutions which are technically
feasible. A dam can be constructed with either ten laborers
using heavy equipment or with one thousand laborers using

shovels. In between these two ends of the spectrum there are

£ o

~ countless other technically efficient solutions. A line
connecting the locus of all the technically efficient methods
for producing a given level of output forms an isoquant. At

a point(s) along the isoquant the solution that is the least

LR

cost and, therefore, most economically efficient can be

~ .,
- 4
-c A

found. This point is determined by comparing solution mix
input costs. The mix that provides economic efficiency may

not be the same over time or at all locations. In

.. 19

= undeveloped countries where there is an abundance of labor
and a scarcity of capital, the use of one thousand laborers

with shovels may be a technically and economically efficient

. X ' AP i
fo
B.t.0.58

solution. Conversely, in industrial countries less labor and
more capital may provide the optimum solution.

Other problems concern the confusion of productivity with
production or capacity measurement. Productivity measures
the efficiency by which resources are used and not the degree

of utilization of t‘he available resources., For this reason,

g 'y
4 -
ST S R g A

productivity measurements should not singularly be used to

Ayt

determine/justify increases in employee compensation.

o~

. -,
ol

D. MANAGEMENT AND PRODUCTIVITY MEASURES

Ayt

Productivity measures serve three main puposes of

management: planning, control (decision making) and

, ...
Tl

evaluation. Historically, recorded productivity data on past

or similar projects has provided the basis by which future

I.:i

requirements are determined. This base, modified as

.
i necessary to reflect new constraints, is used to establish
o new or recurring short and long term project goals and
,a objectives. Additionally, it helps to identify resource
‘i timing requirements within those projects.

: Managerial monitoring of short term goal attainment is
i accomplished via budget and scheduling measurements using
S various productivity metrics. Three tracking techniques are
fé predominately in use. The first is a comparison of actual to
o 20

...............
........................
.............................

planned expenditures. Identified variances between project
estimates and actual disbursements can indicate improper
financial management or inaccurate program projections.
Secondly, work accomplished can be measured against work
scheduled. Several models exist, such as CPM, PERT, etc.,
which help manégement not only monitor work accomplishment
but also identify the critical path, areas of slack, and
probabilities of milestone attainment. Finally, a third
comparison can be made between budget and schedule variances.
The differences between actual and planned expenditures is
compared against the differences between actual and scheduled
work accomplishment. Variance relationships between the two
can be a powerful indicator of organizational health to
management [Ref. 7].

The evaluation phase measures how well the organization
is meeting its long term objectives. Using productivity
measures, areas of improvement and deficiency can be
identified and analyzed. Resulting data can then be used to

recalibrate planning models and update baselines.

E. MANAGEMENT'S PROBLEM

Generally speaking, productivity is the relationship of a
unit of output to its required inputs. This relationship is
based upon the concept of a production function, where inputs
are received and processed in the production of output. In

order to accurately measure productivity (within the

....................
.............

o .
R LI LA

NN

. o
LIS]

LA ORI

{ e

LA I B R A S S A i ndi Nt M I 4 S A NI oS obdny A o e oA A i A ¢ L A e e

......

production function) all of the inputs (capital, labor and
material) required to produce the final output must be
considered. In this regard, there are several
characteristics of the production function that can change or
be controlled and, therefore, are of managerial concern.
First, a given output can be produced with different input
mixes. Secondly, of the various input mixes possible,
usually only one is optimal. Finally, the optimal mix is not
stable and will fluctuate over time.

Further complicating management's productivity
measurement effort are several problems with the actual
measurement, First, since it is a relative measurement, it
requires a comparison to be made with either accepted
standards or historical data. Secondly, it is often hard for
management to define exactly what inputs and outputs should
be included in the measure. This determination is made more
difficult by the fact that inputs and outputs change over
time and that there are only imprecise measurement tools
currently available. A final problem is confusion with the
term efficiency. It is possible to be technically but not
economically efficient. Management must be aware of the
difference, what it means and how to correct it,

Despite the above discussed difficulties of definition
and measurement, it is essential management successfully

measure and track productivity because it is singularly the

22

B e B B

Y S v i S M S e M Sl U T S G e i gt et e

{ AP0

F O

s

N most important indicator of corporate performance.
Management must know where it presently is at and what

changes must be made to meet organizational goals and

R 2 ¥ aTavals

objectives. These measurement requirements create many non-
. trival problems. Accordingly, management must be aware of
. the pitfalls and ask the appropriate questions in order to
ensure meaningful answers. The difficulty of this task, as
it relates to programmer productivity, will be demonstrated

in the next chapter.

i
Py

RECAF AP AS

[N

ALEL

LIS N W W

TR Nk - 4 LA

- 4

plr Y A

23

ar

4

.
(¥ 27 2 s .

L

' N
Stete Ay

PR LV i A e S

Lo SO LI

NN VTN e T e U e e

Programmer productivity when viewed within the background
of the production function highlights several misconceptions
and misunderstandings_ that abound in the literature. First,
programming is an input to and not an output from the
production function. It is not an end in itself.
Conversely, the programming effort in conjunction with the
other inputs produce computer code, an intermediate product.
When executed, the code provides the customer with a useable
final product. This sequence of events underscores a second
common misunderstanding, namely, that code is the final
output of the programming effort. Code is an innate object,
with user value borne in execution. The code's useability,
not length, determines its value. The difference in the
length or characteristics of the source or object code is
transparent to the user. Only the value of the delivered
results are important. These simple concepts are
consistently blurred in the literature. On balance, this
confusion and lack of a clear notion of the programming
productivity function is a major contributing factor to many
other problems that plague programmer productivity
measurement.

The most common programmer productivity metrics found in
the literature fall into three general classification groups:
(1) lines of code, and functions which the (2) program and

(3) user perform. Each of these areas can be usefully

25

viewed as a process in the production function. The

processes' exact relationship within the function can be an
indication of how good the metric can measure productivity.
Therefore, a discussion of the predominant models in each of
the three categories will be presented and evaluated with
respect to the production function. The presentation will
consist of a brief description of the model, its popularity
of use, and the inputs it utilizes. Additionally, the
evaluation will address some of the advantages and

disadvanbtages of the models,

A. LINES OF CODE

The most common form of measuring programmer productivity
discussed in the literature is lines of code. It is the
predominant model because of its simplicity. Lines of code
are easily counted. A line of code usually refers to the
eighty character line that is used in coding programs, even
though less than the full eighty characters are normally
used. It is a source statement. The number of lines
produced divided by the time expended in their production
forms the ratio that is most often used for the measurement.
Lines of code per programmer’day or month are the most common
ratios,

Programmer code, as discussed earlier, is an intermediate
product in the production function. It is an output of one

process and an input to another within the function. As

26

..

such, its use as a productivity indicator may be misleading.
Additionally, lines of code per time unit is a partial factor
productivity ratio, and this causes problems as discussed in
Chapter Two. Lines of code is not the only input into the
process, other inputs also exist. Results received from
using a lines of code measurement should be tempered with an
understanding of the model's limitations.

Several problems exist with lines of code measurement.
Pirst, what actually constitutes a line of code is unclear.
One author listed fifteen different active definitions of
what can be counted as a line of code. These variations are
listed in Figure 3.1. Between the extremes, it is possible
to have more than a two to one variance on a lines of code
count for the same program. The problem is not, however, a
critical one. For an individual company developing its own
metric, the definition of what a line of code is must simply
be stated at the outset. For organizations that intend to
use an established model, the correct definition needs to be
determined and applied.

A second problem involving the use of lines of code is
the way it tends to penalize the use of high-level languages.
Programs written in lower-level languages, such as assembler
language, normally require more lines of code, as compared to
higher level languages, in order to produce the same output.

ysing a line of code ratio as a measurement, the results

T VDI ST I W R Y W W W G T SIS ST Y FrY

VARYING DEGREES OF "LINES OF CODE"

1. ONLY EXECUTABLE LINES
2. EXECUTABLE LINES AND DATA DEFINITIONS
3. EXECUTABLE LINES AND DATA DEFINITIONS AND COMMENTS

4, EXECUTABLE LINES AND DATA DEFINITIONS AND COMMENTS
AND JCL

S. DELIVERED LINES ONLY

6. DELIVERED LINES AND SUPPORT SOFTWARE

7. DELIVERED LINES AND SUPPORT SOFTWARE AND TEST
CASES

8. DELIVERED LINES AND SUPPORT SOFRWARE AND TEST
CASE ABD SCAFFOLD CODE

9. NEW LINES ONLY

10. NEW LINES AND CHANGED LINES

11, NEW LINES AND CHANGED LINES AND RESIDUAL LINES
12. MACROS COUNTED ONCE (OR INCLUDED CODE)

13. MACROS COUNTED ON EACH USAGE (OR INCLUDED CODE)
14, "LINE" MEANING A PHYSICAL LINE ON A CODING PAD
15. "LINE" MEANING STATEMENTS BETWEEN DELIMITERS

SOURCE: Jones, T.C., "The State of the Art of Software
Development,” ACM Professional Development
Seminar, College Park, MD, 7 April 1981.

ARD - § A5

& T
aA A

&

Figure 3.1 Problems With Lines of Code Measurement

&R

28

could indicate that the primitive or lower-level language is
more productive. This is obviously not the case.
Discrepancies such as this are indicative of the problems
that can arise when intermediate and not final outputs are
used to measure and judge productivity performance.

An additional problem with using a lines of code
measurement is that it implies that the coding of the program
is the most important part of the software development cycle.
This is often not the case. The misdirection of emphasis is
partly attributable to the use of a partial productivity
measurement as the measuring tool. While highlighting the
code writing effort, it overshadows the importance of the
other inputs. As a result, noncoding tasks are often not
measured. This omission can cause ridiculous results from

the metric. T. C. Jones pointed out the paradox of the
problem as follows [Ref. 9]:

With modern defect prevention and defect removal techniques
in programming, it sometimes happens that no defects are
discovered during testing because the program has no
defects at the time the test is carried out. If testing is
done by an independent group rather than by the programmers
themselves this tends to introduce slack time into
development. By normal program development practice, the
programmer usually cannot be fully reassigned until testing
is over, in case defects should be discovered. Since it is
nonproductive, slack time does not contribute to lines of
code per programmer-month. It is therefore inaccurate to
say for example, that one's productivity is one thousand
lines of code per month during testing when there is no
coding, and much of the time is spent waiting for bugs that
may never occur. It is reasonable to say that slack time
has added one month to a project but it is not reasonable
to say that slack has proceeded at a rate of one thousand
lines of code per month.

...................
..................................
.........................
........................

.....

~._\. - .

NSNS

...................

