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INTRODUCTION

Under sponsorship of the Naval Facilities Engineering Command (NAVFAC),

the Naval Civil Engineering Laboratory (NCEL) is developing tool systems
for Naval Underwater Construction Teams. Many construction tasks require
removal of seafloor sand and sediment. The emplacement, inspection, and
repair of pier pilings, pipelines, and cable systems are examples of
tasks where sediment excavation is frequently required. To improve the
capabilities of the Underwater Construction Teams to perform these tasks,
NCEL has developed a diver-operated sediment excavation tool. This re-
port describes the development and presents design criteria for this
tool.

BACKGROUND

Prior to the development of the Sediment Excavation Tool, diver
techniques for transporting and removing seafloor sediment were limited
to jetting with low pressure, high flow water; dredging with hydraulic
powered sump pumps; or dredging with water injected jet eductors.

Sediment removal utilizing a water jet is inefficient. The jet
stream easily fluidizes the sand sediment, but with no mechanism for
further transport these sediment particles eventually settle in the same
area. In addition, this technique requires the diver to contend with
large diameter, stift water hoses, large reaction forces, and poor visi-
bility at the work site.

A force-balanced nozzle, called the Falcon nozzle, does exist; how-
ever, previous experience* has shown that this does not provide adequate
thrust balancing and the wash from the back thrust is potentially danger-
ous to scuba divers.

Hydraulic~powered sump pumps are not well-suited to dredging opera-
tions because they rely on a revol .ng impeller to pump fluids. In pump-
ing abrasive sand-sediment slurries, sump pumps frequently can become
clogged, pass only small-sized particles, and incur internal as well as
impeller damage.

Jet eductors have no mechanism for fluidizing unconsolidated silts
or clays. They utilize injected water and a venturi for pumping fluids.
In the past,** jet eductors have been successful in transporting sand;

*Naval Civil Engineering Laboratory. Letter Report: "Evaluation of
seaf loor tunneling and excavating equipment for salvage operations',
by K. D, Vaudrey, Port Hueneme, Calif., Feb 1972,
**Naval Coastal Systems Center. Technical Memorandum No. 229-78: Under-
water jetting and a jet/dredge tool for diver use", by C. Smith, and
J. Mittleman, Panama City, Fla., Aug 1978,




however, divers must first breakup and fluidize the sediment material in
front of the suction tube. In addition, this technique has the disad-
vantages of the use of large-~diameter, stiff water hoses, of only moder-
ate reaction forces, and of frequent clogging (eductors can easily become
clogged if the diver gets the suction end buried in sand).

It is recognized that while the use of these components individually
poses significant operational difficulties, a combination of these com-
ponents could minimize or even eliminate their individual shortcomings.
For instance, by adding a jet to an eductor, reaction forces could be

| balanced, visibility could be improved, and performance could be improved.
By adding a pump to power this combination, handling stiff water hoses
could be eliminated and drag forces from current acting on hoses extend-
ing to the surface could be reduced.

In 1977, NCEL tasked the Naval Coastal Systems Center (NCSC) with
testing and evaluating underwater jetting and dredging components. A
further task was fabrication of an experimental diver-operated combi-
nation jet nozzle - jet eductor -~ sump pump tool (see Figure l). The
resulting tool is composed of a Gold Divers jet eductor, a 1/2-in. diam
jet nozzle and a Stanley Tools hydraulic-powered sump pump model no. SM22.
The tool weighs approximately 65 pounds, has an overall length of about
4 feet, and is powered hydraulically at 9 gpm and 1,500 psi.

Results of the NCSC study* showed that, in comparison to the per-
formance of the individual jet and dredge components, the combination
tool increases excavation rates, reduces reaction forces, and improves
water visibility in jetting operations.

With the preliminary design concept validated, a test program was
conducted at NCEL to:

e test and evaluate the NCSC experimental tool

e test and evaluate other candidate components for use with the
combination tool

e develop an optimized design of the experimental tool

e fabricate a prototype jet/dredge tool

PRELIMINARY TESTS

Three series of preliminary tests were conducted to evaluate the
diver jet dredge tool. The objective of these tests was to develop
information concerning tool performance, human factor considerations,
and safety. All tests were conducted with Navy-qualified scuba divers.

