nD-A133 271 COHPUTER HSSISTED SCHEDULING FOR FIIR FORCE TRCTICRL

e FIGHTER SQUADRONSC{U> ARMY COMMAND AND GENERAL STAFF
COLL FORT LEAYENWORTH K5 B C DUGLE 83 JUN 83

UNCLASSIFIED SBI-AD-E758 845 F/G 1271

Y .r_l.r.;_l
« . Sl

A N YA S SN R AN
NN

E

FEEFEEEE

EEEE

20
'WIJ s

N
O
| G
o

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

MR A R R P L T PR a1 - .)y e
. B L S N AR BN N LV I e e e

L : ORI
»? L

ALH/23 =27/

e Fie copy

r i - .]
- A
COMPUTER ASSISTED SCHEDULING FOR]
AIR FORCE TACTICAL FIGHTER SQUADRONS ®
) “1
o 1
A thesis presented to the Faculty of the U.S. Army IR
Command and General Staff College in partial B
fulfillment of the requirements for the . 5
degree U
MASTER OF MILITARY ART AND SCIENCE
.
by s
BRIAN C. DUGLE, MAJ, USAF ;i%i;
B.M.E., General Motors Institute, 1968 A LT
M.B.A. in Aviation, Embry-Riddle e
Aeronautical University, 1982 [:)_I_I(::‘ .
ELECTE]| -

0CT4 1983 -

N g B
. ;.;Ti... ,’

Fort Leavenworth, Kansas
1983

¥
® O
t !
' T

o

Approved for public release, distribution unlimited. - ;J

:

§3-4538 !
L v t. _'l

A A M N e R O I A e D A I D e il b iiber i 4 e S SEe” Sen Tosas T3 0 B A vt iy et TR Y

- Lt T NI R

- SECURITY CLASSIFICATION OF THIS PAGE (Whin Data Fntered) R
N 2

REPORT DOCUMENTATION PAGE READINSTRUCTIONS R

. 1. REPORT NUMBER 2. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER AN S

,M/3Lé7/
‘: 4. TITLE (and ;ubt“lc) S. TYPE OF REPORT & PERIOD COVERED
i COMPUTER ASSISTED SCHEDULING FOR AIR Master's Thesi
- FORCE TACTICAL FIGHTER SQUADRONS aster's 1hesis

(6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(a)

Dugle, Brian C., Major, USAF

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

P . AREA & WORK UNIT NUMBERS
" Student at the U.S. Army Command and

o General Staff College, Fort Leavenworth,
Kansas, 66027

11. CONTROLLING OFFICE NAME AND ADDRESS : 12, REPORT DATE

- HQ TRADOC, Attn: ATCS-D, Fort Monroe, VA 3 June 1983
23651 13. NUMBER OF PAGES

B 119
h 14. MONITORING AGENCY NAME & ADDRESS(!! different from Controlling Otfice) | 15. SECURITY CLASS. (of thie report)
- Unclassified

f.: 1Sa. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

* ‘ 16. DISTRIBUTION STATEMENT (of this Report)
Approved for public release; distribution unlimited.

. 17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different from Report)

i
X
‘4%
S TN

o
o4
.

»
a
a
sa'aa’s

18. SUPPLEMENTARY NOTES
Master of Military Art and Science (MMAS) thesis prepared at CGSC
in partial fulfillment of the Masters program requirements, U.S.
Army Command and General Staff College, Fort Leavenworth, Kansas
3 66027

19. KEY WORDS (Continue on reverse side If necessary and identily by bleck number)
T COMPUTER ASSISTED SCHEDULING, SCHEDULING, MICROCOMPUTER APPLICA-
TIONS, PROGRAMMING, BASIC PROGRAMMING, BASIC PROGRAM

N
R R

. l, l.. I‘. .

-t

20. ABSTRACT (Continue an reverse side M neceesary and identify by block number)

- This project develops an algorithm modeling pagt of the squadron
= scheduling function. The thesis includes a description of the

. scheduling function, brief descriptions of some work previously
published on computer aids to scheduling, and describes the ap-
e proach taken in developing the algorithm. The bulk of the thesis
o is a listing of the programs written'to demonstYate the algorithm,
The programs are written in Microsft BASIC-80, version 5.21,

e which is compatible with the Cromemco microcomputers supplied

. rone
. DD 2w » 1473 €oimon oF 1 wov 6315 OBSOLETE

SECURITY CLASSIFICANTION OF THIS PAGE (When Data Entered)

SBCURITY, .LCLASSIFICATION OF THIS PAGE(When Data Entered)

Y g e a—— e dass § LRt ahel] - -
Wv ; T O Ty T N W T W T W AW TV T TN TR T W L T E S T o s e
A, it Nl S AN T gAY PULAC I AR et et e 3 .« . « . B R R
.

to fighter squadrons in the Air Force. The programs allow data
entry for a weekly schedule, show which pilots are qualified and
available for each activity, and allow selection of an individual
pilot for each. ’

iy SECURITY CLASSIFICATION OF THIS PAGE(When Date Enfered)

. T .
P . IR SV W S U Tt T W)

83-4538

e S e s

COMPUTER ASSISTED SCHEDULING FOR
AIR FORCE TACTICAL FIGHTER SQUADRONS

A thesis presented to the Faculty of the U.S. Army
Command and General Staff College in partial
fulfillment of the requirements for the
degree

MASTER OF MILITARY ART AND SCIENCE

by

BRIAN C. DUGLE, MAJ, USAF
B.M.E., General Motors Institute, 1968
Aeronautical University, 1982

Fort Leavenworth, Kansas
1983

Approved for public release, distribution unlimited.

. ..'.'._. o et . P T T T AP

. . N N B - . .
" . o v « T e N T SR A AP SRR LY
RIS TIPS A I AT ST T It SO W A R U LIPS PRSP AP A P Sl

MASTER OF MILITARY ART AND SCIENCE

THESIS APPROVAL PAGE

. Name of Candidate Major Brian C. Dugle

= Title of Thesis Computer-Assisted Scheduling for Air Force Fighter

. Squadrons

Approved by:

[. -] -
o
Qc‘('u{\': Z ,C /unQnQ.(»[i » Thesis Committee Chairman
Mr. David I. Drummond, M
#_‘,._4, ,,/, Cery _Lp » Member, Graduate Faculty
ajor Donald F. Hayes, /i«fAs ‘

s Member, Consulting Faculty

Lieutenant Colonel William B. Allard, MS

b

Accepted this 3“(day of # 1983 by M ‘[MM ,
Prog{#m. o i

Director, Graduate Degree

The opinions and conclusions expressed herein are those of the student author
and do not necessarily represent the views of the U.S. Army Command and General
Staff College or any other governmental agency. (References to this study
should include the foregoing statement.)

e e et

b o A A N SN e ARSI, T TR T L P T . et ot
AR Ml P N P SR AL DR NIt It 308 LLLLLLMW“&—&ML‘I-L-L-I- PR R S SIS ST SAUFIO SIS SN

. .
NS
3

Sy rw ety Ty
i

’ A

. [4
G4t
atats?l]

L .
K
Dy

)

DRy

Ty &Y o

.l; :l. l.' :

.
o’
K]

N

.

COMPUTER ASSISTED SCHEDULING FOR AIR FORCE TACTICAL FIGHTER
SQUADRONS, by Major Brian C. Dugle, USAF, 119 pages.

This project develops an algorithm modeling part of the
squadron scheduling function. The thesis includes a de-
scription of the scheduling function, brief descriptions of
some work previously published on computer aids to sched-
uling, and describes the approach taken in developing the
algorithm. The bulk of the thesis is a listing of the pro-
grams written to demonstrate the algorithm. The programs
are written in Microsoft BASIC-80, version 5.21, which is
compatible with the Cromemco microcomputers supplied to
fighter squadrons in the Air Force. The programs allow data
entry for a weekly schedule, show which pilots are gqualified
and available for each activity, and allow selection of an
individual pilot for each.

Accession For
NTIS C™isl v |
DIIC TaB I
Unnanourood []
Justific v
> .;” . By_ N |
A P_‘Distri‘:‘axtioz:/]
Availebility Codes
SR, T
Aviall and/or
Dist i Special
141 L]

g

.....

Chapter
One.

Three.

Four.

Five.

......
.........

TABLE OF CONTENTS

IMRODUCT I ON L] L L] L] L L L L L] L] * L L L4

Background

Problem Statement
Hypothesis Statement
Purpose
Organization

REVIEW OF LITERATURE . . « ¢« ¢ « ¢ o &+ &

Information Search

Computerizing TAC Scheduling

A Rand Study

Application of Linear Programming
A System Now In Use

Summary

MODEL DESCRIPTION. « « « « o o o o o o &«

Requirement

Qualification

Availability

Currency

The Deconfliction Model

Model Capabilities and Limitations
Summary

APPLICATION OF THE DECONFLICTION PROGRAM

Starting Out
System Operation
Daily Update
Summary

CONCLUSIONS AND RECOMMENDATIONS.

iv

...................................
.......

11

16

21

cC.

Annex
A.

TRAINING REQUIREMENTS AND THE

SCHEDULING SYSTEM . . ¢ ¢ ¢ + o« ¢ o o o o o « 26

Introduction

Graduated Combat Capability
General Requirements

MAJCOM Requirements

F=15 Aircrew Training
Summary

DATA DEFINITION AND STORAGE. . « + « o ¢ o o o« o+ 37

Data Types

Defining What Is Stored
Data Mass Storage Media
Specific Data Types
Summary

PROGW LI STINGS L4 . L) L] L] L] L] L] L L] L] . L L] L] . 4 7

SELECTED BIBLIOGRAPHY. + « + « & & o« « ¢ ¢ o « o « « » «117

...............

AR AS 4 25

4

NOMROF P~ 2

CHAPTER 1

INTRODUCTION

Background

The most difficult and time consuming task in any
flying squadron is scheduling. This job is performed by one
or more crewmembers as an additional duty. It requires
matching the training requirements of between 40 and several
hundred individuals, depending on the type unit, with a
schedule of available training assets. These consist of
aircraft, flying routes, training areas, ground scoring
sites, and numerous ground training events.

A typical fighter squadron today might support
training of 40 pilots. Often less thah half are available
to fill the 16 to 24 sorties flown each day. In addition,
some of the pilots are required to fi;l “duties” such as

i Runway Supervisory Unit (RSU) officer, Squadroﬁ Duty
! Officer, or Supervisor of Flying (SOF). Alert duty,

; meetings and appointments must also fit into the schedule.

Many of the squadron pilots have duty positions
outside the squadron building or have "additional duties"
that take up most of their time. A typical 1l- or 2-hour

flight itself takes up five to six hours when briefing and

debriefing times are included. Flying is considered a

fetate
B BN

T,
-0 2

.............

relatively hazardous job; safety considerations dictate a

limit to the length of duty in a day which includes flying
and a minimum amount of “crew rest" prior to filling flying
duties on a subsequent day. Most of the training missions
and events have currency or recency restrictions associated
with them for much the same reasons. Under some conditions
a pilot is restricted to a syllabus or specific order of
missions with subsequent flights depending on successful
completion of a previous training sortie.

These many factors and constraints make it difficult
to devise a schedule that fits, much less one that is opti-
mized. Schedulers often work extremely long hours without
much job satisfaction. Operations Officers are generally
responsible for the scheduler's product and spend even long-

er hours reviewing and revising what the scheduler has done.

Problem Statement
Scheduling in a flying unit is highly complex, sub-
ject to error, and makes less than optimum use of training

resources resulting in discouraged schedulers and reduced

combat readiness.

Hypothesis Statement
It is hypothesized that it is possible to aid the

scheduler by modeling the scheduling function on a microcom-
puter and by helping to create alternative schedules. Such

a program model must work on the equipment now being deliv-

S gt RPN PR PR PP S e

.........

L Jaiad iy . . - - Pl
MRS Jete AN idn Sean Nan Yt dn i Jvin dhtn S M S Siui i AP S S AR

3
ered to Air Force fighter squadrons: a Cromemco System 2
using an 8-bit Z-80A microprocessor with the CDOS operating
system, two 380 KByte floppy diskette drives, a 5 MByte hard
disk, a Zenith Z-19 terminal, a dot matrix or letter quality
printer, a modem, and the Microsoft BASIC programming lan-
guage, version sl. The program algorithm must consider all
relevant factors or it is unlikely to be used. The system
must be flexible to allow for major and minor changes to

requirements, availability, and objectives.

Purpose

The‘purpose of this research is to develop an algo-
rithm to model the squadron scheduling function in suffi-
cient detail to make the product useful. The major diffi-
culty is that the problem is complex, the sources of data
diverse, and the guidance subject to many levels of inter-
pretation and emphasis. The goal is to define-the logical
structure of the scheduling function and translate it into
code usable by the available hardware. 1Initially, the pro-

gram is to be specifically designed for the F-15 squadrons

lrnis description was obtained from Maj Dave Smith,
Wing Training Officer of the lst Tactical Fighter Wing,
Langely AFB, VA. His wing is one of the first to receive
this hardware and will help to evaluate the programs result-
ing from this project. The terms "KByte" and "MByte" refer
to 1924 and 1,048,576 bytes of mass storage capacity respec-
tively. A byte is one character (eight bits) of data on
this system; each byte can have 256 different values (28).
These values can be interpreted differently in different

context which allows flexibility to represent nearly any-
thing.

Fa a e A "Bt i P S S A AR N SRS Al T A

of Tactical Air Command (TAC) in the continental United
States (CONUS) and United States Air Forces in Europe
(USAFE). The basic ideas may be expanded to a more general
form applicable to other fighter units.

The F-15 unit provides a good starting point for
several reasons. The squadron consists only of pilots (sin-
gle-seat aircraft) which reduces the level of model complex--
ity. The mission includes one major type of flying (Air
Superiority) rather than several. Perhaps most important
the author's recent experience is with F-15 units which

makes their problems more familiar.

Organization

Chapter 2 contains a brief review of some other
systems applying computers to the problem of scheduling.
Chapter 3 is a description of the model developed in this
project. Chapter 4 is a brief guide to its application in
the typical fighter squadron. Chapter 5 concludes with a
i discussion of a system envisioned at the start of this
project and recommends areas for further research. Annex A
is review of the myriad requirements limiting the sched-
uler's options such as Air Force flying regulations and
manuals and regulations governing scheduling. Annex B cov-.
ers the storage formats available for the data required to
make scheduling decisions. Annex C includes the listings of

the programs developed during this project.

..................... . . - .
.......................... e e et . - .
=, . T A e e AN UA R . e - ot) el - e

'’ P R N R S A W I Y T N T T N P T U U e PO S S

r%

LA,

.‘\

) v.%. 2 i‘f-
RV IO

.
L
vs J S

‘l

NN

CHAPTER 2

REVIEW OF LITERATURE

Information Search

A review of the literature on computer assisted
scheduling indicates that anyone currently working on the
subject has declined to write about it. Very limited refer-
ences were found in the Defense Technical Information Center
database, the library card catalogs, or in the indexes to
various periodicals including the papers written at Maxwell
AFBl. None of these indicated specific work on using micro-
computers to aid the scheduler.

One of the few references found includes a very
general paper written by Major Richard Strunk submitted as a
reserch project to the Air command and Staff College in
April, 1977. Some material published on an uncompleted pro-
ject for the Strategic Air Command as a part of United
States Air Force Project Rand represents in-depth study of
the subject in a different context. A thesis written by an
Air Force officer attending CGSC in 1980 covers a different
aspect of the subject. Further digging has uncovered some

other work done by industrious individuals which has been

lrocation of the Air War College and the Air Command
and Staff College.

W W T W TR T N T W T e T Ve T, N
L A S MY

D S - .7 -t
[et e et oliade i e s S bR NCI I R B IR PR DA I P N LRI DRI - B {

-

L]
0

e ey 8y T8 Te s
PR Loy
P S I R 4 .

4

described invconversation with the authors but which has not

been formally documented for publication.

Comguterizing TAC Scheduling

As noted above, the research project prepared by

(R RAN

E

Major Strunk is somewhat generalz. He stated his objective
was to develop and evaluate a Computer Assisted Scheduling

Program in order to answer the question, "Can Tactical Air

g e g YT

DT RS)
PP ehale

R] DY s & 1

Command (TAC) Operations be computer scheduled?" He de-
scribed some factors that go into determining how this might
be done including a very elaborate flow chart for a series
of scheduling programs. The flowchart is 22 pages long and
quite detailed. 1In his concluding chapter, Major Strunk
admitted that he was not a computer programmer; his evalua-
tion of the ability to have a computer schedule TAC opera-
tions was to state that his flowchart showed it could be
done. A portion of the flowcharted program was coded in
- BASIC, but he observed that it was far from satisfactory in

that form.

A Rand Study

Dr. Morton B. Berman of the Rand Corporation spent
two years reserching and writing a series of reports on a

very ambitious project for the Strategic Air Command (sac)3.

zkichard R. Strunk, Can TAC Operations be Computer
Scheduled? (Maxwell AFB, AL: ACSC, 1977).

3Morton B. Berman, The DOSS Prototype. (Santa Moni-
ca, CA: Rand Corporation, #WN-9484-PR, 1976, and

...................
................

- . e e s Coe N RN . . .
I T . LI R . . R Lo .
LR . IR S-S T SO e B SR ST, I . DE A O W SR S SRR YL TS Ve PG Py WP P S PRI I DR AL

AR
AR]

TR aCrt s O y

T
J RO

.........................

A great deal of this time was spent observing flying and
maintenance activities and procedures at several SAC bases
to gather data on the problem of resource allocations. The
last paper published (in 1976) was originally intended only
as an interim progress report on development of a Decision
Oriented Scheduling System (DOSS) Prototype.

According to the preliminary conclusions and exper-~
iences of those using the prototype system, it had great
promise. Dr. Berman saw some significant problems ahead but
the yroject was shelved due to a lack of funds before he
could complete'his work. He stated that his opinion was use
of a large mainframe computer (all that was avilable for his
project) was somewhat cumbersome for this type work. He
also voiced the opinion that the problem of scheduling in
Tactical Air Command type fighter units was much more diffi-
cult and involved that in Strategic Air Command, where his
work was done?.

This difference is one of scope and scale; Dr. Ber-

man's prototype system involved all aspects of both Opera-

tions and Maintenance scheduling. This is a more manageable

problem in SAC due to the far fewer flights per aircraft per

day as compared to fighter operations.

Scheduling Aircrews and Aircraft: Problems of Resource Allo-
cation in the Strategic Air Command. (Santa Monica: Rand
610-PR, 1975).

Corporation, #R-1

4Tclcphone conversation with Dr. Berman, 13 October
1982.

s e gv e e e OIS . S P S SRR .

Application of Linear Programming
Major Carlton L. Pannell submitted a thesis to CGSC

entitled A LINEAR PROGRAMMING APPLICATION TO AIRCREW SCHED-

gg;§§5. The primary thrust of his application was to opti-
mize the distribution of training assets based on scores
achieved on the bombing range and a supervisor's subjective
evaluation. A section of the thesis was devoted to the
specific problem of building and deconflicting a weekly

schedule, but not in the detail attempted by this project.

A System Now In Use

The Colorado Air National Guard flying A-7D aircraft
(a type of fighter) out of Buckley Field has developed a
system that has been working for about four yearss. The
National Guard has unique problems due to the part time

nature of many of their personnel and their consegquent

severely constrained availability. These same factors make
it more difficult for them to throw "manhours” at a jodb
(such as scheduling) and live with it, so Major Ron Germano
was given the funds to acquire the services of a time-shared
mainframe computer to help with scheduling and maintaining

records on the pilots of his unit.

5carlton L. Pannell, Major, USAF. A LINEAR PRO-
GRAMMING APPLICATION TO AIRCREW SCHEDULING. (Ft. Leaven-
worth, KS: CGSC, 1980).

6Telephone conversation with Maj Ron Germano, 1624
TFS, Buckley Field, CO, 12 October 1982.

e T . . L ittt a e At B oam ol B e mb e o PSP LT WINPT S DU SEUE SN a |

He used an established database files structure

(supplied as part of the software available with the time-

i shared system) to store a large volume of information. The
: accessing methods available with this system allowed him to
search for and link data in different data files. Major

i Germano's program applies arbitrary values or weights to

\'Z
Y
NS
ol

currency and recency data and current training accomplish-
ments data on each pilot and lists the pilot's relative
priority for a particular type of training.

The currency and recency items are based on guidance
from the various regulations and manuals covering the train-
ing required for each category of pilot. The relative
weights come from priorities established by the Operations
Officer and Commander. Using the priority lists thus devel-
oped, the program can then £ill a "shell"” or listing of the
available training missions for a given week.

This system is currently in use, although it is
constantly being updated. The product is currently used as
a starting point then “hand massaged" to accomodate other
constraints. He characterized the accessing language pro-
vided for use in manipulating the data stored by the time-

shared system as "like Pascal"’. With the capabilities of

7Pasca1 is a high-level structured language devel-
oped by Dr. Niklaus Wirth of Institut fuer Informatik, ETH
Zurich, Switzerland. See Kathleen Jensen and Niklaus Wirth,
PASCAL: User Manual and Report: 24 ed, (New York: Springer-
Verlag, 1974, corrected printing 1978), and Grogono, Peter.
Programming in Pascal: Revised Edition, (Reading, MA:
Addison-Wesley, 1980, 1978). Structured programming is also

-4 ey s -
""i}.. L

Pt St
PP]

L4 IO o A A rro s . -
PR AR MR ERTR by b8 A
P g M v YT,
-l M c. o , N P e 4

N
N
Lo

o
F;\‘

........................

10
this language, Major Germano has been able to devlop a
program which stores the relevant data to make scheduling
decision, to assign some factors or values which reflect the
guidance of his bosses and higher headquarters on what is

acceptable, and to produce a beginning schedule from it.

Summary

The approaches of the systems introduced above vary
from that of this project in many ways. With the possible
exception of the system being employed by the National Guard
unit, little attempt was made to faithfully model the ac-
tions of the human scheduler. Deconfliction is ﬁhe single
biggest problem for the human scheduler; it is very diffi-
cult to remember every detail about the availability and
conflicts of 40 individual pilots. This appears té be the

greatest potential contribution of this project.

covered by Brian W. Kernighan, and P. J. Plauger. The Ele-
ments of Programming Style: 24 ed (New York: McGraw-Hill,
1978, 1974). The sfgnIfEcance of structured programming is
its emphasis on "top-down" or big to little structure and

the resulting understandability of the code. This concept
is one that will be applied in this project.

-y -y — —— M v g A ary v ry T w T w e T, D L D I S T B
Adrt A) ",, «_ s e = @ . '_-'.'\r.rr-_ - -_r-_ '_"_ Ve '._.:‘~_‘_-<_-.'< ‘.»-'~ . .

P« TR P Ve A e TN TR T
o

BN
? CHAPTER 3
> MODEL DESCRIPTION

Requirement

The requirement of this project is to develop an
algorithm modeling the Tactical Fighter Squadron scheduler.
This might be done at several different levels of complextiy
or fidelity; it will be developed here in the simple form
including only the pure scheduling function of deconflic-
tion.

Annex A includes specific data used daily by the
scheduler and training officer in the typical fighter squad-
ron. Of this data, qualification, availability, and curren-
cy are the factors of immediate concern to the scheduler.
Since this project is modeling the scheduling function,

these are the factors considered.

Qualification

Every scheduled activity includes certain qualifica-
tion requirements. For an ACBT mission, for instance, the
pilot must be qualified for air combat training missions,
and must be a flight leader under some conditions. A pilot
upgrading to flight lead status would require an IP (In-

structor Pilot) or a squadron supervisor on his wing. This

11

....................

o it e At i S T I R - LA
o W ey Ly wTTE TS - AR TR R T W, T e T e e, - PN R P - - E SR N e
L e TR L A et e i N A A LA R e R R AR S R AN .
.

™ 12
- illustrates that each pilot has qualification attributes and

each activity on the schedule has qualification require-

ments.

Availabilitz

Pilots are tasked regularly with meetings, asso-
ciated with either primary or additional duties, with indi-
vidual training needs, and with such things as dental ap-
pointments and annual physicals. Scheduling coordination
for these activities is often made individually with the
outside organization involved, either by the pilot himself
or by the squadron scheduling or training personnel. Once a
pilot is scheduled for such an activity, his availability
for normal daily or weekly duties and training missions is
restricted. Each activity on the schedule has a scheduled
time with attendant time requirements for some period before
and after the scheduled time. Any pilot with other commit-

“ments any time during the activity period is not available
as a candidate to f£fill that activity. Thus, the activity
has an associated required availability period and the pilot

has an attribute of available or not available during it.

Currency

Currency restrictions arise primarily from the need
for regular practice of flying skills. Inexperienced pilots
are often given shorter currency periods than experienced

pilots, as shown in Annex A. Leave, extended periods of bad

.. PR -
................... PRV B s Se T
..... R) - NS .. R A T BRI . S RN e

e win e 2 L VA WA Nt g AT A TR M R oS a0 S LA R - 7 : W
-

rs

«
L)
)

13
weather, and other conflicts make it common for a few pilots
to be out of currency at any given time. Regaininé curren-
cies such as landing, ACBT, or low level intercepts are not

too difficult, generally requiring a flight under the super-

g ~ing, (2 PRI IR N I i A
e & 1

oA JURL A S .y A

L R S FUNET N ‘l' .. LA A SN

M-S
" ',
PR .
e

vision of an instructor pilot or a squadron supervisor. One
goal of scheduling is to reduce the number of recurrency
flights to a minimum to preserve scarce squadron training
resources. Again, each activity has associated currency

requirements and each pilot has currency attributes.

The Deconfliction Model

At the most simple level, the scheduling algorithm
must accomplish "deconfliction”. This is the process of
making certain no pilot is scheduled for incompatible activ-
ities at the same time and that each pilot is qualified and
current (or has the required supervision) for the activity
scheduled. Further, the process must insure that each ac-
tivity has someone assigned to do it. In mathematical

terms, this model may be described as follows.

Let [Sij' 1l <= i <= 48, 1 <= § <= 7} be a period of
time. S;j is the ith nalf-hour on the jth day |
of the week and the {Sij} refers to a single
type of training. In particular, let {S; 4}y be
the shell slice for the ktN activity of K
possible types of activities.

Let sijk be the full shell for all 1l <= k <= K type

................................
............................

. P . . - . . .
A P R P PP P R TR R T T T TG THE Uy ¥ W U VY. Sy D i, 0y U Uy e . o, S ST :,.,;..‘AA:,.‘;-:,‘.'.A.:..:...,A.A.,-AJ

{v‘-h‘)‘-‘"'} o BBt s Jhed_ B hyd Mgt S IR RME LSRR OGS RN AN N) e Te el et R
.

E 14

F :

B activities to be scheduled.

EE The problem is to assign the pilots to the shell
{Sjyx}, subject to pilot constraints, pilot
availability, and the requirements of activity
k.

Let f be a function on the elements of the shell
Sijx such that S;4x = @ if no pilot is assigned
and sijk = -] if a pilot is assigned.

Thus we want to minimize

K 7 48
k§l j§1 i§1 f(sijk)
or, since the day of the week is irrelevant and

all half-hour periods are equivalent,

K 336
min 2 > f(sik}
k=1 i=1

where Sij) is the kth activity to be scheduled

during the ith nalf-<hour period.

be considered.

This description of the model shows its simplification to
the most basic level of scheduling, that is deconfliction
alone. Beyond this point, guidance from the Operations
Officer and information from the training section may be
used to optimize the training outcome of the scheduled
activities. For purposes of this project, only the fit of

qualified, available pilots and their currency status will

. T T L o A PP) - . -) . - M . - N M MY - .) tmll : g s
R P N SR I I P A AP P UTIETRN o T e T e e e e e . ——tead PPN - PP USRPELAR S W YU PSS SpP MBI S i SR SP

............

:;.
;! 15
Model Capabilities and Limitations

Effective application of the program using this

model should reduce the "busy work" and oversights of the
scheduler tremendously. The price paid for this aid is that
the data used by the system must be kept up~-to-date. Quali-
fication data changes least often and could be updated
weekly. Availability and currency data must be updated
daily if the information is to be of any use.

The deconfliction model is based on the weekly
schedule cycle and is updated daily during the execution of
the schedule. The program presents candidates for each
schedule activity who have the required attributes of quali-
fication and availability and shows if they are current or
not. This should allow the scheduler to base his choice on
factors odtside the model to achieve further training effec-

tiveness.

Sumgz

Given good data from which to make selections and
the speed, responsiveness, and accuracy of operation of the
microcomputer, the scheduler's job should become one of se-
lecting the "best" candidate for an activity rather than "a"

candidate who seems to fit.

"""""""""""""""""""" ‘_J
c - P s 8 . ce T a

PR

.

v v -
PERAN »
L .

ol Sy W

CHAPTER 4
APPLICATION OF THE DECONFLICTION PROGRAM

The program listing included at Annex C is written
to apply to a typical single-mission, single-seat fighter
squadron. The concept could be expanded to cover broader
applications but time constraints precluded that in this
project.

Application of the model to the typical scheduling
operation should be primarily oriented to the weekly sched-
uling cycle. Entry of the "shell" and production of mul-
tiple weekly data files and schedule files should allow some
progress towards optimization beyond the deconfliction model
of the program. This chapter will discuss use of the

program.

Starting Out

A learning period must be expected before good
availability data will be routinely provided to the system.
This will require a policy that, after a certain date in the
implementation process, scheduling decisions will be based
only on data actually provided to the system. Such a "hard
line" attitude will be instrumental in getting good avail-

ability data into the system at an early stage. This data

lé

..........
..........................

17
must often come from the pilot himself because most availa-
bility data generated by the system will be managed intern-
ally. Thus, the learning period involves all squadron per-
sonnel.

This availability data is one part of the informa-
tion stored in individual pilot data files. These are
sequential files in ASCII! character form so that they can
be inspected with a simple text editor. A utility with
prompts for the information in the proper format is also
provided. These files are sequential access files for com-
pactness; their individual nature makes access time a minor
consideration, especially with speed of a hard disk.

All other information required for proper operation
of the system should come from within the scheduling sec-
tion. This includes other data contained in the individual
pilot files such as name, service number (SSAN), and other
administrative data, and qualification and currency data.
The qualification names are user definable and may be ex-
panded to much larger capacity than the fifteen slots pro-
vided. Each qualification attribute is a "yes" or "no",
that is, training or upgrade status qualifications must be
handled by a separate qualification name.

Currency data is included in ASCII1 character form

also, but is in Julian date format including a year digit.

15ee Annex B, DATA DEFINITION AND STORAGE, for more
explanation on this subject.

Ty

18
This allows easy conversion withiﬁ the program to a form
suitable for comparison with the schedule activity date.
Since some currency periods are within the normal scheduling
cycle, currency status is provided to the scheduler but is
not used as a filter for selecting the candidates for a

given activity.

System Operation

Once the pilot data files have been developed, the
scheduler must begin entering the weekly schedule shell.
This will include all activities for which the squadron must
provide pilots. Some of these may be a standard set of
duties (for example, SOF, RSU, Alert, and so on) that will
be required on a regular or rotating basis. Most flights
and ground training events will have to be entered individ-
ually each week. All shell data will stored in a single
file for the week including the activity code, the activity
time as hours and minutes of the day, the start and end of
the activty time period in minutes from the week beginning,
and the pilot code if one has been assigned in advance.

Once the shell is complete and the pilot data is
available, the scheduler may make any number of attempts at
£filling the schedule. Each iteration will start with a
schedule data file built from the shell data and the pilot
data files. Once it has been made, it may be copied and a
sequence number assigned to distinguish it from others.

The weekly schedule data file includes pilot

W e T . - . - . e T U GRS |

- . . 19
qualification, availability, and currency data in a compact
matrix form for quick manipulation by the program. A random
access file format aids this speed and ease of access. Also
included is the data from the shell on each activity and a
matrix of which pilots are qualified and availabuie.

