
AD-A133 256 MEND11 AN AI BASED PROGRAMMING TODR(U) YALE UNIV NEW Il
HAVEN CT DEPT OF COMPUTER SCIENCE E SD OWAYE AL
AUG 83 YALEU/CSD/RR-258 N00014-82-K 071

UNCLASSIFIED FG92 N

EEEEEEEmimsE
EhEEohEmhhhmhI

EE~h~h~h~L.T

11.1

WiLLi 6 onma ILI-no
i nllIII III I136m

1 11111 .

MICROCOPY RESOLUTION TEST CHART

WAt Ol .~J~i~m Or S?#D.OAR OS - .93 A

i I

*,1

4" , | i - l i I Ii i I I ll i". . '' - "..

c(0

ft

mmf

T VERIT5

MENO-il: An .A-Based Programming Tutor

Elliot Soloway, Eric Rubin,
Beverly Woolf, Jeffrey Bonar, W. Lewis Johnson

YaleU/CSD/RR #258

December 1082

CDDTIC

DIC16, 1.,. Z -.E CT E f
OlCT 0 1963

E

YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

TWA -n..v e

......... - -- I i I .. 8.!8 - 1 0 -- " 0 9 ..1 . .

MENO-Il: Art Al-Based Programming Tutor

Elliot Soloway, Eric Rubin,
Beverly WVoolf, Jeffrey Bonar, W. Lewis Johnson

YaleU/CSD/RR #258

December 1082

SSAIRTV CLASSIFICATION4 OF THIS PAGE ("O 000 Eft.*.0d

READ INSTRUJCTIONSREPORT DOCUMENTATION PAGE BEFOE COMPLETING FORM
1 RPORT NUMBER aw1. eovy ACCESSION NO 3. CATALOG MME

#258 -1-t~ UME

4. TIXLE (and Subitlo) V . TYPE of REPORT & PEIOD COVERED

MENO-II: An AL-Based Programming Tutor Technical Report
S. PERFORMING ORO. REPORT 1,1.0611111

___ #258

7. AUT04,001, a. CONTRACT aR GRANT numaIR(*)

Elliot Soloway, Eric Rubin, Beverly Woolf,
Jeffrey Bonar, W. Lewis Johnson N00014-82-K-0714

S. PERFORMING ORGANIZATION NAME AND AGGREISS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA II WOOK UNIT NUMIDERS

Yale University
10 Hillhouse Avenue
New Haven, CT 06520 NR 154-492

I I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Personnel and Training Research Programs August 1983
Office of Naval Research (Code 458)I.NUBROPAS

Arlngtn V 1917 35
4 10'P MOITOEIG ACy N.AME II AGORES(If giff~tent 11100 C~ntfllfill OffiCe) IS. SECURITY CLASS. (of dlis MP@Of

Unclassified

I. £551 ASSFICATION. GOWN GRACINGO

IS. OISTRIOUTION STATEMENT (of shi. Reporl)

Approved for public release; distribution unlimited.

17. OSTRItSUTION STATEMENT (of th. .,hrec, ont.,.d In, Slock 20. it diffret be.,N ROPie)

IS. SUPPLEMENTARY NOTES

To appear: The Journal of Computer Based Instructional Systems

It. KEY woRos icofi nui an mveroo aide It nocossoy Anid eti, bir block inuibe)

20 ARSTRACT (COntinue -n ?O.'8* Oldf It nfc*e*in oE ld@u"tvf &F' AlegA P"010)

'.. -- MENO-II is a computer-based tutor intended to help novices learning to progra
in Pascal. The BUG-FINDing component attempts to find non-syntactic bugs in
student's program. It draws on a database of 18 common bug types, represente
as templates, and attempts to match these templates against its analysis of t e
student's program. The TUTORing component then attempts to infer the
misconception that might underlie the bug and present the student with
remedial instruction. We tested the BUG-FINDing comvonent in a classroom

DO I F0N? 1473 £01 TIO% OF I NOV 515 is OSSOLETEs

S N 0102- LF- CIA- 6601 seCUmvf CLASSIFICAIior visi F161 M=S Do DUow

*Department of Computer Science
Yale University

P.O. Box 2158
New Haven, Connecticut 06520

f

**Department of Computer and Information Science
University of Massachusetts

Amherst, Massachusetts 01003
Accerslon For

MENO-II: An AI-Based Programming Tutor

December 1982

Research Report #258

Elliot Soloway*, Eric Rubin**,

Beverly Woolf**, Jeffrey Bonar**, W. Lewis Johnson*

This work was supported in part by the Army Research Institute for the Behavioral and Social
Sciences, under ARI Grant No. MDA903-80-C-0508. This work also supported in part by a grant
co-sponsored by the Personnel and Training Research Groups, Psychological Sciences Division,
Office of Naval Research and the Army Research Institute for the Behavioral and Social Sciences,
under Contract No. N00014-82-K-0714, Contract Authority Identification Number, Nr 154-492.
Approved for public release; distribution unlimited. Reproduction in whole or part is permitted
for any purpose of the United States Government.

MENO-Il: An Intelligent Programming Tutor Page 1

Abstract

MENO-11 is a computer-based tutor intended to help novices learning to program in Pascal.

The BUG-FINDing component attempts to find non-syntactic bugs in a student's program. It
draws on a database of 18 common bug types, represented as templates, and attempts to match
these templates against its analysis of the student's program. The TUTORing component then
attempts to inter the misconception that might underlie the bug and present the student with
remedial instruction. We tested the BUG-FINDing component in a classroom setting; we report
here on an analysis of the system's performance.

1. Introduction
We all know - and grumble - about the error messages that one gets from a computer system.

That problem is magnified for the novice programmer who is learning a first programming
language. With the number of individuals who are learning programming growing rapidly, there
is a clear need for intelligent tutoring systems which can assist the novice at a most critical time:
when he/she is alone, one-on-one, with the beast.

2. Using Artiricial Intelligence Techniques
There are two major differences between MENO-TI' and typical frame-based CAI systems:

1. In contrast to more classical CAI systems which build the subject matter into frames
which are tied together with a branching strategy, the knowledge about
programming which MENO-11 has is represented explicitly in the form of a network,
and the instructional strategy is independent of that knowledge and also encoded
explicitly. Thus, MENO-11 generates what to say based on the particular situation.

2. In contrast to more classical CAI systems which respond to only a small set of
student errors, MENO-11 can cope with 18 different types of program bugs. These
bugs are tied explicitly to a knowledge base of potential misconceptions, which is
accessed when interacting with the student. While rrame-bsd CAI systems could
include more types of bugs, they typically do not do so. It is the recognition that a
teaching system needs to handle significant variability in student responses that is
the key.

In order to build a system such as MENO-Il, we have used many techniques which have been
developed in Artificial Intelligence. For example, the knowledge representation we use is called

1The system's name, MENO, is the name of one of Plato's dialogues in which the question of how learning can
possibly take place is discussed. In particular, Socrates questions how & slave-boy can possibly learn the proof of the
Pythagorean Theorem: if the boy didn't know it already, then how could he possibly recognise it when it is being
taught, but if the boy knew it already then the boy hadn't learned anything. This conundrum is called Plato's
Learning Paradox.

MENO-II: An Intelligent Programming Tutor Page 2

KL-ONE, and was developed as a general knowledge representation language [31. See Clancey 151
and Goldstein (81 for a more extensive discussion of the role which AI can play in CAI.

3. Objectives and Status of System
MENO-l1 is a tutoring system designed to help novice programmers learn Pascal. The goals of

MENO-Ii are:

9 catch run-time (semantic and pragmatic) bugs in the student programs2

focus on introductory programs: straight line, branching, simple looping.
Suse MENO-I in conjunction with an existing lecture course on Pascal.

* suggest misconceptions in the students' heads which underlie the bugs
9 "talk" in language which is close to programming so student will understand

* instruct/tutor the student with respect to the misconceptions.

The current status of the system corresponding to these objectives is:
* MENO-I can find 18 bugs with respect to repetition and assignment
* MENO-1I can suggest underlying misconceptions for those bugs
* only a rudimentary form of tutoring has been implemented in MENO-II.

MENO-I1 is divided into two major components: The BUG-FINDER, and The TUTOR; each
will be discussed in turn. We will also present a preliminary report on an evaluation of the BUG-
FINDing component of MENO-I in a classroom setting. We close with a discussion of plans for
MENO-II1s expansion.

Before proceeding with the detailed description of MENO-lI, it might be instructive to compare
the goals of MENO-11 to those of two other AI-CAI programming tutors, BIP [251 and SPADE-0[131. The former system was designed and built to be a self-contained, full course in the

programming language BASIC; it was extensively used in a instructional setting. It had a
sophisticated technique for deciding what material should be presented to the student, and it had
excellent graphic displays. BIP analysed student's programs by running them on test data. In
contrast, MENO-i1's goals are clearly more limited (e.g., it should simply provide on-line help
debugging programs). However, significant effort has been expended in MENO-l1 to equip it with

4 !the means to understand buggy programs, and infer the misconceptions which might underlie the

bugs; we report on the limited success of this enterprise later in this paper. SPADE-O was

2While syntax errors are clearly troublesome for novices, we believe that systems like structure editors (e.g. the
Cornell Program Synthesizer [231) will soon be available, and will help facilitate the creation of syntactically correct
programs.

W ,t dI

MENO-11: An Intelligent Programming Tutor Page 3

designed, and a prototype built, to teach students to write simple LOGO programs. Unlike either

BIP or MENO-Il, SPADE-0 forced the student to make the processes involved in programming

(e.g., design, coding, debugging) explicit; a student entered a code only after he had provided

reasons for why the code was there. Experiments with a successor to SPADE-0 are described in

[14).

4. Leverage on Program Understanding: The BUG-FINDER
The BUG-FINDER must be able to recognize two types of bugs: problem independent ones

(semantic bugs) and problem dependent ones (pragmatic bugs). An example of the former type is

the explicit inclusion of an increment to the index variable in a FOR loop. Bugs of this sort

typically reflect confusion about the semantics of the various programming language constructs.