Tool Performance and Human Factors Evaluation

Underwater Construction Team Two personnel conducted the first
series of tests in the harbor at Port Hueneme, Calif., to gain familiar-
ity with the operation of the NCSC prototype jet dredge tool. Figure 2

*NCSC Technical Memorandum 229-78.
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illustrates the test rigging, with the jet dredge buoyed up with a teth-
ered flotation bag. The tool was hydraulically powered at 9 gpm and
1,550 psi.

These tests showed the following results:

® Reaction forces are minimal - proper flow adjustment (made by
adjustment of the dual butterfly valve) to the nozzle and jet
eductor results in a force-balanced operation of the tool.

e Proper safety features are absent - there is no mechanism for
quickly shutting the tool off in the event of a mishap incurred
by the diver.

e Handling of the tool is difficult - there are no clearly defined
areas or positions for gripping or holding the tool. 1In addi-
tion, diver handling of the tool with the tethered buoyancy bal-
loon proved unwieldy.

e Visibility is poor at the diver work site - the tool generated
heavy loads of silt and sediment resulting in near zero visibil-

ity at the test site.

Multiple Jetting Nozzle and Pump Configuration Evaluation

The objectives of this series of tests were to determine whether
the pump should remain an integral part of the tool and to test a new
concept of jetting with multiple jet nozzles. These tests were con-
ducted with NCEL Diving Locker personnel in the harbor at Port Hueneme.

Sump Pump. To determine whether the Stanley submersible pump should
be located directly on the jet-dredge tool or remotely, tests emphasizing
diver comfort and safety were conducted with the tool in both configura-
tions. The tool was operated first with the sump pump remote from the
jet dredge combination. Fifty feet of 3-in. diam fire hose was used to
connect the output flow of the pump to the inlet of the dredge unit.

The sump pump was then suspended in the water while being powered at
approximately 9 gpm and 1,500 psi.

After approximately 20 minutes of operation, the tool was recon-
figured with the sump pump mounted directly on the tool. The tool was
then deployed with the same divers to compare the handling characteris-
tics of the two configurations.

Although the configuration of the tool with the pump attached ap-
pears to be bulky and awkward, the divers preferred this configuration
because handling of the hydraulic lines to the tool was easier than hand-
ling the fire hose to the dredge unit. The fire hose becomes very stiff
at high volume flow (approximately 200 gpm) and is easily kinked, since
the bend radius before kinking is only about 8 feet.

Multiple Nozzles. The concept of multi-jetting in this application
is to engulf the area to be excavated with an envelope of converging jet
streams, thereby dislodging and suspending sediment particles in a direc-
tion and area more local to the suction tube of the dredge. To determine




the feasibility of this concept, a multi-jetting apparatus was fabricated
from schedule 40 PVC pipe. The jetting fixture is shown with the tool

in Figure 3. The outlets are directed inward with a "focal" distance
(distance between the plane of the nozzles to the point where the jet
streams converge) of roughly 2 feet. The nozzles consist of end caps
with 3/8-in. diam holes drilled and threaded to accept end plugs. The
end plugs were used so that performance with fewer than eight jets in
different positions around the ring could be evaluated.

Two jetting combinations (four and eight jets) of the multi-jetting
apparatus were tested and compared to the single-jet nozzle. Excavation
data are presented in Table 1. In general, excavation rates appear to
be very low, ranging from 0.27 to 0.45 ft®/min. No measurable differ-
ences in excavation rates were found for the single-, four-, or eight-jet
systems. However, the divers reported that the visibility was greatly
enhanced with both the four- and eight-jet systems. These tests indi-
cate that the multi-jetting approach to fluidizing sediment results in
improved visibility at the diver work site.

Excavation Rate Tests

The objective of this series of tests was to measure the excavation
rates of different jet nozzle assemblies. These tests were conducted
offshore from the beach at Port Hueneme, Calif., and off the west jetty
of the Naval Construction Battalion Center (NCBC), Port Hueneme,

With the concept of multi-jetting validated, the jetting apparatus
discussed in the previous section was replaced with a more sturdy fix-
ture, called the plenum. Figure 4 shows the fixture attached to the
tool. The plenum, constructed of aluminum and attached to the eductor
with four threaded rods, functions as both a distributor and support
foundation for the jet nozzles. [t is designed specifically to provide
versatility in adapting to different jetting combinations.

