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I.  INTRODUCTION 

Since their commercial introduction in the 1940's bonded resistance 
strain gages have been used with great success where strain or displacement 
of a surface is used as a measure of some physical quantity such as stress. 
Bonded strain gages were quickly accepted because of their superior sensitiv- 
ity and especially their ease of use. 

The first commercial gages were made of grids of fine metallic wire 
attached to paper backing bonded on the surface to be strained. In 1952 the 
first foil gages were introduced in England. These gages are made from a thin 
foil of a suitable metal, such as constantan, which is bonded to a thin paper 
or plastic backing and etched into a grid. Foil gages come in many shapes, 
sizes, and configurations. 

For strains below a few tenths of a percent, that is, elastic strains 
in most metals, bonded strain gages were and are truly superior in sensitiv- 
ity, linearity, reproducibility, and ease of use. The same can not be said 
for their use in measuring large plastic strains. Changes in gage constant 
and zero shifts in cyclic use are often seen. Nevertheless, their superior 
sensitivity and applicability for both static and dynamic measurement have 
resulted in resistance gages designed to measure large strains. 

II.  GAGES FOR LARGE STRAIN MEASUREMENT 

The first resistance gages designed to measure large strains were made 
by Swainger1 of Minalpha wire and Weibull2 of Copel. Copel is a copper- 
nickel alloy (55 Cu, 45 Ni) which is close to constantan (60 Cu, 40 Ni) in 
constitution. The most popular resistance foil gages used for large plastic 
strains are made of constantan or Advance. Bridgman3 showed that the pressure 
coefficient of resistance is essentially the same for Cu-Ni alloys of from 
20-80% nickel. Kuczynski4 also showed that the strain coefficient of resis- 
tivity of these alloys was constant over the range from 40-60% nickel and was 
not affected by wire size down to 0.025 mm diameter. Shoub5 measured 0.025 mm 
diameter constantan wires to 22% strain and found a linear relationship with 

K.  H.  Swainger,   "Eleotvioal Resistance Strain-Gauges to Measure Large Strains," 
Nature,   159,   61-62,   1947. 

2W.   Weihull,   "Eleatrioal Resistance of Wires with Large Strains," Nature,  162, 
966-67,   1948. 

3P. W.   Bridgman,   "The Effect of Pressure on the Resistance of Three Series of 
Alloys," Proceedings of American Academy of Arts and Sciences,  63,  229-245, 
1928. 

G.   C.   Kuczynski,   "Effect of Elastic Strain en the Electrical Resistance of 
Metals," Physical Review,   94,   61-65,   1954. 

H.   Shoub,   "Wire-Resistance Gages for the Measurement of Large Strains," 
David Taylor Model Basin,  Report No.   570,  March 1950. 



a slope of 2.02 for In R/Ro versus In i/^0,    where R is the resistance and 

%  the length of the wire. The zero subscript denotes their initial values. 
This is very close to Weibull's2 logarithmic slope of 2.0, that is, 

, ^ = (^^^)2• cu 
I o    o 

Here — = 1+ — and e = 7— where, hi  is change in length and e is the strain. 
00        0 

This result would be expected if the resistivity and the volume of the wire 
do not change during plastic deformation.2 Franz, Benck, and Diberardo6 show 
this same result with high elongation foil gages made of constantan* compared 
with optical strain measurements. Noting that. 

AR  R_ 
R ~ R 1 = (2+e) e (2) 

o 

and since 

1 AR 
- R- = Gage Factor, (3) 

A gage factor of 2+e should be used to calculate strains for this type gage. 

Weibull also ran high strain rate tests with rates to approximately 
60/sec. (34% maximum strain). He found no change in the logarithmic slope. 
Hauver and Melani have used foil strain gages made of constantan in impact 
tests at much higher rates and found the same gage factor of 2+e when com- 
pared to optical strain measurements. These results and those in Reference 6 
indicate that there is no problem with the gages tracking the substrate strain, 
since free wires and bonded gages give the same results. More will be said 
later about gage tracking. 