In order to recognize problem dependent bugs, however, the BUG-FINDER must be told what

the program is supposed to do. Oftentimes a student's program will run, but it will solve the
"wrong" problem. For example, in Figure la, we depict a problem for which the the program in

Figure lb is the correct solution; the program in Figure Ic does not solve the problem, but may

in fact execute. In other programming tutors, the student provided a specification of the goals of

the program (e.g., [6, 131). In contrast, our approach is to have the teacher provide the

specification, since everyone in the course will be working on the same problem.

Currently, the specification of the intended program is represented as a database of

programming plans that correctly solve the problem. A programming plan reflects stereotypic

action sequences in programming (see below). We have also put together and built into the

BUG-FINDER a catalogue of common bugs found in simple looping programs. The Bug

Catalogue was derived from empirical studies carried out with novice programmers (e.g.,

119, 20, 181). In particular, in one set of studies, we asked students to write programs to solve

various problems. In a second type of study, we captured a copy of every syntactically correct

program that a student produced while at the terminal [21. Given the substantial number of

programs collected, the systematic analysis of these data are only now being completed [10, 91.

However, observations from these data did help us in compiling the Bug Catalogue.

The BUG-FINDER, which is written in Pascal works by first analyzing a student's program

into a "deep structure" representation [41, and then matching that analysis against the bugs in

the Bug Catalogue. The deep structure representation of the program specifies the functional

characteristics of the program. The set of primitives of this deep structure representation is

based on what an expert programmer might know about problems of this type. In particular,
this knowledge is focused on types of looping plans and the various role, which variables play in

MENO-II: An Intelligent Programming Tutor Page 4

(a)

Problem: Read in numbers, taking their sum, until the number 99M is seen. Report the sum.
Do not include the final 99M9 in the sum.

(b)

PROGRAM CORRECT-EXAMPLE(INPUT. OUTPUT);
VAR SUM, NEW : REAL;
BEGIN

SUM:=0;
READ(NEW);
WHILE NEW <> 99999 DO

BEGIN
SUM:=SUM * NEW;
READ(NEW)
END;

WRITELN (SUM)
END;

A correct version of a program which solves the above problem.

(c)

A buggy program attempting to solve the above problem. The variable SUM is not initialized to
0. Similarly, the variable NEW has no value the rust time it is tested at the top of the WHILE
loop. FinaIly, notice that this program will add the final 9M99g to SUM.

PROGRAM BUGGY-EXAMPLE
VAR SUM. NEW : REAL;
BEGIN

WHILE NEW <> 99999 DO
BEGIN
READ(NEW);
SUM := SUM + NEW
END

WRITELN (SUM);
END;

Figure 1: A Problem, A C6rrect Solution, and a Buggy Solution

MENO-11: An Intelligent Programming Tutor Page 5

programs. For example, the program in Figure lb illustrates 'what we call the New-Value

Controlled Running-Total Loop Plan; it is just a special case of the Running-Total Loop Plan, in

which the loop, while accumulating a total, is controlled by the value of the Read Variable (i.e.,

the New-Value Variable). This knowledge is described at greater length in [201, and draws on the

work of (13, 15, 18, 24, 17, 11.

We will describe the four stages in the bug finding process in the context of an example. In

particular, we will analyze the program in Figure Ic. This program is an attempt to solve the

problem in Figure Ia. (A correct version of that program is given in Figure lb.) Notice that

there are several bugs in this program. The variable SUM is not initialized to 0. Similarly, the

variable NEW has no value the first time it is tested at the top of the WHILE loop. More subtly,

notice that this program will incorrectly add the 99 into the final sum. This occurs because

once in the loop, the value of NEW is first READ, then summed, and only then tested for

equality to 9Ng99; thus, by the time the test is made the 999 has already been added to SUM.

During the first stage of the bug finding process, the program is parsed into an augmented

parse tree. (Figure 2 contains the important fragment from the parse tree produced during this

* stage.) This representation makes it easy to automatically determine the types of expressions and

statements, their execution-time sequence, and any nesting of statements (i.e. statements in loops

or in an IF statement). All occurrences of each variable are linked together (see Figure 2); since

* . many bugs deal with the use (and misuse) of variables, fast access to the occurrences of variables

is needed in order to facilitate subsequent bug analysis.

* The next step is to annotate the parse tree with useful infornation about the various nodes.

This information is designed to simplify and summarize parts of the tree for subsequent bug

finding steps. For example, the assignment statement

SUM :- SUM + NEW

would be annotated as a "running total assignment". In Figure 3, we show the annotations for

the parse tree of Figure 2. The annotations are: (1) the WHILE loop is testing the variable

NEW; (2) the READ statement is reading into the variable NEW; and (3) the assignment inside

the loop assigns a running total to the variable SUM.

During the third stage of processing, the BUG-FINDER searches for instances of the various

programming plans. This is a-pattern matching process which uses the annotations in the parse

tree as feature detectors against which to compare the plans. For example, the features of a

Running-Total Variable Plan are, roughly speaking: (1) a variable which is continually updated

by (2) a new value which is generated each time through the loop. The assignment statement

SUM:- SUM + NEW

MENO-11: An Intelligent Programming Tutor Page 8

Figure 2: Stage 1- Minimally Augmented Parse Tree

A parse tree for a fragment of the program in Figure ic. The normal parse tree has been
augmented with additional links that tie together af occurrences of a varable.

MENO.II: An Intelligent Programming Tutor Page 7

Figure 3: Stage 2- Summary Annotations Inserted into Pars Tree

The same parse tree as in Figure 2, except that the nodes of the tree have been annotated with

information that summarizes the action in the various subtrees.

MENO-Il: An Intelligent Programming Tutor Page 8

Figure 4: Stage 3- Adding Plan Information to Parse Tree

Plans are identified in the program and this information is added to the parse tree.

New-Vakle Controlled Runni n i- T& a! L OncP

1IWVie writebl ame

MENO-11: An Intelligent Programming Tutor Page 9

Figure 5: Stage 4- Finding Bugs in the Pars Tree

Finally, bugs are found in the program using the plan annotations in the parse tree and the
catalog of common bugs built into the BUG-FINDER.

New&G Ndew has no valet

wieWrite M ~ before tN' I1o

rtad %,-B~.UG: Wrn w rO
oia triion loop

NewValue Variabl: 1 e

MENU-&l An Intelligent Programming Tutor Page 10

fits this description, and thus SUM is inferred to be the Running-Total Variable. Similar
arguments can be given for the other variable plans and the loop plan. In Figure 4, we show
three plans found in the example buggy program: NEW is a New-Value Variable, and SUM is a
Running-Total Variable, and the loop is an instance of a New-Value Controlled Running-Total
Loop Plan.

Finally, given the augmented parse tree, the annotation, and instantiated plans, the BUG.
FINDER program searches the Bug Catalogue for matches. Bugs are detected in terms of the
high level information derived from earlier phases. One class of bugs involves variable plans
which could not be fully matched, e.g., failure to initialize variable. In Figure 5, the Running-
Total Variable, SUM, has such a bug. Other bugs are caused by incorrect ordering of the
operations in the loop. For example, the program in Figure Ic will incorrectly add the sentinel
value 99999 into the running total; this is a classic example of the "off by one" bug. Moreover,
upon entry into the loop, NEW is undefined. A correct version of this program (Figure 1b)
would READ a value into NEW before the loop, and would perform the READ on NEW in the
loop after the running total update. As indicated in Figure 5, the BUG-FINDER identified these
errors in the buggy program.

5. The TUTOR: Inferring Misconceptions from Bugs
Given that the BUG-FINDER has found a bug (or bugs) in a student's program, the next step

is to hypothesize the set of potential misconceptions which were in the head of the student which
might have been responsible for the program bug. In particular, the BUG-FINDER passes the
number of the bug to the TUTOR, and it is the job of the TUTOR to perform this
misconception analysis. Currently, the TUTOR hypothesizes the misconceptions and simply
reports them, plus the correct concepts, to the student; the TUTOR does not attempt to engage
in a dialogue with the student.

There are four knowledge bases currently in the TUTOR.

The Expert Knowledge Model - the correct knowledge about programming is contained in this
component.

The Bug Network - the common bugs we have identified in our empirical work are catalogued in
this component.

The Misconception Network - associated withi a bug(s) are misconceptions which could give rise
to the bug; this network explicitly stores the misconception(s) and a tutorial
associated with each bug.

The Student Model - this is the system's hypothesis as the what the student does and does not
know, the student's history of interaction, etc.

MENO-11: An Intelligent Programming Tutor Page 11

In what follows we will illustrate how the above knowledge bases are used by the TUTOR to
produce its misconception analysis and tutorial output.

6. Examples of the TUTOR's Analyses and Interactions
The TUTOR, which is written in LISP, currently has two modes of operation: Full Comment

or Partial Comment. In the latter mode, only errors which the TUTOR deems as "serious" will

cause the TUTOR to say something to the student; the objective here was to be less intrusive. In
the former mode, any semantic or pragmatic bug will elicit a response from the TUTOR. In the
following examples we will illustrate both modes.

Consider first the tutoring session depicted in Figure 7, which is an actual student program. in
particular, this program was an attempt to solve the problem in Figure 8; a correct program to

this problem is also given. While the correct program reads a value into the New-Value Variable
(NEW in Figure 6), the program in Figure 7 instead increments the New-Value Variable
(POSIDEN) by 1. Our empirical studies have shown this to be a typical bug.

The TUTOR first prints out (Figure 7 its analysis of the roles which the variables play in the
program, e.g.. POSIDEN is the New-Value Variable, COUNT is the Counter Variable, etc. Next,
both the bug and the correct action are described to the student. Bugs, indexed by their

numbers, are stored in the Bug Network, and are tied to the Expert Knowledge Model by Buggy-.
* Version links. For example, in Figure 8 we see that Bug 205 is associated with the New-Value

Variable. '.:he notation indicates that the correct way to initialize and update a New-Value

Variable is via a read, and that Bug 205 indicates that the update was actually accomplished via

an assignment statement. The English descriptions are in part generated in real-time from the
networks themselves, and are also in part constructed from canned messages hardwired into the

networks.

