COAGGLUTINATION REAGENT FOR THE RAPID PRESUMPTIVE IDENTIFICATION OF BACTEROIDES FRAGILIS

E. J. MUELLER

REPORT NO. 83-20

DTIC SELECTED
OCT 05 1983

NAVAL HEALTH RESEARCH CENTER
P. O. BOX 85122
SAN DIEGO, CALIFORNIA 92138

NAVAL MEDICAL RESEARCH AND DEVELOPMENT COMMAND
BETHESDA, MARYLAND
COAGGLUTINATION REAGENT FOR THE RAPID PRESUMPTIVE IDENTIFICATION OF BACTEROIDES FRAGILIS

Eric J. Mueller*
Naval Health Research Center
San Diego, California

Accession For

NTIS GRAAI
DTIC TAB
Unannounced
Justification

By Distribution/
Availability Codes

Ass and/or
Dist Special

The opinions expressed herein are those of the author and cannot be construed as reflecting the views of the Navy Department. The use of commercially available products does not imply endorsement of these products or preference to other similar products on the market. To expedite communication of our research, this is a preprint of a paper submitted to the Journal of Clinical Microbiology and should be cited as a personal communication. (Report No. 83-20 supported by Naval Medical Research and Development Command Work Unit No. 3M6277OA871.AB.306).

Acknowledgements

The author wishes to thank Ike M. Khan and Oswaldo Quijato for their laboratory assistance in the performance of this study.

* Biological Sciences Department

This document has been approved for public release and sale; its distribution is unlimited.
Summary

A coagglutination test for presumptively identifying *Bacteroides fragilis* is described. The test utilizes protein A-containing staphylococci sensitized with specific antibody to rapidly identify suspensions of *B. fragilis*. Sensitization with 200 µl antiserum/ml 10% staphylococci produced a coagglutination reagent which exhibited specificity and sensitivity adequate for slide testing of colonies from primary cultures. The use of coagglutination for presumptive identification of bacteria is simple and reliable, requiring a minimum of training and equipment. Large numbers of colonies can be screened and subcultured for further testing if desired. Although coagglutination does not have the sensitivity of other test methods it provides results within 3 minutes.
INTRODUCTION

Infections due to nonsporeforming anaerobic bacteria are important causes of morbidity, particularly in post-surgical and traumatic injury patients (1,2). Since Bacteroides fragilis is involved in a significant percentage of anaerobic infections and frequently exhibits multiple antibiotic resistance (3,4,5), the rapid identification of this species is highly desirable thus aiding in the selection of appropriate antibiotic therapy.

Standard bacteriological identification of anaerobic bacteria may require several days. Immunofluorescence (6,7), radioimmunoassay (8), precipitin testing (9), selective media (10,11), gas chromatography (12) and susceptibility testing (13,14) have decreased the time required for presumptive identification, but have not simplified the procedures.

Coagglutination has been widely used to identify bacterial antigens (15), serological groups of bacteria (16) and to identify pathogenic bacteria directly from primary isolation plates (17). This technique is a simple, rapid and reliable procedure which is particularly well suited to small clinical laboratories or field use. The reagents for coagglutination are easily prepared by coating protein A-containing staphylococci with specific antibody. The test procedure is simple and identification can usually be accomplished within 3 minutes. This study demonstrates the use of coagglutination to provide rapid, presumptive identification of B. fragilis.

MATERIALS AND METHODS

Bacterial strains. The bacterial species used for antibody production and reagent testing were obtained from the American Type Culture Collection. These species were: Bacteroides fragilis (ATCC 23745), B. melaninogenicus (ATCC 25845), B. vulgatis (ATCC 8482), B. distasonis (ATCC 8503) and B. ovatus (ATCC 8483). In addition, two oral isolates of B. intermedius were included in the species specificity testing.

Coagglutination reagents. Antisera against B. fragilis were prepared by immunization of New Zealand white rabbits according to the method of Elhag and Tabagchali (18). Antibody titers were determined by tube agglutination (19). Protein A-containing staphylococci (ATCC 12598) were harvested by the methods of Edwards et al (15,17) and reconstituted to a final concentration of 10% (vol/vol) in phosphate buffered saline (PBS) pH 7.4 with sodium azide (0.02%).

Serum from a single rabbit, R82-06 was used to prepare the coagglutination reagents. The optimum amount of antiseraum for sensitizing the staphylococci was determined by dose-response titration with various amounts of antiserum against dilutions of antigen. The serum concentration which produced the reagent of greatest sensitivity was determined by testing different concentrations against serial two-fold dilutions of a suspension of B. fragilis adjusted to McFarland #4 (% absorbance) at 600 nm using a Bausch and Lomb Spectronic 21 spectrophotometer.

Specificity of the coagglutination reagents was determined by examining them for cross-reactivity with suspensions of other species of Bacteroides: B. ovatus, B. intermedius, B. vulgatis, B. distasonis and B. melaninogenicus, also adjusted to McFarland #4 in PBS.

Coagglutination testing was performed on bacterial suspensions by placing 10 μl bacterial suspension on a glass slide. The two suspensions were mixed with a wooden applicator stick and agitated for 3 minutes by rocking the slide. Slides were...
examined for coagglutination at 1, 2 and 3 minutes. The reactions were graded as 3+: large aggregates within 1 minute, 2+: large aggregates within 2 minutes, 1+: fine aggregates visible with a hand lens or stereo microscope within 3 minutes, negative: no agglutination within 3 minutes.