In most cases, the nominal gage factors of well annealed constantan high 
elongation gages are within a few percent of 2. Thus, for large strain 
measurements where errors of a few percent of the total strain are acceptable, 
2+e can be used as the gage factor.  If greater accuracy in measurement is 
needed, a closer look must be taken at the mechanism of the gage's piezo- 
resistive response and its strain sensitivity. The next section demonstrates 
a situation in which this greater accuracy is needed. 

*Miaro-Measm'ements EP-08-062TT-120 

6i?. E.  Franz^ R.   F.  Benck,  and D. A.  Diberardo,   "Quasi-Static Stress-Strain 
Curves,  S-7 Tool Steel, " ARBRL-ME-02067,  Ballistic Research Laboratory,   Octo- 
ber  1980   (AD A09S773). 

7 G.   E.   Hauver and A.  Melani,   "Strain-Gage Techniques for Studies of Projectiles 
During Penetration, " ABBRL-MR-03082,  Ballistic Research Laboratory,  February 
1981   (AD A098660). 
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III.  VOLUME CHANGES DURING PLASTIC DEFORMATION 

For some time this laboratory has used bonded foil resistance strain gages 
to measure strains during uniaxial tension and compression tests.  In these 
tests both axial and circumferential strains are measured with gages bonded 
directly to the specimen. True stress and Poisson's ratio can then be calcu- 
lated. Great care is taken, especially in compression tests, to preclude 
friction and bending in samples that have a 3:1 length to diameter ratio.6 

Resistance data are logged directly and are measured with a four terminal 
method to 3 milliohm accuracy and one milliohm sensitivity. Careful reduction 
of these data include corrections for transverse sensitivity and the effect of 
large strain as previously described. 

Using these results, the volume change during and after deformation can 
be calculated. Surprisingly, many materials apparently showed what were con- 
sidered large, permanent, positive volume changes in both tension and com- 
pression.  Some changes as large as 0.2% were calculated. 

These changes were large enough that, although they depended on the differ- 
ence of two small numbers, the estimated errors in measurement were supposedly 
less than the effect by at least a factor of ten. They were also large enough 
to be measured directly by careful liquid displacement experiments to deter- 
mine the density of the samples before and after deformation. 

Therefore, density measurements were made on steel specimens plastically 
deformed in compression and aluminum alloys deformed in both tension and com- 
pression. 

The measurements were made with a single pan analytic balance having a 
sensitivity of 0.01 milligram. Water was used as the immersion liquid and was 
kept a few degrees above room temperature by a circulating water bath con- 
trolled to 0.01oC. The suspension wire was made of nichrome prepared by a 
method devised by Bowman and Schoonover8 to minimize miniscus problems. 

Individual density runs of around five measurements on a single sample 
showed standard deviations of 100-200 ppm. Repeat runs on the same samples 
gave inter-run deviations of 200 ppm. 

The experiments did not confirm the magnitude of the strain gage measure- 
ments but showed very small increases in volume or no volume change within the 
measurement error. Table I shows typical runs of data for 7039 aluminum alloy 
in compression. These results indicated that the strain gage data was in error 
and experiments'were undertaken to simultaneously measure the strain mechani- 
cally. 

'#. A. Bowman and R. M. Schoonover, "Prooeduve for High Precision Density 
Determinations by Hydrostatic Weighing," Journal of Research of National 
Bureau of Standards,   71C,  No.   2,  July-August 1967. 



TABLE I 

UNIAXIAL COMPRESSION TESTS OF 7039 ALUMINUM ALLOY 

TEST NO. INITIAL DENSITY 

KG/M3 
FINAL DENSITY 

KG/M3 

PLASTIC 
STRAIN 

% 

VOLUMETRIC 
STRAIN 

% 

115 2740.470 2740.112 2.6 .013 

143 2749.346 2748.766 2.6 .021 

144 2738.044 2737.128 2.8 .033 

122 2740.626 2739.961 3.8 .024 

117 2740.585 2739.678 6.0 .033 

Note: All volumetric strains are within measurement errors. 