Building a trial schedule requires the scheduler to
select an activity to £fill, check the candidates provided by

by the system against outside priorities, and make a tentative

{ selection. After each selection the program must update
that pilot's availability data and the pilot availability
data for any activities affected by this selection. A flag
is provided if the current selection results in the number
:: of candidates for another activity dropping to zero. This
. condition may be alleviated by using resources outside <“ke
jg squadron or by "un-selecting" that pilot and making ancother
choice. This mechanism provides for minimizing the schedule
filling function described in chapter 3.l

Once the schedule is completed, an alternate sched-
ule may be developed or this one may be made firm. The firm
schedule selected may be used to update the pilot availabil-
ity data files so that a historic record of all scheduled
'3 activity is maintained. This may require periodic purging

. of old data to keep file sizes and access times acceptable.

Dajily Update

The firm schedule will be selected at the time

determined by the local scheduling cycle. Once firmed up,

.- :

o

f’ 20

it must continue to be updated with currency information, as
well as with any changes made in activities. Since all

qualification, currency and availability data for the week

is included in the weekly data file, it must be specifically

kept up-to-date as pilots accomplish events or sorties which
change their status.

If a selection was made based on anticipated events
that did not transpire, a check of currency and qualifica-
tion status on a daily basis will find the problem. Since
all availability data and currencies are accessed, the sys-
tem can be used to find an alternate candidate for the

activity or to change the supervision provided.

Summary

Use of the system developed during this project
should allow the scheduler to spend his time more productiv-
ely, resulting in fewer oversight errors and the opportunity
to optimize other factors not included in the program. This
may result in a higher gquality product rather than just a

schedule that satisfices.

...................

. - . - . . - - R [SRS .. - 7. . .
S et g Lt e e e N A L L e et e a i at a el alatetabaRatalosatal

‘4
.
.
’
.
.
)
s
1]
.
.
.
[
‘

s
.

i) IRES

-
"2t

LARRS

T

2

- v
a0
a %3 .

-
F3CLY
-

] .I‘ K

CHAPTER 5

L4

.\
)

CONCLUSIONS AND RECOMMENDATIONS

The initial goal of this project was to develop a
program that would automatically produce a schedule. Sever-
al factors made this goal impossible to achieve, the biggest
of which was time. This chapter will describe some of the
thoughts developed towards this goal so that others working
on similar projects may get some insight. 1In addition, some
suggestions are made about the programming language.

The scheduling function is almost inextricably link-
ed with training in a typical fighter squadron. The program
developed in this project includes some overlap into the
area of training in keeping track of currencies and qualifi-
cations. A program that successfully produces a complete
schédule will neéd much more training type information.
This data will include much of that described in Annex A,
the requirements of TACM 51-50. This must be carefully
integrated into the real world system of official Air Force
record keeping so that duplication of effort is avoided.
This will require retrieval of the official data from its
storage medium, usually the base level main frame computer,
and operation based on what is stored there.

An alternative is to store the ¢training

21

..........................
...............

...............

MOLH AR

A

T T

22
accomplishment data on the microcomputer hard disk and sup-
Ply the base level equipment from there. This could pose
some data security problems and is not likely to be
approved.

Updating the base level system could be done with
the help of a communications package and the modem over
normal telephone lines. If two-way data flow could be
established with proper safe guards for quality checking on
the data sent to the main frame, the microcomputer system
could have access to current, accurate training data.

Given this access, further programs could be devel-
oped which would allow the computation of the number of
requirements remaining for each pilot, in each category of
training, and this data could be used to prioritize who
would be automatically selected for a given sortie. The
priority basis should take into account not only require-
ments remaining, but also the opportunities remaining to
accomplish those requirements. A quotient of remaining
divided by opportunities would produce a fractional number

which would contain this relative value.

The priority established for one §erson to use a
sortie might have relatively little to do with a different
need by another for the same activity. For instance, one
pilot might require an ACBT sortie for training while an-
other required it for currency. The decision on who needed

it might be based on subjective data or data not available

" R VT WIS S WP R Wy PP P SA W WU WA SV N G G W § "

......
..........

= 23

to the microcomputer, but this could be simulated by ap-
Plying a weight factor to each persons need. This weight
factor would then be the means of providing differing strat-
egies of schedule filling for the program. One strategy
weighting currency very heavily might result in a totally
different product than another which weighted training needs
more heavily.

Another area for further research is the language
used in developing this program. Interpreted BASIC is rela-
tively slow compared to some other languages, and its struc-
ture allows rather poor programming practices. This has
been avoided as much as possible during this project but no
doubt has crept in. The need for an easily understood pro-
gram in this instance, as in many cases, is the need many
users will find to change it, whether sligﬁtly or greatly.
Even a well written program will take many hours of study to
become familiar with the author's pattern or structure. A
poorly written program may be totally undecipherable even to
the author in six months time. Conversion of the basic
ideas of this program into another language such as Pascal
or Modula 2, a new language introduced by Dr. Niklaus Wirth,
could prove very beneficial in the futurel,

The other possibility for increasing the speed of
this program would be to compile it into machine code. The

producer of this dialect of BASIC, Microsoft Corporation,

lsee Annex B for more information on programming.

TR W W W e T W T T e e YT T R

24
has a compiler for it. However, the compiler places further
limjtations on the structure available; the program included
here was not written within these limitations.

Thus, there are three recommendations: expand the
project to include the training data needed to produce a
schedule automatically; write the code in a better, faster
language; or modify the code to allow compiling it for

greater speed.

ANNEXES

RIS PAPRFEF - I] fl"

«

WL
S AN

Ped

WUALA LR

ly
} .
b

’

|

K 8§ AN

2L LS

b AN RN hl 8 SPAIATAAEEIRE - &

B 1B SCAP I Y

.....
...........

ANNEX A
TRAINING REQUIREMENTS AND THE SCHEDULING SYSTEM

Introduction

Training is normally considered to be a separate
functional area within the staff structure of a fighter
squadron, however, the training requirements of each indi-
vidual are what drive the formation of the schedule. This
annex will describe the requirements levied in TAC MANUAL
51-501 and the resulting scheduling decisions that a algo-
rithm must model faithfully.

This project has been limited to the goal of devel-
oping the scheduling algorithm, but the data needed to make
effective decisions for scheduling will in many cases be

identical to that needed for planning by both schedulers and

the training staff. Some of this data must be stored in

official Air Force records such as Air Force Technical Order
(AFTO) form 781, Aerospace Vehicle Flight Data Document, in
Flight Records, and either TAC Automated Flying Training
Management System (TAFTRAMS) or Air Force Operations Manage-

ment System (AFORMS). The latter, AFORMS, is to be a

IDBPARTMENT OF THE AIR FORCE, Headgquarters Tactical
Air Command, FLYING TRAINING: TACTICAL FIGHTER/RECONNAIS-
SANCE AIRCREW TRAINING. TAC MANUAL 51-50, Volume I, 26

October 1981.

26

SIS LI Vil W ST A .3

NI LI VIR S |

TR

| BT O

i

XK - 4

M T R)
.
PR

Barasas AAME OO PR

i

27
universal training and flight data system which all units
will eventually use. For these reasons, the implementation
of the algorithm devised in this project must be consistent
with the basic information format and needs of these systems
or the goal of usefulness will not be met.

Another impact of the training manual requirements
on the scheduling system is the need to forecast the specif-
ic needs of the unit as a whole. Although this is again
normally a training staff function, the scheduler is often
in the middle of the process because of his direct use of

the results.

Graduated Combat Capability

TACM 51-502 is based on the concept that the unit
commander, normally the squadron commander, has the best
knowledge of the specific training needs of his pilots. The
Graduated Combat Capability (GCC) system gives him the abil-
ity to assign training assets to achieve various levels of
capability depending on the amount of those assets and the
experience and individual ability of his people. Volume I
of the manual is common to the three Tactical Air Force
(TAF) Major Commands (MAJCOMs), TAC, USAFE, and PACAF.

Chaptér 6 of Volume I is written by each of the MAJCOMs to

2abbreviations for the manuals in this chapter will
be: TACM S51-50 for reference to the whole series of volumes,
Volume I for that specific volume exclusive of the MAJCOM
chapter, TAC Chapter 6 or USAFE Chapter 6 for their respec-
tive chapters, and Volume VII for the F-15 specific volume.

R adins

AENE SRR

A A — PN

5 -y LIPS B et i SSECRAE TR ARG e Sl it SRR St i A A T T A T A I A _ﬂ.-.f.:—. TR T

28
reflect the individual needs of the theater and mission, and
applies to all types of fighters in each MAJCOMs inventory.
The subsequent volumes of TACM 51-50 reflect the training
requirements unique to the specific aircraft. Volume VII
includes this information for the F-15.

The traiﬂing of all aircrew members is broken down
into three basic phases by TACM 51-50. 1IQT is the Initial
Qualification Training phase and is normally completed at an
RTU or Replacement Training Unit. There are occaisions when
an operational unit must “train from scratch", but they are
kept to a minimum.

- MQT is the Mission Qualification Training phase that
leads to the first or lowest level of Mission Ready (MR)
status. MQT is accomplished in part at the RTU and com-
pleted at the gaining operational unit. An aircrew complet-
ing MQT at his unit is qualified at level A of the unit
Designed Operational Capability (DOC) and can effectively
accomplish the units basic mission.

The final type training covered in TACM 51-50 is CT,
Continuation Training. This is the day-to-day training
accomplished by all the squadron pilots to maintain their
mission proficiency or to advance to a higher level. The
squadron scheduler is concerned with the requirements of MQT
and CT training and the many upgrade programs that fall in
these areas. The algorithm modeling the scheduler must

allow for making decisions based on diverse requirements of

...........

T, v et - - - e T WO W L F S S TR m e e T e
At AN T s e T T e e R T e e e . Pl . Sl

29

these programs.

General Requirements

The flying training requirements of Volume I are
specified in Table 3-1:
6 penetrations (instrument flying)
- 12 precision approaches
12 non-precision approaches
2 night landings
3 air-to-air refuelings (AAR)

2 night sorties (credited if 1 hour or 64%
of the flight was during darkness)

390 minimum total sorties
These requirements apply to all fighter aircraft training
regardless of the specific type (albeit with some excep-
tions) but do not address the training needs of specific
missions. The specified training must be accomplished dur-~
ing each training cycle; these are defined as six-month
periods beginning 1 January and 1 July. Additional require-
ments of Volume I include Annual Instrument and Mission or
Tactical Qualification evaluation flights and associated
examinations, Aircrew Weapons and Tactics Academics, and
Target Area Certification or Verification. Rules and sup-
porting tables are provided for prorating training require-
ments of ;rriving or departing personnel (who are available

only part of the training period) or for other contingen-

cies.

T T S, T T T T T Te T a s e e e

30

Certain reports of individual and unit capability
status are based on the number of sorties flown each month
by the squadrons pilots. Since the scheduler is the primary
pPlanner of sorties, the sustainability of a given sortie
rate is within his purview even though the report itself is
normally prepared by the training staff. This reporting
philosophy is specified in Volume I. Also included are
various definitions of types of training sorties, only one
of which can be accomplished per flight, and events of which

several may be accomplished.

MAJCOM Requirements

The final chapter of Volume I is written individual-
ly by each of the TAF MAJCOMs. This project is involved

with two of these: TAC Chapter 6, TAC AND ARF3 AIRCREW

TRAINING? and USAFE Chapter 6, TACTICAL FIGHTER/RECONNAIS-

SANCE AIRCREW TRAINING®. These additions are applicable to

all types of fighters but specific to the command of their

assignment.

TAC's Chapter 6 specifies the type of training data

3ARF is Air Reserve Forces, both Air National Guard
and US Air Force Reserve.

4DEPARTMENT OF THE AIR FORCE, Headquarters Tactical
Air Command, TAC AND ARF TRAINING: FIGHTER AND RECONNAIS-
SANCE. TACM 51-5@ Volume I, Chapter 6, 15 February 1982.

SDBPARTMENT OF THE AIR FORCE, Headquarters United
States Air Forces in Europe, Flying Training: TACTICAL
FIGHTER/RECONNAISSANCE AIRCREW TRAINING. USAFE Chapter 6 to
EREE‘3T43E, Volume I, 1 October 1982.

WA U U W T, et e U W T W W/ G T D W TP iy (PP Sy PSPy

ghC Rty _."_\'_."'_1 P Il 4 T iR e AL A AL Y S M S

31
that must be tracked if the unit does not have TAFTRAMS or
AFORMS available. This data is basically that which is

needed to make scheduling decisions. It includes:

P
.
h"
h“
-
.
2
b o
..
.,
v,
-
;

Unit sorties required and accomplished
Individual sortie standards

Requirements and accomplishments for
each assigned GCC level

Totals for each month for the semi-annual
training period

Individual monthly flying time accomplished
Individual required events accomplished

Individual weapon delivery data on
events required for MR qualification

6

TAC Chapter 6 also defines the types of ground
training in three categories: Category I - Mission Essen-
tial, Category II - General Flying Related, and Category III
- Other Training Related to Aircrews. This training must
also be scheduled and affects availability both during con-
duct of the training and by its effect on crew rest.

Additional training gﬁidance_included in this docu-
ment covers instrument training requirements, the composi-
tion of Realistic Training Sorties, Red Flag or equivalent
training, Chemical Warfare Defense (CWD) training (in the
aircraft and simulator), instructor currency.and minimums,

and additional TAC semi-annual requirements. These require-

ments consist of:

6rac Chapter 6, p. 6-3.

.......
.......

R I U I T I P A PR S U, S P I e e e S e

,_' 4.‘

A - {ORY

e
Fae) 2
o

o,

w v TTTTTTR S T® W e SN, Y,
Faoge SN ow Aaen i AU SRS g arth ar Sail Bl] R . .

32 - |
EC (electronic combat) events 12
Instrument sorties
(inexperienced pilots) 2 1
Night AAR 1 ‘

No HUD (head up display) approaches: |
one-half of Table 3~1 requirements

Formation Takeoffs 4

CW (chemical warfare) Exercise 1 annually7

TAC Chapter 6 specifies the following as goals:
Red Flag participation 1l annually

Formation events:

Day Takeoff 12

Night Takeoff 2

Day Landing 3

Departure (wing) 6 ;
Approach (wing) 68

Table 6-12 covers another subject basic to design of
a successful scheduling algorithm, currencies. The follow-
ing list is excerpted from that table leaving out some of
the complicating qualifiers that do not apply to the F-15

aircraft or pilots.

7PAC Chapter 6, Table 6-14, p. 6-39
8TAC Chapter 6, Table 6-11, p. 6-39

.....................

DA
E A Ay

AT - § SN

el
]
. o ¥ At Lt
. [S

P A A A et e S P MM e i M S S e e VA S B e S P S M S

33

Accomplishment Inexperienced Experienced
(Event /Sortie) Pilot Pilot

Day Landing 30 days 45 days
Night Landing 15 + 30

AAR (Day or Night) Six Months

ACBT (Air Combat
Training) 90 90

Formation Events

Takeoff
(Day or Night) 69 90
Day Landing ~ 60 99
Low Level Flying 60 o9
IP Rear Seat Landing 39
IP Instruction Flight o 60
Dart 18 Months

These requirements are constraints or considerations
that must be taken into account by the scheduling algorithm
being developed. These may be different than those imposed
by another command and may vary further depending on the
specific type aircraft.

USAFE Chapter 6 has similar type information but the
currency numbers vary, different categories are defined, and
some guidance is much more specific. Paragraph 6-24 re-
quires inexperienced pilots to fly a non-demanding sortie if
they have not flown within 22 to 39 days and requires the

same of experienced pilots who have not flown for 31 to 45

days. The experience levels are defined in Volume I and the

.................

34

non-demanding category is explained in paragraph 6-23 of
USAFE Chapter 6.

Other currencies specified in the USAFE chapter
include regaining landing currency after varying periods,
night landiné, air refueling, wing formation landings, pre-
cision approaches, rear seat landing for instructors, and
£flights while wearing CWD gear. Each of the type events and
sorties required later in the chapter are defined in para-
graph 6-25, For-the F-15, Table A3-1l specifies the training
requirements for maintaining the various levels of GCC qual-
ification. Some are defined as guidelihes under some condi-
tions, but they are essentially required for purposes of the

scheduling algorithm.

GCC Level Sorties

Level: A B C
Total (Inex/Exp) 40/36 68/60 82/79
1 month GCC rate 5/6 . 12/19 14/12
3 month GCC rate 20/18 34/30 41/35

Weapons Events (Required)

Dart Qual
Gun Tracking 6 12 18
wsep? 1 (sortie)

9WSEP is Weapons System Evaluation Program.

............

......................

T e s Ty Ty T RT T TR T e T T e

"'-
A 35

GCC Events

Intercepts 20/16 26/22 32/28
Eccml? 2 4 6
Alert Scramble 2 3 4
Integrated Msn/Joint Ex 1 2 3
Comm Jam 2 4 6
ACBT Sorties 31/27 43/37 58/42
BFM/DBFMLL Sorties 2 2 2
Instrument/Proficiency Sorties 2 4 4
AAR 3 3 3
Captive AIM-9 6 8 19
CWD Sorties 1 1 1
acMIl2 sorties 4 6 8

F-15 AIRCREW TRAINING

Volume VII13 of the series is specific to the F-15
aircraft. Paragraph 2-9 lists minimum sorties and events to
be accomplished during MQT, often a level of training the

scheduler must be concerned with. Chapter 3 includes the

10ECCM is Electronic Counter Countermeasures.

N llgrM is Basic Fighter Maneuvers, DBFM is the same
> mission flown with dissimilar aircraft.

12,cMI is the air Combat Maneuvering Instrumenta-
tion, a realistic training enhancement.

13pEPARTMENT OF THE AIR FORCE, Headquarters Tactical
Air Command, Flying Training: F=15 AIRCREW TRAINING. TAC
MANUAL 51-50, Volume VII, 26 March 1982.

IR PSP ----;;._'._:‘L-A-A'¥~._'J

36

minimum number of simulator hours required for each training

(' period, among other items.

Summary

This annex has shown some of the sources and numbers
= that the scheduling algorithm must be capable of handling.
¥ Of more significance than the numbers is their variation

depending on the situation. A given scheduler has essen-

tially the same type problems as any other but the specifics

of requirements vary widely depending on location, exper-

L
.

ience level of the pilots, weather affecting the base, and

1

E RS

maintenance capability currently enjoyed. The algorithm

- must be able to take such diverse factors into account and
5 simulate the many small decisions the human scheduler would
- normally make largely on intuition and produce a product--

the schedule. 1Its success will lie, if it is successful, in
making its programmed decisions without forgetting the de-

tails that sometimes escape the human scheduler in his flury

‘, _'o lv"‘v

of work.

v C e g Ao
T T T T T TET5 N0 .

K
YRl

2 1y

h M PPN S I S
.'-.‘."" “'l'.:
2’ A R

ANNEX B

2
2

DATA DEFINITION AND STORAGE
The previous annex showed the sources and types of

data required by the algorithm to make programmed “deci-

Y

N V‘r“,. ','A‘:-._.'.’.’...' A
A L A e 7

sions"”. The significant factors are the variety and varia-

“:‘;

¥

tion of these data from one location to another. The user

AN
L,

will have to be able to define and redefine data storage

R - | 2k

g
s

parameters as the system is used, both to initialize it and
to react to changes in guidance or regulations. This annex
will describe the way different data types may be assigned
by the user and the general types of data the algorithm must

be able to access and manipulate.

Data Types

A microcomputer actually stores only one representa-
tion of data--the byte. A byte is defined as eight bits,
each of which can have the value "on" or "off". The context

in which a given byte is presented to the microprocessor

determines how it will be interpreted. Several general
types are available in Microsoft Basicl, including string or |
character, integer, and single or double precision real

variables. Characters are stored with one byte used for

lTrade Mark of Microsoft Corp., Bellevue, WA.

37

..... B
......

. .
------- . e e e T T e et . . CER e R - L . . Soea .) o . « e
TR IR A P I PN R P R Vot PR o L @t o el e B UV DU P e 57 9 S T |

i
N
l‘. .
AN
e
A
» S
-
h"_-
.
.l‘<‘l
'h v .
Y
’r.‘i <
A
o

38

each letter, digit of a number, or special code. This code
is called ASCII, for American Standard Code for Information
Interchange. Seven bits of each byte are used in this code
which results in 27 or 128 possible meanings. The eighth
bit may be left blank or it may be used for a parity check
on the other seven bits. In some systems the eighth bit is
used to define another 128 characters used for graphics.
Integers are stored in two consecutive bytes and may have
the value =-32768 to 32767. The number 32767 is 215 less
one--the two bytes are interpreted as a binary number with
the most significant, or sixteenth, bit used as a "sign"
bit. Note the difference in representing the number 32767
in ASCII or as an integer: ASCII requires five bytes while
the binary form réquires only two.

Real numbers, those that can have fractional values,
are stored in either four or eight bytes as single or double
precision variables. Single precision can represent numbers
to six significant figures while double represents sixteen
significant figures. Since these numbers are stored in
binary format, the fractional portion is subject to a very

small error when converting to and from decimal?.

2this is not a problem in most applications but must
be considered if the result of a calculation is based on the
difference of two numbers, especially if the result is at or
near the limit of the number's precision. The most common
example of this type difficulty is in interest calculations
for accounting applications; daily interest numbers can be
very small but are used in long iterations which compound a
very small error into a significant one. Money calculations
are required to balance to the penny. This fact must be

s

T _f
CRERE
.

lﬁ-lll.'.‘

L) l‘.‘ 1 . L]

LR
P

.
-
I
I8
).
[
e
L

.

39

The flexibility of these data types will allow com-
plete and compact storage of the data required by this
model. Names of pilots, for instance, will be stored as a
string of characters while currency dates will be stored as
an integer or binary value. Storing a date as letter and
number characters might seem insignificant at first glance,
but seven bytes versus two becomes quite significant when

storing many different dates for each of 40 or more pilots.

Defining What Is Stored

The hardware or machine and program language depen-
dent data storage limitations will allow the application to
store any type variable data that may be needed. The appli-
cation program, or implementation of the scheduling algo-
rithm, must store, access, and manipulate the data in a
meaningful way. Since this will depend on many factors,
including what command guidelines and regulations affect the
unit, how many pilots are assigned, how many different
missions must be considered, and so on, a means of storing
not only the data but the meaning of the data must be de-

vised.

...........................

considered in the design of the algorithm, so that its
effects are not significant. Number precision data is from
the OSBORNE 1 User's Reference Guide by Thom Hogan and Mike
Iannamico, Hayward, CA: Osborne Computer Corp., 1981, re-
vised 2/22/82.

.......................

v AT TETYTETW T "L g WV LN
v v T T T e e . - . e Y e N N, T M e -
(ol N N RN A T A . AR AN . LY .

49

. A 8

Data Mass Storage Media

i The storage medium available for this program is
called a disk:; in this case either floppy or hard disk. The

difference in these is mainly one of capacity and access/

' transfer speed, the type files that may be stored are essen-

3
ET'V
;
!

tially identical. A disk is a random access medium for mass
storage, that is, it can be accessed directly throughout its
capacity. A sequential access device, on the other hand,
must read everything up to the position of the required data
in order to find that data.

An example of sequential access is the cassette
tape. It must be played until the desired selection is
reached; it must be rewound to find specific data again.
Use of the tape counter makes fast forwarding to the vicini-
ty of a selection possible, but finding one note or word of
a particular song would be difficult without listening to a
complete passage.

The random access disk has the data stored on it in

rings or tracks. There are many tracks so the amount of
data on each is a small portion of the total. Even though
the data is stored sequentially on each track, it can be
found very quickly by reading the whole track or a sector of

the track. Thus the disk is a good medium to have for

LIRS) SASLSRAharht ¢

storing the data required by this project.
Data is stored on the disk in files. Each file may

include many records, each of which stores a unit of the

41

MY Y ARRIRR

o file. This can be visualized as each of the sheets contain-
ing responses to a questionaire. Each record is then di-

vided up into fields, or continuing the analogy, the re-

M My T T
e SOOR

sponses to each question on the questionaire. For this

project, a file could contain records for each pilot showing
. his name, Social Security Account Number (SSAN), birth
: month, training status code, and qualifications. These
é. ' divisions by pilot would be the fields, the complete data on
a given pilot would be a record, and all the data on the
pilots of the squadron would be a file.

Disk files themselves may be either random access or
segential access files. Sequential access files may be
found directly by the storage medium, the disk, but must be
read sequentially. Random access files may be accessed by
individual record directly. The advantage of sequential
files is their conservation of storage space--very little

overhead is used in storing the information. Random access

files require each record to be a consistent length, so a

specific record position can be calculated. This means that

if the longest name in the squadron has twenty five letters
in it, even the shortest name will also effectively take up
the same twenty five bytes of storage. Perhaps more signif-
icant is the new pilot whose name will not fit into the
existing name field--not the best situation.

The point of this discussion is that data storage

HAREEREE - 3O0CCRRY ¢

must be considered carefully so that changes can be accommo-

Ltet e, CER .t . . L.) o o S e) oo, e
N A I I AP DV N T RS e P (PLIPLIP I WAPWRr DA U W VW R N E R e Bt Bt i B B B B

v v et iadt s shrtt 2 abtt
R e e RACHA NSRS R

WRERERMK -

42

3 LN

dated. Speed of access and active storage space within the
computer must weigh against disk space available. Most

significant is the ability to change the mode of storage as

P P T T

R

requirements change. This suggests the use of a file to

o

store the meaning of the contents of another file. Allowing

the user to define what, where and how the data he/she needs

PR
. k.l 13

3

g
-

Yy
CARY * . I
e e LN .
AN PRI R Y

)

will be stored will make for maximum flexibility in applica-

(e 4

tion to varying locations, guidance and regulations.

Specific Data Tvypes

-
N

.
T~
-
. Y
o

The algorithm being developed deals with pilot's
personal data, qualifications, currencies, requirements,
accomplishments, and availability. Time periods may vary
from three years, the longest currency period presently
needed, to a few minutes. Dates may be needed in terms of
days or months, or may refer to times years away. Effective
manipulation of data in these forms will require a few
standardizing decisions up front.

Individual name and personal data will mostly be
string or individual character type. If internal data ma-
nipulation is accomplished with subscripted or array vari-
ables, then this data may most easily fit into a sequential
file. 1Initialization of run time variables to the portions
of personal data needed would be quick and accomplished only
once. Prompts and other user interface messages could in-
sert the name while manipulating the data in an array. Data

such as currencies could be maintained in a list by pilot or

............... et g s - N

c AT T PR R I N R B S I LI SR AL I SR IR I I O
AL ﬂ_f.\f.:‘Lm' S WAL S A P W AT I UL TR U 1 O S W P [V WL I WL S WS

< - - -
..................

......

43
by the currency requirement, depending on the use being made
of the data.

The basic concept of the scheduling model is that a
relationship of priority exists between the number of oppor-
tunities available to accomplish a requirement and the num-
ber of those requirements that remain. Implementing this
concept requires subtracting the ipdividual pilot accom-
plishments from the total required for the given item. By
eliminating periods that are known to be unavailable, a
quotient representing the relative priority of pilots for a
specific training asset can be established. If only those
current and available are considered, then the pilot wiﬁh
the highest priority is the one assigned to use that item.

This concept will require storage of many data items
at once. If the requirement is to £fill a flight lead ACBT
slot, for instance, the algorithm must check all pilots for
flight lead status, ACBT currency, and availability during
the time period of the flight. Then, assuming more than one
pilot is available who fills these criteria, each pilot's
priority for the ACBT flight must be calculated and com-
pared. When the highest priority is determined, given all
factors and weights to consider, that individual must then
be made "not available" for the duration of the flight and
the briefing and debriefing times associated with it. With
that pilot's data updated for the potential flight comple-

tion and the flight itself filled, the next priority of

ada

44
requirement must be examined in the same way.

Thus it becomes obvious that implementation of this
algorithm requires storage of and access to availability,
qualification, and currency data. A schedule is normally
built on a weekly basis with names, but tentativé plans may
be made over longer éeriods. The availability data must be
stored in a format allowing any degree of precision required
by the situation. A month or more in advance, the scheduler
may be looking at half-day time increments; he will be
looking at parts of hours, perhaps minutes, when making a
final daily schedule.

The concept of a file defining the use of a file
makes it possible to store the standard data in a given
application very compactly. The range of integer numbers
allows currency data to be stored as the units digit of the
year ‘times 1000 plus the Julian date. For example, 30
January 1983 would be 3 X 10990 + 39 or 3930. Availability
usually requires two times to define it, the'beginning and
the duration or end time. Since a training period is six
months long, the day of the period times 10@ plus the half-
hour of the day would fit into the integer number range
available3. This limits the resolution of the system to the
half-hour block that includes the start or end time, but

that may be sufficient for most long range factors.

3A maximum of 184 days times 100 equals 18400, plus
24 hours in a day times 2 equals a maximum value well within
the limits of integer values.

-

- ".~""A.' B ’-v - ‘4-'A~_ K S IRt ¢ . " PRI N S S WP P ITIE W W TS W P U I, WPV W T S BTSSR PSS

..........
...

45

A date and time block providing one minute resolu-
tion would need four digits for the time of day and four
- more for the day and year. If the duration were limited in
some way, it could reduce the storage space required for the
end data, but using the same format reduces the complexity
of coding and decoding without limiting flexibility. For
instance, the system could accommodate both a 30 minute
duration haircut appointment and a 179 day temporary duty
(TDY) assignment without modification.

One factor to consider in currency data storage is
the form of the requirement, currency dates, and the method
for their comparison. At machine level, the easiest compar-
ison is a logical AND or a subtraction. Since this is done
in binary form, if the data were stored in binary also, it
could have a beneficial effect on speed of operation. This
type of data storage and comparison technique will be useéd
for the availability checking routine. Numbers up to 255 in
decimal, or 28 less one, can be compared directly this way

with an eight bit microprocessor.

Summar

The data storage is driven by several factors, the
machine and language capabilities, mass storage characteris-
tics, and the nature of the information to be stored. The
variations from one user environment to another will require
significant user input into what information is stored and

how. The general types of information will be character

..................

i e = = e e -
> T T NAE Sl AN e o ~ DR
i ouantanmet s e At o -y NS Lol e NS AC AR R At BN R e P SRS e A Bl S ARl g B e
- Y “ “"‘ -,\h‘: ‘v\.\ - - \ - - - - - -~ . - -

. . .
~os e AN

46

strings, numbers, and dates, and their form will be the

smallest that can be used consistent with the range and

resolution required.

.
-
)
P P L. I - . O O

M Tl Ve T e ey L Wt L AT L T et e, B .« CR IR R S R A RO

e e T T N e e e Tt e Ty e UL e e It ot . o e
LA '..'.'"_,":'.\-").'n"_f‘-'." IR I R SR - . \ . " - -
[I I B T AN S LI I P S, R, -

B
3
R
N
g
..
..‘

ANNEX C
PROGRAM LISTINGS

The programs listed on the following pages show
the ability of a microcomputer to handle the magnitude and
detail of the scheduling problem at squadron level. Several
statements are included which "stub" certain routines; these
were not required to demonstrate the algorithm and were not
completed due to time constraints.

These programs were written on an Osborne 1 with the
software included in the purchase price of that system. The
listing was done on an IDS Prism 132 printer in the 10 char-
acter per inch correspondence font mode.

Any reader with intent to apply these programs to an
actual scheduling job is encouraged to contact the author for

a copy of the latest version on disk.

47

...................

2540
2460

%20

330

48

100 RN w CURDEFSET (B R R R R RN AR R R E R R R R R R ERERERRRERERRRE R B
110 ‘program dated 16 Mav 1983

120 '

130 'This program sets or changes the values stored for
140 ' each currency code

150 '

160 DEFINT A-2Z

170 CLRS = CHRS(26): DOWNS = CHRS$(10)

180 MID SCRNS = CLRS + STRINGS$(8,10)

190 DIM EVENTS(10)

20¢ ’

210 OPEN "“R", 1, "CUR.DEF", 28

220 FIELD#1, 2 AS Nits, 20 AS Ni2s, 2 AS Ni3%, 2 AS Ni14s
. 2 AS N13s

230 !