- wl

There is, however, a simple solution to this problem.
During the slack period either assign the involved
programmers other work (administrative/new project) or do not
count the time,

A fourth problem with the use of lines of code is its
awkwardness when aggregating independent measures of parts of
the programming development cycle. Because of the measure's
structure, it is easy to fall into the trap of double and

triple counting the number of lines of code produced. The

o a atee’

point is best demonstrated with the following example
(Ref. 10]:

Suppose a program consisting of 1000 lines of source code

has been developed. The development cycle consists of four

separate activities, each of which has taken one month to

complete and has yielded a total development expenditure of
% four programmer-months. The sum of four consecutive
N activities, each of which proceeded at a rate of 1000 lines
of code per month, is not 4000 lines of code per month, but
250 lines of code per programmer-month.

Oy

A fifth problem with lines of code measurement is that it
does not adequately deal with quality differences. This

deficiency is understandable since lines of code is an

(S Sl Sl Ral Wl Act g

intermediate product with no user interface (quality is

.
LI]

determined through usage). For example, succinctness is

52

penalized., 1If two programs are similar in language and

Y

delivered results, the metric will indicate that the
programmer which uses more lines of code is more productive.
In fact, the opposite is true. The programmer with the

fewest lines of code will produce better code because it will

30

i
b
&
o
o4
4
»
f o
-
Al
»
E- o«
X
X}

use less of the other inputs (ie., cpu cycles, etc.) in

execution. For this reason, lines of code measurement is
extremely susceptible to gaming.

Currently, there is no proven solution to the quality
measurement problem; however, several interesting theories do
exist., The most promising quality measures are the works of
Halstead [Ref. 11] and McCabe [Ref. 12]. Halstead's
hypothesis simply states that the count of operators and
operands contained in a program can be used to measure the
complexity, predict the length and estimate the effort
required to generate a specific program or algorithm., 1In
brief, Halstead's metrics try to scientifically measure the
psychological complexity of the program. McCabe's software
complexity model is based on the number of basic control
pathways that the software contains., It is a measure of the
computational complexity of the program. It is also an
attempt to develop a mathmatical measurement model for
software productivity. For both models, a theoretical
assumption, based on empirical data, is that an inverse
relationship between complexity and quality exists,
Presently, the literature indicates that neither model
adequately measures software quality to the extent necessary;
however, the research is encouraging [Refs. 13,14,15,16].

The use of a ratio to measure productivity also presents

a problem. Implicit within the use of ratios is the natural

31

KAF P 4 -"J

assumption that if you know one variable you can determine
another. For example, if design costs ($100,000) and the
relationship between the design and coding effort are known
(design is 10 percent and coding 20 percent of the total
effort), then coding costs might be estimated using a
weighted factor (2 X $100,000 = $200,000). This often is a
costly assumption. Linear relationships like this almost
never exist. Therefore, calculations should independently be
developed for each activity within the development process
and then be aggregated to determine totals.

Despite the many problems discussed concerning the use of
lines of code as a measure, one clear important advantage
for its use exists; specifically, its ease of use. Once
defined, lines of code can easily be counted. This is
extremely important because difficult-to~use models may be
simply not worth the effort to implement. With awareness of
the metric's shortcomings, lines of code may be the best
metric presently available to measure programmer
productivity.

Dr. Barry Boehm in his book, Software Engineering

Economics [Ref. 17], described one model for measuring

software productivity called a COnstructive COst MOdel
(COCOMO). The model has a three tier hierarchial structure
(Basic, Intermediate and Detailed) allowing for varying

degrees of implementation sophistication. Equations are

LRI St gen

LI SR W

P AL

4

s aR
S Ex]
LA

)
ectels
-.-'l.n

P

AR g radriy
el KI.{!..L!.\‘,“.‘.‘o

27
-n’c

provided for estimating the number of man months of effort
required to develop a software program in terms of thousands
of deliverable source instructions. A second egquation
estimates the development schedule in months. Productivity
for a specific program is estimated by dividing the initial
user estimate of program size by the effort estimator. Basic
COCOMO can be used to quickly develop a rough estimate of the
software development costs. In the more advanced versions,
subjective software product, computer, personnel, and project
attribute multipliers are used to tune the model for more
accurate performance. This is attractive because it allows a
company to start with a simple metric and build from there.
One unique advantage of this model is its ability to measure
productivity in software maintenance activities. Although
very little appears in the literature to indicate how well
the model perfoms, it is believed that the COCOMO model can
provide a reasonably good starting point for measuring
productivity.

Another model for measuring programmer productivity was
suggested by Walston and Felix [{Ref. 18]. The model cal-
culates programmer productivity as the ratio of delivered
source lines of code to the total effort (man-months)
required to complete the given program. Five major
parameters: productivity, schedule, cost, quality, and size

(listed in order of increasing difficulty and complexity of

33

analysis) were identified that significantly influence

productivity estimates. Additionally, twenty-nine inde-
pendent variables were identified in these categories to be
significantly correlated with measuring programmer pro-
ductivity. The combined variables form a productivity index.
Felix and Walston's model has received some criticism in the
literature on two points., First, many of the variables
require subjective measurements, ie., the degree of user
participation in the definition requirements. To an extent,
the criticism also applies to Boehm's model. Secondly, the
data base on which the model is based was collected on a
project rather than a program basis. There is fear that the
projects' long duration may have unmeasurably influenced the
isolated variables [Ref. 19].

James Johnson suggested a third model for measuring
productivity (Ref. 20]. The model is a data base comparison
using historical lines of code counts (comments and all other
statements are counted as lines of code) for similar
projects. The counts were obtained from automatic librarian
statistics and estimates. Man-day figures used included both
productive and nonproductive time. Averages for lines of
code per hour for small and large programs were then
determined, along with the variances. These figures in a
general way, are used as a measure of productivity.

Subjective opinion was used to estimate technology levels,

34

-t a®atan

AR Ay Ty W VLY g e LR+ e Aora i D § A hous B A R S DI LA TR R PRI A S A A IO A M i Ay g e o Baret s s e e

A

-
.

difficulty and staff quality. It was concluded by Johnson
that lines of code averages can be used at a macro level for

project estimating. Although a simplistic approach to the

i lor ol o g5 W

problem, as compared to the other models, this metric can

have useful application as a rough indicator of performance.

B. PROGRAM FUNCTION

A productivity metric has been suggested that uses man-
hours per function as a measure [Ref. 21]. Functions are
defined as a section of program that performs only one
activity, has only one entry and exit point, employs the
logic principles of structured programming and has between

L five and fifty source statements. The functions of individual

s

programs are counted and then divided into the respective

man-hours spent on development. The resulting ratios are

£ i v

then compared against an existing data base in order to

determine performance.

Functions, like line of code, are an intermediate product

SENEEL AL TR, 2

within the production function. As a result, many of the
problems that lines of code have also apply to function
measurement. One new problem is function definition. 1In a
structured format, a function normally means a paragraph.

However, the definition can also be construed to mean

subroutine, procedure, etc. What should be counted is

unclear. This confusion can result in gaming to the extent

L - W A FAAA

programmers can control program structure, Like lines of

o
8
-

- 35

............... . .

- e P T i Y R R S P I NPT T e et - .

o, - S AP e B R T T I AR I S . T

. - D ~ PSR Nt - o o-
'~ e LA AR - e

.................................

code, software quality is not measured in program functions.
This is probably the major deficiency of the model.

Trevor Crossman, the metric's principle proponent,
discovered for the six projects tested that the man-hours per
function ratios clustered around the values of two and four
(Ref. 22]. He also determined the functions that required
approximately four man-hours per function to complete were
for new or "breakthrough" technology. A learning curve was
involved. Other variables were tested and found not to
influence the ratio. Crossman suggests once the number of
functions that a program has is known, then an estimate of
man-hours required for development can be determined.

An advantage to the model is its simplicity. Project
variables do not have to be identified and their influence
estimated. This removes part of the subjectivity that is
incorporated within many other models. Conversely, a
disadvantage is that you must know or be able to estimate the

number of functions within a program.

C. USER FUNCTIONS

A third area of measurement uses the number of inputs,
inquiries, outputs, and master files delivered to the user to
determine programmer productivity (Ref. 23]. Each category
by program is counted, weighed, aggregated, and adjusted for
complexity. The delivered results is a dimensionless number

in function points, which when compared to a data base of

36

...............................

"".-4 -
a

............................

like measures provides an indication of the relative user
value.

Albrecht's metric looks particularly attractive because
for the first time a model attempts to measure output,
namely, user functions. As a result, quality measurement is
less of a problem than with other metrics because user
interaction is incorporated within the metric. For the same
reason, the model is less susceptible to programmer gaming.
Another advantage of this model is its apparent language
portability. One possible problem with the metric is the
subjective determination of whether a function is an input or
an inquiry. This decision may critically influence the model
if different weighting factors are used for the two
categories. The literature contains no information about the
model's ability to measure productivity (other than what
Albrecht provides); however, because of the advantages the

model offers it warrants strong consideration for testing.

D. MODEL RECOMMENDATIONS

As the first step in choosing a metric for measuring
programmer productivity at the Fleet Material Suppport Office
(FMSQ), it is recommended that three of the discussed metrics
be tested for performance using FMSO data. The recommended
metrics are: (1) Boehm's COCOMO model (basic), Johnson's
averages for different length programs (lines of code per

hour), and Albrecht's user function model. These models were

37

.............

g i

by

e

.~ .

.........

.....

T R TRTeTE—

selected for three primary reasons. First, their relative
simplicity of design and ease in testing (Johnson's and
Boehm's model) make them attractive for further evalua:ion.
Secondly, they provide a good cross-section of not only the
production function but also of the available published
models. Finally, it is believed the delivered results from
one or a combination of these three models may suffice FMSO's
various measuring and predicting requirements. Accordingly,
it is recommended the models also be tested under various
environments (ie., new application software development,
maintenance, etc.) in order to determine their accuracy and
usefulness as an indicator of programmer productivity for
spgcific FMSO applications. As possible, the results from
each of the models will be evaluated for predictability of

measurement and ease of implementation at FMSO,

38

I P T IRV SN
FA NPT S G U DR, TRl SRR

Aaencd.

Iv, METRIC TEST

Boehm's, Johnson's and Albrecht's productivity measuring
metrics, which were recommended for testing in Chapter Three,
are evaluated in this chapter using FMSO data. Two separate
productivity measurement experiments were conducted: (1) on
new application software development and (2) on the
maintenance of existing programs. The first experiment was
conducted on a project consisting of fourteen programs
(Requistion Response Management Information System [RRMIS]).
Data elements required for each of the three models were
collected on this database and evaluated. In the second
experiment, a database consisting of thirty programs was
used. As before, the programs constitute a larger project
(MISIL). In the second experiment only Boehm's and Johnson's
models were to be tested. Albrecht's model does not lend
itself to measuring productivity in the maintenance environ-
ment and, therefore, was not included. The intent in both
experiments was to evaluate the predictive ability of the
above mentioned models using represenative FMSO data and to

determine if further research appears warranted.

