7 AD-A133 256 MENO-I1: AN AI-BASED PROGRAMMING TUTOR{U) YALE UNIV NEW
HAVEN CT DEPT OF COMPUTER SCIENCE E SOLOWAY ET AL.
AUG B3 YALEU/CSD/RR-258 N00014-82-K-0714
UNCLASSIFIED

ey

pTIC

8
E———

Il

EFEE
HEEF

Pr—— 33
FEEEEEEERY

——

e
i

1.6
=

e —
S
—————
——
—

I

125

I

ART
A

MICROCOPY RESOLUTION TEST CH
WATIONAL SUREA OF STANDARDS - 1963

T ——

s e T Temme sy WS 0T

PR R e

L e e Vel

AD- RI332as5&

' MENO-II: An Al-Based Programming Tutor
Elliot Soloway, Eric Rubin,
| Beverly Woolf, Jeffrey Bonar, W. Lewis Johnson
| ‘
| YaleU/CSD/RR #3258 {
December 1982 _
a
S T 1
. S DTIC
* N =
: L @ ECTE]
1 = <y OCT 0 1983 :
q
cd
= E E
(=]

YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

This docur-art “r. * -~ “rroved AA 091
if?.'..,; R "‘L." N 83 - 10 :) -

1".:;?5 i

MENO-II: An Al-Based Programming Tutor

Elliot Soloway, Erie Rubin,
Beverly Wooll, Jeffrey Bonar, W. Lewis Johnson

YaleU/CSD/RR #258 \

December 1982

fem etk e e

stCuatTv CLASSIFIC!'DON :ar THIS PAGE (When Deta Entered)

A NS
REPORT DOCUMENTATION PAGE _ BEFORE COMPLETING FORM___|
1 REPOAT NUMBER 2. GOVY ACCESSION NOJJ 3. RE G:'s CATALOG NUMBER
#258 ﬁ d"
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED
MENO-II: An AIl-Based Programming Tutor Technical Report
6. PERFORMING ORG. REPORT NUMBER
#258
7. AUTKHONR(S; 3. CONTRACT OR GRANY NUMBER(S)
Elliot Soloway, Eric Rubin, Beverly Woolf,
Jeffrey Bonar, W. Lewis Johnson NOOO14-82-K-0714
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROG!.A%!.L‘I l. T" l.OJtIC: TASK

Yale University
10 Hillhouse Avenue
New Haven, CT 06520 NR 154-492

V1. CONTROLLING OFFICE NAME AND ADODRESS 12. REPOAT DATE

August 1983

13. NUMBER OF PAGES

Personnel and Training Research Programs
Office of Naval Research (Code 458)

A:]jniton VA 29712 35
4 MONITORING AGENCY NAME & ADDRESS(/! different frem Controlling Office} 15. SECURITY CLASS. (o/f this repert)

Unclassified

[M%a. OF c"'""—‘_""é ASTIFICATION/ OOWNGRADING |
SCHEDULE

16. DISTRIBUTION STATEMENT (of thie Report)

Approved for public release; distribution unlimited.

17. OISTRIBUTION STATEMENT (of the abstract entered In Block 20, If ditferent trom Repert)

18. SUPPLEMENTARY NOTES

To appear: The Journal of Computer Based Instructional Systems

19. XEY WORDS (Continue on reverse eside /! necessasy and identity by block number)

Artificial Intelligence, Expert System, Automatic Program Understanding,
Debugging Aids, Programming Plans, Tutoring Systems

20 ARSTRACYT (Centinue en reverae eide If neceseary and idontify by blech mumber)

- MENO-II is a computer-based tutor intended to help novices learning to progra
in Pdascal. The BUG-FINDing component attempts to find non-syntactic bugs in
student's program. It draws on a database of 18 common bug types, represente
as templates, and attempts to match these templates against its analysis of tle
student's program. The TUTORing component then attempts to infer the
misconception that might underlie the bug and present the student with
remedial instruction. We tested the BUG-FINDing component in a classroom

[XL

1 1AM 73 “73

E0ITION OF 1 NOV 68 15 OBSOLETE <

$ N 0102- LF-014- 6401 SECURITY CLASSIFICATION OF Twis PAQ o v L

N e atade cma a

*Department of Computer Science
Yale University
P.0. Box 2158
New Haven, Connecticut 06520

Toave N\

hY

3

crwy .

*kDepartment of Computer and Information Science RS LU
University of Massachusetts ~S

Amherst, Massachusetts 01003

Lﬁccession For

(e congr
P'rove o

[TN R
U tTarunced
;

L.

5 e

]

e

MENO-II: An Al-Based Programming Tutor

December 1982
Regsearch Report #258

Elliot Soloway*, Eric Rubin¥*,
Beverly Woolf**, Jeffrey Bonar**, W. Lewis Johnson#*

This work was supported in part by the Army Research Institute for the Behavioral and Social
Sciences, under ARI Grant No. MDA903-80-C-0508. This work also supported in part by a grant
co-sponsored by the Personnel and Training Research Groups, Psychological Sciences Division,
Office of Naval Research and the Army Research Institute for the Behavioral and Social Sciences,
under Contract No. N00014-82-K-0714, Contract Authority Identification Number, Nr 154-492.
Approved for public release; distribution unlimited. Reproduction in whole or part is permitted
for any purpose of the United States Government.

i e AV B ST

MENO-II: An Intelligent Programming Tutor Page |
Abstract
] MENO-II is a computer-based tutor intended to help novices learning to program in Pascal.

The BUG-FINDing component attempts to find non-syntactic bugs in a student's program. It
draws on a database of 18 common bug types, represented as templates, and attempts to match
these templates against its apnalysis of the student's program. The TUTORing component then
attempts to infer the misconception that might underlie the bug and present the student with

TP T R

E3

remedial instruction. We tested the BUG-FINDing component in a classroom setting; we report
here on an analysis of the system’s performance.