Four types of jet nozzles were purchased from Spraying Systems Com-
pany, Wheaton, Il1l. Table 2 lists the model numbers, orifice sizes, and
spray angles. These nozzles were selected from the manufacturer's liter-
ature based on their advertised flow-pressure performance. The direc-
tion of each jet stream, and thus the focal distance, can be varied by
an adjustable ball fitting. The radial distance between each nozzle and
the centerline of the plenum (same line as the major di- .eter of the
eductor) can be varied by changing the length of the pipe nipple con-
necting the nozzle to the plenum.

A standardized test procedure, outlined below, was developed to
evaluate the different jet nozzle assemblies.

1. The diver positioned the tool such the it rested upright on
the ocean floor (major axis of the educior suction/exhaust tube

perpendicular to the seafloor).

2. With some horizontal support from the divers the tool was
turned on for 3 minutes and allowed to sink into the soil.

3. The depth and diameter of the resulting hole was then recorded.

—7




Results of these tests are presented in Tables 3 and 4 for the
Hueneme Beach and west jetty test sites, respectively. Tests 1 through 4
of Table 3 compare the excavation rate ot the tool with two different
jetting geometries. These data show that the jetting assembly with a
focal length of lb inches and an annulus radius of 4.5 inches has a higher
excavation rate than the assembly with a focal length of 21 inches and
annulus radius of 7.5 inches. Examination of the remaining tests in
Table 3 shows the following average excavation rates for the different
nozzles used with the l6-inch focal length and 4.5-inch annulus radius

configuration:
Nozzle Number of Average Excavation
Number Nozzles Rate (ft3/min)
H1/2U000150 4 2.87
H1/4U1570 8 2.40
H1/4U0050 8 3.30
H1/4U0070 8 2.65

Data taken from the west jetty site are presented in Table 4. Ex-
cavation rates are very small, ranging from 0.2 to 0.6 ft3/min. The
limited performance is due to extensive clogging of both the jet nozzles
and the eductor venturi with sand and pebble sediment. This clogging f
occurred because loose sediment was passed through the pump and into the
eductor and plenum. Although the pump inlet has a screen (0.081-in.-diam,
8 holes/in. perforations), it is clear that this too may become clogged
for smaller sized screen meshes. Clogging was not observed in the pre-
vious tests at Hueneme Beach, but this is probably because the smaller r
sand grains of the Hueneme Beach area could more easily pass through the
restricted areas of the tool.

COMPONENT STUDY

To optimize the performance of the tool, basic hydraulic data de~
scribing the performance of the various jet dredge system components
were needed. A series of tests gathering these data was conducted in
the Shallow Water Ocean Simulation Facility at NCEL. These tests are ]
grouped into the following categories:

e Submersible Hydraulic Pump Tests
e Jet Eductor Tests

e Jetting Nozzle Tests

Submersible Hydraulic Pump Tests d

Two submersible hydraulic pumps were selected for test and evalu-
ation: the Stanley Caisson pump (SM21) and the Stanley Dewatering pump
(SM22). Both are centrifugal pumps that rely on a revolving impeller to

e SNk W R S S e -
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pump tfluids. FKarlier studies on the SMZ2* and previous experience with
the $M21 indicated that both pumps were likely candidates for applica-
tion to the tool.

The objectives of these tests were to characterize the performance
of these pumps, including:

e pressure versus flowrate curves for various hydraulic inputs

e efficiency versus output flowrate curves for various hvdraulic
input

Although some pertformance data from the manufacturer do exist, data
based on Mil-H-5606C hydraulic oil were necessary because cil viscosity
is different from that used by the manufacturer to determine performance
characteristics. The test arrangement for the acquisition of these data
is shown in Figure 5.

To obtain the desired data format, the input hydraulic flowrate was
held constant while the input pressure, output pressure, and output flow-
rate of the pump were recorded. The output tlowrate, and thus input and
output pressures, were varied by adjustment of the ball valve in the
assemblyv, The output pressure was monitored with a gage located immedi-
ately downstream ot the pump; the output flowrate was monitored with a
turbine f{lowmeter. The hvdraulic input was monitored with the pressure
gage and flowmeter ot the hydraulic power source.