IV.  MECHANICAL AND ELECTROMECHANICAL MEASUREMENTS OF STRAIN 

Careful diametral measurements on samples loaded in uniaxial stress were 
made with a system similar to an old design by Peterson and Wahl.9 The 
mechanical displacement measurements are made with a Huggenberger displacement 
extensometer gage.10 Also attached was a Unimeasure 80,* a semiconductor 
resistance displacement transducer. Simultaneous strain gage measurements 
were made using two 90° rosette strain gages of the type used in the other 
tests.** 

The gages were mounted on 6.35 mm diameter samples 180° apart on the axis 
90° from the mechanical measurement. 

Figure 1 shows a photograph of the system mounted in the testing machine. 
The Huggenberger gage has a sensitivity of 0.5 micrometer. The Unimeasure 80 
used with a high resolution digital multimeter gave a sensitivity of 0.05 
micrometer. Accuracy of the electromechanical measurements were estimated as 
5%. Deviation from linearity of the measurements over the 0.05 mm displace- 
ment range was less than 1%. 

*lJnvneasuve}  Ino.3  Grants Pass,  OR    97526. 

**Miaro-Measurements EP-08-062TT-120. 

9i?.  E.   Peterson and A.  M.   Wahl,   "Fatigue of Shafts at Fitted Members,  with a 
Related Photoelastia Analysis," Journal of Applied Mechanics,   Trans,   of ASMS, 
57,   1925   (A-l). 

10See for example  "Handbook of Experimental Stress Analysis," M.   Eetenyi,   ed., 
John Wiley & Sons,  New York,  pp 94-96,  1950. 
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Figure 1. System for Measuring Diametral Strain and Displacement 
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Figure 2 shows some results from tension tests using berylium-copper 
specimens which have a high elastic yield strain 00.6%). The Unimeasure 80 
strains are plotted against the strain gage results using the usual data 
reduction methods previously described. The Huggenberger and the Unimeasure 
80 data showed excellent agreement. See Figure 3. 

Figure 4 shows the results of a compression test on steel. 

It is evident that the response of the strain gages changed when the 
strain in the specimen exceeded a few tenths of a percent. A gage in tension 
showed an increase in gage factor, one in compression a decrease. These 
changes were measured to be 2-3% in both tension and compression for the 
gages used. 

In general, these small changes would not be seen since the gage factors 
of commercial strain gages are usually determined using small strains within 
the gage material's elastic range or slightly above. Conversely, when Weibull 
was measuring the response of wires to large plastic strain, his range was too 
large and small changes at yield were undetected. Weibull's first data point 
was at 5% strain. The yield strain of annealed Copel is probably less than 
0.15%. 

V. DISCUSSION 

It was clear that the measured residual volume increases were due to the 
gage factor changes measured. These changes occur at the elastic-plastic 
yield of the gage material and are probably caused by plastic work. Plastic 
work increases the resistance of the gage in both tension and compression. 
For most materials the plastic work in uniaxial stress is almost linear with 
plastic strain so that the change in gage factor is a constant. See Appendix A 
for a more detailed explanation of gage response. 

The fact that no measurable (with strain gages) volume change occurs can 
be used to determine the change in gage factor that occurs at the yield. That 
is, we can choose a gage factor change which will correct the volume data to 
show no residual volume change. The gage factor, of course, reverts to its 
original value when unloading occurs since no additional plastic work occurs. 
This leads to another consideration which must be made since the gages were 
shown to track the substrate. The stress in the substrate can be very much 
higher than that in the gage material. This is true especially for steels and 
other high strength alloys. This means that the elastic unloading strain in 
the substrate can be much higher than the elastic strain in the gage material. 
In fact, in some cases the gage material is not only unloaded but reloaded 
past its yield point in the reverse direction. This means that the gage 
factor once again changes but in the opposite direction. 

The gages' yield strain was determined from the electromechanical 
measurements as 0.14%. The reverse loading yield strain on unloading was 
taken as twice the original yield or 0.28%. That is, after the substrate had 
unloaded 0.14%, the gage factor was changed. 