3 1. Introduction

We all know -- and grumble - about the error messages that one gets from a computer system.
That problem is magnified for the novice programmer who is learning a first programming
language. With the number of individuals who are learning programming growing rapidly, there
is a clear need for intelligent tutoring systems which can assist the novice at a most critical time:
when he/she is alone, one-on-one, with the beast.

: 2. Using Artificial Intelligence Techniques

There are two major differences between MENO-II! and typical frame-based CAI systems:
3 . 1. In contrast to more classical CAl systems which build the subject matter into frames
i which are tied together with a branching strategy, the knowledge about

programming which MENO-II has is represented explicitly in the form of a network,
and the instructional strategy is independent of that knowledge and also encoded
! explicitly. Thus, MENO-II generates what to say based on the particular situation.

2. In contrast to more classical CAl systems which respond to only a small set of
student errors, MENO-II can cope with 18 different types of program bugs. These
bugs are tied explicitly to a knowledge base of potential misconceptions, which is
accessed when interacting with the student. While frame-based CAI systems could
include more types of bugs, they typically do not do so. It is the recognition that a
teaching system needs to handle significant variability in student responses that is
the key.

In order to build a system such as MENO-II, we have used many techniques which have been
developed in Artificial Intelligence. For example, the knowledge representation we use is called

YThe system’s name, MENO, is the name of one of Plato's dislogues in which the question of how learning can
possibly take place is discussed. In particular, Socrates questions how s slave-boy can possibly learn the proof of the
Pythagorean Theorem: if the boy didn’t know it already, then how could he possibly recognise it when it is being

taught, but if the boy knew it already then the boy hadn't learned anything. This conundrum is called Plato's
Learning Paradox.

'
1
{
1.
!

s A 2 AL et Sl W Fon e - e . ———— . i

Sy " 3
PRk A ey

)

e e e e e

R L .

MENO-II: An Intelligent Programming Tutor Page 2

KL-ONE, and was developed as a general knowledge representation language [3]. See Clancey [5)
and Goldstein (8] for a more extensive discussion of the role which Al can play in CAL.

3. Objectives and Status of System
MENO-II is a tutoring system designed to help novice programmers learn Pascal. The goals of
MENO-II are:
e catch run-time (semantic and pragmatic) bugs in the student programs®
» focus on introductory programs: straight line, branching, simple looping.
» use MENO-II in conjunction with an existing lecture course on Pascal.
® suggest misconceptions in the students’ heads which underlie the bugs
» “talk” in language which is close to programming so student will understand
® instruct/tutor the student with respect to the misconceptions.

The current status of the system corresponding to these objectives is:
® MENO-II can find 18 bugs with respect to repetition and assignment
e MENO-II can suggest underlying misconceptions for those bugs
¢ only a rudimentary form of tutoring has been implemented in MENO-II.

MENO-1I is divided into two major components: The BUG-FINDER, and The TUTOR; each
will be discussed in turn. We will also present a preliminary report on an evaluation of the BUG-
FINDing component of MENO-II in a classroom setting. We close with a discussion of plans for
MENO-II's expansion.

Before proceeding with the detailed description of MENO-II, it might be instructive to compare
the goals of MENO-II to those of two other Al-CAI programming tutors, BIP [25] and SPADE-0
(13]. The former system was designed and built to be a self-contained, full course in the
programming language BASIC; it was extensively used in a instructional setting. It had a
sophisticated technique for deciding what material should be presented to the student, and it had
excellent graphic displays. BIP analysed student's programs by running them on test data. In
contrast, MENO-Il's goals are clearly more limited (e.g., it should simply provide on-line help
debugging programs). However, significant effort has been expended in MENO-II to equip it with
the means to understand buggy programs, and infer the misconceptions which might underlie the
bugs; we report on the limited success of this enterprise later in this paper. SPADE-0 was

*While syntax errors are clearly troublesome for novices, we believe that systems like structure editors (e.g. the
Cornell Program Synthesiser [23]) will soon be available, and will help facilitate the creation of syntactically correct

programs.

A

sed k

7
¢l
"
- 'I«,
Pie
h 2

MENO-II: An Intelligent Programming Tutor . Page 3

designed, and a prototype built, to teach students to write simple LOGO programs. Unlike either
BIP or MENO-II, SPADE-0 forced the student to make the processes involved in programming
(e.g.. design, coding, debugging) explicit; a student entered a code only after he bad provided
reasons for why the code was there. Experiments with a successor to SPADE-0 are described in
(14].

4. Leverage on Program Understanding: The BUG-FINDER

The BUG-FINDER must be able to recognize two types of bugs: problem independent ones
(semantic bugs) and problem dependent ones (pragmatic bugs). An example of the former type is
the explicit inclusion of an increment to the index variable in a FOR loop. Bugs of this sort
typically reflect confusion about the semantics of the various programming language constructs.

In order to recognize problem dependent bugs, however, the BUG-FINDER must be told what
the program is supposed to do. Oftentimes a student’s program will run, but it will solve the
“wrong” problem. For example, in Figure 1a, we depict a problem for which the the program in
Figure 1b is the correct solution; the program in Figure 1c does not solve the problem, but may
in fact execute. In other programming tutors, the student provided a specification of the goals of
the program (e.g., [6, 13]). In contrast, our approach is to have the teacher provide the
specification, since everyone in the course will be working on the same problem.

Currently, the specification of the intended program is represented as a database of
programming plans that correctly solve the problem. A programming plan reflects stereotypic
action sequences in programming (see below). We have also put together and built into the
BUG-FINDER a catalogue of common bugs found in simple looping programs. The Bug
Catalogue was derived from empirical studies carried out with novice programmers (e.g.,
(19, 20, 18]). In particular, in one set of studies, we asked students to write programs to solve
various problems. In a second type of study, we captured a copy of every syntactically correct
program that a student produced while at the terminal [2]. Given the substantial number of
programs collected, the systematic analysis of these data are only now being completed [10, 9].
However, observations from these data did help us in compiling the Bug Catalogue.