240 PRINT MID.SCRNS "“Enter currency code number to chang

e or 0 to quit"

PRINT: PRINT"What number?";: INPUT" ", CCDE
IF CODE = 0 THEN CLOSE: END ELSE IF CODE > 15 THEN P

RINT"Error, out of range <{max is 13>": GOTO 250

270 GET#1, CODE
280 CUR.CODE = CVI(N11$)
290 CUR .NAMES = Ni12$
300 PER.EX = CVI(N13$)
310 PER.INX = CVI(N14s$)
320 EVNT = CVI(N1SS)
330 IF CUR.CODE (> CODE THEN PRINT"File error: record nu
mber not equal to currency code": PRINT"Press any key to con
tinue. . “;: DUMMYS$ = INPUTS$(1)
340 PRINT MID.SCRNS "Current data:"
350 PRINT CUR.CODE CUR NAMES$ PER.EX PER.INX EVNT
340 PRINT
370 PRINT" Enter:"
280 PRINT" 0 if all corract, no changes"
390 PRINT" 1 to change currency name'
400 PRINT" 2 to change experianced currency per
iod™
410 PRINT" 3 to change inexperienced period"
420 PRINT" 4 to change updating event number"
4340 PRINT" Which choice?"; A = VALCINPUTS(1)) PRINT A
4490 IF A = 0 THEN LSET Ni11s$ = MKIS(CODE) PUT#!1, CODE: G
OTO 240 ELSE IF A > 4 THEN PRINT"Ertor, enter a number from
0 to 4 only, try again.. ": GOTO 430
4350 ON A COSUB 500, S80, 640, 700
340 GOTO 340
470 !

2 480 ‘——_subroutines

o8 490 !

. soo PRINT MID. SCRN$ CUR.CCDE CUR NAMES PER EX PER.INX EV
NT
St10 PRINT: PRINT"What is the new currency name',: INPUT

CUR NAMES

IF LEN(CUR MAMEs: > 20 THEN PRINT"Teo long. only 20

characters wil! be saved"”

PRINT"Enter 0 if currency name 13 correct, 1 to chan

49

gqe it: ";: A = VALCINPUTS(1)): PRINT A

540 IF A = 1 THEN GOTO S10 ELSE IF A () 0 THEN PRINT"Err
ot, 0 or | only, try again.. . '": GOTO S30

550 LSET Ni12$ = CUR.NAMES

540 RETURN

$70 !

s80 PRINT MID.SCRN$ CUR.CODE CUR.NAMES PER.EX PER.INX EV
NT

SS90 PRINT: PRINT"Enter the period of currency for axperi
enced pilots"”

400 INPUT"What i{s the currency period (days)? ", PER.EX

6§10 LSET Ni3% = MKIS(PER.EX)

6§20 RETURN

6§30 *

640 PRINT MID.SCRNS CUR.CODE CUR.NAMES$ PER.EX PER.INX EV
NT

4350 PRINT: PRINT"Enter the periosd of currency for inexpe
rienced pilots"”

440 INPUT"What is the currency period (days)? ', PER.INX
8§70 LSET N14s$ = MKIS(PER. INX)

680 RETURN

6§90 :

700 PRINT MID.SCRNS CUR.CODE CUR.NAMES$ PER.EX PER.INX EV
NT

710 PRINT:. PRINT"Enter the event number that updates thi
s currency (? for help) "

720 INPUT"What is the event number? ", EVNTS

730 IF EVNTS = "?" THEN GOSUB 790

740 EVNT = VAL(EVNTS)

7%0 IF EVNT ¢ 1 OR EVNT > 10 THEN PRINT"Enter a number f
rom 1 to 10 only.. . ": GOEUB 790: GOTO 740

760 LSET Ni1%$ = MKIS$(EVNT)

770 RETURN

780 !

790 OPEN "R", 2, "CUREVNT.DEF", 2§

800 FIELD#2, 2 AS N21s. 20 AS N22s

810 . I = 0

820 FOR I = 1 TO 10

830 CET#82,

8490 EVENTS$(I) = N22¢

850 NEXT

840 FOR I = 1 TO 10

870 PRINT 1 "~ " EVENTS(I)

gao NEXT

890 INPUT"Which event number? ", EVNTS

900 RETURN

e e

MDA I R A I

50

100 ‘AR ACTDEF SET MAXRRAXNRARRAXARAANARKANRKA RN A AN KR RN KN

110 ‘srogram dated 16 Mav 1983
120 '
130 ‘This program sets of changes the values stored for
140 ' each activity code
150 '
160 DEFINT A-Z
170 CLRS = CHR$(26): DOWNS = CHRS$(10)>: MID.SCRNS = CLRS:
FOR I = {1 TO 8: MID SCRNS = MID.SCRN$ + DOWNS: NEXT
180 DIM ST.T¢(3), END . T(3), GP$(3)>, CUR CATS$(1S), QUAL CA
TS (19
190 ST.T(O0) = 0: ST.T(1) = 1S5: ST T(2) = 135: ST.T(3) =
143
200 END.TC(O0) = G: EMD . T(1) = 90 EMD T(2) = 180 - END.T(3
) = 240
210 CPs$(0)> = "Non-dyty activities" GP$(1) = "“Duty/non-f
lying activities"
220 GPs$(2) = “Flying activities": GP$(3) = "Long flight
Activities"
230 !
240 OPEN “R". t, "“ACT DEF", 44§
250 FIELD#1, 2 AS Nit1s, 20 AS Ni12$s, 2 AS Ni13s, 2 AS N14¢$
. 10 AS N1Ss, 10 AS Niés
2460 !
270 PRINT MID SCRN¢$ "Enter activity code number to chang
e or 0 to gquit"
280 PRINT: PRINT"What number?";: INPUT" *, CODE
290 IF CODE = 0 THEN CLOSE: END ELSE IF CODE > 2535 THEN
PRINT"Error, out of range {(max is 23S>": GOTO 280
300 GET#1, CODE
310 ACT CODE = CVI(N1I1S)
320 ACT NAMES = N12$
330 ST.T = CVI(N13$)
3490 END T = CVI(NiIAGY)
350 CURS = Ni1SS
260 QUALS = Ni1és
370 IF ACT.CODE (> CODE THEN PRINT"File error record nu
mber not egual to activity code": PRINT"Press any key to con
tinue. . . “;:
DUMMY$ = INPUTS (1)
380 PRINT MID. SCRM$ “Current data:"
aso PRINT ACT CODE ACT .NAMES ST T END.T
X 400 PRINT
. 410 PRINT" Enter-"
. 420 PRINT" 0 if all correct. no changes"
L 430 PRINT" 1 to change activity name"
_ 140 PRINT" 2 to change start or end time offset
. s"
g 4%0 PRINT"” 3 to check currency requitements"
440 PRINT" 4§ to check gqualification requirement
g
470 PRINT" Whiech choice?";: A = VALIINPUTS (1)) PRINT A
480 IF A = 0 THEN LSET Ni1$ = MKIS(CODE» PUT#1, CODE- C

NTO 270 EL3E IF A > 4 THEN PRINT"Error, #2nter a number from
0 to 4 only,

. - - LU TS N
Y L N L A U A R A B . te Ta te e e . . PO I FE P e T RN
. . . ta RS v . . e . PR AL i U U PR DN P T L I Y

..'0
PEATRET TE . TV I L T P A T, TP A s ae i g e P P) a

CAGCILEML S suband s

51

try again .. ": GOTO 470

490 ON A GOSUB S40. 620, 790, 1030

soo0 GOTO 380

Si0 !

520 ‘'—8Subroutines

%30 !

$40 PRINT MID. SCRNS ACT NAMES

$S0 PRINT"What is the new activity name"”;: INPUT ACT NAM

ES

$460 [F LENCACT NAMES$) > 20 THEN PRINT"Too long, only 20
characters will be saved"

$70 PRINT"Enter 0 if activity name is corract, ! to chan
ge it: ";: A s VALCINPUTS$(1)): PRINT A :

580 IF A = 1 THEN GOTO 440 ELSE IF A (> 0 THEN PRINT"Erc
or, 0 or 1 only, try again.. . ": GOTO 490

590 LSET N12$ = ACT . NAMES

600 RETURN

§10 !

620 PRINT MID.SCRNS "Start offset is the time before the
activity that availability is required”

6§30 PRINT"End offset is the time for the activity and de

brief or travel! time following"

640 J = ACT.CODE / 64

6590 PRINT"This activity code group includes " GPS(J) “:"

640 PRINT ST T(J) "is the standard number of minutes set
for start offset"

70 PRINT END.T(J) "is the standard end offset"

689 PRINT"Enter ™

690 PRINT" Q@ if the old offsets are correct"

700 PRINT" 1t to change to the standard offsets"”

710 PRINT" 2 to enter different otfsets"

720 PRINT"Which choice? ";: A = VALCINPUTS(1)): PRINT A

730 IF A = 0 THEN GOTO 760 ELSE IF A > 2 THEN PRINT"Erro
£, 0, 1, or 2 only, try again...": GOTO 7240

740 IF A = 1 THEN ST.T = ST.T(J): END.T = END.T(J)

7%0 IF A = 2 THEN INPUT"Start offset (minutes): ", ST.T:
INPUT"End offset (minutes): ", END.T

740 LSET N13¢ = MKIS(ST T): LSET N14s = MKIS(END T

770 RETURN

780 !

790 OPEN "“R", 2, "“CUR.DEF", 28

800 FIELD#2, 2 AS N21s$, 20 AS N22s, 2 AS N23s, 2 AS N24¢
. 2 A8 N2Ss$

810 I = 0

820 FOR I = 1 TO 1S

830 CET#2, I

840 CUR CATS(1)> = N22¢§

8350 NEXT

840 PRINT MID SCRNS "Up to five combinations of currenct

es are allowed for each activity"

870 PRINT"For each currency category enter 1 if it appli

es. 0 tf it doas not "

880 CUR(1) = 0: J s 1

890 FOR I = {1 TO 1S

900 PRINT CUR CATs(1> "2 ".: BI!T = VAL/INPUTS (1)

e A T S A S PO L A S S SRR ST S S S T D i R e .

52
»: PRINT BIT

st 0 IF BIT THEN CUR(J) = CUR(J) + 2°(I-1)

920 NEXT

930 PRINT"This set complete, enter 0 if done, 1| to enter
another set";: A s VALCINPUTS(1)): PRINT A

940 1F A = 1 THEN J = J + 1: IF J > $S THEN PRINT"No more
toom for currency sets": J = § ELSE CUR(J) = 0 GOTO 890
950 IF A (> 0 THEN PRINT"Error, enter 0 or it only, try a
gain. . .": GOTO 930

960 CURRS = """

970 FOR I = { TO J

980 CURRS = CURRS + MXIS(CUR(I))

9?90 NEXT

1000 LSET N13S$ = CURRS

1010 CLOSE#2: RETURN

10290 !

1030 OPEN "R", 2, "QUAL DEF", 22

1040 FIELD#2, 2 AS N21s, 20 AS N2z2s

1080 I = 0

1060 FOR I = 1 TO 15

1070 CET#2, !

1080 QUAL CATe¢(I) = N22s$

1090 NEXT

1100 PRINT MID. SCRNS$ "“Up to five combinations of qualific

ations are allowed for each activity"

1110 PRINT"For each qualification category enter 1 if it

applies, 0 if it does not. "

1120 QUAL(1) = 0: J s 1

1130 FOR I = 1t TO S

1140 PRINT QUAL . CATS(I) 2 ",: BIT = VAL(INPUTS (1
Y): PRINT BIT

1150 If BIT THEN QUAL(J) = QUAL(J) + 2°(l=1)

1140 NEXT

1170 PRINT"This set complete, enter Q0 if done, 1| to enter
another set";: A = VAL(INPUTS(1)): PRINT A

1180 IF A = 1 THEN J a J + 1: IF J > § THEN PRINT"No more

room for qualification sets"”. J = § ELSE QUAL(J)Y = 0: GOTO
1130 .
1190 IF A (> 0 THEN PRINT"Ecrror, enter 0 or ! only, try a

gain. . .": GOTO 1170

1200 QUALS = "*

1210 FOR I = 1 TO J

1220 QUALS = QUALS + MKISC(QUALC(I))
1230 NEXT

1240 LSET M143 = QUALS

12350 CLOSE#2: RETURN
12460 !

-
.
L
.
«
.

-

I\ 0
e
; 53
r. 160 NN UPDATE XA XXX XX ARN KRR RRRR RN AN RAR AR R AR CAA AR R KKK
&2 110 ‘program dated 21 May 1983
- 120 '
;' 130 ‘This program allows aentry of availability data tor
; 140 ! pilots
150 :
140 ‘variables required:
170 ! none
180 !
190 ‘returns:
200) PILan.DAT files uypdated and in order
210 '
220 DEFINT A-2
230 CLRS = CHR$(24): DOWNS$ = CHR$(10): ESCS = CHRS$(27)
240 MID.SCRNS = CLRS « STRINGS$(4.,10)
2s80 HOMES = CHR$(¢(30): CLR.LINES = ESC¢ + "T"
2460 Cs$ = "Enter: 0 if correct, 1 to change it: "
270 E$ = "Error, enter 0 or 1 only, try again..."
289 '
290 MAX.PIL.NUM = 40
300 IF P$C0,0) <> CHRS$(2%3) THEM ERASE P$: DIM P${(MAX.PI
L.NUM, &
310 IF QUALS(0) ¢(> CHR$(2355) THEN ERASE QUALS. DIM QUALS
(1%
320 '
3o ‘open key file. . .
340 GOSUB 4080
3so ‘read in all names. ..
3460 GOSUB 4010
37¢0 CLOSE
3a8¢ '
3vo ‘open qual . def file. . .
400 GCOSUVEB 4120
410 FOR' I = 1 TO {S: GET#2, I: QUALS(I)> = N22$. NEXT: CL
QSE
420 !
430 ‘open curevnt . def file. .
440 GOSUB 41460
450 FOR I = 1 TO 10: GET#2, I: TRIMS = N22$. GCOSUB 2490.
EVENTS$ (1) = TRIMS$: NEXT: CLOSE
4460 *
479 PRINT MID.SCRNS " Enter: "
480 PRINT" 0 to quit, all done"
490 PRINT" 1 to add a new pilot data file”
500 PRINT" 2 to change data in existing data fi
le”
Si10 PRINT" 2 to delete a pilot data file"
$20 PRINT" Which choice? ";: SEL = VAL(INPUTS(1)). PRIN
T SEL
$3¢ IF SEL (s 0 THEN END ELSE !F SEL > 3 THEN PRINT"Erro
r. enter a nunmber 0 to 3 only. try again. ..": GOTO 520
$44¢ ON SEL GQSUB 400, 1340, 13540
$S59 GOTO 470
$é60 '
$70 '3dd_pilot_data

R P R N SR i SR T S
J'... .'. ‘.4".. . CRICR KN At .

- ® - "ate e e S

° [) ~ - e . : - - ‘ P - -
o L IR I It UpE T R . T L R R T T A il AP A TN SPNT AP RSN SN WP UL | o a Tazac-

g Lar et S arus s LaiC ™ it e e e U TR S S - N "
T T AR AR AR A A . B BN RSP - B S {
? 54
i s80 -
2 s90 ‘print names to screen. ..
ﬁ 600 GOSUB 389%0
;T‘_ 610 '
E §240 INPUT"Which pilot numbar do you want to use? ", NUM
3 6§30 IF NUM = 0 GOTO 1280
£ 640 NUMS = STR$ (NUM)
5 650 NUMS = MIDS (NUMS,2)
3 660 '
3 470 ‘check if file already exists. ..
680 ON ERROR GCOTO 700
s §90 FILENAMES = “PIL" + NUMS + “ DAT": OPEN “I", 1, FILE
3 NAME$
' 700 IF ERR = S3 THEN RESUME 750
% 710 PRINT FILENAMES " exists on this disk, confirm you w

AR«

T

P iRkl 4 REREREN

T e e e e e S e DI A e L T e e . . R
SN SIS SIS, TP SPLEPR IR, AR U SE.SUSJPS JENS L PSJ SORLISp W

ant to overwrite

720 PRINT: PRINT"Enter 0 to continue, 1 to NOT overwrite
this file: ";: A$ = INPUTS$(1): PRINT AS

730 IF AS = "1" GOTO 4240

740 IF AS (> "0" THEN PRINT E$: GQOTO 720

7%0 ON ERROR GCOTO 0

760 CLOSE

770 '

780 ‘name data entered at subroutines. ..

790 FOR I = 1 TO 3. ON I GOSUB 4270, 4360, 4400: NEIXT

800 '

810 ‘check admin data, update key file. . .

820 GOsSUB 2580

830 !

840 ‘now put in individual file. ..

8sd OPEN "O", 1, FILENAMES

840 WRITE#1, NUMS

870 WRITE#1, L NAMEs, F . NAMES, MIS$

8840 WRITE#:, RANKS

8%0 WRITE#1, SSANS

900 !

9r0 ‘ask and save qualifications at once. . .

920 WRITE#1, "QUALIFICATICNS . *“

930 FOR ! = 1 TO 1S

9240 PRINT MID.SCRNS

950 PRINT"Enter a | digit if the qualification applies,

0 it it does not" .

940 PRINT: PRINT QUALS(I) *?2 0 or t: ",: A = VALCINPUTS(

1)) IF A ¢ 0 OR A > { THEN PRINT A E$: GOTO 940

973 WRITES1, A

980 NEXT

990 CLOSE #2

1000 '

1010 ‘same for currency dates.

1020 WRITE#L, "CURRENCIES "

1030 ‘open curr event name f{ile as #»2

1040 COSUB 4140

1050 FOR I = 1 TO 10

1060 PRINT MID.SCRNS

1070 PRINT"Enter the date " EVENTS(I) " last accomplished

®« " ¢ a T a W T k¢ L

(destroy) it"

Lo e o . e T .
PRI P WA S S ada aata®ac"

oA AR At e S Mot T e e NS A SO SACT ATl NI ThAn Jbde e e e ST i e P Al A il b SIS S R Y

55

- or 0 for nona: "

N 1080 GOSUB 5630
1090 WRITE#1l, DATE
1100 NEXT
1110 CLOSE 82
1120 '
1130 ‘open activity definiton file.
1140 GOSUB 42400
1150 A = 1. N= 0: MAX.N = 10
1140 COSUB 1920
1170 ‘save max number activites. . .
1180 MAX.N = N
1190 '
1200 ‘entries complete., sort them. ..
1210 GOSUB 4890
1220 ‘then check for conflicts. . .
1230 GOsSUB $070
1240 ‘print to file. ..
230 WRITE#1, "ACTIVITIES SCHEDULED:", MAX.N
1260 FOR I = 1 TO MAX.N: PRINT#1, ACTS(I): NEXT
1270 CLOSE
1280 RETURN
1290 '
1300 :
1310 ‘—_change_or_add__to_existing_pilot_data_files
1320 ‘
1330 ‘get and check pilot number. ..
1340 GOSUB 1730
13540 '
1340 ‘tead file into memory. ..
1370 GOSUB 3530 .
1380 PRINT MID.SCRNS CVI(PS$S(NUM,1)) " - " P$(NUM,2) PS(NU
M,3) " " PS(NUM, 4.
1390 PRINT: PRINT" Enterg:"
1400 PRINT" 0 if no more changes or additions, a
11 done"
1410 PRINT" 1 to change admin data (name, rank,
SSAN) "
1420 PRINT" 2 to change qualification data"
1430 PRINT" 3 to update currency data"
1440 PRINT" 4 to add, change or delete availabil
ity data"”
14%0 PRINT" Which choice? ";: A = VALCINPUTS(1)): PRINT
A
14460 !
1470 IF A = 0 THEN GOSUB 2900: RETURN
1480 IF A > 4 THEN PRINT"Error, enter 0 to 4 only, try ag
ain. .. GCOTO 1450
1490 ON A GOSUB 2%80, 2130, 3230, 3330
1500 COTO 1380
1510 !
1520 !
1530 ‘e delete_complete_pilot_data_¢~file
1540 ’
15350 ‘qget and check pilot number. .

LYWL v,

y 56
v 1560 COSUB 1730
' 1570 PRINT"Enter 0 to delete this file, 1 to abort delete
action"
. 1580 INPUT"Which one"; D
I 1390 IF D (> 0 THEN PRINT"Exiting delete mode, file NOT d
eleted. . .“: FOR I = § TO 1000: NEXT: GOTO 14680
1600 OPEN "O", 3, TMP.FILS: CLOSE#23: GOSUB 3030: KILL FIL
ENAME S
1610 ‘teset key file. ..
1620 GOSUB 4080
1630 LSET Ni1$ = MKIS(NUM): LSET N2$ = "Not in use": LSET
- N3$ = " " LSET N4s$ = " "
" 1440 PUT#1, NUM
' 1650 CLOSE#1
@ 1640 ‘reset memory variables. ..
3 1670 PS(NUM,2) = "Not in use": PS(NUM,3) = " " P$(NUM,. 4
) = " "
1680 RETURN
1690 '
1700 ! subroutines
1710 '
1720 ‘get and confirm pilot number. . .
1730 PRINT MiIiD. SCRNS
1740 PRINT"Enter the last name or pilot number ", : INPUT"
", ANSWERS
170 IF ASC(LEFTS(ANSWERS , 1)) (¢ $8 THEN NUM = VAL (ANSWERS
Y): THIS NUM s -1 ELSE NUM = 0: L.NAMES$ = ANSWERS
1760 ‘look for name match. .
1770 WHILE NUM (MAX . PIL . NUM AND NOT THIS.NUM
1780 NUM = NUM + 1
1790 N IF L.NAMES = LEFTS$(PS$(NUM,2),LEN(L NAMES$)) T
HEN THIS NUM = -1 ELSE THIS NUM = 0
1800 WEND
1810 IF THIS.NUM = 0 THEN GCOSUB 3890: PRINT: PRINT"Enter
pilot number: ";: INPUT NUM
1820 IF NUM = 0 THEN GOTO 189¢
1830 PRINT MID.SCRN$ CVI(PSI(NUM, 1)) " = " PS$(NUM,2) PS(NU
M,3) * " PS$(NUM, Q)
1840 PRINT"Enter 0 if this the corctect entry; 1 if not co
rrect:";: THIS.NUM = VALCINPUTS(1)): PRINT THIS NUM
1850 IF THIS.NUM = { THEN THIS . NUM = ¢: GOTO 1810
1860 IF THIS.NUM (> 0 THEN PRINT"Error, enter 0 or 1 only
...": GQTO 1830
1870 ‘have correct number, get filenames.
1880 GOSUB 3810
1890 RETURN
1900 '
1910 ‘input a new activity. . .
1920 WHILE A
1930 N a N « 1
1940 PRIMT"Enter activity code (? for help) *“,;
1950 INPUT" ", CODES
1940 I¥ CODES = "?" THEN GOSUB 44S0 ELSE IF CODES
= "0" THEN GOTO 2400
1970 ACT . CODE = VAL(CODEW)

.
- - ST IR Bl e “w e T -
o P I
IR I A P IR,

LI A R P A R LT, o A .
IR St U S SR RS S U W R SO TR S U\ WD E R SIS RPN AL SR

PSPPSRI S WA W Y

[STEE SUPOI R WY WM WA W S S N

A T T T T N N e L S AN T LT e T TN

by 57

2{ 1980 IF ACT.CODE ¢ 1 OR ACT CODE > 285 THEN PRINT
» “Entry is out of range...": GCOSUB 4450: GCOTO 1970 '
- 1990 IF (ACT.CODE AND 43) = 63 THEN OTHER = -1 EL
- SE OTHER = 0 , |
(' 2000 IF OTHER THEN INPUT“What is the activity nam |
- e? ", ACT.NAMES: GOTO 2040
-l 2010 GET#2, ACT CODE
%) 2020 TRIMS = N223§
‘3 2030 GOSUB 2490 ¢
o 2040 ACT NAMES = TRIMS
2050 !
- 2040 PRINT MID.SCRNS .
. 2070 PRINT"“Enter the date " ACT.NAMES " starts or
iy occurs on: "
L 20840 GOSUB 5430
}: 2090 ACT.DATE = DATE. END.DATE = 0
’ 2100 PRINT MID.SCRNS
- 2110 PRINT"Entar the scheduled time: “;
. 2120 INPUT TIMES:. GOSUB St90
2130 IF OTHER THEN GOSUB 4690: GOTO 2230 ELSE 1IF
ACT.CODE = 42 OR ACT.CODE = 461 THEN GOSUB 4820: GOTO 2230
2140 ‘'not other snd not 61 or 62. ..
2150 PRINT MID. SCRNS$
D 21460 PRINT" Enter: " .
N 2170 PRINT" 0 it standard time offsaets a
-~ pply"
- 2180 PRINT" 1 to change them"
"o 2190 PRINT"® Which choice? ";: AS$S = INPUTS(1): PR
INT AS.
n 2200 IF AS = "{" THEN GCOSUB 46%0: GOTO 2230
ﬁ 2210 IF AS (> "0" THEN PRINT Es$: GOTO 2140
o 2220 START = CVI(N23s)>: END.T = CVI(N24s)
- 2230 ACT.ST.TIME = TIME - START: ACT.END.TIME = T
i IME + END.T
21240 IF END.DATE = 0 THEN END.DATE = ACT.DATE
‘e 221%0 ACT.LNS = STRINGS$(2%5.,32)
{J 2240 MIDSC(ACT.LNS,1,5) = STRS(ACT.CODE)
5 2279 MIDS(ACT .LN$.6,5S) = STRS(ACT.DATE)
ﬁ 2280 MIDSCACT . LNS$,11,5) = STRS(ACT ST.TIME>
x5 2290 MIDSC(ACT .LNS$,16,5) = STRS$(END.DATE)
2300 MIDSC(ACT.LNS,21,5) = STRS(ACT.END.TIME)
- 2310 ACT.LN$ = ACT.LNS + ACT.NAMES
- 2320 IF N >»>» MAX.N THEN COSUB 3740
; 2330 ACTS (N) = ACT.LNS
. 2340 PRINT MID.SCRNS " Check the activity d
. ata "
4 2380 PRINT N " " ACTS (N
- 2340 PRINT C$,. A = VALCINPUTS(1)): PRINT A
. 2370 IF A = t THEN GOTO 1940
: 2380 IF A (> 0 THEN PRINT E¢$: GOTO 2340
- 2390 !
' 2400 PRINT"Enter:"
2410 PRINT" Q0 if entries complete”
- 2420 PRINT" 1 if more activities to enter"
. 2430 PRINT"Which one? “;. A = VALCINPUTS(1)::. PRI

F7e 7

——y——
]
LA)

58

NT A .

1440 IF A ¢ 0 OR A > §{ THEN PRINT E$; GOTO 2430

2450 WEND: ‘'activity entry loop.

2460 RETURN

2470 '

2480 '

2490 L = LEN(TRIMS) + 1 L. CHRS$ = CHR3(0)

2500 WHILE ASC(L . CHR$) < 33

2510 L =L -1

2520 L.CHRS = MIDS(TRIMS.L, 1)

2330 WEND

2540 TRIMS = LEFTS(TRIMS,L)

2550 RETURN

2540 '

2570 ‘'ehange admin data. ..

2580 PRINT MID.SCRNS

2590 PRINT"Check the pilot data:"

2600 PRINT: PRINT“Pilot number assigned: “; NUMS$

2610 PRINT: PRINT L.NAMES ", * F_.NAMES " " MIS$ ", " RANKS
“ " SSANS

2620 PRINT: PRINT

2630 PRINT" Change which entry:"

2640 PRINT" 0 - no more changes, all correct"

2450 PRINT" 1 - name"

2660 PRINT" 2 - rank/grade"

2670 PRINT" 3 - SSAN"

2680 PRINT" 4 - change all entries"

2690 PRINT" Which one? "“;: AlS$ = INPUTS$(1): PRINT A1

2700 IF A1$ = “0" THEN GOTO 2740

2710 IF VALCAL$) > 4 THEN PRINT"“Error, enter 0 to 4 only,
try again...": GOTO 2690

2720 ON VAL(AL1S$) GOSUB 4270, 4360, 4400, 4230

2730)

2740 ‘antries are correct, put in kev file. . .

2780 'open key file. ..

2760 GOSUB 4080

2770 ‘and save key data. . .

2780 LSET Ni1s$ = MKIS$ (NUM)

2790 LSET N2$ = L NAMES

2800 INITS = LEFTS(F NAMES,1) + LEFTS(MIS, 1)

2810 LSET N3$ = INITS

2820 LSET N4¢ = RANKS

2830 PUT#1, NUM

2840 CLOSE#!}

2830 ‘put in memory array. ..

2860 PS(NUM, 1) = MKIS(NUM): P$(NUM,2) = L NAMES + STRINGS

(20-LENC(L . NAMES$),32): PS$S(NUM,3) = INITS: PS(NUM,4) = RANKS
2870 RETURN

2880 !

2890 ‘put all data in individual file (called from many ¢
outines) . .. i

2900 OPEN "O". 1, TMP FILS

2910 WRITE#1, NUMS

2920 WRITE®L, L .NAMES, F NAMES, MI

2930 WRITE#1, RANKS

R R

L AU st i i O G - AN . Co it e PR St ~Sint Bast e dine _— L asuis atad e gan st in Al Aeiunen |

59

2940 WRITE#1, SSANS
2950 WRITE#1, QUAL.IDS
2940 FOR I = 1 TO 1S: WRITE#1. QV(I>. NEXT
2970 WRITE#1, CUR.IDS
2980 FOR I = { TO 10:. WRITE#!1, CUR.DT(I): NEXT
2990 WRITE#L1, ACT.IDS, MAX.N
3goo0 FOR I = { TO MAX.N: PRINT#1, ACTS(I): NEXT
3010 CLOSE
3020 ‘and rename files. ..
3030 ON ERROR GQOTO 30°90
3040 KILL BAK FILS
30350 CN ERROR GOTO 0
2040 NAME FILENAMES AS BAK.FILS
3070 NAME TMP.FILS$ AS FILENAMES
30840 GOTO 3100
3090 IF ERR = 53 THEN RESUME 30S%S0 ELSE GOTO 3050
3100 RETURN
3110 !
3120 ‘change qual data ..
3130 PRINT MID.SCRNS CVI(PS(NUM,1)>) " - “ PS(NUM,2) P$(NU
M,3) " " PS$S(NUM,4Q)
3140 FOR I = {1 TO 1%: PRINT I TAB(é) QUALS(I) QV(I): NEXT
31850 '
3140 PRINT: PRINT"Enter 0 if all correct or qual number ¢t
o change"
3170 PRINT"Which number <(0-15>?",: INPUT QN
3180 IF GN = 0 THEN RETURN ELSE IF QN > 1% THEN PRINT"Err
or, a number from 0 to 1S only, try again...": GOTO 3170
3190 IF QV(AGN) = | THEN QV(QN) = 0 ELSE GV(QGN) = 1
3200 GOTO 3140
3210 !
3220 ‘update currency dates. . .
3230 PRINT MID.SCRNS$ CVI(PS(NUM,1)) " - “ PS(NUM,2) P$(NU
M,3) " " P$(NUM, 4
3240 FOR I =2 1 TO 10: PRINT I TAB(4é) EVENTS(I) TAB(28) CU
R.DT(1): NEXT
3230 PRINT: PRINT"Enter 0 if cortect or item number to ch
ange"” _
3240 PRINT"Which number <(0-10>";: INPUT CN
3270 IF CN (= 0 THEN RETURN ELSE IF CN > 10 THEN PRINT"Er
tor, enter a number from 0 to 10 only, try again. .": GOTO 3
260
3280 PRINT"Enter the new currency date (accomplished date
y* . GOSUB $630
32%0 CUR.DT(CN) = DATE: GOTO 3230
3300 ‘returns on zeroc entry above. .
3310 '
v 3320 'add, change or delete availability data. ..
" 3330 PRINT MID.SCRNS CVI(PS(NUM,1)) " = " P$(NUM,2) PS$(NU
. M,3) * " P$(NUM,4Q)
iy 3340 PRINT" Enter:"
. 3350 PRINT" 0 if activity changes completed”
H 33460 PRINT" i1 to add new activities"
i 3270 PRINT" 2 to change existing activities"
. 3380 PRINT" 3 to delete activities"

-
-

. Te 8t W Mgt

h 0
o o e e
LI TR TR Y SR WY)

L DL A0 S MR A 3
. Pl

AN h) _‘I

v
L]

5-90%

L)
s

e
F.. -
0“

‘.‘

,

.
‘-

60

3390 PRINT" Which choice? ";: A = VAL(INPUTS(1)>). PRINT

A

3400 IF A = 0 THEN RETURN ELSE IF A > 3 THEN PRINT"Error,
enter a number from 0 to 3 only, try again. .": GOTO 3390

3410 ON A GOSUB 3440, 3510, 3520

3420 GOTO 3330

3430 ‘'return selected with zero response above. ..