The final strain determination analysis consisted of a computer program 
which calculated the strains using the appropriate gage factors and original 

12 
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resistances at each step and included correction for transverse effects. The 
equation used to calculate the raw strains before transverse corrections were 
made was 

G F 

where 

Ae = incremental strain 

R = resistance of gage 

R = resistance of gage at Ae = 0 

G.F. = gage factor of the appropriate region. 

The total strains are then computed by adding the strain in each region. For 
instance, the strain in the plastic region of the gage is the sum of the 
strain at yield plus the incremental strain in the plastic region calculated 
using the resistance of the gage at yield as R in Equation (4).  It is 

assumed that the gage factor changes the same amount whether in compression or 
tension. Only the sign changes, that is, a decrease for compression,an 
increase for tension. 

Figures 5 and 6 show the volumetric strain vs. true stress for two tests, 
one in tension, one in compression. These curves compare results with no 
correction for gage factor and a correction of 0.04. 

The correction is seen to be only a few percent of the elastic gage 
factor but can also be important when measuring cyclic strains.  It explains 
the positive zero shift for cyclic loading as shown by Krempl11 and Dowling.12 

The apparent strain in the tension part of a cycle is larger than the true 
value and that in the compression part is smaller than the true value, thus 
the positive shift in zero. This offset is repeated each cycle so that the 
cumulative zero shift becomes larger as the number of cycles increases. The 
total maximum strain difference stays comparatively constant during the first 
10-20 cycles since the changes in strain in opposite directions are fairly 
constant. Subsequently, the gages must not track well. This effect worsens 
as the strain range increases. 

Dowling's12 cyclic stress-strain curve is also explained by this effect. 
He obtained smaller compressive strains than tensile strains for the same 
stress difference. 

11£'. Krempl,   "Evaluation of High Elongation Foil Strain Gages for Measuring 
Cyolio Plastic Strains," Experimental Mechanics,  8_ (8),  19N-26N, August 1968. 

12 N.   E.   Dowling,   "Performance of Metal-Foil Strain Gages During Large  Cyclic 
Strains," Experimental Mechanics,  17_,  192-197, May 1977. 
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" APPENDIX A 
I 

PIEZORESISTIVE RESPONSE OF STRAIN GAGES 
i A _ I 

BridgmaiT was the first to formulate the equations necessary to describe 
the effect of general mechanical stress on the electrical resistivity of 
crystals. These relationships can be represented through the use of a fourth- 
rank tensor usually called the piezoresistive tensor A-^ For elastic stresses 
the tensor components or coefficients can be described in terms of strains and 
a strain tensor defined. This kind of analysis has been used to describe the 
behavior of various materials and their use in stres/"2'^3 and strain 
gages. -4»A-bFor an isotropic material there are only two independent coeffi- 
cients. Recently Gupt^~6has presented an incremental analysis for gage response 
which uses the piezoresistive tensor combined with an elastic-plastic model 
for the dimensional deformation of the gage. This model includes the change 
in resistivity due to plastic work as well as that due to elastic stresses. 
The analysis is used to describe the response of manganin and yterbium stress 
gages to one-dimensional shock wave loading but can just as easily be used to 
analyze strain gage response to tensile or compressive loading. 

GuptaA-6defines a right-handed coordinate system such that the X axis is 
along the gage width, Y along the gage thickness, and Z along the gage length. 
Then the resistance, Rz, of the gage element with electric field and current 

density directed along the gage length is derived as 

Rz 
g- ■ [1 + a (Aax + Aay + Aaz) + 2eAaz + nAW ] 

a 
(A-l) 

[1 + Ae7]   /   [1 + AEY]   [1 + Aev] 

A"1P.   W.  Bridgman,   "The Effect of Homogeneous Stress on the Eleatriaal Eeeist- 
anae of Crystals," Physiaal Review,  42,  858-863,  1932. 

A~2E.  Bars-is,  E.   Williams,  and C.  Skoog,   "Piezoresistivity Coefficients in 
Manganin," Journal of Applied Physics,  41,   5155-5162,   1970. 