A. DEFINITIONS
In the experiment on new application software

development, data elements were collected on: (1) lines of

39

code, (2) time actually spent in development and (3) on

function points delivered or designed (as defined by
Albrecht). Lines of code or delivered source instructions
(DSI) was defined to "...include all program instructions
created by project personnel and processed into machine code
by some combination of preprocessors, compilers, and
assemblers. It excludes comment cards and unmodified

software. It includes job control language, format

statements, and data declarations. Instructions are defined
as lines of code or card images...." [Ref. 24]. This
description/definition of a line of code was used
consistently throughout all the experiments.

The second data element, time spent in the development
process, is the time actually spent in man-hours in the
design and implementation of the software programs. In other
words, it is the time spent between the beginning of the
product design phase and the end of the implementation/
integration phase. This is not an aggregate measurement in
that it does not include overhead costs (ie., vacations, sick
time, non-related meeting time, etc.). Throughout the
experiments, the definitions of man-days and man-months that

i are presented in the COCOMO model are used. They are as

A

N follows:
MAN-DAY (MD)......."....IOOS HoURS OF WORK

MAN-MONTH (MM)..cecceeeeesee.152 HOURS OF WORK
(OR 19 MD)

e & ey

The third data element, delivered function points, is
defined in accordance with the guidance provided by Albrecht
[Ref. 25]. An example of the definition of terms and the
worksheet used in their calculation can be found attached as

Appendix A.

B. TEST PROCEDURES (APPLICATION SOFTWARE)

Using the data elements from the common database
(attached as Appendix B), all three models were exercised in
accordance with respective instructions. The first metric
tested was the COCOMO model. To employ this model, it must
first be calibrated with the user's programs. This is
necessary because the model's results are dependent upon the
database used in deriving the effort formula (Formula 4-1).
Accordingly, if the model is not calibrated, the results will
not accurately project specific program effort, and thus
specific user productivity. To calibrate the model for this
experiment, actual development time in man-months and program
length in KDSI were converted to natural logarithms for half
of the sample database. This was required in order to
linearize the data for statistical analysis. A regression
was then performed between 1n(KDSI), the independent variable
(X), and 1ln(MM), the dependent variable (¥). The resulting
regression line was used in modifying the given COCOMO effort

.088 FORMULA
EFFORT: MM = 6,18 (KDSI) 4-1

41

il et A B " a4 m

equation to reflect the programs being measured. The steps
used in the calibration are provided in Appendix C, As
required in Boehm's basic model, the delivered source
instructions (KDSI) to be tested were then used to estimate
the number of man-months (MM) required for the software
development phase of the life cycle (Formula 4-1). The
second calculation conducted using the COCOMO model is a
productivity estimate. Productivity is defined as
deliverable source instructions divided by effort (as
received from Formula 4-1). Formula 4-2 shows the

calculation involved.

DSI DSI OF PROGRAM FORMULA
PRODUCTIVITY: = 4-2
MM EFFORT

It should be noted that this is a partial factor
measurement of an intermediate product, and as such has the
deficiencies stated in Chapters Two and Three. The received
results from the sample database for this model are attached
as Appendix C., A comparison between actual and derived

{ productivity results was made,

The procedures used on Johnson's model are
straightforward. The total time spent in developing and
implementing each program was divided into the total source
instructions delivered. This is also a partial factor and an

intermediate measure of productivity. Appendix D lists the

42

. . . . L. . . R
ainlbaloele ' niakeleoled e teBe et ans 2 e 2"

obtained results in two formats: (1) lines of code delivered

S LOXAAAAL {pae

per man-day and (2) lines of code delivered per man-hour (one
man-day equals eight man-hours).

The procedures used in Albrecht's model follow the
guidelines provided on his worksheet (Appendix A). In each
of four categories (inputs, outputs, files and inquiries)
function points that are delivered by or designed into the

program were counted. The individual totals were then

i

PN

weighted and summed (unadjusted function points). Next, a

modifying complexity adjustment was determined. This value

is derived by making subjective determinations in ten

complexity categories (0-5 scale, with 0 equalling none and §

P AL AT

equalling essential). The product of the two calculations is
o a function point value that the program returns to the user,
Caution must be exercised in using this model for when this
value is plotted/compared against development time, it may
wrongfully be construed as a rough indication of produc-
tivity. In fact, the model is designed to be a relative
measure against an existing database. Results from
Albrecht's model should be viewed as a measure of value given

to the user. As discussed in previous chapters, the model

'a” .l.; ‘.:“.v‘-".&"

attempts, for the first time, to measure the final output of

the software development process. Appendix E provides the

obtained results.

PRI T T S et o kamd La

P A

C. TEST RESULTS (APPLICATION SOFTWARE)
The first model tested was Barry Boehm's COCOMO model.
T Using the calibrated/given formulas, productivity (DSI/MM)
2 was calculated for the last seven programs in the database
(the first seven were used to calibrate the model). For the
programs tested, the COCOMO model was found to be a fair
X estimator of productivity. In the best case a productivity
of 89 DSI/MM was estimated and 91 DSI/MM was actually
achieved. In the worst case, 29 DSI/MM was estimated and 70
DSI/MM was actually attained. When actual productivity (X)
and estimated productivity (Y) were used in a regression, the
plot in Figure 4.1 resulted. As can be seen, the data points
grouped nicely around the regression line. The correlation

coefficient between the values was .96, indicating a strong

ﬁ linear relationship exists (cause and effect relationships

are not implied and cannot be assumed from these results).

Cs
»

As can be seen in Appendix C, the actual and estimated

productivity values were not clustered around any one point.

e o N &)
ARvatati"s

The estimated productivity values ranged from a high of 590
N to a low of 29 DSI/MM (mean equals 207.4, sample standard
i deviation equals 180.4). The actual productivity ranged from
; a high of 536 to a low of 70 DSI/MM (mean equals 199.4,

sample standard deviation equals 158.0).

R R

44

............................
.....................

(-
o
o
+

450.

OmAP>»I-A0N

300.

14+ 00 L4+

150.

+ 0LV +

(=]
.

+ & Y -+ -+ -

50. 150. 250. - 350. 450. 550.

KHEAHSHIOQUOU O

ACTUAL PRODUCTIVITY

Figure 4.1 Estimated to Actual Productivity Regression
(Boehm's Model)

draw conclusive statistical evidence. Still, there is
encouragement that the COCOMO model can estimate programmer
productivity at FMSO. Additjionally, it is anticipated that
with the use of a more advanced version of the COCOMO model
the results could be better (there are three levels of the
COCOMO model, the most elementary of which was tested).

The second model tested was Johnson's lines of code

model. Program lengths were divided by the time spent in

45

- OO NG
a1 e 8 8
LI T L TR S DR TR 5
PLN L3 A R I

d g, LIS
Ml

their development. The results were lines of code per man-
day or man-hour. Once the calculations were completed for
the fourteen programs, a linear regression was done between
lines of code (LOC) per man-hour and program size in order to
determine the closeness of the relationship. Program size
was used as the independent variable and LOC per man-hour as
the dependent variable. The results are shown as Figure 4.2.

The correlation coefficient between LOC/MH and program
size was an impressive .97, which suggests there is a strong
linear relationship between the two. Supporting this
observation is the data in Figure 4.2, which is nicely
grouped around the regression line. For the data used in the
experiment, program size would have been a fair predictor of
lines of code produced per man-hour. This should not,
however, be interpreted to mean program size is a good
indicator of programmer productivity. There are many reasons
why this may not be true. For example, gaming may occur or
the programming language may be different.

Although the results should not be used to measure
programmer productivity, it may be useful as an indicator of
problem areas. Programs whose line of code per man-hour are
substantially different from the mean should be investigated
to determine the causes (ie., program complexity, programmer
inefficiencies, etc.). On balance, whether this relationship

holds up on a broader scale is unknown and probably should be

3.4
o 3.2
' 3.0

LA
%t

2.8
2.6

2.4
2.2
2.0

it
'A'.({ »‘:.-".{d‘ d

1.8

1.6
1.4

h ':'l‘-"l'l RERRT

[P P PRy

1.2

wogol Z»R WY WOUON WO LNZHD

x 0.8
h:': 0.6
s 0.4

PROGRAM SIZE

Figure 4.2 Lines of Code to Program Size Regression

e 47

.....................

R
LI)

R

- . ‘5 _"-.". LA

- G At s
9 ATARIO0

o
“
g
Cl
~

tested. The confidence intervals on the estimated
productivity (LOC/MH) values which the regression provided
are attached as Appendix F.

The third metric tested was Albrecht's model. Function
points (ie., inputs, outputs, files and inquiries) for the
fourteen programs were calculated using the model's
worksheet. A linear regression was then performed between
program length (independent variable) and delivered function
points (dependent variable). Figure 4.3 shows the results of
the regression. Initially, the two variables had a
correlation coefficient of .07, which indicated there was
almost no relationship between the two. However, upon
inspection it was noted that data point 11 was unique. Not
only is it an "outlier" on the regression plot, it also
stands out as different in Johnson's model. In the latter,
it was the only program above the value of 2 LOC/MH (its
value was 3.6; mean equals 1.16 and sample standard
deviation equals .87). Although investigated, the reason(s)
for its uniqueness could not be determined. Appropriately,
the data point was removed and a second regression was
performed. The results are shown in Figure 4.4. As seen,
the data is obviously grouped around the regression line.
The correlation coefficient between the two variables is .63.
This is a substantial improvement from the first regression.

Still, a .63 correlation value indicates only a weak

48

X ¥
. g
2 ‘..
s
N L
R ...h
b’ K
2 c N
. .m K
b, 0 L
. a "
. o "3
® —_ o0 ~
.- — g . .L
. _— Mmoo @ " .L
, — Mmoo 1
y ' v
. —_— Mmeo N “
',] el e
4- ™M NO sA
— moo € NE
! © o
-—_ N oo o) .
! o 3
—_ NvwOo O) 0 4
] o~ o -t an m o]
— -« '
| > O e
—_— NNO m (o] e
' B o o
-— NOO >4 (o] [+, e
$ >y ()] < .
* _— K X 7] (] o
] [2] c
L] ® —_— ~Po o B4 z vt
' =) (o o]
-_— ~90O m (& | (1]
L]]
L] -— -~ NO c
] (o)
* —_— -~ OO0 o4
| o
[] —_— 0o [¢]
] =
—_— wo o
*] Gey
T bt
(o] -I NO ™
*
—_— 1 ! |] | o -
o o o o o o
wn < ™ N i []
o)
S
o
-4
| 7]
BMPDZOHMHOZ AMAOWHZEHW

ARISARI- & W

N
3
G | .
& 50~
3 F
» U
. N
: C
T
.. I
- o
l: N
N P
.. o
s I
. N
N T 10-
S
%
3 o==[=|=1=I=1=1=I=1=I=1=1=1=1=1=1=1-]
: 11111111
123456789012345¢67
‘ 0000000000000 O0COO0ODO0
MULTIPLY BY 10
y LINES OF CODE
Figure 4.4 PFunction Points to Program Size Regression
B
v relationship (.85 and above is desirable). Possibly, the
".
A size of the database and the length and type of the programs
o used affected the results of this test. It should be noted
[&
that although the results of the regression are interesting
::? 50

.................