3440 !

34350 ‘open daf file, get activity entries. ..

34460 GOSUB 4200: PRINT MID.SCRNS;: N = MAX.N: A = {: GCOSU

B 1920: CLOSE#2: MAX.N = N

3470 ‘sort and check for conflicts...

3480 GOSUB 4890: GOSUB %070

3490 RETURN

35040 '

3510 PRINT"Change not written vet. .“: DUMMYS$ = INPUTS$ (1)
RETURN

3520 PRINT"Delete not written yet.. *: DUMMYS$S = INPUTS(1)
RETURN

3330 '

35440 ‘'opan data tile and read into memory, close. . .

35S0 OPEN “I", 2, FILENAMES

3540 INPUT #2, NUMSs, L .NAMES, F NAMES, MIS$, RANKS, SSANS

3570 IF EOF(2) THEN GOTO 3700 ELSE INPUT#%2, QUAL.IDs

3580 IF QUAL.IDS$ () "QUALIFICATIONS:" THEN PRINT"Qual dat

a not found":

3590 IF QV(0) (> =1 THEN ERASE QV: DIM QV(13)

3600 FOR I = 1 TO 1S: IF EOF(2) THEN GOTO 3700 ELSE INPUT

#2, QV(I): NEXT

3610 IF EOF(2) THEN GOTO 3700 ELSE INPUT#2, CUR.1DS

3620 IF CUR.IDS (> "CURRENCIES:" THEN PRINT"Cur data not

tound":

3430 FOR I = {1 TO 10: IF EOF(2) THEN GCOTO 3700 EL3E INPUT

#2, CUR.DT(Il): NEXT

3640 IF EOF(2) THEN GCOTO 3700 ELSE INPUT#2, ACT.IDS, MAX.

N .

36350 IF ACT.IDS <> "ACTIVITIES SCHEDULED:" THEM PRINT"Act

ivity data not found":

3460 FOR N = 1 TO MAX.N

3670 IF EOF(2) THEN PRINT"EOF before MAX N.. " MA

X.N N;: DUMMY$ = INPUTS(1): GOTO 3700

3680 LINE INPUT#2, ACTS (N)

3490 NEXT

3700 CLOSES»2

3710 RETURN

3720 '

3730 ‘dynamic array size increase. .

3740 IF TMP$(0) (> CHR$(25S) THEN ERASE TMPs$:. DIM TMPS$ (MA

X N

37%0 FOR M = 1 TO MAX.N: TMPS (M) = ACTS(M): NEXT

3760 ERASE ACTS: DIM ACTS(MAX . N « 10)

3770 FOR M = 1 TO MAX.N: ACTS (M) = TMP$(M) NEXT

1780 MAX N = MAX N + 10

37%40 RETURN

3809 . ‘'make pilnn.dat filenames .

B T T P S O | . ‘o L0
R TG L. WY YO WA SR Y U T AT GPU W0 WAL W) WSO GO i L VU g L G VU PP JU WS G W W TN WAL .0 VLIPS

IR

38140 NUMS = STRS$ (NUM)

4240

3820 NUMS = MIDS$ (NUMs ,K62)

3830 FILENAMES = "PIL" + NUMS + " DAT"

3840 TMP.FILS = "PIL" + NUMS + " . sss"

38350 BAK.FILS = "PIL" + NUMS + " BAK"

3840 RETURN

3870 !

3880 ‘print all pilot names to screen. ..

3890 PRINT CLRS

3900 FOR I = 1t TO 20

iv 10 NUM = CVI(PS(I,1)): L.NAMES = P$(I,2): INITS
3): RANKS = Ps$<(I.4)

3920 PRINT USING "###", NUM;: PRIMNMT " - " LEFTS(L
1) INITS " " RANKS,;

3930 NUM = CVI(PS(I+20,1)): L.NAMES = P$(I+20,2):
P$(I1+20,3): RANKS = P$s(l+20,4)

3940 PRINT TAB(27) USING "###", NUM,: PRINT " - *
.NAMES$,11) INITS " " RANKS$;

39%0 NUM = CVI(PS$(1+440,1)): L NAMES = Ps$(1+40,2):
P$(I+40,3): RANKS = P$(l+40,4)

3960 PRINT TAB(S5S) USING "“###"; NUM;: PRINT " - *“
.NAMES$,11) INITS " " RANKS

3v70 NEXT

3980 RETURN

3990 y

4000 ‘get pilot names from key file...

4010 FOR I = 1 TO MAX.PIL.NUM

4020 CET#1, I

4030 P$8(I,1) = Nis: PS(I,2) = N2s$: PS$(Il,3)
P$(1,4) = N4

4040 NEXT

40350 RETURN

40460 ‘

4070 ‘open and field def filas. ..

4080 OPEN "R", 1, "PILNAM.DEF", 27

4090 FIELD#1, 2 AS Nis$, 20 AS N2s, 2 AS N3s, 3 AS

4100 RETURN

4110 !

4120 OPEN “R", 2, "QUAL.DEF", 22

4130 FIELD#2, 2 AS N21$, 20 AS N2

4140 RETURN

4150 : :

4140 OPEN "R", #2, “CUREVNMT. DEF", 2§

4170 FIELD#2, 2 AS N21s, 20 AS N22s, 2 AS N23s, 2

4180 RETURN

4190 !

4200 OPEN "“R", 2, "ACT.DEF", 44

421¢ FIELD#2, 2 AS N21s, 20 AS N22s, 2 AS N23s, 2
, 10 AS N2Ss, 10 AS Nz2és

4220 RETURN

4230 '

42 40 ‘correct all name area variables.

42%0 FOR I = 1 TO 3: ON I GOSUB 43270, 4360, 4400

ETURN

= PsSCI,

.NAMES , 1

INITS =

LEFTS (L

INITS =

LEFTS (L

= N3I$:

N4s

AS N24s

AS N24s

NEXT. R

.)
! 4

;T

Y YTV YT
ol ittt
ARSI
1o ey,

s
4y 4y

"vv'—~‘
I
LA
.

Dl i

.
0.
4

R
0l

-8
N
P

LI Yy ‘
Y T IV

T]

.
PR

R at] g .
l‘n.llt.l.l “
vt

0

N . M. W s e R TN e T e TR T T e,y YT Te 4T

LRI S Se Sane s g A ML U AT R B O [y

62
4270 PRINT MID.SCRNS
428¢ INPUT"What is the pilot's last name? ", L. .NAMES
4290 PRINT MID. SCRNS
4300 INPUT"What is his first name? ", F NAMES
4310 PRINT MID. SCRNS
4320 LINE IMNMPUT"Enter his middle initial(s), ‘Jr.', ete,
or 0 (zero) for none: ", MIS$
4330 IF MI$ = "0" THEN MI35 = "
4340 RETURN
4330 '
4360 PRINT MID.SCRNS
4370 INPUT"What is his rank/qrade? ", RANKS
4380 RETURN
4390 '
4400 PRINT MID.SCRNS
4410 INPUT"What is his service number (SSAN)? ", SSANS
4420 RETURN
4430 !
4440 ‘read in activity codes and names, assumes def file
open as #2. ..
44590 PRINT"Select the desired activity category"
4440 PRINT" 1 for non-duty (leave, TDY, etc)"
4470 PRINT" 2 for non-flying duty activitias"
4480 PRINT" 3 for flying activities"
44990 PRINT"Which category? “,: A = VALCINPUTS$(1)): PRINT
A
4500 CP = (A - 1)%44
43510 FOR I = {1 TO 21
4520 CET®#2, 1 + GP
4330 ACT.CODE = CVI(N21¢$)
4540 ACT .NAMES = N22%$
45350 PRINT USING "##%"; ACT.CODE;: PRINT " - " ACT.NAME
$;
4560 CET#2, I + GP + 21
4570 ACT .CODE = CVI(N21S)
4354890 ACT.NAMES = N22%
4590 PRINT TAB(27) USING “###%", ACT.CODE,: PRINT " - *“
ACT NAMES
4600 GCET#2, I + GP + 42
44610 ACT.CODE = CVI(N218$)
4620 ACT NAMES = N22
44630 PRINT TAB(SS) USING "#s#"; ACT.CODE;: PRINT " - "
ACT NAMES
4640 NEXT
4630 PRINT: PRINT"Which activity code?",: INPUT" ", CODES
4660 RETURN
4470 '
4680 ‘other, input start and end time offsets ..
44690 PRINT MID.SCRNS
4700 PRINT"Enter the amount of time <(hrs min)> needed prio
t to the scheduled"
4710 PRINT"activity time (@.9. travel! time to a2 meeting o
r briefing timed"
4720 PRINT: PRIMT"How much time? "; GOSUB 5430

4730 START = DUR

o
-
v 63
4740 PRINT MID.SCRNS
Q 47 %0 PRINT"Enter the amount of time for the activity, inec
o lude debrieting, "
b 4740 PRINT"return travel, etc as applicable”
4770 PRINT: PRINT"How much time? “;: GOSUB $54S0
" 4780 END.T = DUR
S 4790 RETURN
I 4800)
N 4810 ‘long duration activities--leave, tdy, etc. ..
oy 4820 PRINT MID.SCRNS
4830 PRINT"What is the ending date of " ACT.NAMES
4840 GOSUB 5430
4830 END. DATE = DATE
484¢C RETURN
. 3870 !
4880 ‘sort activities. ..
4890 SWAP. = -1: LAST = MAX.N - 1
4900 WHILE SWAP.
4910 SWAP. = 0
4920 FOR I = 1 TO LAST
4930 SD1 = VAL(MIDSCACTS(1),6,%5)): ST! = VAL(MIDS
CACTS(I),11,8)
4940 SD2 = VAL(MIDSC(ACTS(l+1),6,8)): ST2 = VAL (MI }
DSC(ACTS(1+1),11,%)) j
4950 IF (SD:1 > SD2) OR (SD: = SD2 AND ST! » ST2) i
THEN GOSUB $000 |
4940 NEXT |
4970 LAST = LAST - 1 !
4980 WEMD
4990 RETURN
sooo TMPS = ACTS(I+1)
5010 ACTS(I+1) = ACTS(I)
s020 ACTS (1> = TMPY
%030 SWAP. = -1
§$040 RETURN
S0S0 ‘
$040 ‘econflict check, done after activities sorted by sta
rt. ..
$070 LAST = MAX.N - 1
5080 FOR I = 1 TO LAST
5090 ED1 = VAL(MIDSC(ACTS(I)>,16,5)): ET1 = VAL(MID
$CACTS(I),21,%5))
$1040 802 = VAL(MIDS(ACTS(I+1),46,%5)): 8T2 = VAL(MI
. DS (ACTS$(I+1),11,5))
s110 '
3120 ‘eonflict is TRUE if tirst activity ends after secon
d starts. .
$130 IF (ED1 ¢ 3D2) COR (ED! = SD2 AND ETt ¢ ST2)
THEN CONFLICT = 0 ELSE CONFLICT = -1
$140 IF CONFLICT THEN PRINT"Conflict found with:"
: PRINT ACTS(I)>: PRINT ACTS(l+1)
$1350 NEXT
$160 RETURN
A $170 ‘
. s180 ‘time of day validating routine

64

T . 0w 0w e U, T EL, W W
.. R . .

TNy M, PR, o, a7

- 1. MIN = V

Si190 NT = 0

5200 TS =« "

S2140 WHILE Ts (> *“:* AND NT (LEN(TIMES)
220 NT = NT + 1

230 TS = MIDS(TIMES NT,1)

3240 WEND

32350 IF NT = 0 GOTO 5390

$240 IF NT = LEN(TIMES) THEN NT = LEN(TIMES)
AL(RICHTS(TIMES ,2)) ELSE MIN = VAL(RIGHTS(TIMES ,LEN(TIMES) -
NT))

5270 HRaVAL(LEFTS(TIMES ,NT-1))

S280 BAD = 0

290 IF MIN ¢ 0 OR MIN > SS9 THEN BAD = -!
5300 IF HR ¢ 0 OR HR > 234 THEN BAD = -1

5310 TIME = HR*460 + MIN

$320 TS = CHRSCINT(HR/10)+48)

$330 1$ = CHRS((HR MOD 10)+48)

5340 M$ = CHRS(CINT(MIN/10)+48)

$3%0 E$ = CHRS$S((MIN MOD 10)+48)

$360 TIMES = TS + I$ + M$ + ES

$370 IF BAD THEN PRINT"Time " TIMES " not understood, ple
ase re-enter:";: INPUT" ", TIMES: GOTO $190
$380 NT = 0: T$ = “": I$ = "“: MS$ *“: E$ =

HR = 0: MIN = 0
$390 RETURN
$400 !

“*. BAD = 0:

$410
Sq20 --= This routine accepts an
colon is keyed,

S430 ' then allows only two digits up ¢t
60 . .

S440

$430 CKS = "

S440 DIGITS = INPUTS(1)

3470 IF ASC(DIGITS)<¢(48 OR ASC(DIGITS)>S58 THEN
tical digits or colon (:) only, please re-anter:
60

$480 CX$ = CKS + DIGITS

$490 IF RIGHTS(CKS,1) (> ":" THEN %440

$500 HR = VALCLEFTS(CKS , LEN(CKS$)=-1))

$510 MINS = INPUTS$(2)

$3S2¢ IF VAL(MINS) > &40 THEN PRINT “"Max number

is 60, please re-enter: ": GOTO SS10

input of numbers until a

o a value of

PRINT "“Nume
“,: GOTO %4

of minutes

$S30 MIN = VAL(MINS)

2940 CK$ = CKS$ + MINS

SS0 PRINT: PRINT "The interval entered is: " CK$ ", is t
his correct?"”

S840 PRINT C$;: AS = INPUTS$(1): PRINT AS

3970 IF At = "1 THEN PRINT"Re-enter interval frem beginn
tng: ": GOTO %4350

$S80 IF A$8 (> "0" THEN PRINT E$: GCTO S$3560

$$90 DUR = HR®40 + MIN

$S600 RETURN

610

%6290)

RO et i I it bt O A S e A A A A A I A AR TR TN S S e A Tt ;‘?.Wﬁ‘_..‘

65

$S430 IF MONTHS$(0) (> CHR$(2%S) THEN ERASE MONTHS

$640 DIM MONTHS (12)

$639 MONTHS (1> = "JAN"

5669 MOMTHS (2) = "FEB"

$470 MONTHS$ (3) = "MAR"

$680 MONTHS$ (4) = “APR"

5690 MONTHS$(S) = "MAY"

$700 MONTHS (4) = "JUN"

$710 MONTHS$ (7> = "JuL" |

$720 MONTHS (8) = "AUG*™

5730 MONTHS$ (9) = “SEP*® |

$740 MONTHS$ (10) = "OCT"

$7S0 MONTHS (11> = “NOV*"

$760 MONTHS(12) = "DEC"

$770 '

§780 IF FIRST.DAY(0) = 0 THEN ERASE FIRST.DAY

$79¢ DIM FIRST.DAY(12)

$8400 '

ss10 ‘'reset FIRST.DAY(3. .12) if correcting a date..

5820 ‘

s830 FIRST.DAY(1) = 1

5840 FIRST.DAY(2) s 32

5850 FIRST.DAY(3) = 60

S840 FIRST . DAY(4) = 91

$870 FIRST.DAY(S) = 121

s88g FIRST.DAY(é) = 152

5890 FIRST.DAY(7) = 182

5900 FIRST.DAY(8) = 213

$910 FIRST . DAY(?) = 244

$e20 FIRST DAY(10) = 274

$9230 FIRST.DAY(11) = 30S

$940 FIRST DAY(12) = 339

$9%0 ‘

5960 'e== get the date ---

s¢70 !

$980 IMPUT"What is the date (Day Month Year’", DATES

$990 IF DATES = "0" THEN DATE = 0: RETURN

6000 !

§010 ‘'put the date chars in individual variables. ..

6020 '

4030 IF D$(0) (> CHRS$(2SS) THEN ERASE DS

6040 DIM DS$(LEMNC(DATES))

6050 FIRST.DLMTR = 0

6060 !)

4070 FOR 1.V = 1 TO LEN(DATES)

6080 D$<¢(l . V) = MIDS(DATES,I .V, ,1»

6090 IF FIRST DLMTR (> 0 THEN 4180

6100 ‘if first delimiter not set, look for it;, allow almo

st

6110) any char except letters or numbers to delimit. ..

§120 D = ASC(DS(I V))

6130 IF D ¢ 48 THEN DLMT = =i
. 4140 {F (D > $7 AND D ¢ 6S$: THEN DIMT = -1
N 6150 IF (D > 90 AND D ¢ 763 THEN DLMT = -!
Ff 6160 {F DLMT THEN FIRST DLMTR = I V
b,°

. - T - . .
NS R N {,A.J

K _—r'ﬁ:Y-:T:_—T.;‘\':—T_ .j'i ""i ’.'.‘:‘.j_'.ﬁ_'-:_x - -_.ﬂ-_'.—'h'._'.‘\’:"\._‘-__'.:'. '_'.. ce T T e et T e . -]—

DLMT = 0
6180 NEXT
6190 !
6200 ‘assume the last two chars are the vear. ..
6210 !
6220 YEAR = VAL(RIGHTS(DATES,2))
6230 '
6240 ‘tind the day...
6230 'if a delimiter was found then day is the value
624640 'before the delimiter, otherwise the day is either
6270 ‘the first character or the first two characters of
6280 ‘the string--assume the first two characters if the
6290 ‘second character is not a letter
6300 :
63140 {F FIRST.DLMTR THEM DAY = VAL(LEFTS(DATES,FIRST. DLMT

R - 1)) ELSE IF ASC(D$(2)) < 58 THEN DAY = VAL(LEFTS$:{DATES,K 2
»): FIRST.DL
MTR = 2 ELSE DAY = VAL(LEFTS(DATES,1))>: FIRST.DLMTR = 1

4320 !

§330 ‘tind the month. ..

6340 ‘just look at three characters past the day or past

43S0 ' the ficst delimiter

6340 : - month could be a number or letters

64370 ! - convert lower case letters to upper

6380 i

4390 MONTHS$=""

§400 MON.NUM = 0

6410 FOR 1.V = {1 TO 3

§420 IF ASC(DS(FIRST . DLMTR+I . V)) < 58 THEN MON.NU

M a -1

6430 IF ASC(DS$(FIRST.DLMTR+I.V)) > 96 THEN DS(FIR

ST .DLMTR+I . V) = CHRS$S(ASC(DS$(FIRST DLMTR+I V))=32)

6440 MONTHS = MONTHS + DS$(FIRST.DLMTR+[.V)

6450 NEXT

6460 ‘

§470 ‘MONTHS is now a string of numbers or lattars,

§480 ' MON.NUM is TRUE if it is numbers

6490 !

§500 I[F MON.NUM THEN MONTHaVAL(LEFTS (MONTHS ,2)): GOTQ 458
0

6310 FOR 1.V = 1 TO 12

63520 FOR J.V = ¢ TO 3

4330 IF MIDS (MONTHS ,J.V,1) = MIDS (MONTHS ¢
1.V ,J.V,1) THEN TEST = -1 ELSE TEST = 0

6340 IF NOT TEST GOTO 63570. ' one not mat
cehing is enough

6330 MEXT J.V

6%40 IF TEST THEN MONTH = [V. GOTO £%580: ' found
a3 mateh

6570 NEXT 1.V

6580 I1F MONTH (I OR MONTH > 12 THEN INPUT"Month not unde
tstcod--enter the month as a one or twe digit number (1. .12)
", MONTH: GO

TO 6%80

6390)

A .\' S e .‘.‘.‘. ."-'.'- . _'.' “e ,".-_‘- P R . . . oo R }
R o A A R A N Y N A T T I Y

e e e R R P Bar P S B S Aty |

67
4600 "MONTH is now valid, set MOMTHS if reqd. . .
§410 '
4620 IF MON.NUM THEN MONTHS = MONTHS (MONTH)
6630 !
64430 ‘check i1f this is a leap yvear. . {
6650 '
6660 IF YEAR/4 = INT(YEAR/4) THEN LEAP YEAR = -1 ELS3SE LEA
P.YEAR = 0
84670 !
6680 ‘tf so must increment first day values after
6690 : February. ..
4700 ' .
6710 IF LEAP.YEAR THEN FOR !.V = 3 TO 12: FIRST.DAY(I.V)
= FIRST.DAY(I.V) + 1: NEXT
§720 !
§7 30 ‘make sure the number of days is valid for the
§740 ‘ month
6750 ’ compute max days in month. ..
4760 IF MONTH = 12 THEN MAX . DAYS = " 31" ELSE MAX DAYS =
STRS(FIRST DAY(MONTH + 1) ~ FIRST.DAY(MONTH))
§770 MAX . DAYS = MIDS(MAX.DAYS,2,2)
6780 ¢ then check range
6790 IF DAY ¢ 1 OR DAY > VALIMAX.DAYS$) THEN PRINT "Day of
month not understood--input day as a number <1.." MAX.DAYS
"y®,: INPUT"
“, DAY
6800 '
6810 ‘now put it together and see if correct. . .
6820 ‘
4830 DAYS = STRS$(DAY): YRS = STRS$(YEAR): DATES = DAYS + "
* + MONTHS + YRS
68490 PRINT"The date entered is: ", DATES
68S50 PRINT: PRINT Cs;
6840 A$ s INPUTS(1)
6870 IF A$ = "1" THEN COTO $S830: ‘try again. ..
6880 IF As (> "“0" THEN PRINT Es$: GOTO 4840
890 v,
% §900 ‘date is valid and checked correct, make the julian
2 §910) date. ..
L 6920 ‘ julian date form is year digit * 1000 + juli
P an date
! 6930 :
t §9 40 DATE = VAL(RIGHTS(STRS$(YEAR),1)>)*1000 + FIRST DAY(MO
- MTH) + DAY -1
ﬁ 6950 '
v 6960 ‘reset all variables not needed
! 6970 !
) 4980 ERASE D¢
' §990 YEAR = 0: MONTH = 0: DAY = 0. MON.NUM = 0
‘ 7000 FIRST .DLMTR = 0: A$ = "'": MAX DAYS$ = "
7010 DAYS = "": MONTHS = "": YRS = "“
; 7320 RETURN
¥ 7030 '
:
b
' {

e R STt S Te .
PR PN T TR W T SR Ui, " P .. L U G N ST L R |

68
100 ‘RN R SHELLSET I AR R ERERRE R R R R R R R R R R R R R R N R N R R R R R R R R]
110 ‘program dated 17 May 19823
120 !
130 ‘This program allows entry of the schedule shell
140 ' data for a given week
1350 '
160 ‘variables required:
170 ! none
180 !
190 ‘'teturns:
200) SHELLnn . DAT files updated and in order
210 !
220 DEFINT A-2
230 CLRS = CHR$(26): DOWNS$ = CHR$(10): ESCS = CHR$(27)
240 MID.SCRMS = CLR$ +« STRINGS(4,10)
2%0 UP$ = CHRS$(11): MOV.LEFTS = CHRS$(8): MOV.RICHTS = CH
R$C(12)
260 HOMES = CHR$(30): CLR.LINES = ESCS + “T"
270 C$ = "Entar: 0 if correct, 1 to change it: "
280 E$ = "Errtor, enter Q0 or it only, try again...®
290 !
300 MAX.PIL.NUM = 40
310 DIM P$S(MAX PIL.NUM, Q)
320 !
330 ‘get pilot names. ..
340 GOSUB 3250
3S0 COSUB 3180
340 CLOSE
370 !
380 PRINT MID.SCRNS " Enter:"
390 PRINT" 0 to quit, all done”
400 PRINT" 1 to add a new shell data file"
410 PRINT™" 2 to change data in existing data fi
le"
420 PRINT" 3 to delate a shell data file"
439 PRINT" Which choice? “;: SEL = VAL(INPUTS(1)): PRIN
T SEL
444 IF SEL (= 0 THEN END ELSE IF SEL > 3 THEN PRINT"Ercoe
r, enter a number 0 to 3 only, try again...": GOTO 430
430 PRINT MID.SCRNS$ "Enter the week starting date (Sunda
y):!l
440 COSUB 4370
470 WK .DATE = DATE: WK.DATES = DATES
484 WK.NUM = (WK.DATE MOD 1000)\7: WK.NUMS = MIDS(STRS$(W
K. NUM) , 2)
490 FILENAMES = “SHELL" + WK.NUMS$ + " DAT"
soo '
Si10 ON SEL COSUB 570, 1090, 1840
$20 GOTO 380
330 '
$40 ' new_shell _data
S0 !
$é60 ‘check i{f file already exists. ..
$70 ON ERROR GOTO 590
$80 OPEN "I, 1, FILEMAMES

. - B e e P A P e R R AN T [T
e et e et et e m gt e e Te T T e e e e e N e T e e W T e e s BRI I L S
DTSV NN T N W IR S WL OPS R WOP ATEE ST W WG WL VDR S VRIPR VI TR v P VR PR PR R e R

L e S e i I T R e S

o 69
L $90 IF ERR = $3 THEN RESUME &40
- 600 PRINT FILENAMES " aeaxists on this disk, confirm you w
A ant to overwrite (destroy) it"
o 610 PRINT: PRINT"Enter 0 to continue, 1 to NOT overwrite
(this file: ",: AS = INPUTS(1): PRINT AsS
-, 620 IF AS = "1" GOTO 380
£ 630 IF A$ <> "0" THEN PRINT E$: COTO 4610
5 640 ON ERROR GOTQ ¢
:ﬂ £50 CLOSE
. 6§60 '
§70 ‘open shell data file as #$1 .. .
o 480 GOSUB 2900
A 690 '
- 700 ‘open activity definiton file as #2 ...
710 GOsSUB 3290
- 720 !
M 730 A= 1: N=0: MAX.N = 10
- 740 WHILE A
o 7%0 N = N « 1
;E 760 PRINT MID.SCRNS;
&h 770 GOSUB 2280
S 780 !
. 790 PRINT"Enter:"
- 8oo PRINT" 0 if entries complete”
- 810 PRINT" 1 if more activities to enter"
2 820 PRINT"Which one? ";: A = VALCINPUTS(1)): PRI
? NT A
) 8§30 I1F A ¢ 0 OR A > { THEN PRINT Es$;: GOTO 820
840 'if greater than dimension of variable, then exzpand
- it. ..
o 850 IF N >= MAX.N THEN GOSUB 2970
. 860 ACTS$(N) = ACT.LNS
'2 870 WEND: ‘'activity entry loop. ..
- 880 ‘save max number activites...
890 MAX.N = N
) 900 !
,j 910 ‘entrties complete, sort them. ..
.. 920 COSUB 3710
e 930 ‘print to file...
- 940 :
i 950 FOR I = 1 TO MAX.N
- 960 LSET N%s = ACTS (D)
3, 970 ‘'make first word equal to record number . ..
ol 980 LSET N1$ = MKIS(1)
i 990 PUT#1, I
& 1000 NEXT
- 1010 ‘last entry is all 295 chars. ..
:{ 1020 LSET N9¢ = STRINGS$(30,2%55): LSET N2$ = MKIS$(32767):
- PUTH 1
- 1030 CLOSE
:{ 1040 RETURN
~ 10350 '
y 1060 !
,ﬁ 1070 ‘ change_or_add_to_existing _shell_data_(tiles______
i 1080 '
o .
~.l
9

...................

L2
“’ e - M ..
CEdP LA A SR I e w e N S Tl N - .

B N T T TS T TN TS TV R TR T Ty T aTems ST TETETRYE

70
1090 PRINT MID.SCRNS$ WK.DATES “ - " FILENAMES
1100 PRINT: PRINT" Enter:"
1110 PRINT" 0 if no more changes or additions, a
11 done"
1120 PRINT" 1 to add activity data"
1130 PRINT" 2 to change activity data"”
1140 PRINT" 3 to delete activity data"
11350 PRINT" Whiech choice? ";: A = VALCINPUTS(1)): PRINT
A
11460 '
1170 IF A = 0 THEN RETURN
1180 IF A > 23 THEN PRINT E$:. GOTO 11%50
1190 :
1200 ‘open shell data file and act.code file. ..
1210 GOSUB 2900: GOSUB 3290
1220 A. T = 0: N= 0
1230 WHILE A.T () 32747
1240 N = N + 1
123540 GETS®!, N: SEQ NUM = CVI(NiIs$)>: A.T = CVI(N2$%): IF (N

<{» SEQ.NUM) AND (N <> =-1) THEN PRINT"Error in " FILENAMES "
tecord” N "n
ot equal te sequence number"” SEQ. NUM

1240 WEND

1270 MAX . N = N

1280 '

1290 ON A COSUB 1330, 1670, 1840

1300 CLOSE: GOTO 1090

1310 :

1320 ‘add a2 new activity to shell data file. ..

1330 N = MAX . N: GCOSUB 2280: MAX N = N

1340 DATA . TIME = -1

1330 WHILE DATA.TIME (= ACT . SCHED TIME

1340 K =2 K +« 1

1370 CET®1, K: DATA .TIME = CVI(N2%)

1380 WEND

1390 ‘#k is tirst record > than activity to insert. ..
1400 MEM = FRE(O0): IF MEM ¢ (MAX.N - K + 1)%32 THEN PRINT
“Not enough memory, moving one record at a time.. ": GOTO 1§
40

1410 IF ACTS$(0) (> CHR$(2SS) THEN ERASE ACTS: DIM ACTS (MA
X N + 1 - K)

1420 FOR M = X TO MAX.N ’
1430 GET#1, M

1440 ACTS(M - X + 1) = N9

1450 NEXT

14460 LSET N9$ = ACT . LNS$: LSET Ni1$ = MKIS(K

1470 PUT#1, K

1480 FOR M = K « 1| TO MAX.N + 1

14%0 LSET N%s = ACTS(M - X)

1500 LSET Ni1i$ = MKIS(M)

1510 PUT#t, M

1820 NEXT

1930 GOTO 1640

1240 GET®s1, X: TMP1S = N?§

1350 LSET N9s = ACT LN$. LSET Nis$ s MKIS$ (XK)

M T T i T U U I N P L I Y WP

.
-
c

O IO

s

i il_i >
R
PR A

‘...'. "l...;"“"i.‘{l“‘ v

y

Tr Ay s e N-vT - " e T e Toe Ty
TS - .. - - -

A Yad -
R T T Y

71
1560 PUT#1, K
1570 FOR M = K + 1 TO MAX.N
1580 GET#*1, M: TMP2% = N9
1590 LSET N9% = TMP1$: LSET Nis$ = M
1600 PUT#1, M
1614 TMPLS = TMP2$
1620 NEXT
1630 LSET N9% = TMPi1$:. PUT#1
1640 MAX. N = MAX.N + 1
1630 RETURN
1660 :
14790 PRINT MID.SCRNS “"Enter the sequence number to change
or (? for -help):";
1680 INPUT"™ ", AS
1690 IF A$ = "?'" THEN GOSUB 1970 ELSE N = VALC(AS)
1700 IF N 1 OR N > MAX.N THEN PRINT"Out of range...": G
OSUB 1970
1710 ‘good sequence number enterad. . .
1720 GCET#1, N
1730 SEQ.NUM = CVI(N1$): ACT.SCHED.TIME = CVI(NZ2$): ACT.C

ODE = ASC(N3¢$): PIL NUM = ASC(N4$): ACT ST TIME = CVI(NSS$):
ACT.END.TIME
s CVI(Né$): ACT.NAMES = N75§

1740 PRINT MID.SCRNS$ SEQ.NUM: (ACT.SCHED.TIME MOD 1440);

ACT .NAMES

1730 PRINT"Enter 0 if this is the correct activity, 1 to

search further: “;

17460 A = VALCINPUTS$(1)): PRINT A

17790 IF A .= {1 THEN GOTO 1670 ELSL IF A <> 0 THEN PRINT Et¢
GOTO 17350

1780 '

1790 ‘add activity entry. ..