A"%).   E.  Grady    and M.  J.  Ginsberg,   "Piezoresistive Effects in Yterhium Stress 
Transducers," Journal of Applied Physics,  48,  2179-2181,  1977. 

A"V.  P.  Mason   and R.  N.   Thurston,   "Use of Piezoresistive Materials in 
Measurement of Displacement Force, and Torque," Journal of the Acoustical 
Society of America,  29,  1096-1101,  1957. 

"5V.  F.  Brace,   "Effect of Pressure on Electric-Resistance Strain Gages," 
Experimental Mechanics,   4,   212-216,  July 1964. 

"fy. M.   Gupta,   "Analysis and Modeling of Piezo-Resi stance Response, " DNA5451F 
Defense Nuclear Agency,  September 1980. 
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Aax, Acy, and Aaz are changes in applied stress in X, Y, and Z directions. 

Aex, AeY, and Aez are corresponding changes in strain, a and 6 are two 

independent material constants derived from the piezoresistive constants and 
p 

measured in the elastic range. AW is the change in plastic work and n a 
material constant relating changes in plastic work to resistivity. R is the 
resistance of the gage element before deformation. 

In order to use Equation (A-I)to analyze a constantan foil strain gage we 
first have to consider the deformation of the gage with respect to the strain 
in the underlying substrate and the gage's plastic backing. BraceA"5considered 
this problem for a foil strain gage where the grid length is much larger than 
the grid width and thickness. He concluded that the foil gage would track the 
substrate along the gage length but there would be almost no constraint along 
the width. In other words, the gage would behave as if in uniaxial tension or 
compression. 

Assuming this analysis is correct (other evidence is given in this report), 
the strain along the gage length, e-, will be equal to the strain of the sub- 

strate in that direction. Equation (A-l) can then be written for elastic strains 
in the gage material 

Aa7 

^= [1 + (a + 2B)Aaz]*  E _ (A-2) 
0 Aa7 

[1 - v -/] 

p 
Here Aa = Aa,, = AW =0 and v and E are Poisson's ratio and Young's 

Modulus of the gage material. 

For small elastic strains the incremental stresses and strains can be 
replaced by their total values and to first order Equation (A-2) can be written 

AR7 , , - 
__£ = [(a + 23) + i-1-^.] az (A-3) 

o 

or 

ARZ -jp = [(ex + 26)E + 1 + 2v] ez (A-4) 

Equation (A-4) is recognized as the usual gage factor equation10 with (a + 3)E 
equal to the strain coefficient of resistivity. 

The constants a and 6 are usually obtained from two experiments; the 
change in resistance due to hydrostatic pressure and the change due to uniaxial 
tens ion ;v"1'A"3»A"5In the case of an isotropic strain gage material, only the 
tension experiment is needed if the elastic mechanical properties are known. 
It is interesting to point out that if a material has a gage factor of 2.0, 
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the piezoresistive coefficient, a  + 23, is numerically equal to its linear 

compressibility, K = —^ . When the gage material becomes plastic since 

Aa_ is zero or comparatively small and v = 0.5, the plastic gage factor is 
A-7 

also 2.0. Arit  has used a different analysis to point this out. In this 
case, as was stated previously, the plastic gage factor is actually 2.0 + e, 
since no plastic volume change is postulated. For the gage factor to be 
2.0 + e it is only necessary that the resistivity per unit volume stay con- 
stant. This, of course, implies that in Equation (A-l), n = 0. 

The gages studied in this report did show gage constant changes when the 
gage material yielded. This implies that n ^ 0. The value of n can be esti- 
mated from the change in gage factor if a uniaxial stress-strain curve for the 
gage material is known. Appendix B describes some experiments on constantan 
wires which measured both uniaxial stress-strain curves and gage factors in 
the elastic and plastic regions and gives an estimate of n. 

A"7G. AHtt   "The Sensitivity of Strain Gauges, " Journal of Applied Physios,  49, 
d97Z-A97d       1Q7a 4272-4274,   1978. 
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APPENDIX B 

CONSTANTAN WIRE EXPERIMENTS • 

Two types of experiments were performed on constantan wires. One measured 
the load-resistance properties in tension, and one measured the gage factor 
directly. 