Associated with a bug is a set of possible misconceptions which the student might have and
which could cause the observed bug. This information is stored in the Misconception Network. In

Figure 8 we see that there are two possible misconceptions associated with Bug 205 (the bug in
the program in Figure 7): the Read Declaration Misconception and the Over-generalize Counter
Misconception. The pre-specified text associated with each one of these misconceptions is then
displayed to the student. In the next version of the TUTOR, a series of questions will be
generated and asked of the the student, in order to help differentiate between the competing

hypotheses. Currently the Student Model is simply a record of the bugs and misconceptions
constructed by MENO-Il. Eventually, more history will need to be kept and used in the

diagnosis of a student's misconceptions.

MENO-11: Au Intelligent Programming Tutor Page 12

Problem: Read in a set of integers and print out their average. Stop reading numbers when the

number 99Mg is seen. Do NOT include the 9999 in the average.

1 PROGRAM CORRECT-EXAMPLE(INPUT.OUTPUT);
2 VAR
3 TOTAL.NEW *COUNT: INTEGER;

4 AVE:REAL;
5 BEGIN
6 TOTAL:=0;
7 COUNT:0O;
8 READ(NEW);

9 WHILE NEW <> 9999 DO

10 BEGIN
11 SUM := SUM + NEW;

12 COUNT:=COUNT1l;
13 READ(NEW)
14 END;
15 AVE:=TOTAL/COUNT;

16 WRITELNCTHE AVERAGE IS '.AVE)

17 END.

Figure 6: A Problem and Its Program Solution

MENO-I: An Intelligent Programming Tutor Page 13

1 PROGRAM AVERAGE1(INPUT.OUTPUT);
2 VAR
3 SUM.POSIDEN.COUNT:INTEGER;
4 AVE:REAL;
5 BEGIN
6 SUM:=0;
7 COUNT:=O;
8 READ(POSIDEN);
9 WHILE POSIDEN<>9999 DO
10 BEGIN
11 SUM := SUM + POSIDEN;
12 COUNT:=COUNT+I;
13 POSIDEN := POSIDEN - 1;
14 END;
15 AVE.=SUM/COUNT;
16 WRITELNC'THE AVERAGE IS ',AVE)
17 END.

POSIDEN is the New Value Variable
COUNT is the Counter Variable
SUM is the Running Total Variable

You modified POSIDEN by adding POSIDEN to 1
where as...
you should modify the New Value Variable by calling the READ
procedure: READ(POSIDEN).

Two misconceptions can be associated with this bug:

1. You might be thinking that the single call to the READ procedure
EREAD (POSIDEN)) at the top of your program is enough to define a
variable which will always be read in from the terminal. In fact you
need to call the read function a second time in your program to read
in additional values.

2. You might be thinking that POSIDEN is like COUNT, in that adding
1 to a variable will retrieve its next value. The computer does not
know to reinterpret + 1 in the former case to be a READ.

Figure 7: An Example of TUTOR's Analysis

MENO-11: An Intelligent Programming Tutor Page 14

Figure 8: A Slice Through Three Knowledge Bae

The modes and arcs in this figure represent a small fragment of the actual knowledge banes. Also,

the notation has been simplified to enhance readability.

Misce"6$ we NaiWuk &A t4trk C".

~Ai Vukl4wW' IWOI

MENO-Il: An Intelligent Programming Tutor Page 15

Let us now examine another student program in which there are multiple bugs and multiple
possible misconceptions for those bugs. The program in Figure 9 is an attempt at solving a

variant of the problem in Figure 8; instead of terminating when the number 9M9g is read in, the

program should terminate after 10 numbers are read in. There are two types of bugs in this
program. The first revolves around the use of the FOR loop. The index variable in the loop,

COUNT, is both explicitly initialized before the loop (Bug 1) and explicitly updated in the loop

(Bug 2). The former bug is not serious; however, in conjunction with the latter bug, there is
strong evidence that the student does not understand that semantics of the FOR loop with

respect to its automatic actions on the index variable. Alternatively, the student might be

confusing the FOR loop with the WHILE or REPEAT loops, which do require explicit

manipulation of the index variable.

The second type of bug in this program is called a "Fractured Assignment Statement Bug"
(Bug 3). The objective is to calculate a running total in the variable SUM. Typically, one would
write SUM :- SUM + HERMES. However, the student has introduced an intermediate variable,
TEMP, and effected this calculation with 2 assignment statements. We feel that the student is
confusing his understanding of how equals works in algebra with how the assignment statement

works in programming. Namely, in algebra one would typically feel uncomfortable putting the

same variable (SUM in this case) on both sides of the equals sign. Notice that this bug does not

lead to an incorrect program. In fact, if the TUTOR were running in Partial Comment Mode, it

would not say anything to the student about this bug (assuming of course that this bug was the
only bug). The commentary which the TUTOR displays to the student for this misconception is

* depicted in Figure 9.

7. Testing the BUG-FINDER in the Classroom

* 7.1. Context of the Study

As discussed in the previous section, MENO-11 is made up of a BUG-FINDing component and

a TUTORing component. In this chapter, we will describe the results of a study in which the

BUG-FINDER was used in an actual classroom setting.

* Initially both system components were written in LISP on a VAX 780; this faciliatated rapid

development. However, we recoded the BUG-FINDER into Pascal since the Cyber 175, on which

the actual study would be carried out, did not have a LISP system sufficiently robust for our
needs. We did not, however, recode the TUTORing component. We felt a test of the BUG-

FINDER's abilities would be very useful by itself, and that we need not wait for the existence of

MENO-I: An Intelligent Programming Tutor Page 16

I PROGRAM AVERAGE2(INPUT.OUTPUT),
2 VAR
3 COUNT.SUM.APPOLO INTEGER.
4 AVE REAL.

5 BEGIN
6 COUNT =1.
7 SUM 20
8 FOR COUNT *1 TO 10 DO
9 BEGIN
10 READ(HERMES).
11 COUNT . COUNT - 1.

12 TEMP * SUM * HERMES
p 13 SUM * TEMP

14 END.
15 AVE -SUM/COUNT

16 WRITELN('AVERAGE IS '.AVE)
17 END

BUG 1 You have initialized the control variable before the
loop COUNT -1

BUG 2 You have also modified the control variable in the
middle of the loop. COUNT a COUNT * I
Whereas
The FOR loop does an implicit initialization and
mclf,catron of its control variable You don't have to
mention COUNT at all before or in the middle of the loop

vo n'scovceot~ons can be associated with these bugs
I You might not understand how the FOR loop works The
ndeu variable is intialized automatically, it is updated

autoat.ca ly, and t Is compared with the test value for
termination
2 You might be confusing the FOR loop with the WHILE loop

u.t respect to the initialization and update of the index
variable The FOR loop does that automatically, while the
W41,.E loop requires that the user explicitly initialize and
update it

BL'G 3 It was not necessary for you to write two statements
to get the runatng total SUM
!hereas
YOU ShOu', modify the running total variable by assigning

the sum to the running sum variable SUM a SUM * HERMES

You might be thinking that assignment statements behave like
algebra statements that is you think that x - a - b is
equivalent to writing x - a * b however, these expressions
are fundamentally different the assignment statement
Places a computed value (on the right hand side) into a
variable name (on the left hand side) Thus an expression
like I a I * 1 though meaningless in algebra, is
accurate and fairly standard in programming It places the
value of x incremented by I into the variable slot

Figure 9: Multiple Bugs and Multiple Misconceptions

'1

MENO-11: An Intelligent Programming Tutor Page 17

the TUTORing component. Thus, we we compiled into the BUG-FINDER much of the
TUTORing component's knowledge. In effect then, the BUG-FINDER became a "smart
compiler"; it could simply print out a error message about the bug and the potential underlying

misconceptions, but it could not engage in any form of dialogue with the student.

The design of the study is as follows. In the tall semester of 1981, we asked students enrolled in
an introductory Pascal programming course, to volunteer for our study. We explained that we
would be automatically recording all there work while they were at a terminal; this would be

done in a non-intrusive manner and their participation (or non-participation) would have no
effect whatsoever on their grade in the course. Student's participating in the study would receive

the BUG-FINDER's analyses on only one assignemut, the first looping program. (The problem for
this program is given in Figure 10.)

Write a program which will input a set of numbers, where each number stands for the amount of
rainfall in New Haven for a day. Compute the average rainfall, the number of rainy days, and
the highest daily rainfall. Stop reading when 9999 is input; do not include this value in
subsequent calculations. If the number input is negative, do not include it in the calculations and
prompt the user to input another value.

Figure 10: The Noah Rainfall Problem: A First Looping Problem

Of the 900 students in the class approximately 116 volunteered to participate in the study.

Needless to say the volume of data collected in this manner was quite substantial. The 116
students produced 970 different programs; in total, they produced 1504 programs, where 534
were the same.

We have analyzed, by hand, only a portion of that data. In particular, we have examined the

first syntactically correct program produced by 20 randomly selected students who did recieve the
BUG-FINDER's analysis (see Table I). Of the 99 w.e found in the 20 programs, the BUG-
FINDER only correctly found 22 (22%). However, of the ones it found (40), it was correct 55% of
the time; quite frankly, a success rate of 55% is not impressive. Clearly, the BUG-FINDER
needed (1) to find more types of bugs, and it needed (2) to be more accurate.

7.2. Examples of Correct BUG-FINDER Analyses
In general, the BUG-FINDER was reasonably accurate in spotting simple assignment bugs, i.e.,

bugs in which a variable was assigned a value that was irrelevant, or bugs in which a variable

wws uninitialized. For example, consider User25's$ program fragment in Figure 11. We call this

2While the bugs desribed below were actually appeared in programs generated by students, the names of the
students (e.g., User2) are fictitious.