1800 A a1

1810 GOSUB 2280

1820 RETURN

1830 ¢

1840 PRINT"Daelete not written yet.. .". RETURN

18350 '

1860 ' delete_complete_shell_data_¢~tile

1870 '

1880 PRINT MID SCRNS WK.DATES FILENAMES

18%0 PRINT Enter 0 to delete this file, 1 to abort delete

action”

1900 INPUT"Which one"; D

1910 I1F D (> 0 THEN PRINT"Exiting delete mode, f:le NOT d

eleted. . .": FOR I = 1 TO 1000: NEXT: COTO 1920
1920 RETURN

1930

1940 ‘'—subtoutines

1950 i

1940 'display shell file 20 lines at a time. ..

1970 M= {: AT == 0

1980 WHILE A.T (> 32747

1990 CET41, M: S N = CVI(NiIs$): A T = CVI(N28): A.C = ASC(¢

N3s$): P.N = ASC(N4s$): 8.T = CVI(NSEs$)>: E.T = CVI(Nés: A.N$ =

- 72
= N7 ' :
'q 2000 IF A.T (> 32767 THEN PRINT S N A TACPNSTE.TA
:‘; .Ns
o 2010 Ma M+ 1 |
(2020 IF M MOD 20 = 1 THEN PRINT"Press (RETURN)> to continu
e ot sequence number if found:",;: INPUT" ", A$: IF A$ = “" T

HEN GOTO 20¢

0 ELSE N = VAL(AS): GOTO 2050

2030 WEND

2040 PRINT"“At end of shell data file for " WK.DATES ",
FILENAMES: PRINT: PRINT"Press (RETURN)> to start over or sequ
- ence number

ety A

. found:*";: INPUT" ", A$: IF AS$ = "" THEN GOTO 1970 ELSE N = V
v AL(AS)>: GOTO 2050
= 2050 RETURN
= 20460 PRINT UPS$ CLR.LINES$;: GOTO 1980
7 2070 '
-0 2080 ‘get and confirm pilot number. ..
i 2090 PRINT MID SCRNS;
:ﬂ 2100 PRINT"Enter the last name or pilot number:";: INPUT"
- ", ANSWERS
i 2110 IFP ASC(LEFTS (ANSWERS ;1)) (¢ $8 THEN NUM = VAL(ANSWERS
»): THIS.NUM = -1 ELSE NUM = 0: L NAMES = ANSWERS
S 2120 ‘look for name match...
~2 2130 WHILE NUM (MAX PIL NUM AND NOT THIS NUM
th 2140 NUM = NUM + 1|
- 2150 IF L .NAMES = LEFTS(P$(NUM,2),LENCL NAMES$)) T
v HEN THIS.NUM = -1 ELSE THIS.NUM = 0
21440 WEND
' 2170 IF THIS . NUM = 0 THEN GCOSUB 3060. PRINT. PRINT"Enter
s pilot number: ";: INPUT NUM
ﬁ 2180 IF NUM = 0 THEN GOTO 2230
-x 2190 PRINT MID. SCRNS CVI(PS(NUM.1)) " « " PS$(NUM,2) PS(NU
e M,3) * " P$(NUM, Q)
- 2200 PRINT"Enter 0 if this the correct :ntry; 1 if not co
' rrect:";: THIS NUM =« VALCINPUTS (1)) PRINT THIS NUM
>, 2210 IF THIS.NUM = 1| THEN THIS NUM s 0 GCOTO 2170
Q 2220 IF THIS NUM (> 0 THEN PRINT"Error, enter 0 or 1 only
o ...": GOTO 2190
2230 'have correct nunmber . ..
) 2240 PIL.NUM = NUM
o 22%0 RETURN
. 2260 '
- 1270 ‘input 3 new activity. ..
& 2280 PRINT"Enter activity code ¢(? for help): ",
2290 INPUT" ", CODES
; 2300 IF CODEsS = "?" THEN GOSUB 3340 ELSE IF CODEs = 0" T
- HEN GOTO 2780
i 2310 ACT.CODE = VAL(CODES)
- 2320 IF ACT CODE ¢ it OR ACT CODE » 2S5 THEN PRINT"Entry i
- s out of range.. " GOSUB 3340: GOTO 2310
s 2330 IF (ACT . CODE AND 43) = 43 THEN OTHER = -1 ELSE OTHER
» s 0
i 2340 IF OTHER THEN INPUT"What is the activity name?® ", AC

T NAMES$: GOTO 2400

.

% .l ,‘i .l _.l

v

PP N PP L N I T N S Sy T e SN Sn S S S e S S \i

“=4 AN

Kl
s e

e YT -
AR
,l L)

A e B g,

- L Ty T E T E T TR T e T A T AT TR T e T AT TR T ATy BT AT e Ry e TR T T T e .

bR i

73

23350 CET#2, ACT.CODE

2340 TRIMS = N22%

2370 GOSUB 2810

2380 ACT NAMES = TRIMS

2390 '

2400 PRINT MID.SCRNS;

241:i0 PRINT" Enter the day " ACT.NAMES " occurs on:*"
2420 PRINT" { - Sunday"

2430 PRINT" 2 - Monday"

2440 PRINT" 3 - Tuesday™

24350 PRINT" 4 - Wednesday"

24460 PRINT" § « Thursday"

2470 PRINT" 6 - Friday"

2480 PRINT" 7 - Saturday"”

2490 PRINT" Which day?";

2500 D = VAL(INPUTS (1))

2510 IF D ¢ 1 OR D > 7 THEN PRINT"Error, enter a number 1
to ? only, try again...": GOTO 24°%0

252790 PRINT MID. SCRNS:

2830 PRINT"Enter the scheduled time: ",

<540 INPUT TIMES: GOSUB 13920

2550 ACT.SCHED .TIME = (D-1)%1440 + TIME

2540 IFT OTHER THEN GOSUB 3380: GOTO 2440

2570 ‘'not other. ..

2580 PRINT MID.SCRNS;

2990 PRINT" Enter:*"

2600 PRINT" 0 if standard time offsets apply"

2610 PRINT" 1 to change them"

2620 PRINT" Which choice? ";: AS = INPUTS$¢1): PRINT AS

2630 IF AS = "1" THEN GOSUB 3580: GOTO 24640

2640 IF As (> "“0" THEN PRINT Es$: GOTO 2590

26350 START = CVI(N23s8): END.T = CVI(N24$)

26460 ACT.ST.TIME = ACT.SCHED.TIME - START: ACT END.TIME =
ACT.SCHED .TIME + END.T

24670 PRINT MID.SCRNS "l!s a pilot already assigned to this
activity?" ’

2680 PRINT"Enter 0 if no pilot assigned or the pilot name
or number to specify which pilot: ";

24690 INPUT AS

2700 IF As (> "0" THEN ANSWERS = AS: COSUB 2110 ELSE PIL.

NUM = 25%

2710 ACT.LNS = STRINGS(30,0)

2720 MIDS(ACT.LNS$,3,2) = MKIS(ACT SCHED TIME)

2730 MIDSC(ACT.LNS.S,1) = CHRS$S(ACT COCDE:

2740 MIDS(ACT LNS$,4,1) = CHRS(PIL NUM)

27%0 MIDSCACT.LNS ,7,2) = MKIS(ACT.ST.TIME)

2760 MIDSC(ACT.LNS,%.,2) = MKIS(ACT END.TIME?

1770 MIDSCACT.LNS,11) = ACT NAMES

2780 RETURN

2790 '

2800 ‘terim trailing spaces. ..

2810 L = LEN(TRIMS$) + 1. L. CHRS = CHRS$ (Q)

2820 WHILE ASC(L.CHRS$) ¢ 32

2830 L =L -1

2840 L.CHRS = MIDS(TRIMS,L, 1)

—
eI

2850 WEND

2840 TRIMS = LEFTS(TRIMS: ., L)

2870 RETURN

2880)

2890 ‘open and field shaeall data file. ..

2900 OPEN "R", {, FILEMNAMES, 30

2910 ' seq . num act.sched. time act.code pil.num act
.8t time act end.time act.name

2920 FIELD#1, 2 AS N1$, 2 AS N2s$, 1 AS M3s$, 1 AS N4s, 2 A

S NSS, 2 AS NéS, 20 AS N7s

2930 FIELD#1, 30 AS N9

2940 RETURN

2950 !

2940 'dynamic array size increase. ..

2970 MEM = FRE(Q0): IF MEM (320 THEN PRINT"Not enough fre
@ memory, save this to disk and continue...": MEM a -1{: RETU

RN

2980 IF TMP$(Q) <> CHRS$(2SS) THEN ERASE TMPS$: DIM TMPS(MA

X N

2990 FOR M = 1 TO MAX . N: TMP$(M) = ACTS$(M): NEXT

3000 ERASE ACTS¢: DIM ACTS(MAX . N + 10)

3010 FOR M = 1 TO MAX.N: ACTS(M) = TMPS$(M): NEXT

3029 MAX . N = MAX.N + 10

3030 RETURN

3040 !

30S¢0 ‘print all pilot names to screen. ..

3040 PRINT CLRS

3070 FOR I = 1 TO 20

3oso NUM = CVI(PS(I,1)): L.NAMES = P$(I,2): INITS = PS(I,

3): RANKS = Ps$(I,4)

3090 PRINT USING "##8", NUM;: PRINT " - “ LEFTS$(L.NAMES,!
1) INITS " " RANKS;

3100 NUM = CVI(PS(I+20,1)): L NAMES = P$([+20,2): INITS =
P$(1+20,3): RANKS = P$(l1+20,4)

3110 PRINT TAB(27) USING "#&4#", NUM;: PRINT " - " LEFTS(L
NAMES ,11) INITS " " RANKS,;

3120 NUM = CVI . P$(1+40,1)): L.NAMES = P$(I[+40,2): INITS =
Ps$(1+40,3): RANKS = P$(1+40,4)

313¢ PRINT TAB(SS) USING "###", NUM;: PRINT " - " LEFTS(L
.NAMES$,11) INITS " " RANKS

3140 WEXT

31350 RETURN

3140 !

2170 ‘gqet pilot names from key file. ..

3180 FOR I = { TO MAX . PIL . NUM

3190 GET»1, I

3200 P$(I,1) = Nis$ P$(I,2) = N2s$: Ps$(Il.3) = N3$:
Ps$(1.4) = N43

3210 NEXT

3220 RETURN

3230 '

3240 ‘'open and field def tilas

3230 OPEN “R", ¢, "PILNAM DEF", 27

3240 FIELD#®L, 2 AS Nis, 20 AS N23s, 2 AS N3Is, 3 AS N4
3270 RETURN

e SR

e

AR 3

1
|

Ll e st A AP gl)

75
3280)
3290 OPEN “R", 2, "ACT . DEF"., 46
3300 FIELD#2, 2 AS N21s, 20 AS N22s$, 2 AS N2Z3s, 2 AS N24s
, 10 AS N2Ss, 10 AS N24&S
3310 RETURN
3320 '
3330 ‘'read in activity codes and names, assumes def file
open as #2 ..
3340 PRINT"Select the desired activity category"
3350 PRINT" 1 for non-duty (leave, TDY, ete)"
33460 PRINT" 2 for non-flying duty activities"
3370 PRINT" 3 for flying activities"
33890 PRINT"Which category? "“.: A = VAL(INPUTS(1)): PRINT
A
3390 GP = (A - 1)*44
3400 FOR I = 1t TO 21
3410 GET#2, I + GP
3420 ACT CODE = CVI(N21$)
3430 ACT NAMES = N22
3440 PRINT USING "##&#"; ACT.CODE,: PRINT " - " ACT.NAME
L M
3450 GET#2, I + GP + 21
3440 ACT.CODE = CVI(M21$)
3470 ACT .NAMES = N22¢
3480 PRINT TAB(27) USING “##%"; ACT . CODE,: PRINT " - "
ACT.NAMES ;
3490 CET#2, I + GP + 42
3500 ACT.CODE = CVI(N21$)
3510 ACT NAMES$ = N22¢
3520 PRINT TAB(SS) USING “ss#s#", ACT.CODE;: PRINT " - "
ACT NAMES
3530 NEXT
1540 PRINT: PRINT"“Which activity code?";: INPUT™ ", CODES
3550 RETURN
3540 '
3570 ‘other, input start and end time offsats. . .
3580 PRINT MID.SCRNS,;
3¢90 PRINT"Enter the amount of time (hrs: min)> needed prio
r to the scheduled"”
3600 PRINT"activity time (@.g. trave! time to a4 meeting o
r briefing time)"
3410 PRINT- PRINT"How much time? “;: GOSUB 4190
3620 START = DUR
3630 PRINT MID.SCRNS;
3640 PRINT"Enter the amount of time for the activity, inec
lude debriefing, "
3630 PRINT"return travel, etc as applicabla”
3660 PRINT: PRINT"How much time? ";: GOSUB 4190
3670 END T = DUR
3680 RETURN
3490 !
3700 ‘sort activities. . .
3?2710 SWAP = -1: LAST = MAX.N - 1
3720 PRINT MID.SCRNS "3orting';

3730

WHILE SWAP.

L~ gl ot Sl A S it i B Ml A S O nCt L L

'y 'l‘ ¢4

b s
R M)

Oy g A AW
a"s"ala"a"

aa

%

P srs s N

v
,~ N
o
-
.
-
.
’
.

S R e

76
3740 SWAP. = 0
37%0 FOR I = L TO LAST
3740 A. Tt = CVI(MIDSC(ACTS(I),3,2M)
3770 A T2 = CVI{MIDSCACTS(I+1),3,2))
3780 IF A.TL » A.TZ THEN GOSUB 3840
3790 NEXT
3800 LAST a2 LAST - 1
3810 PRINT
3azo0 WEND
3830 RETURN
3840 PRINT" . ",
3830 TMPS = ACTS(I+1)
3840 ACTS$(I+«1) = ACTS(I)
3870 ACTS(I) = TMPS
3880 SWAP. = =i
3890 RETURN
3900 !
3910 ‘time of day validating routine. ..
3920 NT = 0
3930 TS = ""
2940 WHILE T$ <> ":" AND NT ¢ LEN(TIMES)
39S0 NT = NT + |
3960 TS = MIDS$(TIMES ,NT, 1)
3970 WEND
3vsaon IF NT = 0 COTO 3120
3990 IF NT = LEN(TIMES) THEN NT = LEN(TIMES) - 1: MIN = V
AL(RIGCHTS(TIMES,2)) ELSE MIN = VAL(RIGHTS(TIMES, LEN(TIMES) -~
NT))
40040 HRaVAL(LEFTS (TIMES ,NT-1))
4010 BAD = 0
4020 IF MIN ¢ 0 OR MIN > $9 THEN BAD = -1
4030 IF HR { 0 OR HR > 24 THEN BAD = -!
4040 TIME = HR*40 + MIN
40%0 TS = CHR$(HR\10+48)
4040 I$ = CHRS((HR MOD 10)+48)
4070 M$ = CHRS(MIN\V10+48)
4080 E$ a CHR$((MIN MOD 10)+48)
4090 TIMES = T$ + I8 + M$ + ES
4100 IF BAD THEN PRINT"Time " TIMES " not understood, ple
ase re-enter:";: INPUT" ", TIMES: COTO 3920
4110 NT = 0: T$ =« "": [I$ = “": M$ = "": E¢ = "": BAD = 0:
HR = 0: MIN = 0
4120 RETURN
41 30 :
4140
41350 e== This routine accepts an input of numbers until
4140 4 colon is keyed, then allows only two
4170 digits up to a value of 40
4180
4190 CK$ = "
4200 DIGITS = INPUTS(1)
4210 IF ASC(DICITS$)>{48 OR ASC(DIGIT$)>S8 THEN PRINT "Nume
rical digits or colon (:) only, please re-enter: ",. GOTQ 42
00
4220 CK$ = CX$ + DIGITS

SRR

v,
PR

RS §)

SAENANE
PR R

YIS YSH F
O]

i

77

42230 IF RIGHTS(CKS,1) <> " ' THEN 4200

4240 HR = VAL(LEFTS(CKS$ LEN(CKS$)-1))

42%0 MINS = INPUTS(2)

42460 IF VAL(MINS) * 60 THEN PRINT "Max number of minutes
is 60, please re-enter: ": GOTO 4250

4270 MIN = VAL(MINS)

4280 CKS = CKX$ + MINS

4290 PRINT: PRINT "The interval entered is: " CK$ *, is ¢t
his correct?"

4300 PRINT Cs$;: A$ = INPUTS(1): PRINT AS

4310 IF AS = "1" THEN PRINT"Re-enter interval from baginn
ing: “: GOTO 4190

4320 IF A$ () "0" THEN PRINT E$: GCOTO 4300

4330 DUR = HR*40 + MIN

4340 RETURN

4350 °

4340 :

4370 IF MONTHS$(0) <> CHRS$(25S)> THEN ERASE MONTHS
4380 DIM MOMTHS (12)

4390 MONTHS$ (1) = "JAN"

4400 MONTHS ¢(2) = "FEB"

4410 MONTHS$ (3> = "MAR"

4420 MONTHS$ ¢(4) = "APR"

4430 MONTHS$(S) = "MAY"“

4440 MONTHS (§) = "JUN"

4450 MONTHS (7)) = "JUL"

4440 MONTHS (8) = "AUG"™

4470 MONTHS$ (9) = “SEP"

4480 MONTHS$ (10) = "OQOCT"

4490 MONTHS (11) = "“NOV"

4500 MONTHS$(12) = “DEC“

43510 !

4520 IF FIRST.DAY(0) = 0 THEN ERASE FIRST.DAY
4530 DIM FIRST.DAY(12)

4540 ‘

4550 ‘reset FIRST DAY(3. .12) if correcting a datas. ..
4560 '

4570 FIRST.DAY(1) = 1

4580 FIRST . DAY(2) = 32

45940 FIRST .DAY(3) a 40

44600 FIRST.DAY(4) = 91

44610 FIRST.DAY(S) = 121

4620 FIRST.DAY(4) = 152

4630 FIRST . DAY(?) = 182

4640 FIRST DAY(8) = 213

4630 FIRST.DAY(?) = 244

446460 FIRST .DAY(10) = 274

44670 FIRST . DAY(11) = 305§

4480 FIRST .DAY(12) = 338

4690 !

4700 ‘=== geat the date ---

4710)

47 20 I{INPUT"What is the date ‘{Day Month Year>", DATES

4730 IF DATES = “0" THEN DATE = 0: RETURN
4740 !

78
4750 ‘put the date chars in individual variables. ..
4760)
770 IF Ds$(0) (> CHR$(2SS) THEN ERASE D¢
4780 DIM DSC(LEN(DATES))
47940 FIRST . DLMTR = 0
4800 '
4810 FOR 1.V = 1 TO LEN(DATES)
4820 D$(I . V) = MIDS(DATES,I1 .V, 1)
4830 IF FIRST.DLMTR (> 0 THEN 4930
4840 ‘if first delimiter not set, look for it; allow
485350 ‘almost any char except letters or numbers to
4840 ‘delimit . ..
4870 D s ASC(DS(I .V))
48890 IF D (48 THEN DLMT = -\
4890 If (D > %7 AND D ¢ 4S) THEN DLMT = -t .
4900 IF (D » 90 AND D ¢ 96) THEN DLMT = -1
4910 IF DLMT THEN FIRST.DLMTR = 1.V
4920 DLMT = 0
4930 NEXT
4940 :
4950 ‘assume the last two chars are the yvear..
4960 '
4970 YEAR = VAL(RIGHTS$ (DATES,2))
4980 '
4990 ‘find the day. ..
S000 ‘it a delimiter was found then day is the value
sSo10 ‘before the delimiter, otherwise the day is either
sS020 ‘the first character or the first two characters of
sQ30 ‘the string--assume the tirst two characters if the
$040 ‘second character is not a letter
50350 .
$040 IF FIRST.DLMTR THEN DAY = VAL(LEFTS(DATES,FIRST. DLMT

R - 1)) ELSE IF ASC(D$(2)) ¢ S8 THEN DAY = VAL(LEFTS(DATES,K 2
Y): FIRST.DL

MTR = 2 ELSE DAY s VAL(LEFTS(DATES$,1)): FIRST.DLMTR = 1

so?Q !

S080 ‘find the month. .

$090 ‘$ust look at three characters past the day or past
s$100 ‘the first delimiter

s110 ' - month could be a number or letters

$120) - convert lower case leatters to upper

$130 '

$140 MONTHS =" "

$1%0 MON.NUM = 0

S160 FOR 1.V = { TO 3

$170 IF ASC(DS$(FIRST DLMTR+I.V)) { $8 THEN MON.NU
M= =1

$180 IF ASC(DS(FIRST.DLMTR+I . V)) > 946 THEN DS(FIR
ST .DLMTR+I .V) = CHR$(ASC(DS$(FIRST.DLMTR+I V))=32)

$190 MONTHS = MOMTHS + DS(FIRST.DLMTR+I.V)

$200 NEXT

$210 ’

$220 ‘MONTHS is now a string of numbers or letters,

$230 ! MON.NUM is TRUE if it is numbers. ..

$240 !

e T At AT T Vet Mt Y.t et
. O R AL '-_"-,\‘.-..'."\.". Tt T S e e e T L L e S e e .

. .. PR Y .« .
LA PRV G WAL il R S S S A . A, P A R R T P R T S T S T S S S P, P

LORSE LA~
{n !‘: {‘:’. ‘{: "‘. X

e 2uts

I

A
-.‘
-
xl
o

-
‘h

Lo P L

79

5250 IF MON.NUM THEN MONTH=VALC(LEFTS (MONTHS$,2)): GOTO $33
0

5240 FOR .V = 1 TO 12

$270 FOR J.V = 1 TO 3

$280 IF MIDS(MONTHS ,J.V,1) = MIDS(MONTHS (
I1.vy,J.V,1) THEN TEST = -1 ELSE TEST = 0

5290 IF NOT TEST GOTO $320: ' one not mat
ching is enough

5300 NEXT J.V

$310 IF TEST THEN MONTH = I.V: GOTO S5330: ' found
a matech

$320 NEXT 1.V

3330 I¥f MONTH ¢ Tt OR MONTH > 12 THEN INPUT"Month not unde

rstood--enter the month as a one or two digit number (1..12)
*, MONTH: GO

TO $330

$340 !

$350 'MONTH is now valid, set MONTHS if reqd. ..

5340 '

5370 IF MON.NUM THEN MONTHS = MONTHS$ (MONTH)

5380 '

§390 ‘check if this is a leap year. ..

5400 !

S410 IF YEAR/4 = YEAR\49 THEN LEAP YEAR = -{ ELSE LEAP.YEA
R =20

S420 !

$430 ‘it so must increment first day values after

$440 ' February. ..

5450)

544640 IF LEAP.YEAR THEN FOR I.V = 3 TO 12: FIRST.DAY(I.W)

= FIRST.DAY(I . V) + 1: NEXT

35470 '

$480 ‘make sure the numbaer of days is valid for the month
$490 ‘first, compute max days in month. . .

Ssoo IF MONTH = 12 THEN MAX.DAYS$ = " 31" ELSE MAX.DAYS =

STRS(FIRST DAY(MONTH + 1) - FIRST.DAY(MONTH))

$S510 MAX.DAYS = MIDS(MAX.DAYS,2,2)

$520) then check range

$530 IF DAY ¢ 1 OR DAY > VAL(MAX . DAYS: THEN PRINT "“Day of
month not understood--input day as 2 number <(1.." MAX . DAYS
“y»,: INPUT"

", DAY

$SS40 !

$5S0 ‘now put it together and see if corcect. ..

5560 !

§$70 DAYS = STRS(DAY): YRS = STRS(YEAR): DATES = DAYS +
* & MONTHS + YRS

A E:-X) PRINT"The date entered is: ", DATES

§$90 PRINT: PRINT Cs,;

$600 A$ = INPUTS(1)

$610 IF A$ = "1" THEN GOTO 4S70: 'try again. . .

35620 IF AS (> "0" THEN PRINT E$: . GCOTO SS580

5630 !

$640 ‘date is valid and checked correct, make the julian
3630 ! date. .

-

Pt P s "
R e
PR et LA A

Py
.

- ,

R ‘

, o ’,
L »

S

3
U
3

.
%
' M

.
)

-
LA
“a
?
[
[

-\ .

5640
an date
$670
$464 80

" Rv‘ L/l Mail Gl Dl Sl aal s wen—-—— - W e e
s S A M e e

Rd Pl
* . P .

80

julian date form is year digit » 1000 + juli

DATE = VAL(RIGCHTS(STRS(YEAR) ,1))*1000 + FIRST.DAY(MO

NTH) + DAY -1

$49Q
$700
$710
$720
$730
$740
$750

‘reset all variables not needed

ERASE D

YEAR = 0: MONTH = 0: DAY = 0: MON.NUM = 0
FIRST.DLMTR = 0: A$ = "": MAX.DAYS = "
DAYS = ““: MONTHS = """ YRS = "

$760 RETURN

$770

MDA Se b 40 2t AR T Tt Tt B It = R -"-"-"‘.a

WM LN W, e e, .o Te e e - e CURFERNS . ORI -+
- LT A a Yy ta g ORI RS R R R . ST s . . B e e e
\.‘\{'_'&7 \\.A‘L‘;‘:;"‘:: AR, NIRRT RN WAL VO TP Vel S O IR P IR S PN PRI T TR - PR S VPR |

N MNO
T T TR L

IR
2

Pete %
X T

o
.

HSALSSS

| RN

1S

.’ D.- .

ol

k975
DT LML AR

& N

-

R

100
110
120
130
140
150
1460
170
180
190
200
210
220
230
240
2350
R$(12)
260
270
280
290
300
310
320
330
340
350
340
370
380
L.NUM, 4
3%0
135
400
410
420
430
440
L]
4560
7y:"
470
480

81

ARt WKDAT SET XA A RXRXAAANXRANARKARARNRKR RN RR KA AR A KKK

‘program dated 17 May 1983

'This program reads all pilnn.dat files and sets
! the weekly data in WKnn. DAT

‘'variables required:

! none

‘returns:

! WXnn . DAT file

DEFINT A-Z)

CLRS = CHRS$(26): DOWNS = CHR$(10): ESCS$ = CHRS$(27)
MID.SCRNS = CLRS + STRINGSs<(8,10)

UPS = CHRS$(11): MOV .LEFTS = CHRS$(8): MOV RIGHTS =

HOMES = CHRS$(30): CLR.LINES = ESCS$ + "T"

‘sat avail period constants. . .

PERIOD . ST.TIME = 0: PERIOD.DUR = 10080: INCR = 30
'ehar positions of date/time in acts. .

SD = é: ST = 11: ED = 14: ET = 21

‘fndt. tim pulls the substring value from acts

DEF FNDT.TIM(NL,P) = VAL(MIDS(ACTS(NL),P,$))

C$ = "Enter:. 0 if correct, 1 to change it: "
E$ = "Error, enter 0 or 1 only, try again. ..

MAX PIL NUM = 40

IF P$(0,0) (> CHR$(25S) THEN ERASE P$: DIM P$ (MAX.

CH

Pl

IF QUALS(0) <> CHR$(25S) THEN ERASE QUALS: DIM QUALS

‘open and field def files. .

OPEN "R", 1, "PILNAM.DEF", 27

! pil. num: !l . names$: inits: ranks:
FIELD#i, 2 AS Nis, 20 AS N2s, 2 AS N3s, 3 AS N4

PRINT MID.SCRNS "Enter the week starting date (Sunda

GOSUB 1730

WK.DATE = DATE: WK.DATES = DATES: WX.NUM = (WK.DATE
MOD 1000)\7: WK.NUMS = MIDS (STRS$ (WK NUM),b2)

490 PRINT"The week number is " WK. NUMS

S00 '

S10 OPEN "“R", 2, “YWK" + WK.NUMS + " DAT", 93

$20 ! pil . num: avails: cur . dts$ - qual:
net/nlt:

$30 FIELD#2, 1 AS N2i$s, 42 AS N22s, 20 AS N23s, 2 AS N24

$, 28 AS N23¢

340
$S0
360
$70

FIELD®#2, 93 AS N2AS
FOR PIL. NUM = 1 TO MAX PIL.NUM
FOR ! = 1 TO 7: NET(I) = =1 NLT(I) s =1

LI I TR T T Y S WL WP T T ST o S R

NE

~ b LA e e g AN Sd T A T I e " & YO S AT S I A I N AR I DR i A B ¥ el
v:;."- P M et R i e e R e R . {
)
P
i 82
) 1T
- 580 CET#1, PIL.NUM
@ $S90 NUM = CVI(N1$): TRIMS a N2s: GOSUB 14640 L .N
o AMES = TRIMS: INITS = N3s$: RANKS = N4s
i 600 PRINT"Gatting data on " RANKS " " L.NAMES ",
) “ INITS
X 610 IF NUM <> PIL.NUM THEN PRINT"File error: rac
E ord number not equal to pilot number” PRINT"Press any key ¢t
. o continue. .
- .";: DUMMY$ = INPUT6(1)
. 620 NUMS$ = MIDS$ (STRS$ (NUM),2)
- 630 !
N 440 NO.FILE = O
s 650 ON ERROR GOTO 480
N 8460 FILENAMES = “PIL" + NUMS « " DAT"
ke 670 OPEN "I", 3, FILENAMES
i §80 - IF ERR = §3 THEN NO .FILE = -1: PRINT FILEMAM
L E$ " not tfound, going to nezt number. . ."“: RESUME 690
vy 690 ON ERROR GOTO 0
" 700 IF NO.FILE THEN LSET NZAS = STRINGS$(93,0): L
SET MN21$ = CHRS(PIL NUM): GOTOQO 12840
710 !
720 ‘'read in pilot data file. ..
730 GOSUB 1550
740 ‘close pilot data file. ..
7%0 CLOSE#3
760 '
770 . make data for each week data record field. .
. 780 . LSET N21s$ = CHRS (NUM)
790 !
800 . AVAILS s STRING$(42,25%5)
810 ’ FOR N = 1 TO MAX.N
820 ACT . CODE = VALC(LEFTSC(ACTS(N),bS$))
830 ACT.ST.DATE = FNDT . TIM(N,SD)
840 ACT.ST.TIME = FNDT.TIM(N,ST)
850 ACT.END .DATE = FNDT. TIM(N,ED)
840 ACT.END TIME = FNDT. TIM(N,ET)
870 ' :
8890 ‘compute times in minutes from week beginning. ..
890 '
%00 IF ACT.ST.DATE - WK.DATE > 7?7 THEN ST
ART . TIME = 327647 ELSE IF ACT.ST.DATE - WK.DATE (-7 THEN STA
RT TIME = -1
0080 ELSE START .TIME = (ACT.ST.DATE - WK.DATE)*1440 + ACT.ST
.TIME
910 IF ACT END.DATE - WK.DATE ? ? THEN E

ND .TIME = 32767 ELSE IF ACT END.DATE - WK DATE ¢ -7 THEN END }
TIME = -100
80 ELSE END TIME = (ACT.END.DATE - WK DATE)*1440 + ACT END.T !