LA L. Sl SR T W, 1S SOOI T G,

b % A 4 4

and suggestive, Albrecht's model is designed to be a relative
and not a linear measure, ie.,, only when compared with a
database of historical function point counts for similar type
N projects/programs is a particular productivity measure

meaningful. It must be put into proper perspective. This
A could not be accomplished during this experiment because no
such database now exists. There is, however, sufficient
encouragement from the results of this experiment to
recommend that further tests of this model be conducted on a
broader scale with similar data and evaluated. The derived
5 confidence intervals from the seconi regression are attached

as Appendix G.

D. TEST PROCEDURES (MAINTENANCE)

The second experiment tried to measure programmer pro-
ductivity in the software maintenance (and enhancement)
environment. The database used for the test consisted of

. thirty programs ranging in size from 496 to 10,203 lines of
code. The maintenance activity measured were all changes
made to existing code. The modifications ranged from a low
i of 13 to a high of 915 changed lines. The degree of change
was between one and sixty-five percent of program length.
Appendix H lists the maintenance data used for the
experiments.

- Two metrics were to be evaluated, Boehm's COCOMO and

Johnson's lines-of-code models. Unfortunately, Boehm's model

N 51

........

.....
.........................

.......................

could not be tested because required data was unavailable.
In order to use Boehm's metric, in the maintenance
environment, it is necessary to first calibrate a basic
effort equation (similar to Formula 4-1) using the original
program's actual development times (MM) and lengths (KDSI).
While for the MISIL data program lengths were known, their
original development times were not. Therefore, the basic
effort equation could not be derived and a meaningful test of
the model's predictive abilities could not be performed.

Once the basic effort equation has been derived for
Boehm's model, the annual change traffic (ACT) value must
then be calculated. Formula 4-3 applies.

DSI ADDED + DSI MODIFIED FORMULA
ACT = 4-3
TOTAL OLD DSI

The ACT figure is "...the fraction of software product's
source instructions which undergo change during a (typical)
year, either through addition or modification...." [Ref. 26].
The COCOMO model multiplies the ACT value times the
applicable estimated development effort value received from
the basic effort equation in order to determine the estimated
annual maintenance effort (Formula 4-4). The COCMO derived
annual maintenance effort should then be compared against the
known annual maintenance time in order to see how well it can

predict.

FORMULA

MM = 1.0 (ACT) (MM) 4-4
f AM D
)
}'.
Q
14
3\ MMcccccceeees.ESTIMATED DEVELOPMENT EFFORT

D

MMAM................BASIC ANNUAL MAINTENANCE EFFORT
The second metric to be tested in the maintenance
o environment was Johnson's lines-of-code per man-hour
:; measurement. For each program the changed lines of code were
. divided by the man-hours expended in making the change.
Useful patterns/trends were then looked for which might help

management in decision making.

E. TEST RESULTS (MAINTENANCE)
’5 As discussed, the only model tested in the maintenance
A environment was Johnson's lines of code metric. Lines of
= changed code were divided by the man-hours spent in making
the changes. The results, lines-of-code per man-hour, were
then scanned for predictability/useability. The resulting

o data is shown in Appendix I. As can be seen, lines-of-code

',E: per man-hour ranged from a high of 6.6 to a low of .2. The
;: mean was 1.7, with a sample standard deviation of 1.6. The
f; correlation coefficient between change size (LOC) and lines-
;E of-code per man-hour was .69. A further review of the data
b’

did not reveal any patterns or trends which might be useful

¥

53

l.'
N
o)
)
\‘
3 '.‘
s‘

[Sw

. a

L) .I "
N 2y 0ty iy

)

5.'_1...

.l .‘ 'l.“\.l'."‘ ..' '

Rty

n'.f."f;'—*
PPN ,

4

U

%

AN N M O A TS S bt i M N i N A AN N S S A S A i - AR Y

to management. In fact, the derived data appeared to be near
random in nature (a .69 correlation is not strong enough to
be useful). Accordingly, it is recommended this model not be

strongly considered for further evaluation.

F. MANAGEMENT CONSIDERATIONS

It appears, based on the discussed model results, that
there is more hope in measuring programmer productivity in
application development than in the maintenance environment.
Johnson's model, the only model actually tested in the
maintenance environment, did not return meaningful or useful
data. Boehm's model may be better and should probably be
tested in further evaluations. Still, Boehm's model relies
on the derived effort equation and the annual change traffic
(ACT) in order to determine the estimated annual maintenance
effort. Any error in the basic effort equation will be
compounded by later calculations and reflected in the final
result, There is simply more room for error in Boehm's
maintenance than in his application productivity measuring
metric. In comparison, all the models tested on application
development software (Boehm's, Johnson's and Albrecht's)
showed promise. Boehm's model did a fair job of estimating
programmer productivity. However, as previously stated, the
tested database was too small to be conclusive. Still, there
is an indication that the model can be useful. Just how

useful and in what areas (planning, control or evaluation)

54

NOTrT—— o
*4 "!-.)."a.‘.i.‘::‘ >

o

will depend on the results of further testing. In all these

areas management should be careful not to draw unsupported
conclusions from the results of this model. It is imperative
that Boehm's model be carefully tested and proven reliable
before it is used. Johnson's model provided a good linear
relationship between lines-of-code per man-hour and program
length. The knowledge of such a relationship can be useful
to management in two ways. PFirst, it can help to identify
program areas ahead of time that take longer to develop.
With such knowledge, management can plan accordingly.
Seondly, programs already in the development process that
require managerial attention can be identified sooner (ie.,
programs that take longer/shorter than normal time to
develop). This knowledge allows management to reprogram
effort in a more timely manner. The third model that showed
promise in the application environment was Albrecht's metric.
Although further testing and evaluation is required before a
determination can be made as to it's specific usefulness,
there is encouragement from the experiment's results. On
balance, the strongest factor supporting further
experimentation with this model is the still unsatisfied need
to accurately measure programmer productivity. This model
because it measures an output and not an intermediate product
still appears to offer the best hope of satisfying that

requirement.

55

ey WX .

Accordingly, it is recommended that FMSO consider

collecting in a routine manner the data elements required for
all three application environment models and for Boehm's
metric in the maintenance environment so that further testing
and evaluation can be accomplished. Also, it is recommended
that additional tests try to identify practical FMSO ap-
plications for the derived productivity data and
measure/quantify received benefits. This type of information
must also be known if a rational decision based upon cost and
benefits is to be made concerning the implementation of a

productivity measure at FMSO,

56

V. PRODUCTIVITY PERSPECTIVES

. Once a programmer productivity metric has been selected,

calibrated, tested and proven reliable, management may ask
i what specific variables affect productivity and to what
i; degree can they be influenced. They may also ask if it is

possible to precisely predict the results of planned change.
-ﬁ For example, will four programmers assigned to a project
produce twice as much as two (or cut the development time in
;, half), or will productivity increases justifv the cost of new
software productivity tools (ie., is the return on the
investment sufficiently large). These are not trival
questions and answers are not easily derived. However, they
are critical questions because they determine proper areas
o where managerial attention must be focused and corporate

capital should be invested. Additionally, to an extent, they

)t

»
AN

drive organizational goals and objectives. As might be

F LS
’."-‘\ "‘nl;n a

ate

expected, Jjudgement errors in this area are often

embarrassing, costly and dangerous. Because of the severity

g

of the impact, before change is implemented influencing

e -.nv'.‘)

variables must be carefully examined and analyzed to ensure

3 ,;',.f i

= the desired result is achieved, and that ripple effects are
not counterproductive. Where the desired result cannot ac-
curately be estimated, which is normally the case, management

s must be aware of the risk involved.

57

......

PP L

~l’s

.............

The variables within the programmer environment, which
management can influence, can be classified into four
organizational categories: (1) management, (2) environment,
(3) people and (4) the process [Ref. 27]). Each of these very
aggregate areas and how they relate to programmer
productivity will be presented in this chapter.
Additionally, within each category specific elements and
their impact, which are discussed in the literature as in-

creasing programmer productivity, will be included.

A. MANAGEMENT

Management must set the stage for achieving gains in
programmer productivity. They must create a climate with
open communication lines that is conducive to change. This
can only be accomplished if the managers (at all levels) have
the appropriate knowledge of technical and administrative
requirements and are able to prioritize the urgency of the
various undertakings. Improving programmer efficiency is one
of those requirements, and unless management strongly and
actively emphasises its importance gains in productivity will
not be realized.

Management must not only assign a high priority to
improvements in productivity, they must also make sure that
appropriate awards and incentives are in place. Even more
importantly, they must make sure the rewards that are in

place are not counterproductive. An example of the latter

58

-

A aa

RS

R Ry

NG LRIy T L

LIRS

.....
.)
RGeS

Yy
Sh b s

may be rewards based upon the number of completed up and
running programs or lines of code written by a programmer.
These rewards can be dysfunctional in that they encourage
quantity with no measure of quality. Management must ensure
rewards encourage real improvement.

Resources are always scarce. Management's role in
software development is to optimally use those scarce
resources in the production of code. This requires not only
properly rewarding people for superior effort but also using
theif individual talents and expertise in the most
economically efficient manner possible. One managerial
organizational approach that has enjoyed some success (mixed
reviews) is the use of a chief programming team. Under this
concept, a senior programmer with proven performance is
responsible for the detailed development of the programming
effort. He is supported by additional programming personnel
with lesser skill, and often an assistant chief programmer, a
program librarian, and clerical assistance.

The concept recognizes two important qualitites about
programmers specifically and people in general. First, that
there are different levels of competence and expertise among
programmers. Barry Boehm in his article, "Seven Basic
Principles of Software Engineering”, made the point that the
chief programmer may be five or more times more productive

than the lowest member of the team [Ref. 28], Accordingly,

59

to achieve maximum technical and economical efficiency, the
; most competent programmers should be assigned the major or
most complex part of the work. Other programmers should
serve in supportive roles. This approach dovetails nicely
with the desired awards structure. Outstanding and improved
performance can be recognized and rewarded.

The second recognized concept is span of control. As
might be expé:téd, the chief programmer's area of
responsibility in this structure is clearly defined and,
therefore, can be of manageable size. Experience indicates

that ten people should be the upper bound for the programming

a-8 s B A&

team [Ref. 29]. As a result, communication and coordination

problems that are so often associated with software
development can be minimized resulting in direct cost
savings. Additionally, this structure allows management to
more closely monitor the project's headway, facilitating

earlier problem identification and correction. This, in turn,

- gag g v SE'wen -

further increases productivity.