Figures 6 and 7 show a family of pressure versus f{lowrate curves
for various input tlowrates to the SM2] and SM22 pumps, respectively.
The manufacturer's advertised performance curves are shown in the top
right~hand corner of each figure. These data show that for a given in-
put flowrate the SM!2 has a slightly larger output flowrate and pressure
than the SM21 pump. Also, the output [lowrate and pressure of both pumps
is slightly lower than the manufacturer's advertised performance level,
Since the grade of hydraulic oil used in the manufacturer's tests is not
known, some difference was expected due to differences in oil viscosity.

Pump efficiency data are presented in Figure 8 for the SM21 pump
and Tigure 9 for the SM22 pump. These data are plotted as efficiency
versus output flowrate for ditferent hydraulic inputs. The data show
peak efficiencies of approximately 28% and 38% for the SM21 and SM22
pumps, respectively.

Eductors

These tests were designed to obtain performance data on the couple-
jet by Gold Divers. The jet pump (see schematic in Figure 10) relies on
the venturi effect created by injecting water at a high velocity into a
mixing chamber. The high velocity creates a lower than ambient pressure
in the mixing chamber, resulting in entraining the fluid mixture at the
inlet into the mixing chamber and out the discharge. The venturi ori-
fice size can be adjusted by sliding the inlet suction tube inside the
housing with a set screw adjustment.

*NCSC Technical Memorandum 229-78.
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The performance of the jet pump can be characterized in terms of
efficiency, the dimensionless head ratio, and the dimensionless discharge
ratio for a family of venturi orifice sizes. The efficiency is defined
as the work done divided by the work exerted. The rate of work done by
the system is that performed in transporting the fluid at an entrained
flowrate Q through the increased static pressure P between the point of
egtrainmen% (p = He) to the pump discharge (P = Hd). The total workrate
(wout) then becomes:

wout = re (Hd - He) Qe

where p is the fluid density and g is the acceleration of gravity.

The rate of work exerted by the system is the power expended in
moving the injected fluid at a flowrate of Q. through the pressure drop
across the venturi gap. The total workrate win) expended then becomes:

Wio = P8 (Hp = H) Q

Thus, the efficiency (k) can now be written as:

pg(H, - H)) Q

kK =
eg(H - H) Q
or
k = RHRQ
where RH = (Hd - He)/(HI - He) is the dimensionless head ratio
R —

Q- Qe/QI is the dimensionless discharge ratio

The equipment configuration for these tests is shown in Figure 11.
To obtain the desired data format, the injection flowrate was varied at
a specified venturi gap while the entrained flowrate (Q ), entrained
pressure (H ), and injected pressure (H_ ) were monitored. The injected
flowrate (Qe) was calculated using the éata obtained in the previous
section. Tée discharge flowrate was calculated by summing the injection
flowrate and the entrained flowrate. The discharge pressure (Hd) was
assumed to be ambient pressure.

Table 5 shows the venturi gap setting used in the eductor tests.
For convenience, these gaps are denoted by a "set position." Perfor-
mance data are presented in Figures 12 through 15,

Figure 12 is a plot of efficiency as a function of injection flow-
rate for set positions 1 through 4. These data show a trend of higher
efficiencies with both smaller gap sizes and increased injection flow-
rates. Efficiencies range from 6% to 167%.
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Figure 13 is a plot of the head ratio versus discharge ratio. The
most notable feature of these data is the large increase in the discharge
ratio with decreasing gap size. By comparison to the gap size, the head
ratio has little apparent effect on the discharge ratio.

Figure 14 is a plot of the discharge ratio as a function of the in-
jection flowrate. These data also show the increase in discharge ratio
with decreasing gap size, as well as a nearly linear relationship be-
tween the injection and entrained flowrates.

Although it is clear that the smaller venturi gap settings yield
higher discharge ratios, they may not be the most optimum setting to use
with a centrifugal pump. This point is illustrated in Figure 15, which
shows the induced flowrate as a function of the eductor set position for

a family of input hydraulic flowrates to the SM2! pump. Figure 15 clearlwy

shows the largest induced flowrate occurring at Set Position ..

Jetting Nozzles

The nozzle tests were designed to obtain pressure and tflowrate data
for four different sized Spraying Systems Company nozzles in various
jetting combinations. They range in size from l/4-inch to 1/2-inch
nozzle diameter with all of the nozzles having a spray angle of either

zero or 15 degrees. The jetting combinations tested are shown in Table 6.