IME

920 ‘Set defined FALSE, just check activity times

930 AVAIL=-1: SET=0

9240 cO8UB 3380

9s0 IF NOT AVAIL THEN PRINT"Confliect in

activity” N CHRs$(8) ", not set. .°“

- e A e .. e e et e P TR P ..
- " . B MR SN R . J

R R S e e e A A A < . . . ,
e e N A T g T

B T T P e o a T (g Tha TR T Ty e o a g
v S e T T e e A e e b e e W e T T R~) " - g

83
960 IF (ACT.CODE AND 192) <> 0 TWHEM COSU
B 51350 ELSE C .REST = -1
970 IF C.REST THEN GOTO 1030
980 PRINT"Activity" N "=-"ACTS(N) "does n
ot meet crew rest constraints. . "
990 PRINT"Enter: 0 to 1gnore crew rest,
1 to NOT set this activity: “;
1000 A$ = INPUTS(1): PRINT AS
1010 IF A$ = "1" THEN GCOTO 1040 ELSE IF A
$ <> "0" THEN PRINT ES$: GOTO 980
1020 ‘set defined TRUE, get this activity in avails. . .
1030 AVAIL = -1: SET = -1- GOSUB 23810
1040 NEXT: ‘'activity for this pilot number. ..
1080 LSET N22¢% = AVAILS
10460 !
1070 CUR.DTS = "*"
1080 FOR N = 1 TO 10
1090 CUR.DTS = CUR.DTS - MKIS(CUR.DT(N))
1100 NEXT: 'currency event date. ..
1110 LSET N23s = CUR.DTS
1120 '
1130 QUAL = 0
1140 FOR N = { TO 1§
1150 IF QV(N) THEN QUAL = QUAL + 2°(N-1)
1140 NEXT: ‘'qualification. ..
1170 LSET N24s$ = MKIS(QUAL>
1180 !
1190 ‘injtialize all NET and NLT times as -! values. . .
1200 NET . NLTS$ = STRINGS$(28,289S)
1210 FOR N = { TO 7
1220 IF NET(N) (> -1 THEN MIDS(NET NLTS.N
24 - 3,2) = MKIS(NET(N))
1230 IF NLT(N) ¢} -1 THEN MIDS(NET . NLTS$.N
®q4 - 1,2) = MKIS(NLT(N))
] 1240 NEXT
iﬁ 1250 LSET N2S$ = NET.NLTS
o 1260 '
t@ 1270 ‘save all data in buffer to this pilot number record
E_s.; 1280 PUT#2, PIL.NUM
el 1290 NEXT. ‘'pilot number. ..
[1300 '
¢ 1310 - 'last tecord, save the date (julian number and strin
g form)
; . 1320 ! tec. num: wk . date: wk dates not use
’ d:
— 1330 FIELD#2, 1 AS N221s$, 2 AS N222s, 9 AS N223s, 81 AS N
i 224
N 1340 LSET N221$ = CHRS$(MAX.PIL.NUM + 1)
s 1350 LSET N222% = MKI$(WK.DATE)
o 1340 LSET N223% = WK DATES
Q 1370 LSET N224% = STRINGCs(81,0)
% 1380 PUT#2, MAX PIL NUM + 1
s 1390 '
h€ 1400 ‘all pilot data for the week now in one file
t 1410 PRINT"WK" WK .NUMs " DAT file now completed.
L]

o e p et e
R QR s s

T o A = N T T Y T T T T T S T T T S T R T R T A T AT R T TR T AT T AT Iw R I LY v

R I T N A . AT - ST L

84

1420 END
1430 :
1440 ! subroutines
1430 :
1440 L = LEN(TRIMS) + 1: L.CHRS = CHRS(0)
1470 WHILE ASC(L.CHRS$) ¢ 33
1480 L =L -1
1490 L.CHRS = MIDS(TRIMS,L,1)
1800 WVEND
1510 TRIMS = LEFTS$(TRIMS.,L)
1520 RETURN
1530 !
1540 ‘open data file and read into memory, close...
1580 INPUT #3, NUMS, L NAMES, F NAMES, MIS$, RANKS, SSANS
15460 IF EOF(3) THEN GOTO 1690 ELSE INPUT#%3, QUAL.1DS
1570 IF QUAL .IDs$ <> "QUALIFICATIONS:" THEN PRINT"Qual dat
a4 not found":
1580 IF QV(0) <> -1 THEN ERASE QV: DIM QV(1$S)
1590 FOR I = ¢ TO 1$: IF EQF(3) THEN COTO 14680 ELSE INPUT
#3, QV(l): NEXT
16400 IF EOF(3) THEN GOTO 1480 ELSE INPUT»3, CUR.IDS
1610 IF CUR.IDS <> "CURRENCIES:" THEN PRINT"Cur data not
found":
1620 FOR I « { TO 10: IF EOF(3) THEN GOTO 146480 ELSE INPUT
#3, CUR.DT(I):- NEXT
1630 IF EOF(3) THEN GOTO 1480 ELSE INPUT#3, ACT.IDs, MAX.
N
1640 IF ACT.IDS (> "ACTIVITIES SCHEDULED:" THEN PRINT"Act
ivity data not found": ’
1630 FOR N = 1 TO MAX.N
1660 IF EQOF(3) THEN PRINT"EOF before MAX N..." MA
X.N N;: DUMMYS$ = INPUTS(1): GOTO 1480
1470 LINE INPUT#3, ACTS(N) .
1680 NEXT
1690 RETURN
1700 '
1710
1720 !
1730 IF MONTHS$(0) (> CHRS$(2S5) THEN ERASE MONTH!S
1740 DIM MONTHS (12)
17350 MONTHS$ (1) = "“JAN"
1760 MONTHS$ (2) = “FEB"
1770 MONTHKS$ (3) a "“MAR"
1780 MONTHS$(4) = "APR"“
1790 MONTHS$(S) = "“MAY"
1800 MONTHS$ (4) = "JUN"
1810 MONTHS$(?7) = "JUL"
1820 MCNTHS (8) = "AUG"
1830 MONTHS$(9) = "SEP"
1840 MONTH$¢(10) = "QCT"
1830 MONTHS$ (11) s "NOV"
1840 MONTHS$(12) = "DEC"
1870 !
1880 IF FIRST . DAY(0) = 0 THEN ERASE FIRST. DAY
1890 DIM FIRST.DAY(L(2)
L an s fe e At e e e e e S e et N s e
Rl e et Y T e .j,:.*}_';::.‘.:s:.la:.Zsﬂ..}*;h:.:a‘_.l-..'.\\:-lt;,:@iliii

i’ e TV o W T e e BT T e w o m W T T ——7__.5-_v_‘_',.'-‘1

N
g 85
. 1900 :
e 1910 ‘resat TIRST . DAY(3. .12) if correcting a date. ..
- 1920 '
T 1930 FIRST DAY(1) = 1
(1940 FIRST.DAY(2) = 32
1950 FIRST.DAY(3) = 40
» 1960 FIRST.DAY(4) = 91
. 1970 FIRST.DAY(S) = 121
i 1980 FIRST .DAY(4) = 182
i 1990 FIRST.DAY(?) = 182
2000 FIRST.DAY(8) = 213
Y 2010 FIRST.DAY(9?) = 244
;g 2020 FIRST.DAY(10) = 274
A 2030 FIRST.DAY(11) = 30§
R 2040 FIRST.DAY(12) = 335
., 2080 '
v 2040 '«== get the date ---
. 207¢ !
B 20840 INPUT"What is the date (Day Month Yeac)", DATES
ﬁf 2090 IF DATES = "O0" THEN DATE = 0: RETURN .
o 2100 '
;w 2110 ‘put the date chars in individual variables ..
" 2120 : :
- 2130 IF Ds$C0) (> CHR$(2S5S) THEN ERASE DS
e 2140 DIM D$(LEN(DATES))
o 2150 FIRST.DLMTR = 0
. 2160 -
‘<t ' 2170 FOR 1.V = {1 TO LEN(DATES)
2180 D$(l V) = MIDS(DATES, I .V,1)
2 2190 IF FIRST.DLMTR (> Q0 THEN 2290
e 2200 ‘if first delimiter not set, look for it; allow
;* 2210 ‘almost any char except letters or numbers to
e 2220 ‘delimit.
e 2230 D = ASC(DS$(I.V))
2240 IF D ¢ 48 THEN DLMT = -1
o~ 2280 IF (D > S7 AND D ¢ 65) THEN DLMT = -1
e 2260 IF (D > 90 AND D ¢ 96> THEN DLMT = -1
o 2270 IFf DLMT THEN FIRST DLMTR = I.V
) 2280 DLMT = 0
e 2290 NEXT
2300 '
5 2310 ‘assume the last two chars are the vear.
-, 2320 :
S 2330 YEAR = VAL(RICHTS (DATES,2))
o 2340 '
N 23%0 ‘tind the day...
Pey 2340 'if a delimiter was found then day is ti e value
o 2370 ‘'before the delimiter, otherwise the day is either
ﬁ{ 2380 ‘the first character or the first two characters of
-2 2390 ‘the string--assume the first two characters if the
,ﬁ 2400 'second character is not a letter
': 2410 '
a 1420 IF FIRST DLMTR THEN DAY = VAL(LEFTS(DATES,FIRST.DLMT
" R - 1)) ELSE IF ASC(D$(2)) ¢ S8 THEN DAY = VAL(LEFTS (DATES, 2
i Y): FIRST.DL
e
o

v [.o . - e e e a
’ '."> \“"-‘u'-“-\'ﬂ\-.‘"Q«."v-"-" A S

AR UL P e

W " "y . gl e s Mbast Shes Shas Snad Jhe " ~ it T it TN CiC i
- T, e, T e TR T i A e e S e S T T T T T e e s
-, “ Ve P e O U A T T R

] 86
f MTR = 2 ELSE DAY = VALC(LEEFTS(DATES.1)) FIRST .DLMTR = 1
= 2430 ! |
Q 2440 ‘find the month. .. |
X 24350 ‘just look at three characters past the day or past
, 2440 ‘'the first delimiter
2470 ! - month could be a number or letters
2480 ! - convert lower case letters to upper
24¢°0 !
23500 MONTHS =" "
2510 MON.NUM = 0
2520 FOR I.V = &t TO 3
2530 IF ASC(DS(FIRST .DLMTR+I .V)) < $8 THEN MON.NU
M s -1 .
2540 IF ASC(DS(FIRST.DLMTR+1.V)) > 94 THEN DS(FIR
ST .DLMTR+I . V) = CHRS$(ASC(DS(FIRST.DLMTR+I V))=-32)
2550 MONTHS = MONTHS$ + D$(FIRST.DLMTR+I . V)
25460 NEXT
2570 '
2880 ‘MONTHS is now a string of numbers or letters,
2%5%0 ' MON.NUM is TRUE {f it is numbers
26400)
2610 IF MON.NUM THEN MONTH=VAL(LEFTS$(MONTHS.2)>): GOTO 2469
0
2420 FOR !.V = 1 TO 12
2630 FOR J.V = 1 TO 3
2640 IF MIDS(MONTHS ,J.V,1) = MIDS (MONTHS (
I1.v),J3.V,1) THEN TEST = -1 ELSE TEST = 0
2650 IF NOT TEST GOTO 2680: ' one not mat
ching is enough
2640 NEXT J.V
2670 IF TEST THEN MONTH = I .V: GCQTO 2690: ' found
a match
2680 NEXT 1.V
2690 IF MONTH < I QR MONTH > 12 THEN INPUT"Month not unde
rstood--enter the month as a one or two digit number <(i1..12)
", MONTH: GO
TO 24690
2700 '
2710 'MONTH is now valid, set MONTHS if reqd. ..
2720 !
2730 IF MON.NUM THEN MONTHS = MONTHS$ (MONTH)
2740 '
27%0 'eheck if this is a leap year. ..
2760 '
2770 IF YEAR/4 = YEAR\4 THEN LEAP.YEAR = -1 ELSE LEAP YEA
R = 0
2780
1790 ‘if so must increment first day values after
2800 ! February. . .
2810 !
2820 IF LEAP . YEAR THEN FOR I V = 3 TO 12:. FIAST DAY(Il. V)
= FIRST DAY(I . V) + {. NEXT
2830 !
2840 ‘make sure the number of days is valid for the month

28380 'ticst, compute max days :1n month.

N UL N, .. CO I

L L Y \\‘~'_I~
PRI DI RS D AP

-

.
.

-

-

.l!l
a A
[N

TTe
St

[t 2

T

Pl ¥ SR AL
[

- »
'l ’ll‘l .O ll‘-‘l .J -

ta s

LW

5%

R O R

87

28460 IF MONTH = 12 THEN MAX DAYS$ = “ 31" ELSE MAX.DAYS =
STRS(FIR T DAY(MONTH + i) - FIRST DAY(MONTH))

2870 JAX.DAYS = MIDS(MAX .DAYS.,2,2)

2880 ! then check range

2890 IF DAY ¢ 1 OR DAY > VAL(MAX DAYS$) THEN PRINT “Day of
month not understood--input dav as a number (1. ." MAX DAYS
*>»",: INPUT"

", DAY

2%00 ¢

2910 ‘now put it together and see if correct. . .

2920 !

2930 DAYS = MIDS(STRS(DAY),2): YRS = STRS$(YEAR): DATES =

DAYS + " " &+ MONTHS + YRS

2940 PRINT"The date entered is: "; DATES

2950 PRINT: PRINT CS$.;

2940 AS = INPUTs(1)

2970 IF AS = "{" THEN GOTO 1930 ‘'try again...

2980 IF A$ <> "0'" THEN PRINT E$: GOTO 2940

2990 '

3000 ‘date is valid and checked correct, make the julian
3010 ! date. .julian date form is

3020 ! vyear digit » 1000 + julian date

3G30 !

3040 DATE a2 VAL(RIGHTS(STRS$(YEAR),1))*1000 + FIRST DAY(MO

NTH) + DAY -1

30380 !

3060 ‘reset all variables not needed

3070 '

3080 ERASE D¢

3090 YEAR = 0: MONTH = 0: DAY = 0: MON.NUM = 0

3100 FIRST DLMTR = 0. A$ = "": MAX DAYS$ = ""

3110 DAYS = "“: MONTHS = "": YRS = "

3120 RETURN

3130 '

2140 ‘A%xk CASE %%

3150 ‘module dated 24 April 1983

3140 '

3170 ‘This module includes subroutines called by other
3180 ‘modules in determining the case of each activity
3190 ‘relative to the week

3200 '

3210 ‘variables rquired:

3220 ! PERIOD ST TIME &s an integer i1n minutes or o
ther time units

3230 ‘ PERIOD.DUR as an integer langth of period
3240 ! INCR as an integer for the value of each bit
(resolution)

3250 ‘ START.TIME as values for the activity

3240 ' END.TIME "

3270 ! AVAILY as a bit string with '1' available.
0' not avail

3280 ! AVAIL as a control code

3290 ! SET as a control code to set the time 'not a
vailable'

3300 . '

i T . - [. .
- .= e I IR A I P PR . - . -
P -

‘‘‘‘‘‘

D T Ty~ PP iires. fytn b R Je LAt R e 1 A i 0l

88

3310 ‘returns:

3320 ' AVAIL as TRUE if time is availabla

3330 ! AVAILS updated if AVAIL and SET both TRUE
3340 ¢

3330 ‘subroutines usaed:

3340 ! all internal

3370 :

3380 GOSUB 3400

33%0 GOSUB 3810

3400 RETURN

3410)

3420

3430 ° -~~~ This routine datermines the case of activity
3440 start (CASLK1) and and (CASE2) relative to
3450 the period start and end. . .

34460

3470 CASE!l and CASE2 equal 1 if times are before
348¢ ! the period starts, 2 if during the period,
34%0 ! or 3 if after the perind. Thus if CASEl is
3500 ! 3 or CASEZ 13 1, the whole activity falls
310 ' outside the period in question. It both
3520 ! CASE1l and CASE2 are 2, then the whole

3530 Y activity is within the period

3540

3ssQ ¢ CASE3 has a value of 1 if the whole

3540 ' activity falls on a single byte, 2 if on
38570 ' adjacent bytes, and 3 if one or more whole
3580 ! bytes fall between the start and end.

3890

3600 START .BIT s START.TIME\INCR

3610 START .BYTE = START.BIT\8 +

3620 END.BIT = (END.TIME-1)\INCR

3430 END BYTE = END BIT\'8 + 1

3640 IF START.TIME)= PERIOD.ST.TIME THEN COND! = -1 ELSE
CONDL = 0

36350 IF START .TIME ((PERIOD.ST.TIME + PERIOD DUR) THEN C
OND2 = -{ ELSE COND2 = ¢

3440 IF COND1 AND COND2 THEN CASE1 = 2 ELSE IF NOT COND1

THEN CASE!1 = 1 ELSE IF NOT COND2 THEN CASE: = 3

3470 IF END.TIME) PERIOD ST .TIME THEN COND3 = -1 ELSE CO

ND3 = 0

34680 IF END.TIME (= (PERIOD . ST . TIME+PERIOD.DUR) THEN COND
4 = -1 ELSE COND4 = 0

3490 IF COND3 AND COND4 THEN CASE2 = 2 ELSE IF NOT COND3

THEN CASE2 = I ELSE IF NOT COND4 THEN CASE2 = 3

3700 IF END BYTE = START. BYTE THEN CASE3 = |

37:0 IF END.BYTE - START .BYTE = | THEN CASE3 = 2

3720 IF END.BYTE - START BYTE > { THEN CASEJ = 3

3730 RETURN

3740

3750

3760 * This routine selects the proper routine for

3770 ‘'checking or setting availability based on the case
3780 ‘"defined by CASE1, CASE2, and CASE3J

3790

v e . S e - .
N e [R S

. X . R . f . -t . .. L N tov R .t
N PSP K} R NP G W 4 hd PR FCTEES PR TO PU PSR PN TT IS P T v e v

“'AD-A132 271

UNCLASSIFIED

COMPUTER ASSISTED SCHEDULING FOR -RIR FOéEE TﬂCTiEhL
FIGHTER SRUADRONSC(U> ARMY COMMAND AND_ GENERAL STAFF
COLL FORT LEAYENWORTH KS B C DUGLE 83 JUN 823

SBI-AD-E758 845 F/G 12/

E

2

FEEEEEEE

EEEE

({4
F
Fe

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

BT TR W R NN ey @ N)
POVOINROR CX X EILOR AR SRR e

3800
3810
., 4070
1820
3830
. 4330
3840

3850
4680
3a40

3870
NCAVA
3880
3890
3900
ely o
3910
3920
3930
3940
3950
3940
397¢
3980
3990
40040
T TO.
4010
4020
4030
404¢
4050
4040
1070
4080
4090
4100
4110
4120
41130
NOT M
4140
41350
41469
4170
4180
4190
4200
4210
4220
4230
4240
4230

89

) it start is betore period. . .
IF CASEi1=1 AND CASE2=2 THEN OM CASE3 GOSUB 3970,4070

' if start and end are during period. .
IF CASE1a2 AND CASE2=2 THEN ON CASE3 GCOSUB 4200,4370

‘ it start is during period but end is after . .
IF CASE1a22 AND CASE2=3 THEN ON CASE3 GOSUB 4550,44680
) if start is before and end is after period. .

IF CASEi=s1 AND CASE2=3 THEN FIRST . BYT=1: LAST. BYTsLE
ILs): GOSUB 4720
) the final case ends before or starts after

! period. ..

IF CASEi=3 OR CASE2=1 THEN PRINT"Activity is complet
utside the period. . . "
RETURN

' == This routine is used when END BYTES is the
' first byte of AVAILS . .

FIRST BIT. USED a Q0: LAST BIT.USED = (END.BIT MOD 8
BYT.TO.CK$ = LEFTS (AVAILS, 1)
GCOSUB 4940
IF AVAIL AND SET THEN MIDS(AVAILS,1,1) = CHRS$(ASC(BY
CXs$) AND (NOT MASK))
RETURN

! -== This routine is used when END BYTE points to
! end byte. ..

FIRST.BYT = 1: LAST.BYT = END. BYTE-1
COSUB 4820
FIRST BIT USED = 0: LAST BIT USED = (END BIT MOD 8)
BYT TO.CK$ = MIDSC(AVAILS , END BYTE,1): J = END. BYTE
GCOSUB 4940
IF AVAIL AND SET THEN GOSUB S060 ELSE RETURN
MIDS(AVAILS ,END .BYTE, 1) = CHRS(ASC(BYT .TO.CK$) AND ¢
ASK))
RETURN

! we= This rtoutine is used for the single byte case
! where one byte includes both start and end. ..

BYT.TO.CKS$ = MIDS (AVAILS,START BYTE, 1)

MASK = 0

FIRST . BIT USED = (START.BIT MOD 8)

LAST BI!T.USED = (END BIT MOD 8)

GCOSUB 4940

[F AVAIL AND SET THEN MIDS (AVAILS,START BYTE,i) = CH

TSP T TP T s

— - A L oA MR e gt P
,"-—‘l l_'.'.l‘.—‘\“- I.I‘I..—‘-“:"I‘i-‘-'v." "-'a'-'.'- .

$Hb

é

] 90

" RS (ASC(BYT TO.CK$) AND (NOT MASK))

W 4260 RETURNM

) 4270

< 4280

l 4290 ~—-= This routine is used whan one or mocte bytes

N 4300) separate the first and last bytes or when

< 4310) they are adjacent. . .

M 4320 °

;' 4330 FIRST . BYT = START BYTE+1: LAST. BYT = END BYTE-I

y 4340 GOSUB 4820

. 4350 IF NOT AVAIL THEN RETURN

i~ 4360 CASE3 = 2 enters here. . .

. 4370 FIRST .BIT.USED s (START BIT MOD 8): LAST BIT USED =

. 7

- 43840 BYT TO.CKS$ = MIDS(AVAILS, START.BYTE, 1)
4390 GOSUB 4940
44040 IE AVAIL AND SET THEN MASK ST=aMASK. BYT ST$sBYT.TO.C
X$ ELSE IF NOT AVAIL THEN RETURN
4410 FIRST BIT USED s 0: LAST BIT USED = (END.BIT MOD &)
4420 BYT TO.CKS = MIDS(AVAILS ,END BYTE,1): J = END. BYTE
4430 GOSUB 4940
44490 IF NOT AVAIL THEN RETURN
4430 IT (CASE3=3) AND (AVAIL AND 3ET) THEN GOSUB S060
4440 IF NOT(AVAIL AND SET) THEN RETURN
4470 MIDS CAVAILS,START . BYTE, 1) = CHRS$S(ASC(BYT . STs) AND (N
OT MASK ST))
44380 MIDS (AVAILS , END BYTE, 1) = CHRS(ASC(BYT.TO.CKS$) AND (
NOT MASK))
4490 RETURN
4500
4510 .
4520 ' -== This rtoutine is used when the last byte in the
4530 ' string is the only byte to be checked. . .
4540 '
4330 BYT.TO . CK$S = MIDS(AVAILS,6 START BYTE, 1)
4S540 FIRST.BIT USED = (START BIT MOD 8): LAST.BIT.USED =
(PERIOD.END.BIT MOD 8)
4570 GOSUB 4940
4580 IF AVAIL AND SET THEN MIDS (AVAILS ,START.BYTE, 1) = CH

R$(ASC(BYT.TO.CKS$) AND (NOT MASK))
4590 RETURN

4400 °

44610 °

4620 ~== This routine is used when the activity ends
4430 ! after the period and the first byte is one
44640 ! ot more bytes from the end of AVAILS. Tha
446350 ' last two cases of CASE3 are both checked by
46460 ! this routine.

4670

44680 FIRST BI!T USED = (START .BIT MOD 8) LAST BIT USED =
?

4569590 BYT TO.CKX$ = MIDS(AVAILS, START BYTE,)

47040 GOSUB 4940

470 FIRST BYT = START BYTE+1: LAST.BYT = LENCAVAILS)

4720 GO8UB 4820

e e e . e T et S e e L . - - = C e
- . - ~ - N - AU, o . . - - - - . LR N LN <. “ -

T N TR TS St oty

e e e A T e e e L e ta At At el a e ta e tan et T b b

- - -t . - tu " . P . et
AP . R I I NP S S APV AT Wil ol S

91

e

s, 4730 IF AVAIL AND SET THEN GCOSUB 50460 ELSE RETURN
" 4740 MIDSC(AVALILS,START .BYTE, 1) = CHRS$(ASC(BYT TO.CKs$: AND
- (NOT MASX))
P 4730 RETURN
i 4740
{ 4770
4 4780 ' --- This routine is used by the routines above when
- 4790 ‘ whole bytes are being checked for
- 4800 ‘ availability. . .
= 4810 °
_ 4820 FOR J = FIRST.BYT TO LAST.BYT
- 4830 BYT.TO.CK$ = MIDS(AVAILS ,J,1)
= . 4840 IF BYT.TO.CKS$ () CHR$(2535) THEN FIRST BIT.US
. ED=0: LAST BIT.USED=7: GOSUB 4940
b 4850 IF NOT AVAIL THEN RETURN
X 4860 NEXT
4870 RETURN
o 4880 °
K 3890
- 4900 ' --- This routine is called by above routines to
‘f- 4910 ! check availability within partial bytes of
. 4920 ' AVAILS . .
4930
g 4940 MASK = 0
3¢ 4950 FOR K = FIRST. BIT.USED TO LAST BIT USED
v 4960 MASK = MASK + 2°K
9} 4970 IF (ASC(BYT.TO.CK$) AND 2°K) = 0 THEN AVAILL
= 0: RETURN
" 4980 NEXT
I 4990 RETURN
Ny s000
& $010
,i s$020 ~«=~ This routine is called when a whole byte is to
$030) be set to NOT AVAILABLE state, both AVAIL
5 $040) and 3ET are TRUE
L $0s0
? $040 FOR J = FIRST.BYT TO LAST.BYT
» 5079 MIDS$ (AVAILS,J,1) = CHRS(0)
- S080 NEXT
$090 RETURN
. . si100 °
O S110 '
.. §$120 ‘this routine checks and sets NET and NLT times
20 $130 ' used for checking crew rest
= 5140 ‘
v $150 DAY = START TIME\1440 + 1
. $140 IF DAY ¢ 2 OR DAY » 6 THEN C.REST = -1. RETURN
o1 S170 '
- 3180 IF START TIME)= NET(DAY) OR NET(DAY) = -1 THEN ST C
- K = -1 ELSE ST.CK = 0
- $190 IF END TIME (= NLT(DAY) OR NLT(DAY) = -1 THEN END. CK
_ s -1 ELSE END CK = 0
. $200 :
= $210 IF ST CK AND END.CK THEN C REST = -1 ELSE C REST = 0

. . RETURN

W PANAING S S LA RN £ Al e LN A A s S it e ER A MR AR I - TN
‘-.‘
L
T,
wlee
!' 92
e $220 -
o $230 IFf (START.TIME-720 ¢ NLT(DAY-1)) OR (NLT(DAY-1) = -1
s) THEN NLT(DAY-1) = START TIME - 720
A $240 IF (NLT(DAY) > START.TIME+720) OR (NLT(DAY) = -1) TH
ll EN NLT(DAY) = START.TIME + 720
X $2%0 IF (NET(DAY) (END.TIME-720) OR (NET(DAY) = -1) THEN
- NET(DAY) = END TIME - 720
5260 IF (NET(DAY+¢1) ¢ END.TIME+720) OR (NET(DAY+1) = -1)
THEN NET(DAY+1) = END.TIME + 720
$270 '
$280 RETURN
J...e:'-l:..p At'.L; .e_:a.f.! Sy -' Y, .g_.;.f\.l‘.a_.a‘.a T e A PRSI St e e e e S

“ et

LG ol g gog o Uit i ied St Tl A aaf g Mgl oaite i it T R I AL (s Ji P o it 2

e W m__ et w W ¥ T

100
110
120
130
140
150
140
170
180
190
200
210
220
230
240
230
Rs(12)
240
270
290

93

LR B 8 SCH:DSET ARNCERNAARRARRNERARNRRRARRNARRRAR RN R RN
‘program dated 2% Mayvy 1983

‘This program builds the bare schedule file from

! shellnn. dat and wknn dat

‘variables required:

! none

‘returns:

! SCHEDnn xxx file

DEFINT A-Z

CLRS = CHR$(24): DOWNS$ = CHRS$(10): ESCS$ = CHRS$(27)
MID . SCRNS = CLRS$ + STRINGS$(4§,10)

UPS = CHRS$(11): MOV .LEFTS = CHRS$(8): MOV .RIGHTS = CH

HOMES = CHRS$(30): CLR LINES = ESCS$ + "T"

PERIOD ST .TIME = (0: PERIOD. DUR = 10080: INCR = 30: M

AX PIL . NUM = 40

290 DIM QUAL(MAX PIL NUM), AVAILS(MAX PIL.NUM), CUR.DT(M
AX . PIL NUM, %)

300 DIM PILOTS$(233), ACT.CUR QUALS(23S)

310 ACT.CODE USEDS = STRINGS(32,0)

320)

330 C$ = "Enter: Q if correct, 1 to change it: "

340 E$9 = "Erior, enter 0 or 1 only, try again..."
iso !

3460 PRINT MID. SCRNS "Enter the week number: “;

370 INPUT" ", WK.NUMS

380 WXDAT.FILES = "WK" + WK.NUMS .+ " DAT"

390 ON ERROR GCOTO 410

400 OPEN "1I", 1, WKDAT FILES

410 IF ERR = 53 THEN PRINT"No " WKDAT FILES " found, can
not continue.. " ELSE CLOSE

420 ON ERROR COTO 0

430 OPEN "R", 1, WKDAT FILESs, 93

440 FIELD#!, 1 AS Ni1$, 2 AS N2s. 9 AS N3Is, 81 AS N4gs
450 N = MAX . PIL NUM « i

4460 GET#1, N

470 WK .DATE = CVI(N2$): WK.DATES = N3

480 CLOSE

490)

sS00 SCHED NUM = 0

Si10 FIL.NAM.FOUND = 0

%20 WHILE NOT FIL NAM.FOUND

$30 SCHED NUM = SCHED NUM + 1t

S40 SCHED NUMS$ = MIDS$(STRS$ (SCHED NUM) K6)

$s50 WHILE LEN(SCHED NUMS$) ¢ 3

$40 SCHED NUMS = "0" + SCHED NUMS

$?0 WEND

s8o FILENAMES = "SCHED" + WK NUMS + " " + SCHED NUMS
$9¢C !

