Internal Memorandum
3878-82-QR1-IM4

SRI CAMERA EXPERIMENT CONTROLLER/INTERFACE

By: Steven Damron, Research Physicist
Electromagnetic Sciences Laboratory

Prepared for:
DARPA/TTO
1400 Wilson Blvd.
Arlington, VA 22209
Attn: Dr. A. Bruckheim

CONTRACT NO0014-82-C-0092
SRI Project 3878

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED

This document has been approved for public release and sale; its distribution is unlimited.
-- 8A1 - DIST. LIMITATION: UNLIMITED
-- 8B - CONTRACTOR ACCESS: YES
-- 10A1 - PRIMARY PROGRAM ELEMENT: 61101E
-- 10A2 - PRIMARY PROJECT NUMBER: REIM
-- 10A2A - PRIMARY PROJECT AGENCY AND PROGRAM: REIM
-- 10A3 - PRIMARY TASK AREA: 300
-- 10A4 - WORK UNIT NUMBER: D5413A
-- 10C1 - CONTRIBUTING PROGRAM ELEMENT (2ND): 85
-- 10C2 - CONTRIBUTING PROJECT NUMBER (2ND): ENVIRONMENT
-- 10C3 - CONTRIBUTING TASK AREA (2ND): AL
-- 11 - TITLE: (U) SEA TRUTH FOR LIDEX PROGRAM
-- 11A - TITLE SECURITY: U
-- 12 - S + T AREAS:
 - 009600 MASERS AND LASERS
 - 012300 PHYSICAL OCEANOGRAPHY
 - 005200 DYNAMIC OCEANOGRAPHY
-- 13 - WORK UNIT START DATE: OCT 82
-- 14 - ESTIMATED COMPLETION DATE: SEP 83
-- 15A - PRIMARY FUNDING AGENCY: NAVY
-- 16 - PERFORMANCE METHOD: CONTRACT
-- 17A1 - CONTRACT/GRANT EFFECTIVE DATE: OCT 82
-- 17A2 - CONTRACT/GRANT EXPIRATION DATE: SEP 83
-- 17B - CONTRACT/GRANT NUMBER: N00014-82-C-0092
KEYWORDS: (U) LASER; (U) INTERNAL WAVES; (U) OPTICAL OCEANOGRAPHY.

TECHNICAL OBJECTIVE: (U) CONTINUE PROVIDING TECHNICAL SUPPORT TO THE DARPA LIDEX PROGRAM.

APPROACH: (U) PARTICIPATE IN THE LIDEX PROGRAM BY COLLECTING AND REDUCING SEA TRUTH DATA IN SUPPORT OF LIDAR TESTS, TO CONTINUE WITH THE DEVELOPMENT, TESTING, AND USE OF INSTRUMENTATION FOR IN-SITU MEASUREMENTS OF OPTICAL DATA ON SEA WATER PARTICULARLY FOR TOWED OPERATIONS AND TO CONTINUE TO PROVIDE TECHNICAL CONSULTATION AND PLANNING TO THE LIDEX PROGRAM.

PROGRESS: (U) A SEA TRUTH INSTRUMENTATION SUITE HAS BEEN DEVELOPED IN A FORM APPROPRIATE FOR MEASURING OPTICAL PARAMETERS OF SEAWATER OF INTEREST TO LIDAR APPLICATIONS FROM A DRIFTING VESSEL. THESE SEA TRUTH PARAMETERS INCLUDE BEAM SPREAD FUNCTION, BACKSCATTER COEFFICIENT, AND DIFFUSE ATTENUATION COEFFICIENT. IN ADDITION, A COMPUTERIZED DATA COLLECTION SYSTEM HAS BEEN ACQUIRED AS WELL AS DEVELOPMENT OF A REAL-TIME ANALYSIS SYSTEM.

DESCRIPTORS: (U) ATTENUATION; (U) COEFFICIENTS; (U) COMPUTER APPLICATIONS; (U) DATA ACQUISITION; (U) DIFFUSION; (U) DRIFT; (U) FUNCTIONS; (U) INFORMATION SYSTEMS; (U) INTERNAL WAVES; (U) LASERS; (U) LOGISTICS SUPPORT; (U) MEASUREMENT; (U) OCEANOGRAPHIC DATA.

OCEANOGRAPHY; (U) OPERATION; (U) OPTICAL ANALYSIS; (U) OPTICAL DATA; (U) OPTICAL RADAR; (U) OPTICS; (U) PARAMETERS; (U) REAL TIME; (U) SEA WATER; (U) SHIPS; (U) SPREAD SPECTRUM; (U) TEST METHODS; (U) TOWED BODIES.