MENO-11: An Intelligent Programming Tutor Page 18

Total Number of Bugs We Identified: 99
Bugs correctly reported by BUG-FINDER: 22 (221)
Bugs incorrectly reported by BUG-FINDER: 18 (181)
Bugs NOT reported by BUG-FINDER
that should hove been reported: 59 (601)

Number of Bugs Reported by BUG-FINDER: 40
Correctly reported: 22 (55%)
Incorrectly reported: 18 (451)

Number of Bugs NOT Reported by BUG-FINDER: 59
Bugs for which
categories exist: 6 (151)

Bugs for which
categories do NOT exist: 53 (85%)

Table 1: Summary of Bug Statistics

MENO-I1: An Intelligent Programming Tutor Page 19

27 AVERAGE := 0;

61 AVERAGE := SUM/VALID;

The BUG-FINDER responded by:

4 *** DOUBLE ASSIGNMENT BUG ***
AVERAGE GETS A VALUE IN THE ASSIGNMENT STATEMENT ON LINE 27.

BUT THEN BEFORE THIS VALUE IS EVER USED IT GETS A NEW VALUE

IN THE ASSIGNMENT STATEMENT ON LINE 61.

Figure 11: Code and Analysis of User25's Program

1

MENO-II: An Intelligent Programming Tutor Page 20

the DOUBLE ASSIGNMENT BUG since AVERAGE need not be initialized to zero. Note that

strictly speaking, this program will execute; however, from an educational point of view, we feel

that we need to point out that this type of coding practive is poor. Moreover, it might indicate a

serious misconception surrounding assignment; clearly, studies with individual students are

needed to evalute this hypothesis. After receiving the BUG-FINDER's analysis, the student then

took out the initialization of AVERAGE.

Similarly, consider User2O's program in Figure 12. This program contained at least two bugs;

the DOUBLE ASSIGNMENT BUG (RAINFALL need not be initialized), and the

UNINITIALIZED VARIABLE BUG (RAINYDAYS was never set to zero). After seeing the BUG-

FINDER's messages, the student then added a RAINYDAYS :- 0, and took out the

RAINFALL:==0.

Note that while both User2O and User25 had DOBULE ASSIGNMENT BUGs, it is distinctly

possible that the underlying misconceptions in each case was different! That is, User25 may have

some misconception about reading into a variable, while User20 may be confused about variables

used in assignment statements. This simple example illustrates the difficulty of inferring

misconceptions from program bugs.

Now consider the code in Figure 13 that appeared in User47's program. While this again

illustrates the BUG-FINDER's ability to uncover a DOUBLE ASSIGNMENT BUG, what is

interesting about this example is the student's response: after reading the BUG-FINDER's

message, the student took out the second assignment. Again, interviewing the student as he was

making this change might have shed some light on this curious -- though correct - action.

Another common bug that the BUG-FINDER often accurately found, was the DIVIDE BY

ZERO BUG; that is, if the first value read in was the sentinel value (Q9999), then the number of

numbers read in would be equal to zero, and, in the average calculation a division by zero would

cause a run-time error. For example, Figure 14 depicts a fragment from User77's program; that

code appeared before code for writing out the value of AVEFALL. After receiving the BUG-

FINDER'S analysis, the student then added a guard before the average calculation and corrected

the bug.

The BUG-FINDER correctly identified an assortment of bugs in User55's program (Figure 15):

DOUBLE ASSIGNMENT, UNINITIALIZED VARIABLE, DOUBLE ASSIGNMENT, INFINITE

LOOP BUG, ADD IN BUG, and DIVIDE BY ZERO BUG. It took a several runs before the

student corrected all the bugs in this program.

MENO-I: An Intelligent Programming Tutor Page 21

18 RAINFALL := 0;

23 READ(RAINFALL);

36 RAINYDAYS := RAINYDAYS+1

The BUG-FINDER responded by:

*** DOUBLE ASSIGNMENT BUG ***

RAINFALL GETS A VALUE IN THE ASSIGNMENT STATEMENT ON LINE 18.
BUT THEN BEFORE THIS VALUE IS EVER USED IT GETS A NEW VALUE
IN THE CALL TO READ ON LINE 23.

*** UNINITIALIZED VARIABLE BUG **

THE ASSIGNMENT STATEMENT ON LINE 36 REFERS TO THE VALUE OF RAINYDAYS
BUT AT THIS POINT RAINYDAYS HASN'T GOTTEN A VALUE YET.

Figure 12: Code and Analysis of User25's Program

MENO-I1: An Intelligent Programming Tutor Page 22

65 WHILE DAYRAIN<>SENTINEL DO
66 BEGIN

79 AVERAGE TOTRAIN/DAYS
80 END;

83 AVERAGE := TOTRAIN / DAYS;

The BUG-FINDER responded by:

*** DOUBLE ASSIGNMENT BUG ***
AVERAGE GETS A VALUE IN THE ASSIGNMENT STATEMENT ON LINE 79.
BUT THEN BEFORE THIS VALUE IS EVER USED IT GETS A NEW VALUE
IN THE ASSIGNMENT STATEMENT ON LINE 83.

Figure 13: Code and Analysis of User47's Program

MENO-I: An Intelligent Programming Tutor Page 23

68 AVEFALL := TOTALFALL/TOTALCOUNT;

The BUG-FINDER responded by:

*** DIVIDE BY ZERO BUG *
YOU HAVE NOT CORRECTLY CHECKED THAT TOTALCOUNT IS NOT ZERO
BEFORE DIVIDING BY TOTALCOUNT ON LINE 68.
YOUR PROGRAM WILL NOT HANDLE THE CASE WHEN NO VALID RAINFALLS ARE ENTERED.

Figure 14: Code and Analysis of User77's Program

j 1

MENO-I1: An Intelligent Programming Tutor Page 24

10 RAINFALL = 0.

14 DAYS = 0

24 READ(RAINFALL

2S AHILE RAINFALL<>SENTINEL DO
26 BEGIN

35 IF RAINFALL , HIGHRAIN THEN
36 HIGHRAIN = RAINFALL.
37 TOTALRAIN - TOTALRAIN1
38 END.

40 DAYS - RAINYDAYS - DRYDAYS
41 AVERAGE : TOTALRAIN / DAYS

... OUBLE ASSIGNMENT BUG
RAINIFALL GETS A VALUE IN THE ASSIGNMENT STATEMENT ON LINE 10.
Bk)' THEN BEFORE THIS VALUE IS EVER USED IT GETS A NEW VALUE

IN THE CALL TO READ ON LINE 24

S'JNINITIALIZED VARIABLE M4G *.
THE IF STATEMENT STARTING ON LINE 35 REFERS TO THE VALUE OF HIGRAIN
BUT AT THIS POINT "IGA4RAIN WAS'T GOTTEN A VALUE YET

. O.. OtLE A ,S GNMENT BuG 0
DAiS LETS A VAL'!E IN THE ASSICP"ENT STATEMENT ON LINE 14.
AL.T TEN SE-ORE THIS VALUE IS EVER USED IT GETS A NEW VALUE

IN THE ASSIGNMENT STATEMENT ON LINE 40

• INFN;'E LOO BvG ...
T"E WHILE _.0 STARTING ON LINE 25 IS AN INFINITE LOOP

'E wATIABLE RAINFALL IS NOT '0IIFIED IN THE BODY OF THE LOOP.

SO IF THE CONTTION RAIP*ALL<>SENTINEL IS TRUE ON ENTERING THE LOOP
IT HILL NEVER BECOME FALSE. APD 'HE LOOP WILL EXECUTE FOR EVER

... ADt IN BUG *.
IT 3EE"

.
THAT IOU ARE 'Rfl"AG TO ADD THE RAINFALLS INTO TOTALRAIN

By INCREMENTING TOTALRAIN IN THE ASSIGNMENT STATEMENT ON LINE 37.
BUT THIS WILL NT IO(

*." DIVIDE BY ZERO B ...

VO_' -AVE NOT CORRECTLY CHECKED THAT DAYS IS NOT ZERO

BEOCRE 'IV!DING BY DAYS ON LINE 41
YOUR PROOAM WILL NOT HANDLE THE CASE WHEN NO VALID RAINFALLS ARE ENTERED

* 6 BUGS FOUND IN PROGRAM RAINFALL *.

Figure 15: Multiple Bugs Correctly Found

-i7=

MENO-Il: An Intelligent Programming Tutor Page 25

7.3. Examples of the BUG-FINDER'S Incorrect Analyses

Below, we list several cases in which the BUG-FINDER's analysis was incorrect. For example,
Figure 16 depicts code from User90's program. In this particular case, when RAINFALL = 0
adding it into TOTAL has no effect. Thus, excluding it by the test of RAINFALL > 0 is quite

acceptable. However, the BUG-FINDER was unable to deduce that RAINFALL > 0 and

RAINFALL >= 0 are equivalent in this case. The student changed the > to >-, and the

BUG-FINDER was satisfied. While this appears to be a trivial bug to fix in the BUG-FINDER,
it is indicative of the more general problem of coping with variability in student responses; while
special purpose machinery can be built into a BUG-FINDER to reason about simple cases of

equivalent test conditions, coping with the possiblity of an infinite variety of ways of saying the
same thing is quite another story! A mid-ground must be achieved, and this will be based

primarily upon empirical considerations.

A more subtle incorrect analysis resulted from User23's program (Figure 17). The trouble with
this program is that it is possible that 99999 could show up on the READ in the inner WHILE

loop; thus, the IF test which guards the TOTLRNFL := TOTLRNFL + RAINFALL line from
the SENTINEL value is correct and needed. However, the BUG-FINDER thought that in the

outermost WHILE loop the test for RAINFALL <> SENTINEL would be sufficient to protect
the loop. Clearly, this program is complicated, and the dependencies and interactions between

pieces of code are subtle. However, this type of program was seen quite often, and thus it can not
be ignored.

User3Os program (Figure 18a) is syntactically correct, however its structuring is somewhat
confused. It we take the liberty of blocking this program in a more reasoned manner, the

problem becomes more apparent (Figure 18b). Note that a BEGIN-END block is needed after
the DO in the WHILE loop in order to enclose all the relevant code. Recognizing this omission is

a difficult task; one would have to know what typically should go into the loop and be prepared

to look around for that information. In Figure 18c we list the output from the BUG-FINDER
-- which misses the point completely.