Although the chief programming team concept of management

m A e M

offers obvious advantages it also has noted deficiencies.

avela

First, it relies heavily upon the chief programmer for
success. If his managerial and/or technical skills are weak
then there is a good chance of failure. Conversely, if the
chief programmer's skills are particularly strong then there

is a good chance he will be offered other jobs and will not

60

.........................
..............

2 .e 8 s

AR Y I

............

complete the project. The demand for individuals with these
talents is strong. The assistant chief programmer can
partially make up the difference in both scenarios; however,
he too can be weak/lost. An additional problem is
incompetency. In a small team environment each player is
critical. The loss of even one member seriously affects the
chances for success. Management must decide if the
organizational infrastructure and the nature of the work make
this method of management a viable and attractive
alternative.

As problems arise and decisions are made in the software
development process, management must be aware of the inherent
pitfalls, For example, a continuing managerial problem is
the schedule. As problems develop and programs fall further
and further behind, management's natural tendency is to add
more and more programmers in order to get well. This can
create an emotional tail-chasing situation. Dr. Fred Brooks
pointed out the paradox of the problem in his article, "The
Mythical Man-Month" [(Ref. 30]. By adding manpower to a
project that is already late a counterproductive situation
can occur. New people thrown into the middle of a project
about which they know nothing require assistance from the
experienced to get started. This assistance comes at the
expense of s8till further slippage in the schedule. If

management tries to compensate for the additional slippage by

61

...........
.......

5 ‘-;n:-'-.‘v"l

. "- ll

adding still more people a vicious never-ending descending

spiral to failure can develop.

B. ENVIRONMENT

Capable and motivated employees can only perform to the
limits of their abilities (technical efficiency) if they have
the necessary tools and proper environment in which to work.
A programmer that has adequate desk space, the required tools
and a relatively quiet area will be much more productive than
his counterpart who works in a noisy congested office with
inadequate tools. The environment is a ripe area for
productivity capital investments in most companies because
the marginal return is likey to be large. There are many
areas where management can make productive environmental
improvements. For instance, they can ensure there are
adequate phone and computer terminals available. A substan-
tial amount of productive time can be lost if the programmers
must constantly wait in line for these services. Other
improvements in programming efficiency can be made through
the use of sign-out boards and by supplying adequate clerical
and administrative support. The environment is extremely

important to productivity and must not be overlooked.

C. PEOPLE
Considering the current and ever-expanding shortage of

programmers and their upward spiraling wages, people problems

62

‘nxr S SR E A et B thvn SAs Rahc bl ‘S iy et sl i Sintt Sl St Nt ." - _—_'*..- ~ .‘v'.-v—.:‘rt_v".' _.- _.a ~ r}»— A PO R A e ENE L ol o a e ".‘_".1

-

b
.
: |
)
()

may be management's major concern. Not only is there a
shortage of available programmers, there is also a vast range
of differences in their abilities. Figure 5.1 shows the
results of a small study (based on twelve programmers) done
by H. Sackman, W. J. Erickson and B. G. Grant on programming
performance using a time sharing on-line programming approach

compared to the more classical batch style of programming.

It should be noted that the on-line process was accomplished

. PERFOMANCE MEASURE POOREST SCORE BEST SCORE RATIO
i 1. DEBUG HOURS ALGEBRA 170 6 28:1
'i 2. DEBUG HOURS MAZE 26 1 26:1
i 3. CPU TIME ALGEBRA (SEC) 3075 370 8:1
4. CPU TIME MAZE (SEC) 541 50 11:1
S. CODE HOURS ALGEBRA 111 7 16:1
6. CODE HOURS MAZE 50 2 25:1
7. PROGRAM SIZE ALGEBRA 6137 1050 6:1
8. PROGRAM SIZE MAZE 3287 651 5:1
9. RUN TIME ALGEBRA (SEC) 7.9 1.6 5:1
10.RUN TIME MAZE (SEC) 8.0 .6 13:1

Source: Parikh, G., How to Measure Programmer Productivity,
p. 35, Shetal E Enterpr1ses, 1981.

Figure 5.1 Range of Individual Differences in Programming
Performance

--
....................................

.ﬁi more quickly but at the expense of cpu cycles. Management

(_ must constantly conduct cost benefit analysis on these types
3: of tradeoffs in order to determine optimum efficiency
s

e (classical capital labor tradeoff). Because of this apparent

vast difference in performance, it is essential that
management develop skill profiles for each classification
area, ie., analyst, programmers, etc.. Accordingly, both
management and the individual employees should on a
f5 continuing basis assess themselves against these
‘é requirements. Where deficiencies are noted, training pro-
grams should be encouraged/offered. Management in today's
environment must groom their people to be more productive and
A encourage upward mobility [Ref. 31].

Programmers, like other people, need to have goals and
s objectives to work towards. Management must not only
prioritize programming requirements, they must also establish
achievable and measurable goals for productivity improvement.
The importance of this requirement was highlighted in an
experiment conducted by Gerald H. Weinberg in 1971-2. The
experiment tried to assess the effect clear goals have on

performance. Figure 5.2 shows the experiment's results, As

* aa v ; e
‘. <. '. ‘.A _.. '_‘l.‘_‘l-.‘i

can be seen, when management made clear the programming
objectives they were attained (a scale of 1 to 5 is used in
o which 1 is optimum and 5 is less than optimum goal

o achievement). It should be noted from the results of this

64

Ay te7ty :l'_.ﬁ 'l;,‘-

..............

experiment that there can be conflicting goals. For example,
core minimization and output clarity appear to be
diametrically opposing goals. In these cases, management
must be aware of the problem, decide the tradeoff and state
the organizational policy. Programmers can meet objectives
only if they know what is expected of them. According to
Weinberg, studies such as this dispel the myth that there are
"good and horrid" programmers. Based upon this and other
related experiments the following major conclusions were

drawn by Weinberg from their endeavors [Ref. 32].

RANKING

GROUP CORE OUTPUT PROGRAM STATEMENTS HOURS
OBJECTIVES CLARITY CLARITY

MINIMUM CORE 1 4 4 2 5
OUTPUT CLARITY 5 1 1-2 5 2-3
PROGRAM CLARITY 3 2 1-2 3 4
MINIMUM

STATEMENTS 2 5 3 1 2-3
MINIMUM HOURS 4 3 5 4 1

Source: Parikh, G., How to Measure Programmer Productivity,
p. 36, Shetal Enterprises, 1981.

Figure 5.2 Ranking of Programming Performance on Five
Objectives

......
[I W W g N

..............

}
L)

o

Ay

X 1. Programming is such a complex activity that
; programmers have an almost infinite number of choices in
: terms of how they will write a program in order to meet
N certain objectives.

2. If given specific objectives, programmers can make
programming choices in such a way that they will meet
those objectives~-provided they do not conflict with
other specific objectives.

> 3. Programmers adjust their estimates, depending on
s what goals are stressed, to give themselves more "cushion"
o for meeting stressed goals.

x 4. Time to complete a program need not be critical if
adequate time is allowed, but in no case should
experimental results be mixed if some programmers felt
pressed for time.

5. Optimization goals tend to be highly confliciting
with other goals, even with the primary goal of
correctness.

N

6. No programming project should be undertaken without
clear, explicit, and reasonable goals.

7. No experiment on programmer performance should be
y undertaken without clear, explicit, and reasonable
goals--unless that experiment is designed to measure the
) effect of unclear, implicit, or unreasonable goals.
4 D. PROCESS
In the actual writing of software code there are two ways
producitvity can be increased: (1) through a change in the
activities of the programmer and (2) with the addition of new
3 equipment or tools. An example of the former is the develop-
ment over the last several years of structured programming
) techniques., Within the structured programming concept are

X three generally accepted subsets: (1) structured programming

coding techniques, (2) top-down program design and (3) chief

66

LRI Sl Rt S M e N I O e e e r it I A SC AR AL SRR et St RNt e i o MO e i A Sren g LIt Pt

programmer teams [Ref. 33]. These methodologies of writing
and constructing code evolved as a result of general weakness
in previous approaches to software systems managment and
development. Whether or not these principles are used by an
organization in the production of code depends upon what the
codes intended usage will be. If a small program is to be
constructed to run one time locally, then the extra cost
involved in writing the more structured code is probably not
justified. However, if the program will be exported to other
organizations, have a long life or contain parts that have
universal application then structured programming techniques
should be utilized.

There are several productivity related reasons why struc-
ture programming should be required by management. First is
the problem of program maintenance and enhancement. Programs
written using structured programming are much easier to
understand than straight line code because the flow of logic
is clearer. This is so because the interfaces between the
modules is minimized and explicitly stated (loose coupling).
Additionally, like procedures are grouped together to form
highly cohesive modules. These techniques along with the
principles of information hiding allow programs to be modi-
fied much easier than in the past. This is extremely

important in view of the fact that the cost of software

67

....................
..
.......

maintenance is commonly the most expensive phase in the
program life cycle [Ref. 34].

A second reason for using structured programming
techniques is that it allows for easier reuse of code. Using
structured programming techniques Raytheon was able to reuse
existing code between 40 and 60 percent (average) of the time
in the construction of over 500 prcgrams. Additionally, they
7 were able to increase the maintainability of three thousand

old programs. Obviously, not all organizations can achieve

such results; still, there are substantial productivity gains
that can be realized in most organizations by making an
effort to reuse code whenever possible [Ref. 35].

The most often looked to solution for increasing

» programmer productivity are aids and tools: test generators,
reconcilers, disk space managers, utility tools, etc.. When
management considers the acquisition of these devices, the
questions naturally asked are how much will this device

increase productivity, will the increase be enough to justify

SLNCRENC G

it's cost and how can I be sure that the the benefit is
received. These questions cannot be easily answered. If a
thoroughly tested and calibrated metric is in use, such as
Barry Boehm's COCOMO model, then it may be possible to get a
rough estimate of a tool's impact on productivity by looking

3
3 at the effort multipliers influence. Anything beyond this

’ rough estimate is risky speculation. If a metric is not up

.........

3 V% 8

TR AE N

.................................

and running, then an educated estimate is probably the best
that can be achieved.

T. Capers Jones in his article, "The Limits of
Programming Productivity” [Ref. 36], discused the various
ways of achieving programmer productivity gains and roughly
categorized how much gain could be achieved from various
implementations. The groupings used were methods that may
yield: (1) 5-25 %, (2) 25-50 %, (3) 50-75 % and (4) over 75 %
improvement. Obviously, these groupings are extremely rough;
however, they may still be useful in determining the types of
things which must be done in order to achieve desired levels
of programmer productivity improvement.