The BUG-FINDER, which is written in Pascal works by first apalyzing a student's program
into a “deep structure” representation (4], and then matching that analysis against the bugs in
the Bug Catalogue. The deep structure representation of the program specifies the functional
characteristics of the program. The set of primitives of this deep structure representation is
based on what an expert programmer might know about problems of this type. In particular,

this knowledge is focused on types of looping plans and the various roles which variables play in

b el g s i i

MENO-II: An Intelligent Programming Tutor Page 4
(3)

Problem: Read in numbers, taking their sum, until the number 999990 is seen. Report the sum.
Do not include the final 99999 in the sum.

(b)
PROGRAM CORRECT-EXAMPLE (INPUT, OUTPUT);

k VAR SUM, NEW : REAL;

;! BEGIN

¢ SUM:=0;

,’ READ(NEW) ;

i WHILE NEW <> 99999 DO

[BEGIN

P SUM:=SUM + NEW;

by READ(NEW)

END;

, WRITELN(SUM)

4 END;

A correct version of a program which solves the above problem.
4 (c)

A buggy program attempting to solve the above problem. The variable SUM is not initialized to
0. Similarly, the variable NEW has no value the lirst time it is tested at the top of the WHILE
' loop. Finully, notice that this program will add the final 99999 to SUM.

G, waigmacgs ol

! PROGRAM BUGGY-EXAMPLE
VAR SUM, NEW : REAL;
BEGIN 1
WHILE NEY <> 99999 DO
BEGIN
READ(NEW) ;
SUM := SUM + NEW
END
WRITELN(SUM) ;
; END;

Figure 1: A Problem, A Correct Solution, and a Buggy Solution

SCn s el e

v Bpms e A N L e e 2 e———— e

R Y o U VN

MENO-II: An Intelligent Programming Tutor Page 5

programs. For example, the program in Figure 1b illustrates what we call the New-Value
Controlled Running-Total Loop Plan; it is just a special case of the Runring-Total Loop Plan, in
which the loop, while accumulating a total, is controlled by the value of the Read Variable (i.c.,
the New-Value Variable). This knowledge is described at greater length in {20}, and draws on the
work of (13, 15, 16, 24, 17, 1].

. We will describe the four stages in the bug finding process in the context of an example. In
particular, we will analyze the program in Figure lc. This program is an attempt to solve the
problem in Figure 1a. (A correct version of that program is given in Figure 1b.) Notice that
there are several bugs in this program. The variable SUM is not initialized to 0. Similarly, the
variable NEW has no value the first time it is tested at the top of the WHILE loop. More subtly,
notice that this program will incorrectly add the 99999 into the final sum. This occurs because
once in the loop, the value of NEW is first READ, then summed, and only then tested for
equality to 99999; thus, by the time the test is made the 99999 has already been added to SUM.

During the first stage of the bug finding process, the program is parsed into an augmented
parse tree. (Figure 2 contains the important fragment from the parse tree produced during this
stage.) This representation makes it easy to automatically determine the types of expressions and
statements, their execution-time sequence, and any nesting of statements (i.e. statements in loops
or in an IF statement). All occurrences of each variable are linked together (see Figure 2); since
many bugs deal with the use {and misuse) of variables, fast access to the occurrences of variables

is needed in order to facilitate subsequent bug analysis.

The next step is to annotate the parse tree with useful information about the various nodes.
This information is designed to simplify and summarize parts of the tree for subsequent bug
finding steps. For example, the assignment statement

SUM := SUM + NEW
would be annotated as a “running total assignment”. In Figure 3, we show the annotations for
the parse tree of Figure 2. The annotations are: (1) the WHILE loop is testing the variable
NEW; (2) the READ statement is reading into the variable NEW; and (3) the assignment inside
the loop assigns a running total to the variable SUM.

During the third stage of processing, the BUG-FINDER searches for instances of the various
programming plans. This is a’pattern matching process which uses the annotations in the parse
tree as feature detectors against which to compare the plans. For example, the features of a
Running-Total Variable Plan are, roughly speaking: (1) a variable which is continually updated
by (2) a new value which is generated each time through the loop. The assignment statement

SUM := SUM + NEW

MENO-II: Axn Intelligent Programming Tutor

Figure 2: Stage 1- Minimally Augmented Parse Tree

A parse tree for a fragment of the program in Figure lc. The normal parse tree has been
augmented with additional links that tie together all occurrences of a variable,

MENO-II: An Intelligent Programming Tutor Page 7

Figure 3: Stage 2— Summary Annotations Inserted into Parse Tree

i : The same parse tree as in Figure 2, except that the nodes of the tree have been annotated with
& information that summarizes the action in the various subtrees.

[PV POY R

MENO-II: An Intelligent Programming Tutor Page 8

Figure 4: Stage 3— Adding Plan Information to Parse Tree

e Plans are identified in the program and this information is added to the parse tree.

New-Value Controlied Running-Teta! Leco

Running- Total Varigble: Sum : i

New-Value Variable: New _

e e

ol aptn N o ik A

MENO-II: An Intelligent Programming Tutor . Page 9
? Figure §: Stage 4- Finding Bugs in the Parse Tree
; d Finally, bugs are found in the program using the plan annotations in the parse tree and the
I catalog of common bugs built into the BUG-FINDER.
i
; New-Value Controlied Running-Total Loop

. e, BUG New ha [
4 test New T en the sﬁ::tv:enss.
; - New must be read
- while before the loop.