In Figure 19 we display a buggy program that highlights a key weakness in the current BUG-
FINDER. Notice that it found a number of bugs (5); the problem is that these are all local bugs.
Ignore for a moment the UNINITIALIZED VARIABLE BUG (bug #1) and the DIVIDE BY
ZERO BUG (bug #5), which we feel are secondary problems with the program. The real problem

is that the student has a loop, line 18 to 25, that reads in all the integers and discards the ones
less than zero. The next loop, line 32 to 42, then processes all the valid rainfalls. Finally, the IF

test (line 44) used to get at the maximum rainfall is also outside the loop. (Notice that the BUG-

-?, -- - o

MENO-II: An Intelligent Programming Tutor Page 26

BUGGY EXANPLE 1

71 IF RAINFALL > 0 THEN
72 TOTAL := TOTAL + RAINFALL;

The BUG-FINDER responded by:

*** VALID INPUT BUG ***

YOU HAVE NOT MADE SURE THAT RAINFALL>=O BEFORE

ADDING INTO TOTAL ON LINE 72

Figure 16: Code and Analysis of Userg0's Program

MENO-I: An Intelligent Programming Tutor Page 27

BUGGY EXAMPLE 2

39 WHILE RAINFALL <> SENTINEL DO

40 BEGIN

41
42 (*TEST FOR INVALID ENTRY*)

43 WHILE RAINFALL < 0 DO
44 BEGIN
45 WRITELN (RAINFALL. 'IS NOT A POSSIBLE RAINFALL');

46 WRITELN('TRY AGAIN');
47 READLN;
48 READ(RAINFALL);

49 END;
50
51 IF RAINFALL <> SENTINEL THEN BEGIN

52 TOTLRNFL := TOTLRNFL + RAINFALL;

66 READ(RAINFALL)

67 END;

The system responded by:

*** REDUNDANT TEST BUG ***

THE IF STATEMENT STARTING ON LINE 51 TESTS WHETHER RAINFALL<>SENTINEL. BUT

IT IS ONLY POSSIBLE TO BE IN THE BODY OF THE WHILE LOOP STARTING ON LINE 39

WHEN THE CONDITION RAINFALL<>SENTINEL IS TRUE.

Figure 17: Code and Analysis of User23's Program

______ ___________

MENO-I: An Intelligent Programming Tutor Page 28

kw fXIMLE 3

(3

-- Orqiwl Code User36)

34 WHILE RAINFALL < 99999 DO

35

35 IF RAINFALL < 0 THEN

37 BEGIN
38 WRITELN ('NEGATIVE RAINFALL Ii0SSIBLE. TRY AGAIN-)
39 REAOLN.
40 READ (RAINFALL)
41 END

42 ELSE
43 IF RAINFALL) 0 THEN
44 DAYS a OAYS - 1
45 IF RAINFALL > HIGHEST THEN
46 HIGHEST RAINFALL

47 IF RAINFALL >0 0 THEN
48 BEGIN
49 TOTAL TOTAL * RAINFALL
50 NU04SER NUMBER - 1
51 READLN

52 READ R RAINFALL)

53 ENO

-- User36's Pogae Restructured)

WOILE RAINFALL <> 99999 DO
IF RAINFALL < 0 THEN BEGIN

WITELN('NEGATIVE RAINFALL IPOSSIOLE. TRY AGAIN').
REAOLN
READ' RAINFALL

E ND
ELSE IF RAINFALL • 0 THEN

DAYS - OAVSl
HIGHEST - RAINFALL

IF RAINFALL - HIGHEST THEN
IF (RAINFALL e- 0) AND (RAINFALL <) 99999) THEN BEGIN

TOTAL * TOTAL " RAINFALL
NUMBER NL04BER*I
REAOLN
REAO(RAINFALL
END

(e

-- SJ,-INDER's AnlySi of User36's Proegre)

*AST ITERATION MX ***
'HE WKE LOO

P
STARTING ON LINE 34 IS WRITTEN IN SUCH A WAY THAT

-3N 'HE AST ITERATION WHEN RAINFALL-99999 IT WILL STILL INCREMENT NUMBER
THEREFCf AFTER 'ME LOOP UBER WILL BE OFF BY I
AND YOU WILL NOT GET THE CORRECT AVERAGE
VOU SHLOUL SE A WHILE LOOP INSTEAD OF A REPEAT LOOP OR USE AN
IF STATEMENT INSIDE THE LOOP TO CHECK IF RAINFALL-99999 BEFORE INCREMENTING
HMBER

Figure 18s Code and Analysis of User36's Program

MENO-11: An Intelligent Programming Tutor Page 29

FINDER tailed to point out that the program does not ind the maximum rainfall.) In a correct

program, the first loop would be embedded in the loop at line 32, and the IF test would also be

embedded in this loop. While the BUG-FINDER pointed out that the loop at line 32 is an infinite

loop, this is only a symptom of the problem; the correction it suggests ignores the fact that the
student did recognize that he needed to read in the values of RAINFALL - the student had a

correct read loop -starting at line 18. Moreover, bug #4, the VALID INPUT BUG, also ignores

the fact that the student did have a loop that did filter out invalid (i.e., integers less than zero)

input. The fact that there was a filter loop (line 18), a processing loop (line 32), and an IF test

(line 44), all at the same level should have indicated to the BUG-FINDER the deeper

misconception that was responsible for all three bugs. That is, apparently the student was trying

to segment the task into 3 subtasks: filter the input, process the input, and search thru the input

for the maximum. Conceptually that is precisely what the problem requires. From a global

standpoint, the student's misconception is that he doesn't seem to be able to integrate pieces of

code into a workable whole. Miller [12, 111 has observed bugs of this sort in his examination of

non-programmers problem solving behavior.

Finally, the BUG-FINDER missed a serious bug in line 46; notice that the number of days in

which there was no rainfall was not counted properly. NORAIN :- RAINFALL, at line 46, does

not count the non-rainy days. But notice that at line 47, the student has a valid counter update:

COUNT :- COUNT + 1. However, the student has already used COUNT to keep track of the

total number of days (rainy and non-rainy). Moreover, while the indenting indicates that the

COUNT update should be part of the IF body, there is no BEGIN-END block surrounding the

statements. We saw a similar bug in BUGGY EXAMPLE 3 (Figure 18); we needed to infer that a

BEGIN-END block was missing. If we assume that a BEGIN-END does wrap lines 46 and 47, the

nature of the student's misconception becomes a bit clearer; apparently the student recognized

that he needed to keep track the non-rainy days, but he was unable to implement that goal in

code.

7.4. Why the BUG-FINDER Performed So Poorly
The BUG-FINDER'S database of bugs was built up primarily from an analysis of buggy

programs novices generated for the problem in Figure 20a [201. We thus tailored BUG-FINDER
to ind instances of those bugs in students' programs. However, for pedagogical reasons, the

instructor of the class in which we tested BUG-FINDER insisted on giving the students a

programming assignment which turned out to be more complex than we had intended. That is,

the pencil and paper generation studies were carried out on a problem such as depicted in Figure

20a while BUG-FINDER was tested on the problem given in Figure 20b. The more complex

MENO-11: An Intelligent Programming Tutor Page 30

problem permitted the students a great deal more variability for implementing a correct solution

-and a great deal more freedom to make errors. The result, as we mentioned above, Vas that

the effectiveness of BUG-FINDER was significantly lessened.

We did not appreciate the range of variability that was introduced when students were asked

to do a harder programming assignment than was anticipated. Not only were our 18 types of

bugs insufficient in magnitude, but more importantly, the number of ways that the same bug

could crop up was signficantly more than was expected. Moreover - and here is the rub

-there were signficant dependencies between pieces of code that had to taken into account.

The best example Of this problem is in BUGGY EXAMPWLE 4 (Figure 19); here we had to step back

from the specific bugs and instead, draw a more coherent, total picture of the underlying

misconceptions. In particular, we had to see that the program had all the pieces of the loop

(more or less), and the problem was in integrating the pieces; because the BUG-FINDER was

looking at local pieces of code, this global view could not be obtained. Inotherwords, finding

bugs can not be context independent.

Moreover, predictions about what should be in the code are needed in order to interpret pieces

of code that would seem at first glance to be rather bizarre. For example, in BUGGY EXAMPLE 3

(Figure 18), we needed to hypothesize that a BEGIN-END should have surrounded pieces of code

in order to make sense of the program. To make this hypothesis, we needed to know what the

programmer might be intending to accomplish, i.e., we need to be able to make predictions about

what should be in the code.

S. Concluding Remarks

Clearly, the MENO-11 has quite limited functionality. We plan to significantly extend its

capabilities along several dimensions.

1. The range of bugs and misconceptions which MENO-11 is capable of coping with
needs to be enlarged. The keys to this task are: (1) the continued development of a
theory of programming knowledge [20, 21) and (2) empirical studies which seek to
evaluate that theory and to identify additional bugs and misconceptions.

2. The ability to more accurately diagnose misconceptions is very important.
Currently, only evidence from the program being analyzed is used in this process.
We plan to have the TUTOR engage in a limited question-answer dialogue with the
student in order to gather more information upon which to base its diagnosis. The
student will not answer in natural language, but rather, will choose among a set of
alternatives. Also, the history of the students' interactions will be kept and used in
the analysis. By watching the pattern of bugs and patches that the student makes to
the program, the system will be able to build up a better model of the student's
understanding.

MENO-11: An Intelligent Programming Tutor Page 31

3. The question-answering interaction serves another purpose: it combines features of a
Coaching strategy (71 with features of a Socratic Tutoring strategy [221. That is, if
one observes how a Program Consultant works with novice programmers who are
having difficulties with their programs, one sees that oftentimes the students come to
understand their misconceptions themselves; the Consultant's role was to ask
carefully crafted questions which forced the students to confront their understanding
of what they wanted to do with what they did in fact do. We feel that this
paradigm of Consulting is one that is within the state-of-the-art reach of intelligent
tutoring systems.

Our intention has been to build a CAI system with enhanced ability to understand and respond

to students' buggy programs. In order to realize this objective, we have had to:

1. map out the deep structure knowledge used in programming

2. build a catalogue of common bugs
3. build a program analysis system which can find bugs in programs

4. associate misconceptions with bugs.