Prototyping is a new concept that is being looked at to
increase productivity in the software development process.
Unlike the step-by-step structured approach that is commonly
used (feasibility, requirements, design, code, integration
and implementation), prototyping puts a small subset that
captures the essential features of the required program into
the hands of the user immediately. The user works with this
program and provides feedback to the software designers
concerning desired improvements and enhancements. These
changes are incorporated and the program is returned for
further evaluation. This iterative process continues until
allocated resources are expended or the user is satisfied.

This approach to software development may offer several

69

TR T PR T T DU PV TR T VDN TRy s O TR N Py

PLAPU S W

Mty b4y ook, YR

S o

2 ey i
Y S RV I X T)

DO

L
2

e
U TN

o - At

advantages as compared to traditional methods. First, it
gets something in the hands of the user right away. Under
the structured development process it may take years before a
program is provided to the user. Secondly, it requires the
user to get intricately involved. This is extremely impor-
tant, for as the user gets more involved his requirements
become better defined. This results in the development of a
software program that better meets the required needs.
Accordingly, since the maintenance phasé is the most expen-
sive part of the software life cycle, any reduction of
maintenance/enhancement activity will increase overall pro-

ductivity and substantially lower life cycle costs [Ref. 37].

E. IMPROVEMENT PROJECTIONS

In the management of computers and programmers there are
very few certainties. How much productivity will be gained
by making specific changes is often unknown because the
process is too complex and the results are too hard to
measure precisely. Discrete measurements of programmer
productivity are almost impossible to accomplish. The best
management can hope to do is make educated estimates. How
good the estimates are depends on management's experience,
knowledge and expertise in software development. In order to
develop these managerial skills, management must continue to

try and measure aggregate programmer productivity. Only by

70

g

"

S R T T T I T VT T o e prwmy—ry

continued measurement and comparison effort can performance

be judged and insight be gained into this complex issue.

71

R M Bl Md £ T Sae:
DR S N St N N N A, Al S e St il e e Iacia

VI. CONCLUSIONS AND RECOMMENDATIONS

This paper has explored the ability of various metrics to
predict programmer productivity at the Fleet Material Support
Office (FMSO). It has shown, through the use of the
production function, that most productivity measurement
metrics have severe deficiencies due to their intermediate
and partial measure of productivity. If management wants to
use one of these models, they must do so with the
understanding and awareness of these limitations,

Based on the experiments conducted in this paper, it

appears that programmer productivity measures can be useful

as a managerial tool. Just how useful is unknown and will

require further testing and evaluation. It is suspected,
however, that one productivity metric will not meet all
needs. It is likely that different models will be required
to measure different areas of software development. Also, it
is expected for any particular software program that
different metrics will be required depending on the use of
the data, ie., programmer evaluation, program planning, etc..
Programmer productivity metrics will probably demonstrate

different predicting abilities between program types and

application usages,

%
- ',‘v
h& In view of the above, it is recommended that FMSO gather
i data elements on various program types and continue to test

72

R T S T
T N . N PR R S S G L L

several programmer productivity metrics. If possible, the

selected metrics should try to measure final program output.
The results from these tests should be evaluated in two
areas: (1) on how well the metric predicts actual productivi
ty and (2) on how useful the derived data is for the intended
application., Additionally, it is recommended that FMSO
identify specifically the benefits to be received from
measuring productivity and determine the cost it is willing
to pay. With that decided, rational decisions can better be

made as to the model(s) selection.

73

............ .
A R o PSR S} - v . C et
L FURP UL URY TRy B S T G B PO PP I I S SO Sl S

TeETATAR LT MBLL Y LB RN T Y, T T TR T TTINTY T T Y

.

APPENDIX A.

A Ao e s

RN AN s e i Ty

4 .
: ALBRECHT'S DEFINITIONS AND WORKSHEET
\
.."}ég or SERvVICES Date:
R SU= :
> WERXTR FUNCTION VALUE INDEX WORKSHEET Project 1D:
Project Bame:
prepazed by: Dates . Reviewcd byt Date: .
Pzojcct Susmary: m End Date WOork=-Nours Function Points Delivered or Decsiagned
- +« (from calculation).
ranction Points Calculation (Delivered or Dcosianed)s
-------_-------—_----ﬂ
Allocation estimated by Project Manager i
Wotes Definitione Delivered Deliveted by Delivered ! Totals
on dack of form. Delivered by Noditying Installing by Usang | (Identify
| by New gxisting and Testing a Code ! preponderant
:00‘. Code a Package Generator : Language)
]]
Language {] |
Inputs 1 X 4
Outputs H ! x s
Tiles H [x10 ___——
Inquiries ' | X 4
work=hours) i Total
Design ! Unsdjusted
1nplementation L .} runc: ion
Conplexity Adjustment: (Estimate degree of influence for each factor)
-~ Paliahle backun. vecovery. and/or —_— °:;u"‘x'."“ entry is provided in
i T system availability are provided the applicatiun,
=7 "wm::::::"";h:'::::‘::n. — On-line data entry is provided in
say be ’r"‘“a by specaficall the application and in addition
designed spplication code or Is; the data entry 1s conversational
use of functions provided by requiring that an iaput trens-
standard software. For example, ““::*"' built up over multiple
the stendard IMS backup and operations.
gecovery functions. Master files are updated on-line.
Data compunications are provided
in the application. — :npu:-. eutputs, files, or
Distridbuted processing functions nquiries are comolex in
- are provided in the application. thas application,
Performance must be considered
in the design or implementation. internal procesring is co.nple:
In addition to considering in this spplication,
performance there 1 the added
complenity of s heavily utilized
operational configuration. The
SUStEREr wants tO run the o s
application on existing or Df,’";o:: "'""'"c; °"A::::;:°“'
::::m«h"::ﬁ'.:";:;vf},‘ 1 Incidental q siqnificant
N)
etilised. 2 Moderate $ Essential
Total Degree of Influence (N)
)
.78 » GOV (N)
———— Complenity sdjustment equals (0
Unad justed Total X Complexity Adjustment = Function Foints Delivcied or Designed
) L]
e e gy
74

N

[ol WAl

Y

-

. .

o V
ain @ s & bad

.‘Q...O'Q -

a_4_e

o
RSy

Pl A
.
.

Cltiatiie i Yrah It Nadeg
.

I A I A P A i M Sy ML AL

Funlumu

General lastruction:

Count all inputs, outputs, master files,
inguirses, and tunctions that arc made aveilable
to the cCustomcr through the project’s desaign,
ProgramRing, or testing elfforts. FPFor example,
count the tunctions provided by an lUP, FoP, or
Pzogram product Lf the package was modified,
ancagrated, tescted, and thus provided to the
customes through the projecct's efforts.

Mork-hourg:

The work-hours recorded should be the

customer hours spent on the 0P 8¢rv1cc:“ ond
sctandard tashs applicable to the project phase
The customer hours snould be adjusted to ImM :
equivalent hours considering experaience,
training, and wvork effectaiveness.

1nput. Counts

Count each systeam input that provides business
tunction comsmunication from the users to the
computer system Por exasple:

o scanner forms or cards
o keyed transactions

¢ data forms
® tezrmines sCswens

0o not double count the inputs. For example,
eonsider a manual operation that takes data
fzom an input fOIm, tO fOIM twoO input screens,
using & keyboard to form each screen before the

entry key is pressed. Thas should be counted
as two (2) inpucs not five (S5).

Count all unique inputs. An input transaction
should be counted as unigque if it required
different processing logic than other inpucts.
for example, tIansactions such as add, delete,
or change may have exactly the same screen
format but they should be counted as unique
inputs if they require different processing

logic.

Do pOt count input or ocutput terminal screens that
aze needed by tha system only because of the
specific technical implemcntation of the
function. For example, DMS/VS scroens, that
are provided only to get to the next screen
and 40 not provide e busaingss function £Oor the
user, should not be counted.

anput and output tape and file dats

Do not count
are included an the count of fales.

sets. These
0o not count These are
covgred in &

anquiry transactions.
subsequent qQuestion.

wtgut Counts

Count each systes output that provides business
function communication from the COmputer system
Lo the users. For example:

o terminal printed outpuy]
® OPGErator messages

o printed reports
o terminal screens

Count 8ll unique external outputs. An output is
considered to dbe unique if it has a format

that differs from other external outputs and
inputs, or, Af it requires unNiIquUe Processing
logic to provids or calCulate the output data.

DO not include output terminal screens that
Provide only a simple error message or
acknowledgement Of the entry tLLaNSACtion,
unless significant unique processing logic
A8 required in addition to the editing
associated with the input, which was counted.

Do not include on-line inquary transaction
outputs where the response occurs immediately.
These are included i1n & later guestion,

Pile Count:

Count each unique sachine readable logical
file, or logical groupang of data trom the
Viewpoint of the user, that 13 generated,
used, or uxnumﬂ"‘i’}' the systea. Por
exanple:

e 4input card files
e disk files

e tape files

Count major user data groups vwithin a data base.
Count logacal files, not physical data sets.
for example, a customer file requiring s
sevarate index file because of the access
nathod would be counted as one 10gacal

file not two. Mowever, an alphabetical

index file to aid ia establishang customer
identity would be counted.

Count all machine readable incezfaces
to other system as files.

Inquiry Count:

Count each input/response couplet vhere an on-
line input generactes and directly causes an
immediate on-line ocutput. Data is not entered
except for control purposes and therefore only
tZansaction l0ogs are altered,

Count each uniquely formatted Or uniquely
proccesed inquiry whach results in a file searcl
for specific information Or summaries to be
prescntod as response to that Anquary.

DO not also count inQuiries as inputs or
outputs.

75

'.; - B e) WM RIS s v TR m W e B wm. e e e e e A, e w4t Te e % e R T T e e A PO -

A

X

X

: APPENDIX B

5 RRMIS DATA

8 PROGRAM LINES OF CODE ACTUAL DEVELOPMENT FUNCTION

: TIME (MM) POINTS

= 1 1,685 6.3 41.4

N 2 1,547 6.2 50.6

- 3 395 7.1 18.4

- 4 248 5.4 17.0

: 5 245 4.9 17.0
6 1,597 7.0 22.75
7 762 5.3 35.6

3 8 1,004 5.2 26.7

Q 9 1,350 12.2 27.6

) 10 520 5.7 26.7

¥

\ 11 4,129 7.7 17.8
12 1,153 6.0 36.8

) 13 1,156 5.7 26.1

- 14 153 2.2 27.65

[

P 76

.4

a8 snl

=, %%

S e stscssskes

R e s ara s

;

-

T e T T ot N T e C AT e L m . R I o IR
l"l‘"ﬂ"'l n-.'q"'q-‘ "h.-%"\' LS "q..‘- 'p.."{'."".':' ST e

''''''''''''''''
......
......