The test setup is shown in Figure 16. The flowrate to the nozzle
assembly was varied by adjustment of the ball valve. This flowrate was
monitored with a turbine flowmeter. The pressure was monitored with a
gage located at one of the exit ports of the plenum.

The data are presented in Figures 17 through 20 with pressure as a
function of flowrate. These data were acquired primarily for use in the
systems integration analysis.

SYSTEMS INTEGRATION ANALYSIS

Given the multitude of component setting combinations possible for
operation of the present experimental tool, a systems integration analy-
sis was conducted to analyze operating trends as component parameters
vary and to identify optimum operating conditions. This analysis uti-
lized a Hewlett Packard HP-85 computer in conjunction with all the com-
ponent study data obtained previously.

The following two initial conditions for steady state operation are
assumed.

Ppump output - Peductor input = Pnozzle plenum = Psystem (1)
input
and
qump output - Qeductor input * Qnozzle plenum (2)
input

where P is pressure and Q is flow.

gty -y
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Equation 1 assumes incompressible flow with no head loss between the
pump outlet and the eductor and nozzle plenum inlets. Equation 2 is
simply a statement of conservation of mass.

With flow as a function of pressure for each component expressed in
the form of second order polynomial best-fit equations, Equation 2 may
be solved for the pressure of the system using the quadratic formula.

By virtue of Equation 1, the operating point of each component can be
calculated.

Appendix A shows the tool operating characteristics for all combina-
tions of pumps, nozzle assemblies, pump input, and eductor settings.
System pressure is found by solving Equation 2 for pressure. Nozzle jet
stream velocity is calculated from the following equation:

- (Qnozzle plenum input)
(no. of nozzles in plenum)(nozzle cross-sectional area)

nozzle velocity

The stagnation pressure of the jet stream is calculated from:

. = P + 1/2pv?
Bstagnatlon System / PV ﬂOZZle

where p is fluid density.

For the set of conditions described by Equations ! and 2, the entrained
flowrate into the eductor, the eductor efficiency, and the pump effi-
ciency are all known from the data obtained previously. The calculation
of the tool reaction force is detailed in Appendix B.

The data in Appendix A show the following:

e Eductor setting no. 2 results in the largest entrained flowrate
through the eductor

e The nozzle stagnation pressures increase with decreasing venturi
gap sizes

® Eductor efficiencies increase with decreasing venturi gap sizes
e Pump efficiencies increase with increasing venturi gap sizes

The optimum operating position is defined as that position that has
both relatively high nozzle stagnation pressures and entrained flowrates
through the eductor, combined with relatively low reaction forces. Four
optimum positions are identified in Appendix A with a star symbol. These
positions all have nozzle stagnation pressures larger than 50 psi, a
minimum eductor entrained flowrate of 150 gpm, and reaction forces lower
than 6 pounds.
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PROTOTYPE JET/DREDGE ToOL

Based upon the results and experience gained during the initial
phase of the project, the following changes were incorporated into the
experimental tool:

e on/off "dead-man" switch

® debris ejector device

o directly attached buoyancy package
e lengthened suction tube

The dead man switch is embodied in a handle fixture for the tool; the
handle-switch assembly, shown in Figure 21, is manufactured by Stanley
Hydraulic Tools. A spring-loaded four-way tandem center spool valve
provides the mechanism for on/off operation. The handle was modified by
changing the porting configuration on the pressure (or tool) side of the
handle. A bracket to firmly fix the handle to the tool was also incor-
porated.

As previously mentioned, sand and pebble sediment can clog the ven-
turi of the jet eductor. To eliminate this clogging, a debris ejector
device was developed to flush accumulated sediment out the venturi sys-
tem. The ejector device, shown in Figure 22, attaches to both the educ-
tor housing and the suction tube of the eductor. The lever arm action
positions the tube relative to the eductor. By pulling the tube out-
ward, the venturi gap widens, enabling large particles to be flushed
out. The tube can then be pulled back to maintain the desired gap width
and performance of the eductor.