We have borrowed quite liberally from Artificial Intelligence and Cognitive Science in order to

achieve these goals. Moreover, we feel that the time is ripe for just such limited Al-CMI systems
-systems with enhanced ability to understand and respond to the answers input by students.

Personal computers with sufficient computing resources are becoming available, and the

techniques for building Al-based systems are becoming less an art and more an engineering

endeavor. Thus, we feel confident that the next generation of CAI systems will incorporate some
Al techniques - and will start appearing soon.

ACKNOWLEDGEMENTS

We would like to thank Bill Bregar for his encouragement and helpful comments on this paper,

and we would also like to thank the reviewer for his helpful comments.

MENO-I1: An Intelligent Programming Tutor Page 32

REFERENCES

1. Barstow, David. Knowledge-Based Program Construction. Elsevier North Holland Inc., 1979.

2. Bonar, J., Ehrlich, K., Soloway, E. "Collecting and Analyzing On-Line Protocols from Novice
Programmers ." Behatioral Research Methods and Instrumentation 14 (1982), 203-209.

3. Brachman, R., Ciccarelli, E., Greenfield, N., Yonke, M. KLONE Reference Manual. Tech.
Rept. 3848, Bolt, Beranek and Newman, Inc, Cambridge, Mass., 1978.

4. Brown, J.S., Collins, A., and Harris, G. Artificial Intelligence and Learning Strategies. In
H.O'Neil, Ed., Learning Strategies, Academic Press, New York, 1978.

5. Clancey. W.J., Bennett, J.S., and Cohen, P. Applications-oriented Al Research: Education.
Tech. Rept. STAN-CS-79-749, Computer Science Department, Stanford University, 1979.

6. Goldstein, I.P. Understanding Simple Picture Programs. Tech. Rept. 294, MIT AI Lab,
1974.

7. Goldstein. I. The Computer as Coach: An Athletic Paradigm for Intellectual Education.
Tech. Rept. 389, MIT Al Lab, Cambridge Ma., 1976.

8. Goldstein, l.P. "The Genetic Graph: A Representation for the Evolution of Procedural
Knowledge." International Journal of Man-Machine Studies 1, 11 (1979), 51-78.

9. Johnson, L., Draper, S., Soloway, E. An Effective Bug Classification Scheme Must Take the
Programmer into Account. SIGPLAN/SIGSOFT Workshop on High-Level Debugging, in press.

10. Johnson, L., Draper, S., Soloway, E. The Nature of Bugs in Novices' Pascal Programs. in
preparation

11. Miller, L. A. "Natural Language Programming: Styles, Strategies, and Contrasts. IBM
Systems Journal 20(1981), 184-215.

12. Miller, L.A. "Programming by Non-Programmers." International Journal of Man-
Machine Studies 6 (1974), 237-260.

13. Miller, Mark L. "A Structured Planning and Debugging Environment for Elementary
Programming." Int. J. Man-Machine Studies 11 (1978), 79-95.

14. Miller, J. R., Kehler, T. P., Michaelis, P. R., & Murray, W. R.. Intelligent Tutoring for
4Programming Tasks: Using Task Analysis to Generate Better Hints. Tech. Rept. TI ONR-

* ,TR-82-0818F, Texas Instruments, Inc., 1982.

15. Rich, C. Inspection Methods in Programming. Tech. Rept. AI-TR-804, MIT Al Lab, 1981.

16. Rich, C. and Shrobe, H. "Initial Report on a LISP Programmer's Apprentice." IEEE
Transactions on Software Engineering 4, 8 (November 1978), 342-375.

MENO-I: An Intelligent Programming Tutor Page 33

17. Soloway, E. and Woolf, B. Problems, Plans, and Programs. Proceedings of Eleventh ACM
Technical Symposium on Computer Science Education, ACM, 1979.

18. Soloway, E., Bonar, J., Woolf, B., Barth, P., Rubin, E., and Ehrlich, K. Cognition and
programming: Why Your Students Write Those Crazy Programs. Proceedings of the National

AEducational Computing Conference, NECC, No. Denton, Tx., 1981.

19. Soloway, E., Bonar, J., Ehrlich, K.. Cognitive Strategies and Looping Constructs: An
Empirical Study. Communications of the ACM, in press.

20. Soloway, E., Ehrlich, K., Bonar, J., Greenspan, J. What Do Novices Know About
Programming? In A. Badre, B. Shneiderman, Ed., Directions in Human-Computer Interactions,
Ablex, Inc., 1982.

21. Soloway, E., Ehrlich, K., Bonar, J. Tapping Into Tacit Programming Knowledge.
Proceedings of the Conference on Human Factors in Computing Systems, NBS, Gaithersburg,
Md., 1982.

22. Stevens, A. and Collins, A. The Goal Structure of a Socratic Tutor. Bolt Beranek and
Newman. Cambridge, Mass., 1977.

23. Teitelbaum, T. and Reps, T. The Cornell Program Synthesizer. A Syntax-Directed
Programming Environment. Tech. Rept. 80-421, Cornell University, Dept. of Computer Science,
1980.

24. Waters, R.C. 'A Method for Analyzing Loop Programs." IEEE Trans. on Software
Engineering SE-5 (May 1979), 237-247.

25. Westcourt, K.T., Beard, J. Gould, L. and Barr, A. Knowledge-Based CAI: CINS for
Individualized Curriculum Sequencing. Tech. Rept. Technical Report 290, Institue for
Mathematical Studies in the Social Sciences, Stanford, 1977.

MENO-lI: An Intelligent Programming Tutor Page 34

IJGC EXAMPLE a

I HPQOI Af"AtlAi (INPUTI. OUTPUT)

21
3 CONSr
I SENTIEL - 99999

A SAP

7 YAOVAFALL 9(KINFI NIOANZSl OOi REAL.
I TOTALRAIN vAID0A AIU SAINYDTS COUN*T NEL.

10 BGIN
It WITEL ('"I MOAN THIS IS A POO" THAT COIPTES THE AVERAE').
1? 2 ITEL: ('RAIALL NIWEST ,AINFILL. MUJMEN OF RAINFALL OATS')
13 VIITLil ((ITIED AND THE TOTIAL WM OF SAITOATS ENTERED').
14 WITLI (TEE VOUR RAINFALL DATA NON 40 TR TO IMENAI TKAr').
tS WITELS ('YOU CA NOT lTER INEGAITIVE I VUT).
16

IT1 REASES
is IA (SINFALL

IS : ILE RIIMFAIL - 0 0
20 ICGI

2! WITELM (YOA U 1O 0010 O ENTERED EGATIVE AIFALL).
22 VQITLI (VON CASt MWV NEGATIVE RAINFALL NON ENTER '.
23 VI'ELN ('CORRlECT RAINALL AGAIN NOMH .
6 HEAD (RAINFALL)

27 WRI 'E ("HE RAINFALL NTEOED WAS', RAINFALL 0 2. IMCES').
21 2AUT -0

: 29 HtIaVRAIH * 0

30 *OTALRAI S 0
31

32 WHILE RAINFILL . SETIINEL DO
33 AEGIN
34 If NIWALL - HIGHAQIl

35 MICTRAIN R AINFALL.
31 TITALSAIN * TOTALRAIN * RAINFALL.
30 'DUN? - COUNT * 1.
.39 AN IAIl - TOTALRAIN / COUN'T
AU VLIDRAIMS - COUNT - ORAI.
&I RAINTOAYS VALIOQOI S
42 END
43
"I INA AILL - 0
as TOE%
4 m ORAIl * RAINFALL.
47 COUNT * COUNT I
46

4f o ITLS C
T
HE NUMER OF VALO AIN DAYS ESTENID WAS'. VALIDOA S 0 2)

SO VITEL (DAIS')
S WRITELI W(E IVE9SAIS WAS' AVERRAIN 0 2. 'ICHS PER DAY),
52 NAITIL1S ('* HIGRAII IS'. HI0SAIN 0 2, iNCHES"
53 VRITELI ('THE NORSER OF RAISTOAYS ON THIS PERIOD AS').
- WIT[LS IICAISYDAV 0 2. 'IDAS')

i 55 INO

... JINITI.IOZ(D VARIABLE SOC *..
TIE 4SS17ONT STATEPNET IS LINE 40 REFERS TO THE VALUE OF NORAIi
NOT AT THIS POINT NORAls HASN'T OTTEN 0 VALUE YET

.. I* INITE LOOP SOC ...
THE WHILE LOOP STIATING 0 LIE 32 IS AN INFINITE LOOP
THE VARIABLE RAIFALL 'S OT MOIFIED IS THE BODT OF THE LOOP.
SO :F THE CONDIl IO AINFALLoSENTINEL IS TRUE 0 ENTERING THE LOOP

T VILL NEVER BECOME FALSE. AND THE LOOP VILL EXECUTE FOR EVER

... LAST ITERAT'N BUG ...
(E WiLE LOOP STARTING ON LIE 32 IS WRITTEN 1N SUCH A VAT THAT

0N ?wE LAST ITERATION WHE RAIWALLI999 IT WILL STILL INCREMENT COUNT
rEFORE AFrR

T
E LOOP COUNT VILL BE OFF BY I

ANI YOU VILL NOT GET TN CORRECT AVERA E
YOU SOLA.D USE A WHILE LOOP INSTEAD OF A REPEAT LOOP OI USE IN
IF STATEMENT INSIDE THE LOOP TO CIECK IF RAINFALL9M mO INCREIENTZIG COUNT

. VALID INPUT 9O ...
yOU HAY NOT CORECTLY CIECKED THeAT RAINFALL IS POSITIVE
BEFORE AOODNG RINFALL INTO TOTALRAI 0 LINE 37

1 STIV B ZlEN O o..
Tou VE NoT CO RECTLY CIECKID TA COUNT IS NOT ZE
BEFORE OIVIDING BY COUNT 0N LON 9

I YOR PROAA WILL NOT HANDLE THE CASE WHEN NO VALID RIFATOLLS AN ENTEREO

Figure 19: Archtypical Example of a Complicated Buggy Program

MENO-II: An Intelligent Programming Tutor Page 35

A Siapie Looping Problem:
(a)

Read in a set, of integers and print out their average. Stop reading
numbers when the number 99999 is seen. Do NOT include the 99999 in
the average.