¢ writein
‘ !-ch &“\““ _Tota‘ .'..M: V"‘Oﬂg m “
1 *(New \\‘ Sum ?ﬁ:i;:om Inside
.? ew 3%9 ew um +
| Sum ow
i Running-Totcl Variable: Sur
k f New-Value Variable: New "onne. BUG: ?.:gaw’xd
R

MENO-il: An Intelligent Programming Tutor Page 10

fits this description, and thus SUM is inferred to be the Running-Total Varable. Similar
arguments can be given for the other variable plans and the loop plan. In Figure 4, we show
three plans found in the example buggy program: NEW is a New-Value Variable, and SUM is a
Running-Total Variable, and the loop is an instance of a New-Value Controlled Running-Total
Loop Plan.

Finally, given the augmented parse tree, the annotation, and instantiated plans, the BUG-
FINDER program searches the Bug Catalogue for matches. Bugs are detected in terms of the
high level information derived from earlier phases. One class of bugs involves variable plans
which could not be fully matched, e.g., failure to initialize variable. In Figure 5, the Running-
Total Variable, SUM, has such a bug. Other bugs are caused by incorrect ordering of the
operations in the loop. For example, the program in Figure 1c will incorrectly add the sentinel
value 99999 into the running total; this is a classic example of the “off by one” bug. Moreover,
upon entry into the loop, NEW is undefined. A correct version of this program (Figure 1b)
would READ a value into NEW before the loop, and would perform the READ on NEW in the
loop after the running total update. As indicated in Figure 5, the BUG-FINDER identified these
errors in the buggy program.

5. The TUTOR: Inferring Misconceptions from Bugs

Given that the BUG-FINDER has found a bug (or bugs) in a student’s program, the next step
is to hypothesize the set of potential misconceptions which were in the head of the student which
might have been responsible for the program bug. In particular, the BUG-FINDER passes the
pumber of the bug to the TUTOR, and it is the job of the TUTOR to perform this
misconception analysis. Currently, the TUTOR hypothesizes the misconceptions and simply
reports them, plus the correct concepts, to the student; the TUTOR does not attempt to engage
in a dialogue with the student.

There are four knowledge bases currently in the TUTOR.

The Expert Knowledge Model -- the correct knowledge about programming is contained in this
component.

The Bug Network -- the common bugs we have identified in our empirical work are catalogued in
this component.

The Misconception Network - associated with a bug(s) are misconceptions which could give rise
to the bug; this network explicitly stores the misconception(s) and a tutorial
associated with each bug.

The Student Model —~ this is the system’s hypothesis as the what the student does and does not
know, the student’s history of interaction, etc.

s ese mred a w

s e ep———e T

MENO-II: An Intelligent Programming Tutor Page 11

In what follows we will illustrate how the above knowledge bases are used by the TUTOR to
produce its misconception analysis and tutorial output.

6. Examples of the TUTOR's Analyses and Interactions

The TUTOR, which is written in LISP, currently has two modes of operation: Full Comment
or Partial Comment. In the latter mode, only errors which the TUTOR deems as “serious” will
cause the TUTOR to say something to the student; the objective here was to be less intrusive. In
the former mode, any semantic or pragmatic bug will elicit a response from the TUTOR. In the
following examples we will illustrate both modes.

Consider first the tutoring session depicted in Figure 7, which is an actual student program. In
particular, this program was an attempt to solve the problem in Figure 6; a correct program to
this problem is also given. While the correct program reads a value into the New-Value Variable
(NEW in Figure 6), the program in Figure 7 instead increments the New-Value Variable
(POSIDEN) by 1. Our empirical studies have shown this to be a typical bug.

The TUTOR first prints out (Figure 7 its analysis of the roles which the variables play in the
program, e.g.. POSIDEN is the New-Value Variable, COUNT is the Counter Variable, etc. Next,
both the bug and the correct action are described to the student. Bugs, indexed by their
numbers, are stored in the Bug Network, and are tied to the Expert Knowledge Model by Buggy-
Version links. For example, in Figure 8 we see that Bug 205 is associated with the New-Value
Variable. ‘'he notation indicates that the correct way to initialize and update a New-Value
Variable is via a read, and that Bug 205 indicates that the update was actually accomplished via
an assignment statement. The English descriptions are in part generated in real-time from the
networks themselves, and are also in part constructed from canned messages hardwired into the

networks.

Associated with a bug is a set of possible misconceptions which the student might have and
which could cause the observed bug. This information is stored in the Misconception Network. In
Figure 8 we see that there are two possible misconceptions associated with Bug 205 (the bug in
the program in Figure 7): the Read Declaration Misconception and the Over-generalize Counter
Misconception. The pre-specified text associated with each one of these misconceptions is then
displayed to the student. In the next version of the TUTOR, a series of questions will be
generated and asked of the the student, in order to help differentiate between the competing

hypotheses. Currently the Student Model is simply a record of the bugs and misconceptions
constructed by MENO-II. Eventually, more history will need to be kept and used in the
diagnosis of a student’s misconceptions.

AR

gl g,

gk C Ve e

.aes b e w A

ey AT, 5 PO RTE
- .

MENO-II: An Intelligent Programming Tutor

Problem: Read in a set of integers and print out their average. Stop reading oumbers when the

pumber 99009 is seen. Do NOT include the 99999 in the average.

PROGRAM CORRECT-EXAMPLE(INPUT,QUTPUT);
VAR
TOTAL ,NEN,COUNT: INTEGER;
AVE:REAL:
BEGIN
TOTAL:=0;
COUNT:=0;
READ(NEW) ;
WHILE NEW <> 9993 DO
BEGIN
SUM := SUM + NEW.
COUNT :=COUNT+1;
READ (NEW)
END;
AVE:=TOTAL/COUNT;
WRITELN('THE AVERAGE IS ’',AVE)
END.