APPENDIX C
BOEHM'S MODEL
MODEL CALIBRATION
PROGRAM ACTUAL DEVELOPMENT PROGRAM Y X
TIME (MM) LENGTH (KDSI) 1ln(MM) 1n(KDSI)
1l 6.3 1.685 1.84 .52
2 6.2 1.547 1.82 .44
3 7.1 «395 1.96 -.93
4 5.4 .248 1.69 -1.39
S 4.9 . 245 1.59 -1.41
6 7.0 1.597 1.95 .47
7 5.3 «762 1.67 -.27
Alpha = 1.82
Beta = ,088
1.82 .088 .088
EFFORT = MM = e (KDSI) or = 6,18(KDSI)
77

- L Al Wadh sl Sadl bwen ute, St * il i Sty ~ i b A I AP SRR JRILACILAC OO S A T R A N A I i
;
A
!
3
: PRODUCTIVITY MEASUREMENT
N PROGRAM KDSI ESTIMATED ESTIMATED ACTUAL
: EFFORT PRODUCTIVITY PRODUCTIVITY
: 8 1.004 6.18 162 193
g 9 1.350 6.35 213 111
i 10 .520 5.83 89 91
y 11 4.129 7.00 590 536
¥ 12 1.153 6.26 184 192
) 13 1.156 6.26 185 203
: 14 .153 5.24 29 70
ESfIMATED PRODUCTIVITY: MEAN = 207.4

SAMPLE STANDARD DEVIATION = 180.4
; ACTUAL PRODUCTIVITY: MEAN = 199.4
.
y SAMPLE STANDARD DEVIATION = 158.0
\]
.‘

78

.':" . e e e T T T T T T e e T e T e T e T e T e e

.............

-? ol

i

il

* Sl

a4 u" 4 272V

PONFLIPF NI,

8

I L

"a%e

P 4 SVESAS

A

APPENDIX D
JOHNSON'S MODEL
PROGRAM ACTUAL MD KDSI LINES/MD LINES/MH
1 118.9 1.685 14.2 1.8
2 117.0 1.547 13.2 1.7
3 135.0 .395 2.9 .4
4 103.4 «248 2.4 .3
5 92.4 .245 2.7 .3
6 133.9 1.597 11.9 1.5
7 100.9 .762 7.6 1.0
8 98.5 1.004 10.2 1.3
9 232.0 1.350 5.8 .7
10 107.4 .520 4.8 .6
11 145.4 4.129 28.4 3.6
12 113.1 1.153 10.2 1.3
13 108.4 1.156 10.7 1.3
14 41.9 .153 3.7 .5
79

.....

E SRR R RN A A A O O AR A A T Ja A A A A AR A A s it b
b3

';: APPENDIX E

%E ALBRECHT'S MODEL

%

i PROGRAM LINES OF CODE FUNCTION POINTS
2 1 1,685 41.4

it 2 1,547 50.6

2 3 395 18.4

ij 4 248 17.0

:Ié. 5 245 17.0

‘EE 6 1,597 22.75

- 7 762 35.6

= 8 1,004 26.7

'3 9 1,350 27.6

520 26.7

‘:'
[
o

11

f?

\ﬂ 12 1,153 36.8
‘s 13 1,156 26.1
- 14 153 27.65
2 X = 28.00
= SSD = 9.99

*
v
3
~
s

4,129 17.8

¥,

A Y
CRIE R
PP Y PR TN

e v%s ~Agn Sy Aatfly S,
AR

2
X
>
kg
e
)
F
% &
g
]
.'
o
4
N\
"
¥

% % &y
4'(:‘__‘_..

1685
1547
395
248
245
1597
762
1004
1350
520
4129
1153
1156
153

CONFIDENCE INTERVALS FOR LINES OF CODE

Y

OBSERVED

1.8000
1.7000
0.40000
0.30000
0.30000
1.5000
1.0000
1.3000
0.70000
0.60000
3.6000
1.3000
1.3000
0.50000

APPENDIX F

Y

ESTIMATED

1.6180
1.5034
0.54629
0.42416
0.42167
1.5449
0.85119
1.0522
1.3397
0.65014
3.6485
1.1760
1.1785
0.34524

NON-SIMULTANEOUS

1.4595
1.3534
0.37234
0.23684
0.23406
1.3921
0.70291
0.91261
1.1982
0.48633
3.2025
1.0377
1.0402
0.14858

1.7765
1.6533
0.72024
0.61149
0.60928
1.6977
0.99948
1.1919
1.4812
0.81395
4.0945
1.3144
1.3169
0.54190

95.00% CONFIDENCE LIMITS

0.23754 = STANDARD ERROR OF ESTIMATE

81

20.402% OF MEAN OF Y

IR 20 A0 VY Sl Dl A O T S AR A BN e e N

2
.

“.‘-g"

\l

e

N

i~

he =

(.

i APPENDIX G

e CONFIDENCE INTERVALS FOR ALBRECHT'S MODEL

¥4

R Y Y NON-SIMULTANEOUS
2 X OBSERVED ESTIMATED 95.00% CONFIDENCE LIMITS
t 1685 41.400 37.566 28.876 46.257
o 1547 50.600 36.006 28.332 43.681
2 395 18.400 22.984 16.150 29.817
- 248 17.000 21.322 13.486 29.158
3

% 245 17.000 21.288 13.430 29.146
e

i 1597 22.750 36.571 28.537 44.605
iy

762 35.600 27.132 22.029 32.235

N

< 1004 26.700 29.868 24.871 34.865
: 1350 27.600 33.779 27.393 40.165
__ 520 26.700 24.397 18.307 30.486
)
7 1153 36.800 31.552 26.141 36.963
i 1156 26.100 31.586 26.163 37.009
' 153 27.650 20.248 11.711 28.785
:

L 8.0591 = STANDRD ERROR OF ESTIMATE
. 27.990% OF MEAN OF Y
%

-

”

82

e
Faa

APPENDIX H

MISIL MAINTENANCE DATA

PROGRAM SOURCE CODE MAN-HOURS EXPENDED
TOTAL CHANGED
1 4,498 46 32
2 5,316 520 148
3 5,089 56 40
4 4,744 40 100
5 4,624 300 196
6 10,203 - 109 312
7 4,045 24 32
8 1,654 600 174
9 731 472 72
10 3,264 820 325
11 3,994 60 72
12 5,100 250 134
13 5,200 75 250
14 6,800 250 406
15 7.373 480 226
16 2,598 240 56
17 1,629 36 72
18 1,680 180 198
19 3,065 437 345
20 952 13 16
21 1,798 211 164
22 696 59 46
23 1,254 25 16
c 24 1,149 32 38
- 25 5,482 98 173
- 26 2,513 19 80
5 27 3,627 915 204
: 28 496 259 64
29 1,509 50 94
? 30 1,014 26 136
2

83

- N >
............

APPENDIX I

JOHNSON'S MODEL

u".v',..;l-;".':!'. 'L ’ - A.'," <

v'.'
.4

» PROGRAM LINES OF CODE MAN-HOURS LOC/MH
%
5
1 46 32 . 1.4
X 2 520 148 3.5
23 3 56 40 1.4
33 4 40 100 .4
N 5 300 196 1.5
6 109 312 .3
, 7 24 32 .8
: 8 600 174 3.4
: 9 472 72 6.6
10 820 325 2.5
: 11 60 72 .8
12 250 . 134 1.9
- 3 75 250 .3
i 14 250 406 .6
- 15 480 226 2.1
X 16 240 56 4.3
17 36 72 .5
18 180 198 .9
Y 19 437 345 1.3
2 20 13 16 .8
X 21 211 164 1.3
2 22 59 46 1.3
- 23 25 16 1.6
24 32 38 .8
= 25 98 173 .6
: 26 19 80 .2
v 27 915 204 4.5
R 28 259 64 4.0
X 29 50 94 .5
" 30 26 136 .2
<

¥ 84

by el ey VL g e dagio e b 8t gl

S.
6.

10.
11.

12.

13.

LIST OF REFERENCES

Office of Management and Budget, Federal Register, v 44
no 67, p. 20556, 5 April 1979.

Martin, J., Design and Strategqy for Distributed Data
Processing, p-. 25%, Prentice-Hall, 1981,

General Accounting Office, Conversion: A Costly,
Disruptive Process That Must Be Considered When Buying
Computers, FGMSD-80-35, 3 June 1980.

Kendrick, J.W., Productivity Trends in the United
States, p. 7, Princeton University Press, 196l.

Ibid., p. 1l.

Boger, D.C., A Productivity Measurement System, paper
written at Naval Postgraduate School, Monterey, Ca.
1983.

Department of Defense Instruction 7000.2, The DOD
Cost /Schedule Control System Criteria.

Ross, D.T., Goodenough, J.B., and Irvine, C.A.,
"Software Engineering Process, Principles, and Goals,"
Computer, p. 17-27, May 1979.

Jones, T.C., "Measuring Programming Quality and
Productivity,” IBM Systems Journal, v 17 no 1, p. 52,
1978.

Ibid., p. 53.

Halstead, M.H., Elements of Software Science, p. 9-71,

Elviser North Holland, 1977.

McCabe, T.J., "Software Complexity Measurement,"

Proceedings, U.S. Army/IEEE Second Software Life Cycle
Workshop, p. 186-130, August 1978.

Curtis, B., Sheppard, S.P., Borst, M.A., Milliman, P.,
and Love, T., "Measuring Psychological Complexity of
Software Maintenance," IEEE Transactions of Software

Engineers, p. 96-104, March 1979.

AN e VW WE TN a ¥ A bl A » e Tt TN W i A e S SRR Bia Sau iinte Mhav M S me Jagh S by Bache Shdere
ERC N L P S L D T R A T TP P L A e)

1 54«7
‘2 als

LY
-

WY IS

¥4
-“

.
N

0
.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.
27.

L O AT it A= S B o T R A N A A S A R o/ g g~ gt LRt VI A NE I e i e e i e [R

- T T e T

Curtis, B., Sheppard, S.P., and Milliman, P., "Third
Time Charm: Stronger Prediction of Programmer
Performance by Software Complexity Measure," Proceedings
of the Fourth International Conference on Software
Engineering, p. 356-360, 1979.

Meals, R.R., and Gustafson, D.A., "An Experiment in the

Implementation of Halstead's Measures of Complexity,”

IEEE Software Engineerin Standards Application
S0, TR

Workshop, p. 45-

Fitzsimmons, A., and Love, T., "A Review and Evaluation
of Software Science,” Computing Surveys, v 10 no 1, p.
3-18, March 1978.