The buoyancy package is made of a porous, closed-cell urethane foam
(CPR 739 series), manufactured by the UpJohn Company in Torrance, Calif.
The low viscosity of the components (consistency of a 30-weight motor
0il) and long reaction time (approximately 20 minutes) allows for inti-
mate molding of *" = foam around the tool. From the manufacturer's liter-
ature, the cured product has the following properties:

Property Measurements
Density 20 1b/ft3
Compressive Strength 1,150 psi
Tensile Strength 630 psi
Shear Strength 500 psi

The buoyancy package, shown in Figure 23, is molded into two removable
shells for easy access to the tool components. The in-water weight of
the entire tool with buoyancy is approximately 8 pounds.

Figure 24 shows the tool with the longer length (2-3/4 feet long)
suction tube. The buoyant pack is designed to be positioned under the
diver's arm against his side. By holding the tool in this manner and
angling the front end downward, the diver can more easily place the ijet
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nozzles and suction end of the tool on the seafloor with the longer suc-
tion tube. This helps minimize the amount of bending and crouching re-

quired of the diver and, hence, allows the diver to work longer periods

before becoming fatigued.

3 m e AT e S

OCEAN TESTS
Ocean tests of the prototype jet/dredge tool were conducted in 35
to 40 feet of water offshore from Anacapa Island, Calif. These tests

were conducted to:

e Obtain excavation data for the tool with two different "optimum"
component setting combinations

e Verify the operation and performance of the debris ejector system

e Evaluate the handling characteristics of the tool in the ocean

As previously discussed, many component setting combinations are
possible for operation of the tool. The systems integrations analysis
identified potential optimum component setting combinations. Two
promising candidates are listed below:

Pump Nozzle Configuration Eductor Setting
SM22 H1/2000150 - 4 nozzles 2
SM22 H1/4U0070 - 8 nozzles 2

Data for the tool with these two setting combinations are presented in
Figure 25. These data are plotted as volume excavated versus time and
show an average excavation rate of 15 ft3/min for the four-jet system.
The eight-jet system has an average excavation rate of 7.6 ft3/min.
Examination of the tool following these tests showed some clogging of
the smaller (Hl1/4U0070) nozzles. The relatively low excavation rates of
the eight-nozzle system is attributed to this clogging.

Operation of the debris ejector system was reported to be simple
and fast by the divers. Clearing the venturi system was done period-
ically while conducting excavation tests. Examination of the jet educ-
tor following these tests showed no clogging of the venturi, even though
the smaller nozzles had clogged.

Handling of the tool was also reported to be very good. Figure 26
shows the tool in operation. The divers reported that the light in-water
weight (8 pounds) and long suction tube greatly improved the handling of
the tool. Minimal reaction forces, ranging from none to a very light
pull in the forward direction, were reported.

11




CONCLUSIONS

1. Average excavation rates of 15 ft3®/min can be obtained with the
jet/dredge tool. However, variations in excavation performance should
be expected at different sites due to differences in soil characteris-
tics.

2. In comparison to the single-jet nozzle, the multi-jetting approach
to fluidizing sediment results in substantially improved visibility at
the work site.

3. Handling of the tool by divers is greatly enhanced by the addition
of a fixed buoyancy pack and a longer suction tube to the tool.

4. The debris ejector system provides clog-free operation of the jet
eductor.

5. The jetting assembly should employ the larger-sized nozzles
(H1/2U00150 - four-jet system) to minimize clogging with sand and pebble
sediment.
RECOMMENDATIONS

The diver jet/dredge tool should be transitioned intec an advanced

development program to provide a tool suitably engineered for use by
Fleet units.

12
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Table 2, Jet Nozzles from Spray Systems Company
Model Orifice Size Spray Angle
Number (in.) (deg)

H1/2000150 19/64 0
H1/4U1570 13/64 15
H1/400050 11/64 0
H1/4U0070 13/64 0
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Table 5, Venturi Gap Size Versus Eductor Set Position

Set Position Venturi Gap Size
Number (in.)
0 0
1 1/8
2 1/4
3 3/8
4 1/2
Table 6. Jetting Combinations
Nozzle Description
Sor Angl Number of
Veeldet spray angle Nozzles
(deg)
HI/4U0070 U 6
8
12
H1/4U1570 15 6
8
12
H1/U0050 0 6
8
12
H1/2V000150 0 4

17




B

Figure 1,

Combin

. o ey
. e \'