Figure 8: A Problem and Its Program Solution

Page 12

MENO-II: An Intelligent Programming Tutor

1 PROGRAM AVERAGE! (INPUT,OUTPUT) ;
2 VAR

3 SUM,POSIDEN,COUNT : INTEGER;
4 AVE:REAL;

5 BEGIN

6 SUM:=0;

7 COUNT:=0;

8 READ(POSIDEN) ;

9 WHILE POSIDEN<>9999 DO

10 BEGIN

11 SUM := SUM + POSIDEN;
12 COUNT:=COUNT+1;

13 POSIDEN := POSIDEN + 1;
14 END;

185 AVE:=SUM/COUNT;
16 WRITELN('THE AVERAGE IS ', AVE)
17 END.

POSIDEN is the New Value Varisble
COUNT is the Counter Variable
SUM is the Running Tota! Variablie

You modified POSIDEN by adding POSIDEN to 1

where as. ..

you should modify the New Vaiue Varisble by calling the READ
procedure: READ(POSIDEN).

Two misconceptions can be associsted with this bug:

1. You might be thinking thst the single call to the READ procedure
[READ (POSIDEN)] at the top of your program is enough to define o
varisble which will slwvays be resd in from the terminal. In fact you
need to cal! the read function s second time in your program to read
in sdditions! values.

2. You might be thinking that POSIDEN is like COUNT, in that adding

1 to & varisble wifl retrieve its next velue. The computer does not
know to reinterpret + 1 in the former case to be a READ.

Figure 7: An Example of TUTOR's Analysis

Page 13

PRI SIS S ey

MENO-II: An Intelligent Programming Tutor Page 14

Figure 8: A Slice Through Three Kpowledge Bases

ﬁ The nodes and arcs in this figure represent a small fragment of the actual knowledge bases. Also,
the notation has been simplified to enhance readability.

,.‘,_
e o)
M

e,

'fi Misconcegtion Nebwork ‘ E Netwerk Compatenca Motel

i 4
- !
- :
g RendOtey Ve
; S0 N Vol Wit R O Yo
| : 5
i '
i H
®
R
1
|
: .

4
=
B
§
:

i i T TR

MENO-II: An Intelligent Programming Tutor Page 15

Let us now examine another student program in which there are multiple bugs and multiple
possible misconceptions for those bugs. The program in Figure 9 is an attempt at solving a
variant of the problem in Figure 6; instead of terminating when the number 99999 is read in, the
program should terminate after 10 numbers are read in. There are two types of bugs in this
program. The first revolves around the use of the FOR loop. The index variable in the loop,
COUNT, is both explicitly initialized before the loop (Bug 1) and explicitly updated in the loop
(Bug 2). The former bug is not serious; however, in conjunction with the latter bug, there is
strong evidence that the student does not understand that semantics of the FOR loop with
respect to its automatic actions on the index variable. Alternatively, the student might be
confusing the FOR loop with the WHILE or REPEAT loops, which do require explicit
manipulation of the index variable.

The second type of bug in this program is called a “Fractured Assignment Statement Bug”
(Bug 3). The objective is to calculate a running total in the variable SUM. Typically, one would
write SUM := SUM + HERMES. However, the student has introduced an intermediate variable,
TEMP, and effected this calculation with 2 assignment statements. We feel that the student is
confusing his understanding of how equals works in algebra with how the assignment statement
works in programming. Namely, in algebra one would typically feel uncomfortable putting the
same variable (SUM in this case) on both sides of the equals sign. Notice that this bug does not
lead to an incorrect program. In fact, if the TUTOR were running in Partial Comment Mode, it
would not say anything to the student about this bug (assuming of course that this bug was the
only bug). The commentary which the TUTOR displays to the student for this misconception is
depicted in Figure 9.

7. Testing the BUG-FINDER in the Classroom

7.1. Context of the Study

As discussed in the previous section, MENO-II is made up of a BUG-FINDing component and
a TUTORing component. In this chapter, we will describe the results of a study in which the
BUG-FINDER was used in an actual classroom setting.

Initially both system components were written in LISP on a VAX 780; this faciliatated rapid
development. However, we recoded the BUG-FINDER into Pascal since the Cyber 175, on which
the actual study would be carried out, did not have a LISP system sufficiently robust for our
needs. We did not, however, recode the TUTORing component. We felt a test of the BUG-
FINDER's abilities would be very useful by itself, and that we need not wait for the existence of

B R TR Lo

e WA A i S

4 MENO-II: An Intelligent Programming Tutor Page 16

i PROGRAM AVERAGE2(INPUT QUTPUT)
2 VAR

3 COUNT SUM_ APPOLO INTEGER.

4 AVE REAL .
s
6

BEGIN

COUNT =1

SUM =0
8 FOR COUNT 1 TO 10 DO
9 BEGIN
10 READ(HERMES) .
11 COUNT = COUNT » 1.
! TEMP = SUM ¢ HERMES
13 SuM = TEMP
14 END .