PROCESSING DATE (RANGE): 17 DEC 82
I INTRODUCTION

The camera experiment controller interface provides communications between an HP9845 desk-top computer and a digital camera instrumentation set. It is used with two cameras in separate experiments. One camera is in an underwater housing used for measurement of beam spread function. The second camera is used aboard the vessel at the output focal plane of an optical spectrograph. The digital camera set includes the 100 x 100 pixel digital Reticon camera with its RS250 controller, the ITT microchannel plate (MCP) image intensifier with its electronic "gate" or shutter, and a Graflex strobe light source*. The interface sends all the electronic signals needed to control the instrumentation set. The HP9845, in turn, programs the interface with the timings required for the desired experiment. The HP9845 also reads out image data stored in a 16K x 8-bit memory in the interface. Thus, two independent levels of operation take place in the interface: control of the camera experiment; and data communication between the HP9845 and digital camera. Both levels of operation are discussed below.

A. Interface Control of Reticon Instrumentation Set

The three experimental instruments to which the interface is directly connected are a Graflex strobe unit, an ITT MCP image intensifier and a Reticon RS250 camera controller. In addition, the interface monitors the output of a photodiode "light meter" that provides a measure of illumination level for control of camera exposure. The interface can send the following signals to the following instruments:

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graflex Strobe</td>
<td>Fire strobe (-150 V)</td>
</tr>
<tr>
<td>ITT Image Intensifier</td>
<td>Gate on (+5 V)/Gate off (0 V)</td>
</tr>
<tr>
<td></td>
<td>Intensifier Gain (0 - +10 V)</td>
</tr>
<tr>
<td>Reticon RS250</td>
<td>ESTART (begin frame acquisition)</td>
</tr>
<tr>
<td></td>
<td>ECLK (external timing signal)</td>
</tr>
</tbody>
</table>

*The strobe light source is used for beam spread function (BSF) measurements. In the case of the Fiber Optic Spectrometer System for Underwater Measurements (FOSSUM), this stroboscopic light source is not used.
To send these signals at the appropriate times, the HP9845 loads information into eight registers (Reg 0-7) of the interface. During experiment control, the interface examines each register once per microsecond to determine if any signals need to be sent. Reg. 0 contains an 8-bit number which sets the gain of the image intensifier. Reg. 1 is a cutoff value to protect the image intensifier from over-exposure conditions. When the product of the intensifier gain (Reg. 0) and the digital value of the photodiode "light meter" mentioned above exceeds the value stored in Reg. 1, the experiment is automatically turned off. The other six registers (Reg. 2-7) contain a time in microseconds at which an experimental function should occur. Each microsecond these registers are compared with the experiment clock and a function is executed when the register value equals the experiment clock value. The functions of these six registers are listed here:

<table>
<thead>
<tr>
<th>Reg.</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>ESTART1 - time at which first (dark) image frame is acquired. This frame is used to clear the data memory.</td>
</tr>
<tr>
<td>3</td>
<td>Intensifier Gate On - time at which the intensifier gate is turned on.</td>
</tr>
<tr>
<td>4</td>
<td>Experiment Reset time - time at which the experiment clock is reset and starts counting up again. This time cannot exceed 16.5 seconds.</td>
</tr>
<tr>
<td>5</td>
<td>Strobe Start Time - time at which the strobe is fired. Typical strobe duration in 3 ms.</td>
</tr>
<tr>
<td>6</td>
<td>ESTART2 - time at which the second image frame is acquired.</td>
</tr>
<tr>
<td>7</td>
<td>Intensifier Gate off - time at which the intensifier gate is turned off.</td>
</tr>
</tbody>
</table>

There are two rules which govern the execution of any of Reg 2 through 7. First, the experiment clock starts with a value of 8 microseconds, so any register which has a value less than 8 will never equal the experiment clock value and, therefore, never initiate an execution of a function. The register values should never be 0. The second rule is that if all six timing registers are less than the experiment clock value the experiment execution automatically stops after a single execution of the experiment.
Some examples will show how this experiment control works. Suppose the experiment is to set off the strobe and record a picture (single-frame mode). The registers could be loaded with the following values:

<table>
<thead>
<tr>
<th>Reg.</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Arbitrary (decided by light level)</td>
</tr>
<tr>
<td>1</td>
<td>Arbitrary</td>
</tr>
<tr>
<td>2</td>
<td>ESTART1 - 10 (\mu)s</td>
</tr>
<tr>
<td>3</td>
<td>Intensifier on - 11000 (\mu)s</td>
</tr>
<tr>
<td>4</td>
<td>Reset time - 6 (\mu)s (not executed)</td>
</tr>
<tr>
<td>5</td>
<td>Strobe start time - 11001 (\mu)s</td>
</tr>
<tr>
<td>6</td>
<td>ESTART 2 - 15001 (\mu)s</td>
</tr>
<tr>
<td>7</td>
<td>Intensifier off - 15000 (\mu)s</td>
</tr>
</tbody>
</table>

Using the two rules listed, it can be seen that a frame will be acquired starting 10 \(\mu \)s to clear the CCD array. It should be noted that it takes 11 msec to transfer an image from Reticon to HP9845. When the CCD is clear, the intensifier will be turned on and the strobe flashed. The image of the flash will be recorded 15 \(\mu \)s later, right after the intensifier is turned off. Note that since the reset time is less than 8 \(\mu \)s, it is not executed. Therefore, when the experiment clock exceeds all the register values, the experiment stops.