(a) Front View

) Back View

ation jet dredge o) developeq by the

18

Nav

al Coastal Wsteme




hydraulic
power supply

-—ﬂ'\-“—&yﬂ'\-& D el it s S s s -M—va,r a—
water
valve
flotation bag (scaled,
collapsible)
\ rope
~— jet/dredge water
P e diver tool
sand/large rocks
.
Figure 2. Test rigging for the first series test. l

£ TN ek A A g, T 26+ AR, e e 11




PR T

rdoaouony

;_,____:: .4:,_.___.» (SN} _..7: ANy

CIND L

¢ uandy

20




wnud paprne yaw oo adparp o ¢ oanding




sdurnd dyneap A dpisamgns gl 104 du ine 4oy, ¢ dandig

_. — _:||I~:N:T|\ :m|||||'* .v.
2
- X
dwnd 3
<) ) . |
\1 1210W MOy \ .
.\ .J—:,.T:z -
[RYEEAY :r.; DAd -7 uu M\ﬁnm m
aded
OF HAPIYIS DAG T 15d 090 ¢
) IS - - el nthaial 2 =] 1 P e, Nwl . -
e e - 2
~
no pead /)
.J:uL.‘»::
M.I.C—.—
ooy induy MparpLy A

auesd

A|ddns
1amod
sneipAy




unssaad duind snsioa woy amey cdwnd sinesp Ay [zws Avueig g andig

wdd .A
0ot .0 08T SCC [0 sil 061 SZ1 0ol 194 0% [%4
- I T I I I [ T T | I | I T
—~$
—{01
~4s1
—{0¢
el
o~
—{s2 '
F
L3
o
—dog 4
utp/suo(er) 1di g —{s¢
00§ 00y 00§ ong k :
T T
wd prn —
A
» ot f
sd z 7z | S — .
18d €¢¢ M
3
5d yyy - fapuns 4q ydeary 001 W =t :
1TWS
18d g g¢ 1 1 1 1 st
—~40¢




2unssoud duind snsass meamoyy asey cdwnd synesp Ay 77w Aduerg z aundiyg

(wddy seamarg

o 00¢ s (114 §TT 007 §L1 0§ 1 X4} 001 L 0¢ 1YY N
] | | T T I T T | 1 1 L
¥
wad . o
!
wdd g

—st A i
3
3
wdd ¢ ..
wdd nz v

24

s E14
b (114
urw/suojyer) —s¢
00§ 00¥ 00¢ 00T 001 0
T L T L
tsd 1= wds ; sz =
H —jot
-8
sd 2'zzh- wdd g 0s g
" g
1sd grggl- df o R 1
3d yyy - 001 2 (1sd) 2unssarg
TINWS
1sd ¢g¢ 1 L 1 1 <71




VU 1TSS § aundiy

(wdd) swimopg inding

L oSl sz ool §L 0$ X4 0
_ d d _ _ _ _

~

_F
z
~)

I

<

a

!

a

3 (')

- ~

m

-

=

e

0

3

2
:
.
¢
M
;
1
L

wd3 2 (o)

113

S S s

P S




AU TTWS 6 2ndiy

(wdd) aeamorq 1nding

0T SZz 007 SLI  0SI  $Z1 00l sz o 52 o L
1 I 18 i { 1 I I 1 .

26

WADYYY UG

wdd £ (o)

or




drive

water

adjustable
danufar

orifice

intake
——-

discharge
—
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Appendix A

SYSTEM INTEGRATION TEST RESULTS
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Figure B-1 presents a diagram of the reaction force.

Momentum Equation for Inertial Control Volume:

where F

F

The X-component of

<|

now

<l
L]

<l
L]

<}

Appendix B

REACTION FORCE ANALYSIS

= 0 (in X direction)

cv cs

0 (steady flow)

surface forces

body forces

fluid velocity

fluid density
control volume
control surface area
control volume

control surface

/’ va - dA

ccC

/VDV-dK+/ VoV -+ dA + / VoV

A Ay

A is negative at 1

A is positive at 2

is negative at 3

A is positive at 4

B = at /Vpd-\ff» /VpV°d;\-

oI

poa e

the Momentum Equation reduces to:
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or,
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‘ ) Figure B-1. Reaction force diagram.
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