Boehm, B.W., Software Engineering Economics, p. 57-73,
Prentice-Hall, 1981,

Walston, C.E., and Felix, C.P., "A Method of Programming
Measurement and Estimation,” IBM Systems Journal, v 16
no l' p- 54-73' 19770

Jefferey, D.R., and Lawerence, M.J., "Some Issues in the
Measurement and Control of Programming Productivity,"”
Information and Management, v 4, p. 169-176, September

Johnson, J.R., "A Working Measure of Productivity,"
Datamation, v 23 no 2, p. 106-~112, February 1977.

Crossman, T.D., "Taking the Measure of Programmer
Productivity,” Datamation, p. 144-147, May 1979.

Ibidc' po 144-147.

Albrecht, A.J., "Measuring Application Development
Productivity," Proceedings IEEE Computer Society
Conference Fall 1981, p. 255-241, 1987,

Boehm, B.W., p. 59.

Albrecht, A.J., "Measuring Application Development
Productivity," Proceedings IEEE Computer Society

Conference Fall 1381, p. , 1979,

Boehm, B.W., p. 71.

Patrick, R.L., "Probing Productivity," Datamation,
p. 207- 210, September 1980.

86

28.

29.
30.

31.

32.
33.

34.

35.

36.

37.

b R el Nl L T v T o ol) qut
a e T e T T e T * . r LM B are e are g " . —
. e SN v RONRCIACINL I S R

R

Zelkowitz, M.V., "Perspective on Software Engineering,"
Computing Surveys, v 10 no 2, p. 204, June 1978.

Ibid., p. 197-216.

Brooks, F.P., "The Mythical Man-Month," Datamation,
P. 45-52, December 1974.

Parikh, G., How to Measure Programmer Productivity,
p. 35, Shetal Enterprises, 1981.

Ibid., p. 28.

Paretta, R.L., and Clark, S.A., "Management of Software
Development,” Proceedings National Computer Conference
1981, v 50, p. 349-352, 1981.

Chapin, N., "Productivity in Software Maintenance,"
AFIPS Conference/National Computer Conference 1981,
v 50, p. 349-352, 1981.

Lanergan, R.G., and Poynton, B.A., "Reusable Code~- The
Application Development Technique of the Future,”

Proceedings of the Joint SHAREZGUIDE?IBM Application
Developmer ogmegi:_rgpgsium, p. 127~ , october 975.
Jones, T.C., "The Limits of Programming Productivity,"

Proceedings of the Joint SHARE/GUIDE/IBM Application

evelopment Symposigg, p. 77-82, October 1979.

Nauman., J.D., and Jenkins, A.M,, "Prototyping: The New

Paradigm for Systems Development,®” Management

Information System Quarterly, p. 191-194, September
2.

‘1. ‘r'v,' . r,-' '

5

S

BIBLIOGRAPHY

Bailey, C.T., and Dingee, W.L., "A Software Study Using
Halstead Metrics,"” Association for Computing Machinery, 1981.

Basili, V.R., and Phillips, T., "Evaluating and Comparing
Software Metrics in the Software Engineering Laboratory,"
Performance Evaluation Review, wvol. 10, Spring 1981l.

Basili, V.R., "Resource Models," Models and Metrics for

Software Management and Engineering, 1980.

Blumenthal, M., " Beyond Measuring Lines of Code New Gauges
of Programmer Productivity," Computerworld, 28 July 1980.

Bowen, J.B., "Are Current Approaches Sufficient for Measuring
Software Quality ?," ACM Proceedings of the Software Quality
and Assurance Workshop, 15~17 Nov 1978.

Brooks, W.D., "Software Technology Payoff: Some Statistical
Evidence," The Journal of Systems and Software, 9 March 1981,

Byars, L.L., "Solutions to Productivity Problems,"” Journal of
Systems Management, v 33, January 1982.

Cavano, J.P., and McCall, J.A., "A Framework for the
Measurement of Software Quallty," ACM Proceedings of the
Software Quality and Assurance Workshop, 15- 17 November 1978.

Chen, E.T., "Program Complexity and Programmer Productivity,"”

IEEE Transactions of Software Engineers, v SE-4 no. 3, 1978.

Christensen, K., Fistos, G.P., and Smith C.P., "A Perspective
on Software Science,"” IBM Systems Journal, v 20 no 4, 1981.

Chrysler, E., "Programmer Performance Standards," Journal of
Systems Management, February 1978.

Cougar, J. D., and Zawacki, R. A,, Motivating and Managing
Computer Personnel, John Wiley and Sons, 1980.

Curtis, B,, Sheppard, S.P., Borst, M.,A,, Milliman, p., and
Love, T., "Some Distinctions Between Psychological and Com-
putational Complexity of Software," Proceedings, U.S. Ar-
my/I1EEE Second Software Life Cycle Workshop, 21-22 August
1978.

88

........

" o e, e {V-Ns.'l;q'-;-\.-'n'.. '''''''''' I O T

- et e
P Ve S Sy

-

ARV

V .
" a oo
al.tat

.

e W OO

PR BV

>

¥ % B M

LIS LT Y

¥

o
¥
.

Elshoff, J.L., "A Review of Software Measurement Studies at
General Motors Research Laboratories,” Proceedings, u.S.
Arm*(IEEE Second Software Life Cycle Workshop, 21-22 August

Franklin, B., "Programmer Productivity Needs Clearer Focus,"
Computerworld, 26 April 1982,

Gaffney, J.E., "Metrics in Software Quality Assurance," ACM
Tutorial, 9-11 November 1981.

Gilb, T., Software Metrics, Winthrop, 1977.

Gold, B., Productivity, Technology, and Capital, Lexington
Books, 1979.

Greenberg, L., A Practical Guide to Productivity Measurement,
Bureau of National Affairs, Inc., 1973.

Hagan, J.C., "The Productivity Implications of Performance
Measurement,” SHARE 53, New York, N.Y., August 1979.

Halstead, M.H. and Schneider, V., "Further Validation of the
Software Science Programming Effort Hypothesis,” ACM 17th

Annual Technolggical S gsium: Tools for Improving Computing
in the S, June 1%

Halstead, M.H., "Software Science- A Progress Report, "Pro-

ceedings U.S. Army/IEEE Second Software Life Cycle Workshop,
Atlanta, Ga., -22 August 1978.

Hamilton, K., and Block, A., "Prog'rammer Productivity in a
Structured Environment,"” Infosystems, April/May 1979.

Hornbruch, F.W., Raising Productivity, McGraw-Hill, 1977.

Jones, T.C., "Productivity Measurements,"” SHARE 51, Boston,
Mass., 20-25 August 1978.

Keider, S.P., "Why Projects Fail ?", Datamation, December
1974.

Koutsoyiannis, A., Modern Micoeconomics, Macmillian Press
Ltd., 1975.

Kirkley, J.L., "Programmer Productivity", Datamation, v 23 no
5, May 1977.

Leypoldt, C.C., "Computer System Heal Thyself," Department Of
Defense Institute Selected Computer Articles, 1§7£.

89

Pl l:. 2 n"‘l‘ P'é

SRR -
I"n':'.'/ -'.d' .

> e’
L 3

..
A, s

d '
L AR AT
R N Y R

Lockett, J., "Using Performance Metrics in System Design,”
ACM Proceedings of the Software Quality Assurance Workshop,

15-17 November 1978.

Markham, D.,, McCall, J., and Walters, G.,, "Metrics Applica-
tions Techniques," Proceedings of Trends and Application

Advances in Software Technology, IEEE:NBS., 1981.

McCall, J.A., "The Utility of Software Quality Metrics in
Large-Scale Software Systems Developments,” Proceedings U.S,
Army/IEEE Second Software Life Cycle Workshop, 21-22 August
1978.

Osborn, R.W., "Theories of Productivity Analysis,"
Datamation, September 1981.

Perlis, A.J., Sayward, F.G., and Shaw, M., Software Metrics:
An Analysis and Evaluation, MIT Press, 1981.

Phister, M., "A Model of the Software Development Process,”
The Journal of Systems and Software, February 198l.

Presser, L., "Reversing the Priorities". Datamation,
September 1981.

Putnam, L.H., "Measurement Data to Support Sizing Estima-
tions, and Control of the Software Life Cycle," IEEE Computer
Society Conference Proceedings, Spring 1978.

Putnam, L,H.,, and Fitzsimons, A., "Estimating Software
Costs,” Datamation, v 25 no 10, September 1979.

Racer, C.W., "Measuring Programming Productivity in the
Maintenance Environment,” Proceedings of SHARE 57, Chicago,
Ill., 23-28 August 1981.

Scott, R.F.,, and Simmons, D.B., "Predicting Programming Group
Productivity- A Communications Model," I1EEE Transactions on
Software Engineering, v se-l no 4, December 1975.

Scott, R.F., and Simmons, D.B., "Programmer Productivity and
the Delphi Technique," Datamation, May 1974.

Sholl, H.A., and Booth, T.L., "Software Performance Modeling
Using Computational Structures," IEEE Transactions on
Software Engineering, v se-l1l no 4, December 1975.

Stevens, W.P., Myers, G.J., and Constatine, L.L., "Structured
Design," IBM Systems Journal, v 13 no 2, 1974.

90

..........

YRS

el

"
(58
.

PR R

AL

atetaterlt

Y LOOTEES - 13

Pyl

_

Wasserman, A.I., and Belady, L.A., "Software Engineering: The
Turning Point," Computer, September 1978.

Wolverton, R.W., "The Cost of Developing Large-Scale
Software," IEEE Transacitions on Computers, v ¢-23, no 6,

June 1974.

91

PRI

LRI

Iy

LSMENERN ¢

WIS) PINF

159

e T W P N

a A fn 2% Y

A Al - b, X

eita.

DL R LN

lo.

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22314

Library, Code 0142
Naval Postgraduate School
Monterey, Ca 93940

Curricular Office, Code 37
Naval Postgraduate School
Monterey, Ca 93940

Assistant Professor Dan C. Boger, Code 54BK
Administrative Science Department

Naval Postgraduate School

Monterey, Ca 93940

Associate Professor Norm Lyons, Code S4LB
Administrative Science Department

Naval Postgraduate School

Monterey, Ca 93940

Chairman, Code 54

Department of Administrative Science
Naval Postgraduate School

Monterey, Ca 93940

Fleet Material Support Office
Code 92
Mechanicsburg, Pa 17055

Pleet Material Support Office
Code 92E
Mechanicsburg, Pa 17055

Fleet Material Support Office
Code 92T
Mechanicsburg, Pa 17055

LCDR Gary J. Hughes, SC, USN
Naval Supply Center Puget Sound
Bremerton, Wa 98314

No. Copies

2

11.

MAJ W, Helling
Commandant Marine Corps
Code MMOS

Headquarters Marine Corps
Washington, D.C. 20380

93

it A R R AN A A B |
- - - . - - - - - - - - .. -

i

1

R T e PO T TR R Y SRE S SRt)
P IR AP AL P ~L-k;._;;_‘-'-'-‘s.'s.".'s."-.‘;.;