Now suppose a continuous frame mode were desired, with a frame to be recorded every 50 msec. The registers would be set as follows:

<table>
<thead>
<tr>
<th>Reg.</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Arbitrary (depends on light level)</td>
</tr>
<tr>
<td>1</td>
<td>Arbitrary</td>
</tr>
<tr>
<td>2</td>
<td>ESTART1 - 6 (\mu)s</td>
</tr>
<tr>
<td>3</td>
<td>Intensifier on - 2000 (\mu)S</td>
</tr>
</tbody>
</table>

3
4 Reset time - 50,008 \(\mu s \)

5 Strobe start time - 2001 \(\mu s \)

6 ESTART2 - 5500 \(\mu s \)

7 Intensifier off - 5450 \(\mu s \)

In this second example, it can be seen that the ESTART1 command is never executed and that the process repeats every time the experiment clock reaches 50008 \(\mu s \). The process will stop only when the HP9845 resets the interface.

Another feature of the interface is the recording of the photodiode "light meter" data value in the 16K memory of the interface. When the interface is not recording image data, it continuously places the photodiode value into a known memory address. When the strobe function in Reg. 5 is executed, the photodiode values are recorded every 8 \(\mu s \) into an array in the memory. This allows the acquisition of a time history of the ambient light level. Since other procedures permit the strobe to be fired without the camera taking a picture or the intensifier being turned on, it is possible to find the light level to which the intensifier will be exposed without turning on the camera intensifier. The following register values permit use of the photodiode as a light meter:

<table>
<thead>
<tr>
<th>Reg.</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>ESTART1 - 2 (\mu s)</td>
</tr>
<tr>
<td>3</td>
<td>Intensifier on - 2 (\mu s)</td>
</tr>
<tr>
<td>4</td>
<td>Reset time - 2 (\mu s)</td>
</tr>
<tr>
<td>5</td>
<td>Strobe time - 10 (\mu s)</td>
</tr>
</tbody>
</table>
The interface register values can be reset while the experiment clock is running. This would allow, for instance, modification of the intensifier gain during image acquisition. The interface also has an external synch switch and connector. When switched on, the experiment clock will not commence until the synch connector receives a “true” level TTL signal longer than one microsecond.

B. HP9845 Communication with the Interface

The HP9845 presents 16 output lines to the interface and receives 16 input lines from the interface via the HP98032A 16-bit interface. The interface provides the proper signals to "talk" to the HP9845. The words which the HP9845 sends to the interface contain instructions and data. The lower order byte contains data (when applicable); the high order byte contains 8-bits of instructions for the interface. The high order byte looks like this:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Load data from HP to latch</td>
</tr>
<tr>
<td>14</td>
<td>Load data from latch to HP (with bit 8 on, set up for DMA)</td>
</tr>
<tr>
<td>13</td>
<td>Load data from register to latch</td>
</tr>
<tr>
<td>12</td>
<td>Load data from latch to register</td>
</tr>
<tr>
<td>11</td>
<td>EXECUTE EXPERIMENT</td>
</tr>
</tbody>
</table>
The instruction set above allows the HP9845 to move data a byte at a time through a 24-bit wide "latch" into one of the interface's 8 registers (Reg. 0-7). It fills the latch with three low-order data bytes then fills one of the registers with the latch. The instruction set also allows the HP9845 to read any of the interface's registers. This is accomplished by loading the latch with the desired register and then reading out the latch to the HP9845. Since the latch is 24-bits wide, it takes three reads for the HP9845 to completely read the latch. After the registers have been loaded with the proper timings and values, the experiment will start when the interface receives a word with bit 11 on.

The image data and the time history of the photodiode are transferred to the HP9845 via DMA. First the HP9845 must send a word with bits 14 and 8 on. It must next input in DMA format 10,010 or 16,384 words. 10,010 words are input when only the image is desired; 16,384 words are input when the photodiode time history is desired as well. The value of the CTLO line in the HP98032A interface determines how many words will be input. DMA's may occur while an experiment is taking place, but recording image data takes priority over the interface memory. Data transferred via DMA has only the low-order byte valid.