600 ‘check if file already exists

I R A S C e e e e . ' N - o e .
L i = e B S P T . T T VA Ve

v g - Ry A - .
A N T T T T T S S T R T R A R S s T R s o T Ty T T T T T R

o
e

Fa

e 94
. 610 ON ERROR GOTO 630
< 620 OPEN "I", 1, FILENAMES
f §30 IF ERR = 353 THEN FIL NAM . FOUND = -1:. RESUME 4S50 EL
E SE CLOSE#®!
{ 6§40 'no error indicates file was found and opened, try a
=", gain. .
o 8350 ON ERROR GOTO 0
- 660 WEND
f- 670 PRINT"Using " FILENAMES “ for schedule data, dated "
A WK .DATES
680 PRINT: PRINT C$;: A$ = INPUTS(1): PRINT AS
~? §90 IF A$ = "1" THEN GOTO 360 ELSE IF As$ <> "0" THEN PRI
- NT Es: GOTO 470
- 700 -
- 710 ' schedule_data
xi 720 :
- 730 OPEN "R", t, FILENAMES, S8
q; 740 ‘ seq.num: act. sched time: act code: pil . num:
i st.time: end. time: act name: pilots: eur req: qu
S al . req:
;: 7%0 FIELD#:, 2 AS N11$, 2 AS N12$, 1 AS N13s, 1 AS Ni4gs,
2 AS Ni1S$, 2 AS N1és, 20 AS N17¢, 8 AS Nis8ss, 10 AS Ni9s, 10
: AS N110S
) 760 FIELD#1, S8 AS NiAs
5 770 :
ﬁ 780 SHELL . FILES = "SHELL" + WK.NUMS$ + " DAT"
% 790 -
™ goo ‘open shell data file as #2. ..
. 810 QPEN "R", 2, SHELL FILESs, 30
~ 820 ! seq.num: act.sched.time: act.code: pil num:
o, act st time: act.end.time: act.name:
[830 FIELD#2, 2 AS N21$, 2 AS N22s, 1 AS N23s, 1 AS N24
e $, 2 AS N2%s, 2 AS N2és, 20 AS N27s
= 8490 FIELD#2, 30 AS N2AS
o) 830 '
< 840 M a 0: N = O0: END.FIL = 0: ACT.SCHED TIME = 0: MAX.N
) = 20 '
- 870 DIM ACTS(19)
- 880 ' :
890 ‘following string has bits 0 thru $9 °'ON’
. 900 ALL PILOTS = STRINGS$(7,25S5) + CHRS$(1S)
-~ 910)
;- 920 ‘open act def file 2s #3 for currency and qual
3 930 ' reqts . . .
- 940 OPEN "R", 3, “ACT.DEF", 4¢
‘ 9s0 FIELD#3, 2 AS N31s, 20 AS N32¢, 2 AS N3I3Is, T AS N34gs
- , 10 AS N3Ss, 10 AS N34
N 960 '
- 970 PRINT"Cetting shell data from " SKELL FILES " and sa
% ving in " FILENAMES
i 980 WHILE NOT END.FIL
?90 ‘gat shell! records 20 at a time or until end
. 1000 ! found . ..
- 1010 WHILE (ACT.SCHED TIME <> 32767) AND (N (MAX N»

- 1020 N sN=+ 1

.’ . St Ty e et N) 0 C -0 . .
- .. bt A e s el Al a4t an A .4 mTa aiabtar_alay

95
1030¢ GETS2, N
1040 ‘save temporarily in act$, make l[en equal to new
1050 ' rec len by appending null chars. .
10460 ACTS$ (N MOD 20) = NZAS + STRINGS$(S8 - LEN(N2AS)Y.,O
)
1070 ACT.SCHED . TIME = CVI(N22s$)
1080 WEND
1090 IF ACT. SCHED.TIME = 327647 THEN END FIL s -1
1100 ‘'save next 20 or all remaining act$ in schednn xxx
1110 ! file. ..
1120 WHILE M ¢(N
1130 M =M+t
1140 ACT.CODE = ASC(MIDS(ACTS(M MOD 20),S5,1))
1150 GET#3, ACT.CODE
1160 CUR REQS$ = N3S$: QUAL REQS = N34S
1170 ACT CUR .QUALS(ACT.CODE) = CUR.REQS + QUAL .REQS
1180 '
1190 ‘save the cucrrency and qual strings with the record
1200 ' and the act .code.used bit for each act.code
1210 ! in the schedule. ..
1220 !
1230 MIDS (ACTS(M MOD 20),39,20)> = ACT.CUR QUALS(ACT.C
QDE)
1240 BYTE = ACT . CODE\8 + 1: BIT = (ACT.CODE - 1) MOD
8
12350 BYTS a MIDS(ACT.CODE.USEDS ,BYTE. 1)
1260 IF (ASC(BYTS) AND 2°*BIT) (> 2°BIT THEN MIDS$ (ACT.
CODE .USEDS ,BYTE, 1) = CHRS$S(ASC(BYTS) + 2°BIT)
1270 :
1280 LSET N1A$ = ACTS(M MOD 20
1299 PUT#1, M
1300 WEND
1310 MAX.N = MAX N + 20
1320 WEND
1330 MAX.N = N
1340 CLOSE %2, #3
13S0 ERASE ACTS
1360 PRINT“Transfer completed"”
1370 '
1380 'schednn.xx2 now has a record for each activity
1390 ! found in the schedule shell ..
1400 ¢
14140 ‘open weekly data file as %3 and get avails$ and
1420 ! qual data in memory
1430 PRINT"Cetting AVAILS and QUAL data from " WKDAT FILE
]
1440 OPEN "R", 3, WKDAT FILES, 92
1430 ' pil . num: avails: cur . d¢t: qual:
net/nlt:
1440 FIELD®#3, 1 AS N31$, 42 AS N3I2s, 20 AS N33s, 2 AS N34
$, 28 AS N33Js
1470 FIELD#3, 93 AS N3As
1480 ‘open a specific weekly data file to be used with
1490 ! this scheduyle data. .
1500 OPEN "R", 2, "WK" + WK NUMS$ + " " + SCHED NUMs, 93

A 0 S ANCAA KA M e i A, Sl B R R NS T AR A e A OO I U TR A A A P dC S R Bl

s
,

X 14

%4

';‘.1} PP
PRI/

96

1510 FIELD#2, 93 AS N2ZAS

1520)

1830 FOR P = I TO MAX.PIL. NUM

1340 GCET#3, P

15350 IF P (> ASC(N31$) THEN PRINT"Error in " WKDAT.FILE
$ ", record” P "() to pilot number"” ASC(N31$)

15460 AVAILS(P) = N32¢§

1870 ! FOR Q = 0 TO ¢

1580 ¢ CUR.DT(P,Q) = CVI(MIDS(N33$,Q"2+1,2))

1590 ! NEXT

14600 QUAL(P) = CVI(N234$)

1610 ‘save in individual week's data file. . .

1620 TMPS = N3AS: LSET N2ZAS = TMPS

1630 PUT#2, P

1640 NEXT

1650 ‘save final record - date data. . .

1440 GET#3, P

1670 TMPS = N3AS$: LSET N2AS = TMPS

1480 PUTH2, 2

1690 CLOSE #2, 83

1700 '

1710 ‘check each act. code (if used) then evaluate each
1720 ! pilot for qualification and save in pilots.. .
1730 FOR I = 1 TO 254

1740 BYTE = I\8 « {: BIT = (I-1) MOD 8

17%0 BYTS = MIDS(ACT.CODE . USEDS,BYTE, 1)

1740 ‘set the pilots bits on only for qualified pilots. ..
1770 IF (ASC(BYTS) AND 2°BIT) = 2°BI!T THEN GOSUB 2060
PILOTS (1) = PILOTS

1780 NEXT

1790 !

1800 ‘now have pilots qualified for each activity saved
1810 ! in pilots(act.code); next, determine which
1820 ' qualified pilots are also available, then
1830 ! save with the activity record in schednn. zxxx
1840 !

1880 FOR N = {1 TO MAX.N - 1

1840 PRINT"Getting AVAILS data for sched sequence
number” N

1870 GET#1i, N

1880 ACT .CODE = ASC(N13$)

1890 IF ACT.CODE > 128 THEN PILOTS = PILOTS(ACT.C

ODE) ELSE PILOTS = N18¢

1900 ACT.ST TIME = CVI(N1S$): ACT . END TIME = CVI(

Ni1és)

1910 FOR ! = § TO MAX.PIL NUM

1920 AVAILS = AVAILS(I)

1930 BYTS = MIDSC(PILOTS,I\8+1,1): BIT = (l=-1) M
oD 8

1940 IF (ASC(BYTS) AND 2°BIT) = 2°BIT THEN GOSU
B 2230

1980 NEXT

1960 LSET Ni8s = PILOTS

1970 PUT#1, N

1980

NEXT

Tama T

1990 PRINT"Schedule file completad": END

2000

2010 ' subroutines

2020 !

2030 ‘'this routine compares the qual reqd values to the
2040 ' pilot qual values and sets the pilots bit
20350 ' on if a qual match is found. ..

2060 PILOTS = STRINGS$<(8,0)

2070 PRINT"Checking pilot qualifications for activity cod
e" I

2080 FOR P = 1 TO MAX.PIL.NUM

2090 J = 0: QUAL.FOUND = 0

2100 WHILE QUAL . FOUND = 0 AND J (§

2110 J s J + 1

2120 QUAL . REQ = CVI(MIDSC(ACT.CUR QUALS(I) ,J%x2+9,2))
2130 IF (QUAL(P) AND QUAL .REQ) = QUAL REQ THEN QUAL.F
OUND = -t

2140 WEND

21350 BYTE a2 P\8+!: BYTS = MIDS(PILOTS,BYTE,i): BIT = (P
-1) MOD 38

2140 IF QUAL .FOUND THEN MIDS(PILOTS ,BYTE, 1) = CHRS$(ASC(
BYTS$) + 2°BIT): PRINT"Pilot" P *“gqual" ELSE PRINT"Pilot" P “n
ot qual™

2170 NEXT

2180 FOR H = {1 TO 8: PRINT ASC(MIDS(PILOTS H,1));: : NEXT:
PRINT

2190 RETURN

2200 '

2210 ‘this routine checks a pilot tor availability and
2220 ! turns off the pilots$ bit if not available...
2230 START . TIME = ACT.ST.TIME

2240 END.TIME = ACT.END.TIME

2230 AVAIL = -1: SET = 0

2240 GOsSuUB 27460

2270 PRINT"Pilot" 1;

2280 IF NOT AVAIL THEN MIDSC(PILOTS,I\8+1,1) = CHRS(ASC(BY

TS - 2°BIT): PRINT"Not avail" ELSE PRINT"Avail"
2290 RETURN

2300 ' _

2310 ‘trim trailing spaces. ..

2320 L = LENC(TRIMS) + 1: L.CHRS = CHRS$(0)

2330 WHILE ASC(L.CHRS$) (33

2340 L =L -1

23%0 L.CHRS = MIDS(TRIMS L,1)

2360 WEND

2370 TRIMS = LEFTS(TRIMS, L)

2380 RETURN

2390)

2400 ‘dynamic array size increase. ..

2410 DIM TMPS$ (MAX . N)

2420 FOR M = § TO MAX.N: TMPS(M) = ACTS (M) . NEXT
2430 ERASE ACTS$: DIM ACTS(MAX N + 10)

2440 FOR M = 1 TO MAX N ACTS(M) = TMPS(M): NEXT
24%0 MAX . N = MAX. N + 10

2440 ERASE TMPS

oy
v 98
N 2470 ON ERROR GOTO 0
'§ 2480 RETURN
- 2490 !
A 21500
' 2510 !
o 2520 ‘Aax CASE ®rw
v 2830 'module dated 24 April 1983
by 2340 '
i 2550 ‘"This module includes subroutines called by other
S 2540 ' modules in determining the case of each
) 2570 y activity relative to the week
‘gt 2580 !
%) 2590 'variables rquired:
e 2600 ! PERIOD.ST.TIME as an integer in minutes or o
o ther time units
5 2610 y PERIOD.DUR as an integer length of period
' 2620 ' INCR as an integer for the value of each bijt
P (resolution)
'21 2630 ' START.TIME as values for the activity
s 2640 ‘ END.TIME "
. 2650 ' AVAILS as a bit string with '{' available, '
S 0' not avail
o 2660 ! AVAIL as a control code
i 2670 ' SET as a control code to set the time 'not a
bt vailable'
5? 2680 ¢
o 2690 ‘returns:
e 2700 ’ AVAIL as TRUE if time is available
) 2710 : AVAILS updated if AVAIL and SET both TRUE’
o 2720 '
X 2730 ‘subroutines used:
X 2740 ' all internal
r. 27%0 :
2740 COsSuUB 2980
- 2770 GCOSUB 3190
. 2780 RETURN
) 2790 '
g} 2800 °
- 2810 ' <«=«= This routine determines the case of activity
2820 ! start (CASE1) and end (CASE2) relative to
2830 ! the period start and end. ..
2840 °
2850 ' CASE1l and CASE2 equal 1 if times are before
2860 ! the period starts, 2 if during the period,
2870 ! or 3 if after the period. Thus if CASE! is
2880 y 3 or CASEZ2 is 1, the whole activity falls
2890 : outside the period in question. If both
2900 ! CASEL and CASE2 are 2, then the whole
2910 ' activity is within the period.
2920
2930 °* CASE3 has a value of 1 if the whole
2940 ! activity falls on a single byte, 2 if on
29%0 ' adjacent bytes and 3 if one or more whole
2960 ! bytes ‘all bet sen the start and end
2970

-
W IR T TP R ST WP YO PR L IR TR R Y

99

2980 START.BIT = START TIME\INCR

2990 START . BYTE = START.BIT\8 + 1

3000 END . BIT = (END.TIME-1)\INCR

3010 END .BYTE = END BIT\8 + 1 .

3020 IF START.TIME s PERIOD ST.TIME THEN COND{ = -1 ELSE

CONDL = 0

3030 IF START.TIME {((PERIOD.ST.TIME + PERIOD.DUR) THEN C
OND2 = -1 ELSE COND2 = 0

3040 IF COND! AND COND2 THEN CASELf = 2 ELSE IF NOT COND!
THEN CASE! = 1 ELSE IF NOT COND2 THEN CASEL = 3

30S¢0 IF END.TIME > PERIOD.ST.TIME THEN COND3 = -1 ELSE CO
ND3 = 0

30460 IF END.TIME (= (PERIOD ST .TIME+PERIOD.DUR) THEN COND
4 = -1 ELSE COND4 = 0

3070 IF COND3 AND COND4 THEN CASE2 = 2 ELSE IF NOT COND3
THEN CASE2 = | ELSE IF NOT COND4 THEN CASEZ = 3

3080 IF END.BYTE = START.BYTE THEN CASE3 = 1

3990 IF END.BYTE - START.BYTE = {1 THEN CASE3 = 2

3100 IF END.BYTE - START.BYTE > 1| THEN CASE3 = 3
3110 RETURN

3120 ¢
3130 °
3140 *' This routine selects the proper routine for
31350 ! checking or setting availability based on
3140 ' the case defined by CASE1l, CASE2, and CASE3
3170 ¢
3180 it start is before period. ..
3190 IF CASEi1a1 AND CASE2=2 THEN ON CASE3 GOSUB 3340,3440
3440

3200 ' it start and end are during period. . .

3210 IF CASE1=2 AND CASE2=2 THEN ON CASE3 GOSUB 3570,3740
,3700

3220 if start is during period but end is after. .
3630 IF CASE1=2 AND CASE2=3 THEN ON CASE3 GOSUB 3920,4050
40350
3240 if start is before and end is after period. .
323%0 IF CASEt=s1 AND CASE2=3 THEN FIRST.BYT=1: LAST BYT=LE
NCAVAILS): GOSUB 4090
3240 the final case ends before or starts after p
eriod. . .
3270 IF CASE123 OR CASE2a21 THEN PRINT"Activity is complet
ely outside the period. . "
3280 RETURN
32%0
33oo
3310 e== This rtoutine is used when END BYTES is the
3320 ' ficst byte of AVAILS
3330

3340 FIRST.BIT . USED = 0: LAST BIT USED = (END BIT MOD &)
3350 BYT TO.CK$ = LEFTS(AVAILS, 1)

3340 COSVUEB 41310

3370 IF AVAIL AND SET THEN MIDS(AVAILS,1,1) = CHRS$(ASC(BY

T.TO.CK$) AND (NOT MASK))

o

E A AN Ay BSOS
e SR Tt ’

BRES

LA

ﬁl‘ 3 T
. "% 0

PO PR PR
PR W RS S

100
3380 RETURN

33%0

3400 °

3410 -=-=- This routine is used when END BYTE points to
3420 ! end byte. ..

3430

3440 FIRST.BYT = 1: LAST.BYT = END BYTE-1

34350 GOSUB 41°%0

3440 FIRST.BIT.USED = 0: LAST.BIT.USED = (END.BIT MOD 8)
3470 BYT.TO.CKS = MIDSC(AVAILS ,END . BYTE,1): J = END.BYTE
3480 COSUB 4310

3490 IF AVAIL AND SET THEN GOSUB 4430 ELSE RETURN

3500 MIDS CAVAILS ,END BYTE.,!)> = CHRS(ASC(BYT.TO.CKS$) AND ¢

NOT MASK))
3510 RETURN

3520 ¢

35390 ¢

3540 ' --- This routine is used for the single byte case
35350 ' where one byte includes both start and end. ..
3ss0 ¢

3570 BYT.TO.CXS = MIDS(AVAILS,START BYTE, 1)

3580 MASK = 0

390 FIRST.BIT.USED = (START . BIT MOD 8)

3600 LAST.BIT.USED = (END.BIT MOD 8)

3610 GOsSuUB 4310

3620 IF AVAIL AND SET THEN MIDS(AVAILS,START.BYTE,!) = CH

RS (ASC(BYT.TO.CKS) AND (NOT MASX))
3630 RETURN

36 40

3680

3640 -== This routine is used when one or more bytes

3670 ' separate tha first and last bytes or when
3480 ! they are adjacent. . .

3690

3700 FIRST.BYT = START BYTE+1: LAST BYT = END.BYTE-1

3710 GOSUB 4190

3720 IF NOT AVAIL THEN RETURN

3730 CASE3 = 2 enters here. . .

3740 FIRST.BIT.USED = (START .BIT MOD 8): LAST.BIT.USED =
7

3730 BYT.TO.CKS$ = MIDS(AVAILS, START BYTE, 1)

3760 GOSUB 4310

3770 IF AVAIL AND SET THEN MASK.ST=MASK: BYT ST$=BYT.TO.C
Ks$ ELSE IF NOT AVAIL THEN RETURN

3730 FIRST.BIT . USED = 0: LAST BIT.USED = (END.BIT MOD 8)
37%¢0 BYT TO.CKX$ = MIDSC(AVAILS END.BYTE,1): J = END. BYTE
3g00 GCOSUB 4310

agi1o IF NOT AVAIL THEN RETURN

3820 IF (CASE3=3) AND (AVAIL AND SET) THEN GOSUB 4430
3830 IF NOT(AVAIL AND SET) THEN RETURN

3840 MIDS CAVAILS, START BYTE.,1)> = CHRS$(ASC(BYT STS$) AND (N
OT MASK . ST))

3gs0 MIDS CAVAILS ,END.BYTE, 1> = CHRS(ASC(BYT TO CK$) AND <«
NOT MASK)) -

3840 RETURN

L
o
g 101
s 3870 °
T 3gso
O 3890 ' --- This routine is usad when the last byte in the
(" 3960 : string is the only byte to be checked. .
3?10 ¢
Kﬁ 3920 BYT TO.CKS = MIDS C(AVAILS,START BYTE. 1)
$? 3930 FIRST.BIT.USED = (START.BIT MOD 8): LAST BIT.USED =
o (PERIOD.END.BIT MOD 8)
P 3940 GCOSUB 4310
nY 39%0 IF AVAIL AND SET THEN MIDS(AVAILS,START . BYTE,1) = CH
RS (ASC(BYT.TO.CK$> AND (NOT MASX))
e 3940 RETURN
o 370
- 3sso °
p - g 3990 ' --- This routine is used when the activity ends
L 4000 ' after the period and the first byte is one
- 4010 ' or more bytes from the end of AVAILS. The
AN 4020 : last two cases of CASE3 are both checked by
'ﬁf 4030 ' this routine. ..
o 4040
:-:' 4030 FIRST.BIT.USED = (START.BIT MOD 8): LAST.BIT.USED =
- 7
i 4040 BYT.TO.CKS = MIDSCAVAILS,START.BYTE,K 1)
‘ 4070 GOSUB 4310
. 4080 FIRST.BYT = START.BYTE+1: LAST.BYT a LENCAVAILS)
y 4090 GOSUB 4199
.{, 4100 IF AVAIL AND SET THEN GCOSUB 4430 ELSE RETURN
e 4110 MIDS CAVAILS ,START.BYTE,1) = CHRS(ASC(BYT.TO.CK$) AND
/ (NOT MASK)?)
e 4120 RETURN
o 4130
2 4140 °
- 4:50 ' --- This routine is used by the routines above when
8 4160 ' whole bytes are being checked for
g 4170 ! availability. ..
o 4180 °
f} 4190 FOR J = FIRST.BYT TO LAST.BYT
}5 4200 BYT.TO.CX$ = MIDS(AVAILS ,J,1)
O 4210 IF BYT.TO.CKS$ (> CHR$(2S5S%S) THEN FIRST . BIT.US
ED=0: LAST.BIT USED=7: GOSUB 4314¢
e 4220 IF NOT AVAIL THEN RETURN
- 4230 NEXT
S 4240 RETURN
o 4250 °
- 4260
‘7 4270 ' --- This routine is called by above routines to
Ky 492840 ! check availadbility within pactial bytes of
,{% 4290 ! AVAILS . ..
e 4300
oo 4310 MASK = 0
R 4320 FOR K = FIRST.BIT.USED TO LAST BIT. USED
P 4230 MASK = MASK + 2°'K
V.. 4340 IF (ASC(BYT TO.CK$) AND 2°K) = Q THENM AVAIL
~ = 0: RETURNM
o~ 4350 NEXT .
::-:
e
:f
e
;’;’f’.,: - .

43460
14370
4380
4390
4400
4410
442¢
44230
4440
4430
4460
4470

RETURN

-== This routine is called when a whole byte is to
! be set to NOT AVAILABLE state, both AVAIL
' and SET are TRUE. ..

FOR J = FIRST . BYT TO LAST.BYT
MIDSCAVAILS ,J,1) = CHRS$(Q)
NEXT

RETURN

™ e AU

103

100 tRAN VKSCHEDSET AR R R R R R RS R R R R R R EEE R RERE R RS R RN R
110 ‘program dated 24 Mavy 1983

120 !

130 ‘This proegram builds the final schedule file from
140 ' schadnn. xxx and wknn . xxx

150 !

1460 ‘variables required:

170 ! none

180 '

1%90 ‘teturns:

200 ! SCHEDnn .DAT file when completed

210 !

220 DEFINT A-2Z

230 CLRS = CHR$(24): DOWNS$ = CHRS$(10): ESCS = CHRS$(27):
CRS = CHRS$(13)

240 MID. SCRNS = CLRS + STRINGS(4,10)

250 UP$ = CHRS$(11): MOV .LEFTS = CHRS$(8): MOV .RICHTS = CH
R$(12)

260 HOMES = CHR$(30)>: CLR.LINES$ = ESCS + "T"

270 :

280 PERIOD . 8T .TIME = 0: PERIOD.DUR = 10080: INCR = 30:- M
AX . PIL.NUM = 40

290 DIM QUAL(MAX.PIL . NUM), AVAILS(MAX PIL.NUM), PIL.NAMS
(MAX.PIL.NUM + 1)

oo DIM PILOTS$(254), CUR NAMS$(1S), EXP DUR(1S), INXP.DUR
(15), EVENT.NUM(1S)

310 DIM NET(?7), NLT(?)

320 ACT .CODE . USEDS = STRINGS(14.,0)

330 DAYS = "SunMonTueWedThuFriSat"

340 MAONTHS a “"JANFEBMARAPRMAYJUNJULAUGCSEPOCTNOVDECJA
NH

350 FIRST.DAYS = "001032060091121152182213244274305333534
6"

340 '

370 C$ = "Enter: 0 if correct, 1 to change it: *“

380 E$ = "Error, enter 0 or { only, try again..."

390 !

400 PRINT MID.SCRNS "Enter the week number:";: INPUT" *,
WK . NUMS

410 FILENAMES = “"SCHED" + WK.NUMS + " =

420 PRINT"Schedule files for week " WK.NUMS$ ":.:": PRINT
430 FILES FILENAMES: PRINT DOWNS

1440 PRINT"Enter the schedule file number or 0 to start a
gain:“";: INPUT" ", SCHED.NUMS

4350 IF SCHED NUMS$ = "0" THEN GCOTO 400

440 WHILE LEN(SCHED.NUMS$) < 3

470 SCHED NUMS =2 "0" + SCHED.NUMS

480 WEND

490 FILENAMES = "SCHED" + WK.NUMS$ + "." + SCHED.NUMS

S00 !

S10 PRINT MID.SCRNS "Using " FILENAMES " for schedule da
ta . "

S20 PRINT Cs$;: AS$ = INPUTS(1): PRINT AS

$30 IF A$ = "1" THEN GOTO 400 ELSE IF As$ (> "Q0" THEN PRI

NT E$: GOTO 3520

EEUIMACIMAC I Tt TS S A el S AN P e Dol T i Sie-Re S Ga ‘.'.‘#

104

540 !

$Sa ! schedule_data

$60 '

$70 OPEN "R", 1, FILENAMES, S8

S8g0 ! seq num: act sched time: act.code pil num:
st. . time: end. time: act name: pilots: eur req: qu

al req:

390 FIELD®1, 2 AS Ni11$, 2 AS N12s, 1 AS N13s$, 1 AS Ni4s,
2 AS N1S$, 2 AS Nt1é&s, 20 AS Ni7s, 8 AS Ni18s, 10 AS Ni9s, 10
AS Ni110s$

600 FIELD#1, S8 AS N1AS

é1¢0 '

620 PRINT MID.SCRNS "“GCetting date data.. "

430 WKDAT .FILES = "WK" + WK.NUMS$ + "." + SCHED. NUMS$

640 OPEN "“R", 2, WKXDAT FILES, 93

630 FIELD#2, 1 AS N21$, 2 AS N22s, ? AS N23s, 81 AS N24ts

660 GET#2, MAX . PIL NUM + 1

670 IF ASC(N21$) <> MAX . PIL NUM + 1 THEN PRINT"File acce

$s error in " WKDAT.FILES

480 WK .DATE = CVI(N22$): WK DATES = N23s

690 IF (WK.DATE MOD 1000)>\7 (> VAL(WK NUMS$) THEN PRINT"“E

rror: week number “ WK.NUMS$ “ does not agree with file " WKD
AT .FILES ",
dated " WK.DATES

700 CLOSE #2

710)

720 PRINT MID.SCRNS$ “Cetting currency names from file. ..

730 OPEN "R", 2, “CUR.DEF", 28

740) cur . num: ceur.nams$: exp.dur: ingp . dur:
event num:

750 FIELD#2, 2 AS N21s$, 20 AS N22s$, 2 AS N23s$, 2 AS N24s

, & AS NZ2Ss

760 FOR I = 1 TO 1S

770 CET#2, 1

780 TRIMS = N22$: GCOSUB 3510: CUR.NAMS(I) = TRIM

$

790 EXP.DUR(I) = CVI(N23$)

800 INXP.DUR(I) = CVI(NZ4$)

810 EVENT NUM(I) = CVI(N2SS)

820 NEXT

830 CLOSE #2

840 '

8350 PRINT MID SCRNS "GCetting pilot names from file.. . "

8460 QOPEN "R", 2, "PILNAM.DEF", 27

870 ¢ pil. num: 1 names$: inits: ranks$:

880 FIELD#2, 2 AS N21s$, 20 AS N22s$, 2 AS N23s, 3 AS N24‘s

8%0 FOR I = 1 TO MAX.PIL . NUM

900 GET#2, !

910 TRIMS = N22

920 IF TRIMS = "Not in use " THEN GOTO

9S50 ELSE COSUB 3510: PIL . NAMS(I) = TRIMS

930 PIL NAMS(I) = N24% + " " & PIL NAMSC(I) & ",

" + N23S

%40 PRINT CR$ STRING$(33,32) CRS USING "##"; I,;:

R RIRE N . .
. DL T AL A A Y . . .
LIPS I O WL AL TIPS WA PRI

PRINT *“
?30
960
970
980
790
1000
1010
1020
1030
1040
1030
1060
1070
- 1080
1090
1100
1110
1120
1130
1140
11350
1160
1170
N224s,
1180
1190
1200
1210
1220

1230

1240
1250
1240
1270
“Errtor,
1280
1290
1300
1310
1320
1330
1340
13S0

1360
1370
1380
1390
1400

: 1420
: 1430

r order”

— B r—m———

- " PIL.NAMSC(I);
NEXT
PIL. NAMS(MAX.PIL NUM+1) = “None”
CLOSE #2
N = 0: ACT.SCHED TIME = 0
PRINT MID.SCRNS "Getting length of " FILENAMES
WHILE ACT.SCHED.TIME (> 32747
N s N + 1
GETsi, N
ACT.SCHED.TIME = CVI(N12#$)
WEND
MAX N = N: DIM ACTS(MAX .N)
PRINT"Reading " FILENAMES " into memory"
FOR N = 1 TO MAX.N
CET#i, N
ACTS(N) = N1iAS
NEXT

PRINT MID.SCRNS$ FILENAMES " data now in memory..."
‘open data tile. ..

OPEN "R", 2, WKDAT.FILES, 93
FIELD®#2, 1 AS N221s, 42 AS N222s, 20 AS N223s, 2 AS

28 AS N22Ss

PRINT

PRINT" Enter:"

PRINT" 0 to quit"”

PRINT" 1 to till schedule in sequence numbe
PRINT" 2 to till individual sequence number

activities"”

FRINT" 3 to till by activity number"

PRINT" Which choice? ";

SEL = VALCINPUTS (1))

IF SEL = 0 THEN GOTO 1310 ELSE IF SEL > 3 THEN PRINT
enter 0 to 3 only, try again...": GOTO 1250

ON SEL GOSUB 1400, 1430, 1S00

PRINT MID SCRNS$: GOTO 1190

FOR N s | TO MAX.N
LSET NiAS$S = ACTS (N)
PUTH#1, N
NEXT
PRINT MID.SCRNS "Schedule data saved in " FILENAMES

" and " WKDAT FILES

! contcol_subroutines

‘step thru in sequence number order ..
PRINT"Not written yet.. .";: DUMMYS$ = INPUTS (1)

1410 RETURN

‘one seq num at a time from keyboard. ..
PRINT MID. SCRNS "What is the sequence number?®";

T ety
P |

-
.

7ﬁfﬁ7ﬁ*ﬂ7ﬁ7?T“Trfﬂ1
.
‘

1440 INPUT" ", SEQ.NUM

1450 IF SEQ.NUM (= 0 THEN GOTO 1480 ELSE IF SEQ NUM > MAX
.N THEN PRINT"Error: sequence number too big, enter a number
from 0 (to

quit) to" MAX.N: PRINT"Try again:",; INPUT" ", SEQ.NUM: GOTO
1450

1440 GOSUB 1560

1470 PRINT"Enter 0 to quit, sequence number to display an

other schedule activity:.": GOTO 1440

1480 RETURN

1490 'by activity number. ..

1500 PRINT"Not written yet...";: DUMMYS$ = INPUTS(1) o
1510 RETURN :

1820 '

1530 ! subroutines

1540 '

1530 ‘display an activity and candidates on screen. ..
1560 IF SEQ.NUM (> CVI(MIDS(ACTS$(SEQ.NUM),1,2)) THEN PRIN

T"Error in file at record " SEQ. NUM

157¢ ACT.SCHED . TIME = CVI(MIDS(ACTS(SEQ NUM),3,2))

1580 ‘get clock time, day, and datse. ..

1390 GCOSUB 3730: SCHED.TIMES = THIS.TIMES

1600 GOSUB 3880

1610 ACT.CODE = ASC(MIDS (ACTS$(SEQ .NUM),5,1))

1620 PIL.NUM = ASC(MIDS(ACTS(SEQ.NUM), 6,1))

1630 START . TIME = CVI(MIDS(ACTS (SEQ .NUM) ,7,2))

1640 GOSUB 3730: ST.TIMES = THIS TIMES

16350 END.TIME = CVI(MIDSC(ACTS(SEQ.NUM),9,2))

16460 GOSUB 3730: END.TIMES = THIS TIMES

1670 IF PIL . NUM = 235 THEN PIL.NUM = MAX PIL.NUM + 1

1680 ACT.NAMES = MIDS(ACTS(SEQ.NUM),11,20)

1690 CANDS = MIDSC(ACTS (SEQ NUM),31,8)

1700 CAND.TOT = &

1710 FOR I = {1 TO MAX PIL.NUM

1720 BYTE = ASC(MIDS(CANDS , I\8+1,1)): BIT = (I-1)
MOD 8

1730 IF (BYTE AND 2°BIT) = 2°BIT THEN CAND.TOT =

CAND .TOT + 1

1740 NEXT

1730 CUR.REQ = CVI(MIDS(ACTS(SEQ.NUM),39,2))

1760 '

1770 PRINT LEFTS(MID.SCRNS,S);

1780 PRINT"Sequence number:" SEQ NUM TAB(S0) THIS . DAYS *,
“ THIS.DATES DOWNS

1790 PRINT SCHED.TIMES " - " ACT . MNAMES TAB(3S) "Assigned:
*“ PIL NAMS(PIL NUM) DOWNS

1800 NONE = -1

1810 PRINT"Currencies rtequired: "

1820 FOR I s 0 TO 14

1820 IF (CUR.REQ AND 2°1!)> = 2°1 THEN PRINT CUR.NAMS(1

+«1) " ", IF NONE THEN NONE = 0

1840 NEXT

1880 IF NONE THEN PRINT"None"

1860 PRINT

1870 PRINT"Candidate names "

.......
..............
.........

O e A R T TR T T E ST N T TR RR T T LURAN AT 8 % R v

107

1880 IF CAND.TOT = 0 THEN PRINT"None shown as both qualit
ted and available": GOTO 2170

1890 K = 0: L = CAND.TOT\3

1900 IF CAND . TOT MOD 3 > 0 THEN L1 = L + 1 ELSE L! = L
1910 IF CAND TOT MOD 3 > I THEN L2 = L + 1 ELSE L2 = L
1920 BYTE = 0: BIT = 0: LN = ¢

1930 WHILE LN < L1

1940 LN s LN + 1

1980 I = 0

1940 ‘tind first column name to print. ..