(b)

A More Complex Problem:

Write a program which will input a set of numbers, where each number
stands for the amount of rainfall in New Haven for a day. Compute
the average rainfall, the number of rainy days, and the highest daily
rainfall. Stop reading when 99999 is input; do not include this value
in subsequent calculations. If the number input is negative, do not
include it in the calculations and prompt the user to input another
value.

Figure 20: Simple and Complex Problems

r

-'I

- OFFICIAL DISTIRUBTION LIST -

Aroy Private Sector

Techn'csi Director I copy Or Michael Gemesereth I copy
U S Army Research Inst;tute for the Department of Compiter Science

Behavioral and Socil Sciences Stamford University

5C01 Esenhower Avenue Stanford. Califormia 94305
Alexandria Virg, ia 22333

Dr Detre Genteer I copy
Mr James Baker I copy Bolt Beranek I ieaui
Army Restarch Institute 10 Moelton Street
5001 Eseahowe- Avenue Camtridge. Mssachsetts 02138

Aleiandria. Vtirgnia =333

Or Robert Glaser I copy

Dr beatr-ce J Farr I copy Learning Research A Development Center

U S Army Research Institute UniverSity of Pittsburgh

50CI Esenhover Avenue 3939 O'Hara Street
Alexandria Virtnia 22333 Pttsbrgh. Pennsylvania 15260

Or Miton S Katz 1 copy Or Josepn Gogvea I copy

w,':ars 'ec'n'ca' Area SRI International
U S Army Research Inst,tute 333 RaveeSmood Avenue

SCI Esehove, Avenue Mealo Park. California 94025
A;evandria. V'l:era 22233

Or Bert Green I copy
Sf-ashap Nerva I copy Jichs fopi is Unvers ity

U S Army ;eser: Institute for the Department of Psychology

ltavoral I Scc at Sc-ences Charles A 34th Street
SI i Eisenhoer Avenue Baltmore. Maryland 21218

Aietadria Vir,n a 2333

Dr Marcoi r C'he ' Jr I ccpy Dr James G Greeno 1 copy
ODrecvcr Tranv 1 Research Lab LRDC
Arty ResearcP insttute Unmvers~ty of Pttsbargh

!001 E,seicev Avenue 3939 C'Mar Strtet

Alexandria Vrna 22333 Pittsburgh. Peenrylvana 15213

Ccemanier UJS Army Research Insttte I copy
for the Beoaaiora; & SOcial Sciences Or Barara Mayes-Rot I copy

Attn PER :*E (Dr Judith Orasanui Lepartmemt of Compter Scence

!01 Eislnover Avenue Stariord Unversty
Alejafr,a V,,g,n,a 2:333 Stanford Csi fora-s 95305

Josept Fsesa Ph D I copy Or Freder-ck Nayes-Roth 1 cop
Attn PEDI-IC Tevuovleege

Aany Research Institute 515 UniversiLy Aveave

!001 E;senhoe- Avenue Palo Alto. Calfornia 94301
Alezandria. Virg Pi 22333

Gleal Greepmald Ed
Or Robert Saneir 1 copy Mumya h Inteligeuce Ntwstetter 1 copy
U S A-my Research Institute for the P 0 Son 1113
Behau-cral and Social Sciences BIrmialgha Michian 48012
5001 E-semPoer Avenae

AleSedria. Virgi ia 22333 Or Earl Het 1 copy

Departmeat of Psychology
Or Robert Wisher I copy University of vashiugtoo
Army Research Institute Scatt$e. WaaSmgtoe 96105
5001 Eisenhower Avenue
Alemadria Virgnia 22333 Dr Marcel Just 1 copy

Departamt of ,syclology
Carwegie-oelO. Uvnersity
Pittsberph. Pemusylvuil 1S213

Air Force

U S Ar. Force Office of Scientific I copy

Reseaion Dr David Kieras I copy

Lfe Sciences Directorate. OIL Department of Psychology
Boiling air Force Base University of Arizona

Washington DC 2C332 Tuscon. Arizona 85721

Dr Earl A Allusi I copy Dr Walter Kistsch copy
HQ AFHRL (AFSC) Department of Psychology

Brooks AFS Toias 7025 Unrversity of Colorado

Boulder. Colorado 80302
Bryan Dallman I copy

AOHPL/LAT Dr Stephen Rosslyn 1 copy

Lowry AFB. Colorado OC230 Deartment of Psychology
The John Hopkins University

Dr Genevieve Haddad 1 copy Baltimore. Maryland 21218

Program Manager

Life Sciences Directo-ate Dr Pat Langley I copy

APSR The Robot-cs Institute

Bo4 irg AFS DC 20332 Carnegie-Mellon University

Pittsburgh. Pennsylvania 15213

LDr .to;n Targne I copy

ArCSR/NL Dr Jill Larkin I copy

BClnag AFB VC 20332 Department of Psychology

Cafnege-Mellon University

Cr Jcepn yesatuse I copy PLtsburgh. Pennsylvania 15213
Ac,4q /: FT

Lowry AF. Colorado 80230
Dr Alan Lesgold 1 copy

Ma'.,e Corps Learning R&D Center

University of Pittsburgh

H wil'ar Greervp I copy 3939 0 Kara Street

Edcal,on Adosor (Ut31) Pittsburgh. Pennsylvania 15213

Elucation Center. MCDEC

Q.art.co. v'ga 22134 Dr Jim Levn 1 copy

University of California

Spec al Assstant 'or Marine I copy at San Diego

Corps Matte-s Laboratory for Comparative
Code 100M Human Cognition - DOO3A

O ',ie of Naval Research La Jolla. California 92093

W 4 uin cy Street

Arlngt on Vrgfn ia 22:27 Dr Michael Levine 1 copy

Department of Educational Psychology

Dr A L Slaftcsky I copy 210 Education Bldg

Scientfc Advisor (Code RD-!) ULniversity of Illinois

HQ U S Mar~ne Corps Champaign. Illinois 61601
Wash'ngton DC 20382

Dr Marcia Lien I copy

Department of Defense University of Calrforfie
Director. Adolescent Reasoning Project

Defense Tecnical Information Center 12 copies Berkeley. California 94720
Cameron Station B!dg S

* i Aletandian, Virginia 22314 Dr Jay McClelland I copy
Attn TC Department of Psychology

NMIT

Mi l itary Assistant for Troiing and I copy Cambridge. Massachusetts 02139
Personnel Technology

Office of the Under Secretary of Defense Dr James R Miller 1 copy
for Research a Engineering Compute, Thought Corporation

Roos. 3D129. INe Pentagon 1721 West Plano Highway

Washington , DC 20301 Piano. feils 75075

Major Jack Thorpe I copy Dr Mart Miller I copy

DARPA Computer Thoelht Corporation

1400 Wi lon Blind 1721 West Plane Highway
Arlington. Virginia 22209 PIano Tells 75075

i ... I I .. . I ... " °N'ow -

Navy Dr Too Moran I copy
Xerox PARC

Rosert iers I copy 3333 Coyote Kill Road
Code 1711 Palo Alto. California 94304
Noma* Factors Laboratory
NAVTRAEQUIPCEN Or Allen Macro I copy

Orliado, Florida 32 13 Behavioral Techeology Laboratories
1645 Ellen Aveno. Foertk Floor

Code 711 1 copy Redondo eah. California 00277
Attn Arthur S ellies

Noval Training Equpmeat Ceater Or Donald Norme I copy
Orlsodo Florida 32 13 Cognitive Sceace. C-015

Univ of California. Sea Diego
LisisOc Scieatist I copy Lo Jolls. California 92093
Office of Naval Research
Broach Office. LoadoO

Bos 39 Or Jesse Orlesky 1 copy
FPO lea York. Ne York 09510 Institute for Defense Analyses

1601 N Beavregard Street
Or Richard Cantona 1 copy Alexandria. Virginia 22311

Navy Research Laboratory

Code 7510 Professor Seymour Papert copy
Washington. DC 20375 20C-109

HIT
Chief of Naval Education sed Training I copy Cambridge. Mossacbnsetts 02139
Liason Office
Air Force Huat Resovrce Laboratory Or Nancy Pennington I copy
Operations Training Division University of Chicago
WILLIAMS AFI. Arizona 85224 Graduate School ot Business

1101 E 58th Street
Chicago. Illiois 60637

Dr Stnaley Collyar I copy Dr Richard A Pollak I copy

Office of "alal Technology Director. Special Projects
600 1 viaicy Street MECC
Arlington. Virgioia 22217 2354 Hidden Valley Late

Stillwater. Minnesota 55o62

CDR Pike Cerro 1 copy
Office of Naval Research Or Peter Poison I copy
600 I Qnncy Street Department of Psychology
Code 270 University of Colorado

Arlington. Virginia 22217 Boulder. Colorado 80309

or John Ford 1 copy Dr Fred Reif 1 copy
Navy Personnel RID Center Pbysics Deportment
San Diego. California 92152 University of California

Berkeley. Califora 04720
Dr Jade Franklin I copy
Code 7510 Dr Lanren Resnick I copy
Navy Resenrch Laboratory LROC

Washington. DC 20375 University of Pittsbnrgh

3939 O'lara Street
Dr Mike Gaynor I copy Pittshrgh. Peoonsylvania 15213
levy Researc) Laboratory

Code 7510 wary S Riley I copy
Welin goe. OC 20375 Program in Cognitive Science

Center for maMe Iaforemntio Prj e$sing

Or Jim Holle I copy University of California. Sao Diego
Code 14 La Jail. California M093
Navy Personal R& Center

See Diego. California 32152 Or Andrew Mose I copy
American Ilst totes for Research

Or Ed Hutci s I copy 1055 Thomas Jefferson Street. IN

Iey Personnel R&D Ce tr Wasbigle. DC 20007
Sea Diego, Coliforeio 32152

Dr Ernst Z Rothkop! copy

Dr Norman J kerr 1 copy Bell Laborato,,eS

Chief Ofi hawal Tlechncal Training Murray Hill. %eo Jersey 07974

Nava, Air Stator MemphiS (7S)