The following subprogram illustrates the four basic operations—loading the interface registers (cf., "Hp_to_registers"), reading the interface registers back into the HP (cf., "Registers_to_hp"), starting the experiment (cf., "Execute"), and reading in a picture via DMA (cf., "Dma_picture"). Two subprograms also convert real variables with timings stored in them into integer variables that can be sent to the interface and vice versa.
This routine drives the HP98032A interface and talks to the SRI control box, the so-called HPRC. Values of Info cause different actions to happen.

- **Info = 1** → Run Experiment
- **Info = 2** → Load Timings
- **Info = 3** → Load Gain
- **Info = 4** → DMA into Raw_data

Note that in loading the timings or the gain, this routine automatically recalls the loaded values for verification. Calling routine is responsible for handling an error in loading the Timings variables. The Do_pixel_correct parameter fixes the odd pixels for the SRI camera which is missing output from its odd pixels.

```plaintext
CON INTEGER Select_code Raw_data(*) Packed_data(*) Dark_data(*)
CON REAL Timings(0) Correct_data(*) Vign_data(*)
CON Start_time*[16]
REAL Test_time
FOR I=0 TO 14
  Toggle(I)=2^I
NEXT I
Toggle(15)=-32768
IF Info=1 THEN
  GOSUB Execute
ELSE
  IF Info=2 THEN
    GOSUB Load_timings
  ELSE
    IF Info=3 THEN
      GOSUB Load_gain
    ELSE
      IF Info=4 THEN
        GOSUB Do_picture
    END IF
  END IF
END IF
GODDIT
EXECUTE: I
WRITE 10 Select_code J Toggle(0)
WRITE 110 Select_code Toggle(1)
OUTPUT 9"R"
ENTER 9 Start_time*
GODDIT
Load_timings: I
First=2
Last=F
GOSUB Load_values
GODDIT
Load_gain: I
First=0
Last=1
GOSUB Load_values
GODDIT
```
4590 WRITE IO Select_code,5;Toggle(0)
4600 Word=BINIOR(Toggle(14),Toggle(0))
4610 WRITE BIN Select_code;Word
4620 ENTER Select_code;HDMA 18810;NOFORMAT;Raw_data(*)
4630 WRITE IO Select_code,5;Toggle(0)
4640 IF Do_pixel_correct=1 THEN
4650 FOR I=0 TO 99
4660 FOR J=0 TO 96 STEP 2
4670 Raw_data(I,J+1)=(Raw_data(I,J)+Raw_data(I,J+2))/2
4680 NEXT J
4690 NEXT I
4700 END IF
4710 SUBEXIT
4720 Load_values:
4730 GOSUB Timings_to_time
4740 GOSUB Hp_to_Register
4750 GOSUB Register_to_hp
4760 RETURN
4770 Hp_to_register:
4780 FOR I=First TO Last
4790 FOR J=0 TO 2
4800 Word=BINIOR(BINIOR(Toggle(15),Time(I,J)),Toggle(J+8))
4810 WRITE BIN Select_code;Word
4820 NEXT J
4830 Word=BINIOR(I=2*8,Toggle(13))
4840 WRITE BIN Select_code;Word
4850 NEXT I
4860 RETURN
4870 Register_to_hp:
4880 FOR I=First TO Last
4890 FOR J=0 TO 2
4900 Word=BINIOR(I=2*8,Toggle(12))
4910 WRITE BIN Select_code;Word
4920 Word=BINIOR(Toggle(14),Toggle(9))
4930 WRITE BIN Select_code;Word
4940 J=READBIN(Select_code)
4950 Timings(I)=0
4960 FOR K=0 TO 14
4970 IF BIT(J,K)=1 THEN Timings(I)=Timings(I)+Toggle(K)
4980 NEXT K
4990 IF BIT(J,15)=1 THEN Timings(I)=Timings(I)+2^15
5000 Word=BINIOR(Toggle(14),Toggle(16))
5010 WRITE BIN Select_code;Word
5020 Timings(I)=Timings(I)+BINAND(255,READBIN(Select_code))*2^16
5030 NEXT I
5040 RETURN
5050 Timings_to_time:
5060 FOR K=First TO Last
5070 Test_time=Timings(K)
5080 FOR I=2 TO 0 STEP -1
5090 Time(K,I)=0
5100 FOR J=I+1 TO I+7 STEP -1
5110 IF Test_time-2^J=0 THEN
5120 Time(K,I)=BINIOR(Time(K,I),Toggle(J-I+8))
5130 END IF
5140 NEXT J
5150 NEXT I
5160 NEXT K
5170 RETURN
5180 SUBEND
5190 REM
5200 REM