15 AVE sSUM/COUNT
16 WRITELN(AVERAGE IS * AVE)
17 END

BUG 1 You have initialized the control variable before the
loop COUNT =]

BUG 2 Yoy have 2!so modified the control variable n the
middie cf the tcop, COUNT = COUNT « |

Whereas

ﬁ The FCR loop does anm implicit inttialization and
mcd ficatron of 1ts control variable You don’t have to
meaton COUNT at all before or in the middle of the 100p

“wo m'sconcepti ons can be associated with these bugs

1 You might not ynderstand how the FOR ioop works The
o inden variable s netialized qutomatically. 1t s uypdated
autcrmatically and 't 1S5 compared with the test value for
termination
2 You might be confusing the FOR loop with the WHILE loop
e LY respect o the imitrali;2ation and update of the index
variable The FOR loop does that automatically, while the
WHILE 100p reguires that the user expiicibly initialize and

uplate 1t

~ A BUG 2 It was nol necessary for you to write two statements
to get the runn:ing Lotal SUM
whereas

You should modify the rynming total variable by assigning
the sum to the running suMm variable SUM ® SUM » HERMES

Yoy might be thrnking that assigament statements behave ltke
algedra statements that 1S you think that 1+ = 3 ¢ b s

equivalent to writing x ® 3 o b hoyever, these expressions
are fundamentally different the assignment statement
vlaces 3 computed vaiue (oa the reght Rand side) (nto 2
variabie name (on the ieft hand side) Thus an expression
like 1 & x + 1 though aesningless n aigedra. 1S
accurate and fairiy standard in prograsming It places the
vatue of 1 incremented by 1 1ato the vartable siot

e - r———————

Figure 9: Multiple Bugs and Multiple Misconceptions

v e s

MENO-II: An Intelligent Programming Tutor Page 17

the TUTORing component. Thus, we we compiled into the BUG-FINDER much of the
TUTORIng component’s knowledge. In effect then, the BUG-FINDER became a “smart
compiler”; it could simply print out a error message about the bug and the potential underlying
misconceptions, but it could not engage in any form of dialogue with the student.

The design of the study is as follows. In the fall semester of 1981, we asked students enrolled in
an introductory Pascal programming course, to volunteer for our study. We explained that we
would be automatically recording all there work while they were at a terminal; this would be
done in a non-intrusive manner and their participation (or non-participation) would have no
effect whatsoever on their grade in the course. Student’s participating in the study would receive
2 the BUG-FINDER's analyses on only one assignemnt, the first looping program. (The problem for
this program is given in Figure 10.)

Write a program whick will input a set of numbers, where each number stands for the amount of
rainfall in New Haven for a day. Compute the average rainfall, the number of rainy days, and
the highest daily rainfall. Stop reading when 99999 is input; do not include this value in

subsequent calculations. If the number input is negative, do not include it in the calculations and i
prompt the user to input another value.

Figure 10: The Noah Rainfall Problem: A First Looping Problem

Of the 900 students in the class approximately 116 volunteered to participate in the study.
Needless to say the volume of data collected in this manner was quite substantial. The 116
students produced 970 different programs; in total, they produced 1504 programs, where 534
were the same.

:'. ! We have analyzed, by hand, only a portion of that data. In particular, we have examined the

first syntactically correct program produced by 20 randomly selected students who did recieve the
BUG-FINDER's analysis (see Table 1). Of the 99 we found in the 20 programs, the BUG-

| FINDER only correctly found 22 (22%9). However, of the ones it found (40), it was correct 55% of
the time; quite frankly, a success rate of 55% is not impressive. Clearly, the BUG-FINDER
peeded (1) to find more types of bugs, and it needed (2) to be more accurate.

7.2. Examples of Correct BUG-FINDER Analyses a
In general, the BUG-FINDER was reasonably accurate in spotting simple assignment bugs, i.e.,

bugs in which a variable was assigned a value that was irrelevant, or bugs in which a variable

was uninitialized. For example, consider User2s's® program fragment in Figure 11. We call this

e e e o= s

. 3While the bugs desribed below were actually appeared in programs generated by students, the names of the
h students (e.g., User25) are fictitious.

MENO-II: An Intelligent Programming Tutor

Total Number of Bugs We Identified:
Bugs correctly reported by BUG-FINDER:

Bugs incorrectly reported by BUG-FINDER:

Bugs NOT reported by BUG-FINDER
that shouid have been reported:

Number of Bugs Reported by BUG-FINDER:
Correct!ly reported:
Incorrectiy reported:

Number of Bugs NOT Reported by BUG-FINDER:

Bugs for which
categories exist:

Bugs for which
categories do NOT exist:

99
22 (22%)
18 (18%)
59 (60%)
40
22 (55%)
18 (45%)
59
6 (15%)

53 (85%)

Table 1: Summary of Bug Statistics

der

S AP
S

!

otk *'v o ORGRA A

MENO-II: An Intelligent Programming Tutor

27 AVERAGE :

"
o

61 AVERAGE := SUM/VALID;

The BUG-FINDER responded by:

*x+% DOUBLE ASSIGNMENT BUG »»=

AVERAGE GETS A VALUE IN THE ASSIGNMENT STATEMENT ON LINE 27,
BUT THEN BEFORE THIS VALUE IS EVER USED IT GETS A NEW VALUE
IN THE ASSIGNMENT STATEMENT ON LINE 61.

Figure 11: Code and Analysis of User25's Program

Page 19

MENO-II: An Intelligent Programming Tutor Page 20

the DOUBLE ASSIGNMENT BUG since AVERAGE need not be initialized to zero. Note that
strictly speaking, this program will execute; however, from an educational point of view, we feel

that we need to point out that this type of coding practive is poor. Moreover, it might indicate a
serious misconception surrounding assignment; clearly, studies with individual students are
needed to evalute this hypothesis. After receiving the BUG-FINDER's analysis, the student then
took out the initialization of AVERAGE.

Similarly, consider User20’s program in Figure 12. This program contained at least two bugs;
the DOUBLE ASSIGNMENT BUG (RAINFALL need not be initialized), and the
UNINITIALIZED VARIABLE BUG (RAINYDAYS was never set to zero). After seeing the BUG-
FINDER's messages, the student then added a RAINYDAYS := 0, and took out the
RAINFALL:==0.

Note that while both User20 and User25 had DOBULE ASSIGNMENT BUGs, it is distinctly
possible that the underlying misconceptions in each case was different! That is, User25 may have
some misconception about reading into a variable, while User20 may be confused about variables
used in assignment statements. This simple example illustrates the difficulty of inferring
misconceptions from program bugs.