NII ington Tennessee 38054
Dr Willim B Rouse 1 copy

Dr James Lester I copy Georgia lst tate of Technoloty

0NP Detachment School of Industrial A Systems

49 Summer Street Engineering

Boston. Massachusetts 02210 Atlanta. Georgia 30332

Dr Vi iam L Male, (02) 1 copy Or David Rumelhart 1 copy

Chief of Nava: Education and Training Center for Human Information Processing

Naval Air S n "o university of California. Sao Diego

Pesa::ia Flcrda 3259 La Jolla California 92093

Or Joe ":Lactlan I copy Dr Michael J Samet 1 ccpy

arvy Fersonne PV Centel Perceptron cs. Inc
San .e go Caiiforoa 9 1' 6:71 Varel Avenue

Woodland HilIs California 91364

Dr Roger Schank I copy

D Wlliam Mcntague I copy Yale University

CP C Code 13 Department of Computer Science

San Diegco. Cai'lcvia 92152 P 0 Sov 2158
me. Haven. Connecticut 06510

Lbrary. Code FZ, 1 copy
Nave Persune: FA: :eter Dr Walter Schneider 1 Cody

Sa Diego Cai forpia 92:5 Psychology Departient
fC3 E Daniel

Tec-a-cal Drector I ccpy Champaign. Illinois 61820

Navy Person"el RA: Center
san liego CaIfora 92.52 Dr Alan Schoenfeld I copy

Mathematics and Education

Commapding Off-c" 6 copies The Unaversty of Rochester

ava3
1

Research Latc'atc'y Rochester. New York 14627
I Code 252'c gve90 Mr ColIl Sheppard I copyAp;l ed Psychology Veit

C'',cn of Naval; estarch I copy Admiralty Marine Technology Est
Cede 433 leddington Middlesel

SWG 4 Quincy Steet United lingdom

Arlington, Vi'gia ^2^7
Or H Wallace Sina,t hO copy

Personnel I Trasoing Research Group 6 copies Program Director

Code 442PT Micpower Research and Advisory Service

Oficte of Nava; Research Spltlsoftn Irstitet.On

Arlngton. Virinia 2-27 601 North Pitt Street
Aluandria Virginia 22314

Office Of the Chief of hava; Operatioes I copy
Research Development A Studies Branch Dr Edward E Smith I copy
OP 11! Bolt beranek A Nevmaas

Washelgtoc. DC 203:0 50 Movltot Street
Caordgie. Massachusetts 02138

LT Frank C Petho MIC US" (Ph D) I copy

C?(I (1-432) Or Richard Snow 1 copy

* SE School Of EdocatioD
Pensacola. Floria 308 Stamford Uneversity

Staeford. California 34305

Dr Gary Poock I copy
Operations Researc Develoment
Code 55PI Dr Eathry. I Spockr 1 copy
lval Postgraduate ScOool PsycholOgy Department

Monterey. Californi 93940 Iroew Uiversity
Providence. Raose Islad 02912

Dr ri Ricard I COpy
Code 4711 Or Robert Sternberg I copy

NTEC . Department of Psychology

Or:ando. Florida 32913 Yale University

Sol 11A Yale Station

Dr Worth Scasland I copy Me Haven. Connecticut 06520

CRET (1-5)

HAS. Pensacola. Florida 32508 Dr Albert Stevens I copy

Bolt Beranek I NeWan

10 Monltov Street

Dr Robert G Smath I copy Caombridge Massachusetts 02238

Office of Chief of Naval Operations

OF-987H David E Stone. Ph D 1 copy

Washington. DC 20350 Ha:elttne Corporation

7680 Old Springhouse Road

D, Alfred F Smode. Director I copy McLean Virginia 22102

'a~n, 1 Avalysls I Evaluation Group

DerarLmen of the Navy Dr Patrick Suppes 1 copy

Oranao. Florida 32813 Institute for Mathematcal Studies in
the Social Sciences

Dr Richard Sorensen I copy Stanford UViaers ty

Navy Persomiiel RI: Center Stanford. California 943CS

Sai D.PE Calforna 92152

Dr Kikmia Taotsuoka I copy

:r Crede-,cl Stenheser I copy Computer Based Education Research Lab

- 2P. 252 Enwi ee-,n& Res arch Laboratory

Navy A.nel Urbana. Illinois 61801

Ar r5&ctv Virginia 2C370
Or Maurice Tatsucka copy

Roger Yessngr-aylon I copy 220 Education Bldg

De;a-tsevt of AdoemrstratLve Sciences 1310 S Siut0 Street

Naa PcsLraduate School Champaign. Illinois 61820

Mc-t'-ey Cal fornia 93940

Dr Perry V Tkoredyke 1 COO
P, Jhn H Wolfe I copy Perceptron cs, Inc

Navy personnel RID Cent#, 545 Middlefield Road. Suite 140

San Diego Ca!,1orn a 9152 Menlo Park. California 94025

Or Wallace Wulfeck III I copy Dr Do glas Towne 1 copy

Nov- Pe Scte' RAD :enter University of So California

So, Diego. Cal forea 92152 Behavioral Technology Labs

1845 S Elena Avenue

Prnvate Sector Redondo Beach. Catifcrla 90277

nr John R Anderson I copy Or Kurt Van Lhn 1 copy

Department 0 Psychology Xerox PARC

Carregne-Mellci Uvnaers:ty 3333 Coyote Hill Road

P.ttsnurghi resylvnais 15213 Palo Alto. California 94304

Or Jc-ui Annott I copy Dr Keith I Wtscourt, copy
Departmeot of Psychology Perceptronics. Inc

University of Warwick 545 Middlefield Road. Snate 140

Coventry CV4 7AJ Menlo Park. California 94025

ENGLAND

Or Michael Atwood 1 copy William B Whitten I copy

III - Programming Bell Laboratories

1000 Oromoqve Lane 2DM610
Stratford. Conecticit 04497 Holmdel. Ne Jersey 07733

Dr Alan laddeley 1 copy or Mite WilliaS 1 copy

Medical Research Covnecil Xeron PARC
Applied Psychology Unit 3333 Coyote Hill Road

15 Chavcer Road Palo Alto. California 94304

Cambridge C82 2EP
ENGLANID

Civilian Agencies

Sor Patricia A 1etler I copy

Dr Patri.c, Bassett I copy IE-RN Blds. Stop #7
Department of Psychology 1200 loth Street Pl
University of Colorado waShaimpo. DC 20206
bolder. Colorado 80309

Of Susan Chitpea I copy

Ps Carole A 98leY 1 copy Learasg ad Development
140essota Educational Computing Nlatioal lastitate of Education

Consortium 1200 loth Street NW

2354 w.dien Valley Lane basht-gtom. DC 20208
Stilivate-. Ninesota 55082

Edward Esty
I copy

Dr Jonathan Baaron 1 copy Department of Education. OERI

60 Clenn Avenue MS 40
Bernyn Pennsylvania 1931? 1200 loth Street. NWB1shington.

DC 20206

N- Avron Barr I copy
Department 0, Computer Scien:e Edward J Feetes I copy

Stla' 'f Univers,ty Department of Education
Sta'fr Ca!,forAra 94305 1200 19th Street OW

Washington. DC 20208

Dr Jc q 'ach I copy
Yale University TAAE. Il I copy
B. HA Vale StJa on National Institute of Education

New Haven Connecitcut 06520 1200 1lth Street NW
kashi oo. DC 20208

Dr John S Brown I copy
XEOX Palo AltO Research Center r John nays 1 copy

3333 Coyote Road ational Iusttnte of Edcatron
Palo Alto. California 94304 1200 19tk Street. lbbash ngtfl. DC 20206

Dr Brue Bucharan 1 copy
Derartment of Coeruter Science Or Arthur Mieled I copy
Stafcd UnnverSity 724 BrOwn

Sta-ford California 94305 U S Oept of Education
bashogtom. OC 20208

Dr j. c Carbaell I COpy

Depat"e'e of Psycholoy Or Andrew S o iar 1 co:y
Carnege-*erlon Unversity Office of Scientific and Engieering
Pittsturgh Pelnsylvant 15213 Personnel as$ Education

Rational Science Foundation
Dr Pat Carpenter 1 copy bashlogton. DC 205S0

Department of Psyclology
Carnege-Nellcn University
P,ttsburg Pennsylvania 15213 Everett Palmer I copy

Researct Scientist

Dr W-1tham Chase 1 copy Mail Stope 239-3

Deca.-nent of Psychololy NASA Ades Research Center
Carneie.-Netlon Ualversty Moffett Field, California 94035
Pttsur'h Pennsylvania 15213

4 r Mary Ste)dard I copy

SDr MIceline Cho I copy C 10. %aI Stop 329

7 Learning R a D Center LoS Alamos National LabortorieS
University Of Pittshrgh LOS Alamos. New 011co 07545$3939 Olfnra Street
Pttshergh. P0saSyInaIa 15213 Chjef. psychological *eSearch Branch I copySP1U

S Coast GOard (G-P-112/YP42)
bnstingtom. K 20593

Dr William Clncey I copy
Department of Computer Science Dr Frea& Wothrow I copy
Stasford URiversity U S Office of Education
S;aafori Californa 94306 400 earylead Aveue SW

Wash inton, DC 20202
Dr Allan M Collins copy
Bolt Beranek A Wewman. InC Dr Joseph L Yoen1 . Director I copy
50 Poulton Street memory A Cognitive Processes
Cambrdge Massachusetts 02138 Natiomal Science Foundation

Washigton. DC 20550
ERIC Fac.IiLy-Acquisit0ons I copy

483j Rugby Avenve

Bethesda Maryland 20014

Mr Wallace Feu-zeig I copy

Department of Educationa; Technology

Bolt Beralnt ah$ een
10 Moulton Street

Caecrdge Mastachusetts 02238

Dr Dester FletcNe, I copy

WICA7 Research institute

is'! Sate Stleet

Oree ULa 22333

Dr J" n A ;rederksen 1 copy

Brit Be-auee A herman
50 oulton Street
Cambroe Massaccsetts 02138

II