Identification of bacterial colonies directly from primary plating media was accomplished by using a bacteriological loop to remove a single colony from agar surface and suspending it in a drop of PBS on a glass slide and then adding a drop of coagglutination reagent.

RESULTS

Antibody titers of sera from the immunized rabbits were from 1:32 to 1:64 by tube agglutination. Preimmunization sera did not contain antibody demonstrable by tube agglutination (Table I). Antiserum from a single rabbit, R82-06, was used to prepare the coagglutination reagents. The concentration of antiserum which produced the reagent of highest sensitivity without spontaneous agglutination was 400 µl antiserum/ml of 10% staphylococcal suspension (Table II). Unsensitized staphylococci and those sensitized with preimmunization serum did not coagglutinate B. fragilis suspensions. Subculture of suspensions on slides demonstrated the continued viability of B. fragilis after coagglutination.

TABLE I

Antibody titers of rabbits immunized with B. fragilis
as determined by tube agglutination *

<table>
<thead>
<tr>
<th>Antiserum dilution</th>
<th>Rabbit</th>
<th>Control**</th>
<th>1:4</th>
<th>1:8</th>
<th>1:16</th>
<th>1:32</th>
<th>1:64</th>
<th>1:128</th>
<th>Neg ***</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>R82-06</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>R81-90</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>R81-92</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

As performed by Lambe & Moroz. 1976.

** Preimmunization serum

*** Normal saline
TABLE II
Comparison of sensitivity of coagglutination reagents prepared with varying levels of B. fragilis antiserum

<table>
<thead>
<tr>
<th>Antiserum ul/ml</th>
<th>600</th>
<th>300</th>
<th>150</th>
<th>75</th>
<th>37.5</th>
<th>PBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>2+</td>
<td>1+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>25</td>
<td>2+</td>
<td>2+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>50</td>
<td>3+</td>
<td>3+</td>
<td>2+</td>
<td>1+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>100</td>
<td>3+</td>
<td>3+</td>
<td>3+</td>
<td>2+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>200</td>
<td>3+</td>
<td>3+</td>
<td>3+</td>
<td>2+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>300</td>
<td>3+</td>
<td>3+</td>
<td>3+</td>
<td>3+</td>
<td>3+</td>
<td>-</td>
</tr>
<tr>
<td>400</td>
<td>3+</td>
<td>3+</td>
<td>3+</td>
<td>3+</td>
<td>3+</td>
<td>-</td>
</tr>
<tr>
<td>500</td>
<td>3+</td>
<td>3+</td>
<td>3+</td>
<td>3+</td>
<td>3+</td>
<td>1+</td>
</tr>
</tbody>
</table>

* 3+ = large aggregates visible within 1 minute
2+ = large aggregates visible within 2 minutes
+ = fine aggregates visible with stereomicroscope at 3 minutes
- = no aggregates

With the testing methods used, reactions with other species of Bacteroides were not observed at sensitization levels of 200 μl antiserum/ml staphylococci. At 300 μl antiserum/ml, both oral isolates of B. intermedius and B. melaninogenicus formed fine aggregates with the reagent. When 400 μl serum was used to sensitize staphylococci, fine aggregates were observed with all of the Bacteroides suspensions (Table III).
TABLE III

Coagglutination of Bacteroides species by protein A containing staphylococci sensitized with different amounts of anti-B. fragilis antiserum

Antiserum amounts
(μl/ml)

<table>
<thead>
<tr>
<th>Bacteroides species</th>
<th>10</th>
<th>25</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>neg.*** Pre***</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. intermedius*</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>B. melaninogenicus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>B. fragilis</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>B. ovatus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>B. distasonis</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>B. vulgatus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>saline</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

* Two strains
** Unsensitized staphylococci
*** Staphylococci sensitized with preimmunization serum

DISCUSSION

Rapid and accurate detection of B. fragilis provides very useful information to the clinician. A screening test which can provide presumptive identification of this anaerobe expedites the initiation of appropriate antibiotic therapy. Although several methods for rapid presumptive identification have been described, each has disadvantages. Fluorescent microscopy, radioimmunoassay and gas chromatography require sophisticated equipment and highly trained technicians. Identification through the use of bile and antibiotic discs requires 24-48 hours incubation beyond that required for primary isolation. The results of this study indicate that presumptive identification can be made within 1-3 minutes directly from primary isolation plates through use of coagglutination reagents. Since coagglutination reagents are prepared with non-viable staphylococci and testing does not kill the bacteria being tested, subculture directly from the test slide is possible if desired.

Although the sensitivity of the coagglutination reagents is far below that of immunofluorescence or radioimmunoassay, it is adequate for the examination of primary cultures and is far more suitable for field laboratory use. A wide variety of coagglutination reagents can be easily transported into the field and the species which
can be presumptively identified through the use of this type of reagent is limited only by the availability of specific antisera.

REFERENCES

A coagglutination test for presumptively identifying *Bacteroides fragilis* is described. The test utilizes protein A-containing staphylococci sensitized with specific antibody to rapidly identify suspensions of *B. fragilis*. Sensitization with 200 μl antiserum/ml 10% staphylococci produced a coagglutination agent which exhibited specificity and sensitivity adequate for slide testing of colonies from primary cultures. The use of coagglutination for
20. (cont'd)

Presumptive identification of bacteria is simple and reliable, requiring a minimum of training and equipment. Large numbers of colonies can be screened and subcultured for further testing if desired. Although coagglutination does not have the sensitivity of other test methods it provides results within 3 minutes.