Now consider the code in Figure 13 that appeared in User47's program. While this again
illustrates the BUG-FINDER’s ability to uncover a DOUBLE ASSIGNMENT BUG, what is
interesting about this example is the student's response: after reading the BUG-FINDER's
message, the student took out the second assignment. Again, interviewing the student as he was
making this change might have shed some light on this curious - though correct — action.

Another common bug that the BUG-FINDER ofien accurately found, was the DIVIDE BY
ZERO BUG: that is, if the first value read in was the sentinel value (99999), then the number of
numbers read in would be equal to zero, and, in the average calculation a division by zero would
cause a rup-time error. For example, Figure 14 depicts a fragment from User77's program; that
code appeared before code for writing out the value of AVEFALL. After receiving the BUG-
FINDER'S analysis, the student then added a guard before the average calculation and corrected
the bug.

The BUG-FINDER correctly identified an assortment of bugs in User55's program (Figure 15):
DOUBLE ASSIGNMENT, UNINITIALIZED VARIABLE, DOUBLE ASSIGNMENT, INFINITE
LOOP BUG, ADD IN BUG, and DIVIDE BY ZERO BUG. It took a several runs before the

student corrected all the bugs in this program.

MENO-II: An Intelligent Programming Tutor

18 RAINFALL := 0;

23 READ(RAINFALL);

36 RAINYDAYS := RAINYDAYS+l

The BUG-FINDER responded by:

*xx DOUBLE ASSIGNMENT BUG *x=

RAINFALL GETS A VALUE IN THE ASSIGNMENT STATEMENT ON LINE 18,
BUT THEN BEFORE THIS VALUE IS EVER USED IT GETS A NEW VALUE
IN THE CALL TO READ ON LINE 23.

sx» UNINITIALIZED VARIABLE BUG %**
THE ASSIGNMENT STATEMENT ON LINE 36 REFERS TO THE VALUE OF RAINYDAYS
BUT AT THIS POINT RAINYDAYS HASN'T GOTTEN A VALUE YET.

Figure 12: Code and Analysis of User25's Program

PR

65
66

79
80

MENO-II: An Intelligent Programming Tutor

WHILE DAYRAIN<>SENTINEL DO
BEGIN

AVERAGE := TOTRAIN/DAYS
END;

k> 83 AVERAGE := TOTRAIN / DAYS;
The BUG-FINDER responded by:

**x DOUBLE ASSIGNMENT BUG **»
- AVERAGE GETS A VALUE IN THE ASSIGNMENT STATEMENT ON LINE 79,
7 BUT THEN BEFORE THIS VALUE IS EVER USED IT GETS A NEW VALUE
IN THE ASSIGNMENT STATEMENT ON LINE 83.

Figure 13: Code and Analysis of User47’s Program

:‘ . R Y YW PRI

MENO-II: An Intelligent Programming Tutor Page 23

68 AVEFALL := TOTALFALL/TOTALCOUNT;

The BUG-FINDER responded by:

s+ DIVIDE BY ZERD BUG #==

YOU HAVE NOT CORRECTLY CHECKED THAT TOTALCOUNT IS NOT ZERO

BEFORE DIVIDING BY TOTALCOUNT ON LINE 68.

YOUR PROGRAM WILL NOT HANDLE THE CASE WHEN NO VALID RAINFALLS ARE ENTERED.

Figure 14: Code and Analysis of User77's Program

MENO-II: An Intelligent Programming Tutor Page 24
:;- 10 RAINFALL = 0. ¢
14 DAYS =0

24 READ(RAINFALL)
25 WHILE RAINFALL<>SENTINEL 0O

b} BEGIN

3» IF RAINFALL > HIGHRAIN THEN
36 HIGHRAIN = RAINFALL.
3?7 TOTALRAIN = TCTALRAINe!
3B END.

40 DAYS = RAINYDAYS « DRYDAYS
41 AVERAGE = TOTALRAIN / DAYS

eoe JOUBLE ASSIGNMENT BUG eee

RAINFALL GETS A VALUE IN THE ASSIGNMENT STATEMENT ON LINE 10.
BUT TWEN BEFQRE THIS VALUE IS EVER USED IT GETS A NEW VALUE
IN THE CALL TO READ ON LINE 24

sse UNINITIALIZED VARTABLE BUG wes
- TWE IF STATEMENT STARTING ON LINE 35 REFERS TO THE VALUE OF HIGHRAIN
"4 BUT AT THIS POINT AIGHRAIN HASN'T GOTTEN A VALUE YET

eee JOUBLE ASTIGNMENT BUG sse

DAYS JETS A VALUE IN THE ASSIGNMENT STATEMENT ON LINE 14,
BUT TWEN BEFQCRE THIS VALUE IS EVER USED IT GETS A NEW VALUE
IN THE ASSIGNMENT STATEMENT ON LINE 40

sae INFINITE LODP BUG eee
T4E §WILE LO0P STARTING ON LINE 25 IS AN INFINITE LOOP

- TwE yARTABLE RAIMFALL 1S NOT MOCIFIED IN THE BODY OF THE LOOP.