1970 FOR J s { TO LN

1980 GOSUB 3290

1990 NEXT

2000 ‘print it ..

2010 GOSUB 3370: IF K = CAND.TOT THEN GOTO 2140
2020 ‘'skip 11 names

2030 FOR J = 1 TO L1

2040 GOSUB 3290

2030 NEXT

2060 ‘print the next one

2070 GOSUB 3370: IF X = CAND.TOT THEN GOTO 2140
2080 ‘skip 2 names

2090 FOR J =1 TO L2

2100 GOSUB 3290

2110 NEXT

2120 '

2130 GOSUB 3370

2140 WEND

2150 !

21460 ‘'scereen now shows activity and available pilots. ..
2170 PRINT"Enter 0 to skip selection or pilot number to s
elect a pilot for this actjvity"®

2180 INPUT"Which pilot number? ", [

2190 IF I (= 0 THEN GOTO 30460 ELSE IF I > MAX.PIL.NUM THE

N PRINT"Qut of range, enter a number from 0 to"” MAX.PIL NUM
“only, try a
gain": GOTO 2180

2200 ‘check avail and crew rest if applicable. ..

2210 GET#2, I

2220 IF I <> ASC(N221%) THEN PRINT"File access error in "
WKDAT.FILES

2230 AVAILS = N222$

2240 NET NLTS = N225¢

22%50 FOR N s I TO ?

2260 NET(N) = CVI(MIDS(NET NLTS$ N*§4 - 3,2))

1270 NLT(N) = CVI(MIDS(NET.NLTS .N*4d - 1{,2))

2280 NEXT

2290 AVAIL = -1:. SET = 0

2300 PRINT"Recheck availability of " PIL . NAMS(I);

2310 COSUB 4300

2320 IF NOT AVAIL THEN PRINT" is not good, resetting stat
us. . ": MIDS(ACTS(SEQ NUM) , I\8+31,1) = CHR$(ASC(MIDS (CANDS, !

\8*1:1)) - 2
*(¢(I-%) MOD 8)): GOTO 1S540
2330 IF AVAIL AND (ACT. CODE AND 192) THEN COSUB 3110 ELSE

M I AU A o pran i Sl St BRI ST e s St A A i st o L G g U Yl e A S g A= St e R ML I i Bt e Eant e At iR e A e e & Y 4

108
C.REST = -1

2340 IF C.REST AND AVAIL THEN PRINT" is good" ELSE PRINT" :
is not good"
2330 IF AVAIL AND (NOT C.REST) THEN PRINT"Crew rest rtules

not met, enter 0 to ignore crew rest or 1 to NOT select thi
s pilot “,;:
AS s INPUTS$(1): PRINT As$ ELSE GCOTO 2380

SN
W Py P

23460 IF AS = "1" THEN GOTO 1770 ELSE IF AS$ <> "“0" THEN PR
> INT Es: GOTO 2330
- 2370 ‘avail and crew rest check good so set this pilot in
‘ this activity. ..

2380 SET = -1: GOSUB 4730

2390 BYTE = ASC(MIDS(CANDS ,I\8+1,1)): BIT = (l1-1) MOD 8 -

2400 IF (BYTE AND 2°BIT) = 2°BIT THEN MIDS(CANDS ,I\8+1,1)

s CHRS(BYTE - 2°'BIT)

24910 LSET N222% = AVAILS

2420 FOR N= 1 TO ?

2430 IF NET(N) () -1 THEN MIDS(NET.NLTS$ N»*q4 - 3,2

) = MKIS(NET(N))

2440 IF NLT(N) <> -1 THEN MIDS(NET .NLTS$ N*4q4 - 1,2

) = MKIS(NLT(N))

24350 NEXT

2460 LSET N22S% = NET.NLTS

2470 PUT#2, I

2480 ‘update acts(seq.num) in memory. ..

2490 MIDS CACTS (SEQ.NUM),46,1) = CHRS$(I)

2500 MIDSC(ACTS$ (SEQ .NUM),31,8) = CANDS

2510 FOR J = 1 TO MAX.N

2220 IF J = SEQ.NUM THEN GOTO 2570

2530 IF END.TIME ¢ CVI(MIDSC(ACTS$(J),?,2)) THEN GO

TO 2570

2540 IF START .TIME > CVI(MIDSC(ACTS(J),9,2)) THEN

GOTO 287

25350 B s ASC(MIDSCACTS(J) ,1\8+31,1))

2940 IF B AND 2°((1-1) MOD 8) THEN MIDS(ACTS(J),I

18+31,1) = CHRS$(B - 2°((l~1) MOD 8)) .

2570 NEXT

2580 IF PIL.NUM = MAX PIL NUM + 1 THEN GOTO 1540

23990 ‘it pil . num () 61 then reset old pilots bit and avai

18(pil. num) . ..

2600 CET#2, PIL. NUM

2610 AVAILS = N222¢

2620 NET NLTS = N2235$

2630 FOR N a1 TO ?

2640 NET(N) = CVI(MIDS(NET . NLTS$ N*qd - 3,2)) :

2630 NLT(N) = CVI(MIDS(NET.NLTS N*4q4 -~ 1,2))

26460 NEXT

2670 BYTE = ASC(MIDS(CANDS,PIL NUM\8+1,1)): BIT = (PIL . NU

M-1) MOD 8

2680 IF (BYTE AND 2°BIT) = 0 THEN MIDSC(CANDS ,PIL NUM\8.1,

1) = CHR$(BYTE + 2°BIT)

2690 FOR ! = START.BIT TO END.BIT

2700 BYTE = I\8+:i: BIT = (I-1) MOD 8

2710 BYTS = MIDS (AVAILS,BYTE, 1)

2720 IF (ASC(BYTS) AND 2°BIT) = 0 THEN MIDS (AVAIL

PR i A DGR I A AR AR A A e ™ A HPur i avtt T Mt Mt~ "Rol Aleie Mg S Sae e T T T e v

109
$,BYTE, 1) = CHR$S(ASC(BYTS) + 2°BIT)

2730 NEXT
21740 DAY = START.TIME\1440 + |
2780 IF DAY ¢ 2 OR DAY > 7 THEN GOTO 2940
2740 IF NLT(DAY-1) (> START.TIME - 720 THEN GOTO 2810
2770 ACT . SCHED TIME = NLT(DAY-1): GOSUB 3730
1780 PRINT“Cancelled activity set crew rest time for endi
ng previous day: " THIS TIMES
2790 PRINT Cs;: As$ = INPUTS(1): PRINT AS
2800 IF A$ = "t THEN GCOSUB 3410: NLT(DAY-!1) = NEW.T + (D
AY - 2)%1440 ELSE IF AS (> "0" THEN PRINT Es$: COTO 2790
2810 IF NLT(DAY) (> START.TIME + 720 THEN GOTO 2860
2820 ACT.SCHED .TIME = NLT(DAY)>: GCOSUB 3730
2830 PRINT"Cancellad activity set crew rest time for endi
. ng this day: " THIS.TIMES
2840 PRINT Cs;: A$ s INPUTS$(1): PRINT AS
2830 IF AS = "1 THEN COSUB 3410: NLT(DAY) = NEW.T + (DAY
- 1)%1440 ELSE IF As <> "0" THEN PRINT ES$: GOTO 2840
28460 I1F MET(DAY) (> END TIME - 720 THEN GOTO 2910
2870 ACT.SCHED.TIME = NET(DAY): GOSUB 37230
2880 PRINT"Cancelled activity set crew rest time for bagi
nning this day: " THIS TIMES
2890 PRINT Cs;: A$ = INPUTS$(1): PRINT AS
2900 IF AS = "1" THEN GOCSUB 3410 NET(DAY) = NEW.T + (DAY
- 1)%1440 ELSE IF As (> "0" THEN PRINT E$: GOTO 2890
2910 IF NET(DAY+1) (> END.TIME « 720 THEN COTO 2940
2920 ACT.SCHED .TIME = NET(DAY+1): GOSUB 3730
2930 PRINT"Cancelled activity set crew rest time for begi
nning following day: " THIS.TIMES
2940 PRINT Cs;: As$ = INPUTS(1): PRINT AS
2950 IF AS = "1 THEN GOSUB 3410: NET(DAY+1) = NEW.T + DA
Y*1440 ELSE IF AS$ <> "0" THEN PRINT E$: GOTO 2940
29460 PRINT PIL NAMSC(PIL.NUM) " is reset in " WKDAT FILES
2970 LSET N222% = AVAILS
2980 FOR N = { TO 7
21990 IF NET(N) (> ~1 THEN MIDS$(NET.NLTS$ N*q - 3,2
) = MKIS(NET(N))
3000 IF NLT(N) ¢> -1 THEN MIDS$ (NET . NLTS$ N*q4 - 1,2
) = MKXIS(NLT(N))
3010 NEXT
3020 LSET N22S5$ = NET.NLTS
: 3030 PUT#2, PIL. NUM
;f 3040 MIDS (ACTS (SEQ .NUM) ,31,8) = CANDS
) 3030 COTO 1S40
By 3060 RETURN
3vu70 !
. 3080 ‘internal_subroutines____
. 3090 ’
¥ 3100 ‘ecrew rtest check. ..
&' 3110 ‘this routine checks and sets NET and NLT times used
ey for checking
[] 3120 ' cctew rest . ..
<. 3130 !
i 31 40 DAY = START TIME\1440 «
o 3130 IF DAY ¢ 2 OR DAY > & THEN C REST = -1: RETURN
s
;i
R
; AN d

‘."."-‘-'\‘.‘.‘. L.
| TR AT R

.....................
...................

3140 !

;} 3170 IF START.TIME = NET(DAY) OR NET(DAY) = -1 THEN ST.C
o K = -1 ELSE ST. CK = 0
3180 IF END.TIME (= NLT(DAY) OR NLT(DAY) = -1 THEN END CK
= -1 ELSE END.CK = 0
3190 '
3200 IF ST.CK AND END.CK THEN C.REST = -1 ELSE C.REST = 0
RETURN
3210 !
3220 IF (START.TIME-720 < NLT(DAY-1)) OR (NLT(DAY-1) = =1
) THEN NLT(DAY-1) = START.TIME - 720
3230 IF (NLT(DAY) > START.TIME+720) OR (NLT(DAY) = -1) TH
EN NLT(DAY) = START.TIME + 720 *
3240 IF (NET(DAY) < END.TIME-720) OR (NET(DAY) = -1) THEN
NET(DAY) = END.TIME - 720
32350 IF (NET(DAY+1) ¢ END.TIME+720) OR (NET(DAY+1) = =1)
THEN NET(DAY+1)> = END.TIME + 720
3240 !
3270 RETURN
3280 '
3290 IF I ¢ MAX PIL.NUM THEN I = I + | ELSE GOTO 3350
3300 BYTE = ASC(MIDSC(CANDS ,I\8+1,1)): BIT = (I-1) MOD 8
3310 WHILE ((BYTE AND 2°“BIT) (> 2°BIT) AND (I ¢ MAX.PIL.N
UM)
3320 1 =1 «
3330 BYTE = ASC(MIDS(CANDS , I\8+1,1)): BIT = (I-1)
MOD 8
3340 WEND
33s50 RETURN
33490 *
3370 PRINT TAB((X*2S+1) MOD 7S) USING “##", I,: PRINT " -
“ PIL. NAM$(1);: K = K « 1: IF X MOD 3 = 0 THEN PRINT
3380 RETURN
3390 '
3400 !
3410 PRINT"Enter the new crew rest time: ";
3420 INPUT" ", NEW.T
3430 HR s NEW.T\100: MIN = NEW.T MOD 100: BAD = 0
3440 IF HR ¢ 0 OR HR) 24 THEN BAD = -t
3430 IF MIN ¢ 0 OR MIN > S9 THEN BAD = -1
3440 If BAD THEN PRINT"Time not understood, re-enter as a
4 digit number": GOTO 3410
3470 NEW.T = HR*40 + MINM
3480 RETURN
3490 !
3500 ‘trim trailing spaces. ..
3si0 L =« LEN(TRIMS) + 1: L.CHRS = CHRS (0)
. 3s20 WHILE ASC(L .CHRS$) ¢ 33
. 3330 L =L -1
.t 3540 L.CHRS = MIDS(TRIMS,L, 1>
3830 WEND
3340 TRIMS = LEFTS(TRIMS,L)
3370 RETURN
3ss8o '

3$90 ‘dynamic array size increase ..

o L.t LR T T T T S R S P I SO S S L By m s e e .
o4 . PR S IR S -

* " e et - . - . .
W e et L - oLt . . PR SNt e et T e .
A . A T S N P T R P T T S T At A, K S T s, T N)

a ~ il i R v (it i Tt e At et St Sl hne Sl e - kel - TR
———7 T ¥ N L e W s T T T e e RARESAS AR A B T .

A A)

3
-
o 111
- 3600 DIM TMPS$(MAX .N)
- 3610 FOR M = 1 TO MAX .N: TMPS$(M) = ACTS(M): NEXT
3620 ERASE ACTS: DIM ACTS(MAX.N + 10)
3630 FOR M = { TO MAX N: ACTS(M) = TMPS$(M): NEXT
3640 MAX.N = MAX.N + 10
3630 ERASE TMPS
3640 ON ERROR GOTO 0
3670 RETURN ;
3680 ' |
3490 |
3700 '
3710 ‘this routine computes the time from a time in
3720 ' minutes of a2 week. . .
- 3730 HR = (ACT.SCHED.TIME MOD 1440)\60
3740 MIN = (ACT.SCHED .TIME MOD 1440) MOD 40
3750 TS = MIDS(STRS(HR),2): GOSUB 3790: HRS = T
3760 TS = MIDS(STR$(MIN),2): GCOSUB 3790: MINS = T
3770 THIS . TIMES = HRS «+ MINS
3780 RETURN i
3790 WHILE LEN(TS$) (¢ 2
3800 TS = "O0" + TS
3s10 WEND
3g20 RETURN
3830 '
3840 !
3850 ‘this routine determines the day and date of an
3860 ' activity from wk.date, wk.dates, and the
3870 * activity schedule time. ..
3880 DAY = ACT.SCHED.TIME\1440: THIS . DAYS = MIDS (DAYS,6 DAY
3 + 1,3)
3890 THIS . DATE.J = WX.DATE + DAY: DAY.J = THIS DATE.J MOD
1000 *
3900 YEAR = VAL(RIGHTS(WK DATES.,2)): IF YEAR/4 = YEAR\4 T
HEN L.YR = -1 ELSE L. YR = 0
i- 3910 MO = 0: NEXT.MO.1ST.DAY = 1
| 3920 WHILE (DAY.J) NEXT.MO.1ST.DAY) AND (MO ¢ 12)
Lo 3930 ‘'save new ‘'this month', get next month. ..
t' 3940 THIS MO.1ST.DAY = NEXT .MO.1ST DAY
o~ 39350 MO = MO + 1
22 3960 NEXT .MO.1ST.DAY = VAL(MIDSC(FIRST.DAYS MO*3 «
AN 1,3
%ﬂ 3970 IF (MO >= 2) AND L.YR THEN NEXT.MO.i1ST.DAY =
s NEXT.MO.1ST DAY + 1
ot 3980 WEND
E-d 3990 ‘when the day falls in the following year, loop is
F! 4000 ' terminated by mo = 12, thus. .
e 4010 IF DAY.J >a NEXT.MO.{ST.DAY THEN YEAR = YEAR « 1. TH

IS . DATE = DAY.J - NEXT . MO 1ST.DAY + | ELSE THIS .DATE = DAY.J
- THIS8 . MO .1

ST.DAY + 1

4020 TH1IS .DATES = MIDS(STRS(THIS . DATE).2) + " " + MIDS$(MO

NTHS$, (MO=-1)%3 + 1{,3) + STR$(YEAR)

4030 RETURN

4040 !
4080 '

L a8 ou aa su an
R RO

R]
o B

LA

)
PRI

»
o

Tagrd,

-3
R R i,

PSS SN

P
[4

4040
4070
4080
40 90
4100
4110
4120
4130
4140
ther
41350
4140

112

‘RAR CASE REN

‘module dated 24 Apri! 1983

‘This module includes subroutines called by other

) modules in determining the case of each

¢ activity relative to the week

‘vatiables rquired:

! PERIOD.ST.TIME as an integer in minutes or o
time units

* PERIOD.DUR as an inteqger length of period

' INCR as an integer for the value of each bit

(tesolution)

4170
4180
4190

' START.TIME as values for the activity
) END.TIME "
' AVAILS as a bit string with '1' available,

0' not avail

4200) AVAIL as a control code

4210 ! SET as a control code to set the time 'not a
vailable'

4220 '

4230 ‘returns:

4240 ! AVAIL as TRUE if time is available

42350 ' AVAILS updated if AVAIL and SET both TRUE
4240 !

4270 ‘'subroutines used:

42380 ' all internal

4290 '

4300 GOSUB 4520

4310 COSUB 4730

4320 RETURN

4330 !

4340 '

4350 «== This routine determines the case of activity
4340 ! start (CASE1) and end (CASEZ) relative to
4370) the period start and end. ..

4380

4390 ° CASE!l and CASE2 equal | if times are betore
4400 ! the period starts, 2 if during the period,
4410) ot 3 it after the period. Thus if CASEl is
4420 ' 3 or CASE2 is 1, the whole activity falls
4430 ! outside the period in question. I1f both
4440 ' CASE1l and CASE2 are 2, then the whole

4430 ! activity is within the period.

4460

4470 CASE3 has a value of 1 if the whole

4480 ! activity falls on a single byte, 2 if on
4490 ' adjacent bytes, and 3 if one or more whole
4500 ' bytes fall between the start and end.

4310

4520 START . BIT = START.TIME\INCR

4330 START BYTE = START . BIT\S8 + 1

4540 END.BIT = (END.TIME-1)\INCR

45350 END . BYTE «,END BIT\8 + 1

43560 IF START.TIME)= PERIOD.ST.TIME THEN COND! = -1 ELSE

113

COND1 = O)

1570 IF START.TIME ¢ (PERIOD.ST.TIME + PERIOD.DUR) THEN C
OND2 = ~1 ELSE COND2 = 0

1580 IF COND1 AND COND2 THEN CASE! = 2 ELSE IF NOT COND!
THEN CASEl = 1 ELSE IF NOT COND2 THEN CASEl = 3

4590 IF END.TIME > PERIOD.ST.TIME THEN COND3 = -1 ELSE CO
ND3 = O

4600 IF END.TIME <= (PERIOD.ST TIME+PERIOD.DUR> THEN COND
4 = -1 ELSE COND4 = 0

4610 IF COND3 AND COND4 THEN CASE2 = 2 ELSE IF NOT COND3
THEN CASE2 = 1 ELSE IF NOT COND4 THEN CASE2 = 3

4620 IF END.BYTE = START.BYTE THEN CASE3 = 1

4630 IF END.BYTE - START . BYTE = I THEN CASE3 = 2

4440 IF END.BYTE - START.BYTE > 1 THEN CASE3 = 3

4650 RETURN

44460 °

4670 '

4680 ' This routine selects the proper routine for

4690 ' checking or setting availability based on
4700 ! the case defined by CASELl, CASE2, and CASE2
4710 °

4720 if start is before period. ..

4730 IF CASE1s1 AND CASE2=x=2 THEN ON CASE3 GOSUB 4880,4980
,4980

4740 ° if start and end are during period. ..

4750 IF CASE1=2 AND CASEZ2=x=2 THEN ON CASE3 GOSUB S5110,%5280
:35240

47460 it start is during period but end is after..
4774 IF CASE1=2 AND CASE2=x3 THEN ON CASE3 GOSUB 354460,3590
, 9390

4780 if stacrt is before and end is after period.
4790 IF CASEi1=1 AND CASE2=3 THEN FIRST.BYT=1: LAST.BYT=aLE
NC(AVAILS): GOSUB $430

4800 ° the final case ands before or starts after p
eriod. ..

4810 IF CASE123 OR CASE2=1 THEN PRINT"Activity is complet

ely outside the period. . . "
4820 RETURN

N 4830

*.:_

i 4840

;; 48350 -~= This rtoutine is used when END BYTES is the

!. 48440 ’ tirst bDyte of AVAILS . ..

b 4870 °

E' 48380 FIRST.BIT USED = 0: LAST BIT.USED = (END.BIT MOD 8)
e 4890 BYT.TO.CKS$ = LEFTS(AVAILS ., 1)

b 4900 COSUB 58350

E; 4910 IF AVAIL AND SET THEN MIDS(AVAILS,1,1) = CHRS$S(ASC(BY
l. T.TO.CK$) AND (NOT MASK))

hj 4920 RETURN

:.'4.' 4930

Dle 4940

n 49350 ==~ This routine is used when END BYTE points to

At~ JE

2t
(]
(P}

o - -

A N MRS LT A I O, - . . -
3 'ﬁ\-'.-"l'h\-.'a" DIERCI R P e e e LT - RETAI T : .
PR VR S S RIP V W A P W VO R T P e Wt Lt °

PR A\, P N

-
.

— T T N T N T N Ty T Ty ey s s ‘X‘~T7’f7f“'ﬁ]
114
34940 - end byte
4970
4980 FIRST . BYT = 1: LAST.BYT = END. BYTE-1
4990 GOSUB $730
soo0o0 FIRST . BIT USED = 0: LAST.BIT USED = (END BIT MOD 8)
S010 BYT.TO.CKS = MIDS(AVAILS ,END BYTE,1): J = END.BYTE
$020 GOSUB S8Ss0
$03¢0 IF AVAIL AND SET THEN GOSUB $970 ELSE RETURN
s$040 MIDSC(AVAILS ,END.BYTE, 1) = CHRS(ASC(BYT.TO.CKS$) AND <
NOT MASX))
S0S0 RETURN
$S040 ' i
sa7a¢
$080 ' <«-- This routine is used for the single byte case
S0%0 ' where one byte includes both start and end. ..
s100
. St110 BYT.TO.CKS$ = MIDS(AVAILS,START.BYTE. 1)
- s120 MASK = 0
- S130 FIRST.BIT USED = (START.BIT MOD &)
- 5140 LAST.BIT.USED = (END.BIT MCD &)
- $150 COSUB 5850
El S140 IF AVAIL AND SET THEN MIDSC(AVAILS ,START . BYTE,1) = CH
. RS (ASC(BYT TO.CK$) AND (NOT MASK))
- $170 RETURN
b $180 ¢ .
- 5190 °
i. s200 == This routine is used when one or more bytes :
3210 ! separate the first and last bytes or when
- s$220 ' they are adjacent...
- $230 ' i
$240 FIRST BYT = START .BYTE+1: LAST.BYT = END.BYTE-1! |
250 GOSUB 5730 }
$240 IF NOT AVAIL THEN RETURN i
s270 CASE3 = 2 enters here. . :
$280 FIRST .BIT.USED = (START.BIT MOD 8): LAST.BIT USED =
?
$290 BYT TO.CKS = MIDS(AVAILS,START.BYTE, 1)
5300 COSUB S850
$310 IF AVAIL AND SET THEN MASK.STsMASK: BYT ST$=BYT.TO.C
" X$ ELSE IF NOT AVAIL THEN RETURN
- $320 FIRST BIT.USED = 0: LAST BIT USED = (END.BIT MOD 8)
N $330 BYT TO.CKS = MIDS(AVAILS ,END.BYTE,1): J = END.BYTE
- $340 GOsSuB $83%0 .
. 5350 IF NOT AVAIL THEN RETURN
- $3460 IF (CASE3=3) AND (AVAIL AND SET) THEN GOSUB 5970
- £370 IF NOT(AVAIL AMD SET) THEN RETURN
o $380 MIDS (AVAILS,START BYTE,1) = CHRS$S(ASC(BYT.STS$) AND (N
: OT MASK.ST))
- $390 MIDS (AVAILS ,END BYTE,1) = CHR$(ASC(BYT.TO.CKS$) AND (
3 NOT MASK))
$400 RETURN
$q10
$420 '
$430 ' e== This routine is used when the last byte *in the

$440 : string is the only byte to be checked. ..

115

5450 '

3440 BYT.TO.CK$ = MIDS$ (AVAILS,START . BYTE, 1)

$470 FIRST.BIT.USED = (START BIT MOD 8): LAST.BIT.USED =
(PERIOD .END.BIT MOD 8)

$480 GOSUB $8%0

$490 IF AVAIL AND SET THEN MIDSC(AVAILS ,START BYTE,1)> = CH

RS (ASC(BYT.TO.CK$) AND (NOT MASK))

$500 RETURN

s510 ¢

$$20

$53o0 «== This routine is used when the activity ends

$%540) after the period and the first byte is one

$§5S0 ! orf more bytes from the end of AVAILS. The

5540) last two cases of CASE3 are both checked by

$$70) this routine. ..

$580

$590 FIRST.BIT.USED = (START.BIT MOD 8): LAST BIT.USED =

?

$S400 BYT.TO.CKS$ = MIDS CAVAILS,START.BYTE, 1)

5610 GOSUB 5850

$620 FIRST.BYT = START .BYTE+1: LAST BYT = LENCAVAILS)

5630 GOsSUB $730

$640 IF AVAIL AND SET THEN GOSUB $970 ELSE RETURN

5450 MIDS (AVAILS ,START BYTE.,1) = CHRS(ASC(BYT.TO CK$) AND
(NOT MASK))

$56640 RETURN

$670

$6480 '

$6%0 == This routine is used by the routines above when

$700 ' whole bytes are being checked for

$710 ! availability. ..

€720 '

$730 FOR J = FIRST.BYT TO LAST. BYT

$740 BYT.TO.CKS = MIDSCAVAILS ,J., 1)

5730 IF BYT.TO.CKS (> CHR$(255) THEN FIRST.BIT.US

ED=0: LAST.BIT USED=7: GOSUB 5850

$760 IF NOT AVAIL THEN RETURN

$770 MEXT

$780 RETURN

$790

s8o00

§810 ~=-= This routine is called by above routines to

5820 ' check availability within partial bytes of

5830 ' AVAILS . .

S840

$s8so MASK = 0

3840 FOR K = FIRST.BIT.USED TO LAST.BIT.USED

$870 MASK = MASK + 2°K

$880 IF (ASC(BYT.TO.CKS$) AND 2°‘XK) = 0 THEN AVAIL

= 0 RETURN

$890 NEXT

$900 RETURN

S®10

$920

$930 e== This routine is called when a whole byte is to

T et . . « . . . -~ .'.'Q.’..
AR S R I N . P A T A L Y L W S S

R e R N R PR
Lt e s - ot e e e
LI AL PN I D T .

")

P b

NI

$940
3930
$960
$970
Sea0
$990
64000
6010

be set to NOT AVAILABLE state,
and SET are

both AVAIL

FOR J = FIRST.BYT TO LAST.BYT

MIDSCAVAILS ,J,1) = CHRS$(0)

.....
......

BIBLIOGRAPHY

118

Aho, Alfred V., John E. Hopcroft, and Jeffrey D. Ullman. The
! Design and Analysis of Computer Algorithms. Reading, MA:
Addison-Wesley Publishing Co., 1974.

Berman, Morton B. The DOSS Prototype. #WN-9484-PR. Santa
Monica, CA: Rand Corporation, 1976.

« Scheduling Aircrews and Aircraft: Problems of

"Resource Allocation in the Strategic Air Command. ¥R-
A 1619-PR. Santa Monica, CA: Rand Corporation, 197S.

DEPARTMENT OF THE AIR FORCE, Headquarters Tactical Air Com-
mand. FLYING TRAINING: TACTICAL FIGHTER/RECONNAISSANCE
AIRCREW TRAINING. TAC MANUAL 51-50, Volume I, 26 Octo-
ber 1981.

':Z . TAC AND ARF TRAINING: FIGHTER AND RECONNAISSANCE.
- TACM 51-50 Volume I, Chapter 6, 15 February 1982.

. Flying Training: F-15 AIRCREW TRAINING. TAC
MANUAL 51-58, Volume VII, 26 March 1982.

DEPARTMENT OF THE AIR FORCE, Headquarters United States Air
Force. Flying: PLANNING AND SCHEDULING AIRCREWS AND
EQUIPMENT. AF REGULATION 60-12, 22 March 1979.

DEPARTMENT OF THE AIR FORCE, Headquarters United States Air
Forces in Europe. Flying: PLANNING AND SCHEDULING AIR-

CREWS AND EQUIPMENT. USAFE Supplement 1 to AFR 60-12 (22
March 1979), 5 August 1982.

. Flying Training: TACTICAL FIGHTER/RECONNAISSANCE

AIRCREW TRAINING. USAFE Chapter 6 to TACM 51-50, Volume
I, 1 October 1982.

Grogono, Peter. Programming in Pascal: Revised Edition.
Reading, MA: Aaafson-Wesley. 1989, 1978.
Hogan, Thom and Mike Iannamico, OSBORNE 1 User's Reference

Guide. Hayward, CA: Osborne Computer Corp., 1981, re-
vised 2/22/82.

Horowitz, Ellis, and Sartaj Sahni. Fundamentals of Data

3 Structures. Rockville, MD: Computer Science Press, Inc.,
1982, 197e.
: Jensen, Kathleen and Niklaus Wirth, PASCAL: User Manual and

Report: 24 ed (corrected printing 197/8). New York:
Springer-Verlag, 1974.

PN A
e &

- Bl

119

Kernighan, Brian W., and P. J. Plauger. The Elements of

fr ramming Style: 2d ed. New York: McGraw-Hill, 1978,
4.

z _J

'

+ Software Tools. Reading, MA: Addison-Wesley Pub-
lishing Co., 1976.

€ rr,

4
Aty N

Ay

4 ‘.4..' L)

Knuth, Donald E. The Art of Computer Programming: Vol. 1
Fundamental Algorithms: 238 ed. Reading, MA: Addison-
Wesley Publishing Co., 1973, 1968.

. The Art of Computer Programming: Vol. 2 Semi-

numerical Algorithms: 2d ed. Reading, MA: Addison-Wesley
Publishing Co., 19381, 1969.

. The Art of Computer Programming: Vol. 3 Sorting

and Searching. Reading, MA: Addison-Wesley Publishing
co.' 19 30

|
Oyt
vatatitats

A
ca -8

Leventhal, Lance A. 8080A - 8085 Assembly Language Program-
ming. Berkeley, CA: Osborne/McGraw-Hill, 1978.

. 280 Assembly Lanﬁ%age Programming. Berkeley, CA:
Osborne/McGraw=-Hill, .

Lien, David A. The BASIC Handbook: 24 ed. San Diego, CA:
Compusoft Publishing, 1981.

Osborne, Adam and David Bunnell. An Introduction to Micro-
computers: Vol. d The Beginners Book: 3d ed. Berkeley,
CA: Osborne/McGraw-Hilil, &553. 1979, 1977.

Osborne, Adam. An Introduction to Microcomputers: Vol. 1

Basic Concepts: 2d ed. Berkeley, CA: Osborne/McGraw-
Hill, 19849, 197/6.

Pannell, Carlton L. A LINEAR PROGRAMMING APPLICATION TO
AIRCREW SCHEDULING. Ft. Leavenworth, KS: Us Arnmy
Command and General Staff College, 1980.

Stern, Robert A. and Nancy Stern. An Introduction to Comput-
ers and Information Processing. New York: John Wiley and
Sons, 1982, 1979.

v
F! Strunk, Richard R. Can TAC Operations be Computer Sched-
- uled? Maxwell AFB, AL: US Air Force Air Command and

staff College, 1977.

...............

4
.. J -.-4!‘
R P VR I Ty DR ¥ |

INITIAL DISTRIBUTION LIST

Combined Arms Research Library
U.S. Army Command and General Staff College
Fort Leavenworth, Kansas 66027

Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22314

Mr. David I. Drummond

U.S. Army Command and General Staff College
Department of Command

Fort Leavenworth, Kansas 66027

Lieutenant Colonel William B. Allard
3220 Homer Road
Winoma, Minnesota 55987

Major Donald Hayes

U.S. Army Command and General Staff College
Air Force Section

Fort Leavenworth, Kansas 66027