The experiments were performed with an Instron Testing Machine. The load- 
resistance tests were made with 0.32 ram diameter wire approximately 0.58 m 
long. The wires were mounted in the machine with insulated clamps. Heavier 
constantan wire leads were soldered to the wire near the top and bottom clamps. 
These leads were brought to the terminals of a 6 1/2 digit digital multimeter 
with a four terminal resistance measuring circuit. This procedure kept thermal 
e.m.f.'s at a minimum. A calibrated load cell was used to measure the load. 
The crosshead was run at 1.0 mm per minute and load-resistance data obtained. 

The Instron Machine has calibrated screws which move the crosshead at 
constant speed. If the original wire length is known, increases in length 
after specified times can be used to calculate strains from the known cross- 
head speed. It was not possible to measure both load and strain in the same 
experiment because the load cell used had too high a compliance and extended 
with load. Therefore, the load cell was removed for the strain-resistance 
experiments. 

In order to increase the accuracy of the measurement, a jig was made to 
increase the length of the wire used. This consisted of a sturdy aluminum 
pipe 50 mm in diameter with 13 mm wall thickness. An insulated clamp was 
attached to the top of the pipe which was mounted over the hole in the top 
stationary crosshead with the load cell removed. This increased the original 
distance between clamps to approximately 1.6 m. The total resistance was 
doubled by using a small stiff wire loop at the bottom clamp which was attached 
to the moving crosshead.  The wire was run from the top clamp down through 
the loop and back up to the top. The crosshead was usually operated at a 
speed of 1.0 mm per minute. Some wires were stretched continuously to approx- 
imately 2% strain. Some wires were loaded and unloaded up to five times with 
total strain to 3%. 

This procedure gave length-resistance data for elastic loading, elastic- 
plastic loading, and unloading. Figure B-l shows some results. The data was 
reduced by fitting a least-squares straight line to the natural logarithm of 

a R 
the two measurements, that is. In -r- and In p— . Some of the data points in 

o       o 
the vicinity of the change in loading direction were not used. The slope of 
the lines give the gage factor for each of the loading sequences. Unloading 
is shown with positive strain to avoid confusion. Figure B-2 shows an engi- 
neering stress-strain curve obtained from the data of the two types of experi- 
ments . 

In Figure B-l note that when plastic deformation occurs the gage factor 
increases and during unloading it changes again. With this data, we can 
calculate the piezoresistive coefficient for uniaxial stress and also estimate 
the value of n in Equation (A-l). 
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The stress-strain data were approximated by a bilinear curve as seen in 
Figure B-2. The equations for this curve are 

Elastic a = 1.40 x 10 e ; 0 < e < .0017 
MPa.       (B-l) 

Plastic a = 238 + 2570 (e - .0017); e > .0017 

The elastic gage factor of the wires was measured as 1.99 from the average 
of 6 tests with 12 loadings and unloadings. Using 2.15 x 10"6 MPa"1 as the 
linear compressibility of constantan, "1 Poisson's ratio was calculated as 
0.35, which corresponds to the value used by Brace.   Then from Equation (A-4) 
the piezoresistive coefficient, a + 23, has a value 2.1 x 10"^ MPa-1. 

The plastic gage factor, taken as an average from the same tests, was 
2.05, determining the plastic work with use of Equation (B-l). The value of 
n in Equation (A-l) is calculated to be approximately 2 x 10"^ MPa-1. 

B-1 
P.   W.   Bridgman,   "Effects of Pressure on Binary Alloys," Proceedings of 
American Academy,  84,  121-177  (1957). 
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savings as far as man-hours/contract dollars saved, operating costs 
avoided, efficiencies achieved, etc.? If so, please elaborate. 

5.  General Comments (Indicate what you think should be changed to 
make this report and future reports of this type more responsive 
to your needs, more usable, improve readability, etc.) 

6.  If you would like to be contacted by the personnel who prepared 
this report to raise specific questions or discuss the topic, 
please fill in the following information. 

Name:  

Telephone Number: 

Organization Address: 