A SO [F THE CONCITION RAINFALL<>SENTINEL IS TRUE ON ENTERING THE LOOP
IT WILL NEVER 3ECOME FALSE. AND THE LOOP WILL EXECUTE FOR EVER

- sse ADD IN BUC wse

AR 1T SEEWS THAT vOQU ARE TRYING TO ADD THE RAINFALLS INTO TOTALRAIN

e By INCREMENTING TOTALRAIN IN THE ASSIGNMENT STATEMENT ON LINE 37,
BUT THIS wILL NOT wQRx

ees DIVIDE BY ZERQ BUG swe
! v wAVE NOT LORRECTLY CHMECKED THAT DAYS IS NOT ZERO
BEFCRE DIVIDING BY DAYS ON LINE 41
YGUR SROGRAM wILL NOT MANOLE THE CASE WHEN NO VALID RAINFALLS ARE ENTERED

ees § QUGS FCUND IN PROGRAM RAINFALL eee

Figure 15: Multiple Bugs Correctly Found

MENO-II: An Intelligent Programming Tutor Page 25

7.3. Examples of the BUG-FINDER'S Incorrect Analyses

Below, we list several cases in which the BUG-FINDER's analysis was incorrect. For example,
Figure 18 depicts code from User90's program. In this particular case, when RAINFALL = 0
adding it into TOTAL has no effect. Thus, excluding it by the test of RAINFALL > 0 is quite
acceptable. However, the BUG-FINDER was unable to deduce that RAINFALL > 0 and
RAINFALL >= 0 are equivalent in this case. The student changed the > to >==, and the
BUG-FINDER was satisfied. While this appears to be a trivial bug to fix in the BUG-FINDER,
it is indicative of the more general problem of coping with variability in student responses; while
special purpose machinery can be built into a BUG-FINDER to reason about simple cases of
equivalent test conditions, coping with the possiblity of an infinite variety of ways of saying the
same thing is quite another story! A mid-ground must be achieved, and this will be based

primarily upon empirical considerations.

A more subtle incorrect analysis resulted from User23's program (Figure 17). The trouble with
this program is that it is possible that 99999 could show up on the READ in the inner WHILE
loop; thus, the IF test which guards the TOTLRNFL := TOTLRNFL + RAINFALL line from
the SENTINEL value is correct and needed. However, the BUG-FINDER thought that in the
outermost WHILE loop the test for RAINFALL <> SENTINEL would be sufficient to protect
the loop. Clearly, this program is complicated, and the dependencies and interactions between
pieces of code are subtle. However, this type of program was seen quite often, and thus it can rot

be ignored.

User368's program (Figure 18a) is syntactically correct, however its structuring is somewhat
confused. If we take the liberty of blocking this program in a more reasoned manner, the
problem becomes more apparent (Figure 18b). Note that a BEGIN-END block is needed after
the DO in the WHILE loop in order to enclose all the relevant code. Recognizing this omission is
a difficult task; one would have to know what typically should go into the loop and be prepared
to look around for that information. In Figure 18¢ we list the output from the BUG-FINDER
--- which misses the point completely.

In Figure 19 we display a buggy program that highlights a key weakness in the current BUG-
FINDER. Notice that it found a number of bugs (5); the problem is that these are all local bugs.
Ignore for a moment the UNINITIALIZED VARIABLE BUG (bug #1) and the DIVIDE BY
ZERO BUC (bug #35), which we feel are secondary problems with the program. The real problem
is that the student has a loop, line 18 to 25, that reads in all the integers and discards the ones
less than zero. The next loop, line 32 to 42, then processes all the valid rainfalls. Finally, the IF
test (line 44) used to get at the maximum rainfall is also outside the loop. (Notice that the BUG-

MENO-II: An Intelligent Programming Tutor

BUCGY EXAWPLE 1
71 IF RAINFALL > O THEN
72 TOTAL := TOTAL + RAINFALL;

The BUG-FINDER responded by:

3 VALID INPUT BUG *==
YOU HAVE NOT MADE SURE THAT RAINFALL>=0 BEFORE
ADDING INTO TOTAL ON LINE 72 .

Figure 16: Code and Analysis of User90's Program

MENO-II: An Intelligent Programming Tutor Page 27 ’

BUGGY EXARPLE 2

39 VWHILE RAINFALL <> SENTINEL DO

sl g o - v
i ee g R

. 40 BEGIN
¥ 41
3 42 (*TEST FOR INVALID ENTRY)
9 43 WHILE RAINFALL < 0 DO
3 4 BEGIN
. i 45 WRITELN (RAINFALL, 'IS NOT A POSSIBLE RAINFALL'):
3 46 WRITELN('TRY AGAIN');
2 47 READLN;
48 READ(RAINFALL);
49 END;
50
51 IF RAINFALL <> SENTINEL THEN BEGIN
52 TOTLRNFL := TOTLRNFL + RAINFALL;
3 66 READ(RAINFALL)
. 67 END;

,f The system responded by:

' *x* REDUNDANT TEST BUG #*x*

THE IF STATEMENT STARTING ON LINE 51 TESTS WHETHER RAINFALL<>SENTINEL, BUT
IT IS ONLY POSSIBLE TO BE IN THE BODY OF THE WHILE LOOP STARTING ON LINE 39
WHEN THE CONDITION RAINFALL<>SENTINEL IS TRUE.

N 2

Figure 17: Code and Analysis of User23’s Program

e

MENO-II: An Intelligent Programming Tutor Page 28

4 WOCY EXAMPLE 3

a €

-~ Origiml Code User36)
34 WHILE RAINFALL <> 99998 DO
N 38
i 3 IF RAINFALL < O THEN
4 37 BEGIN
38 WRITELN (‘NEGATIVE RAINFALL [MPOSSIBLE. TRY AGAIN')
i 39 READLN.
.0 READ (RAINFALL)
4 ENO
@ ELSE
3 IF RAINFALL > O THEN
44 DAYS = DAYS ¢ |
a5 IF RAINFALL > WIGHEST THEN
4 WIGHEST = RAINFALL
L3 a7 IF RAINFALL >= 0 THEN
= 4 BEGIN
¥ 49 TOTAL = TOTAL o RAINFALL
- 50 NUMBER = NUMBER « !
- 51 READLN
&2 READ (RAINFALL)
5, 53 N
L/
k>
®
¥ =~ Userdt's Prograe Restructured)
WAILE RAINFALL <> 99999 0O
. I¢ RAINFALL < O THEN BEGIN
gk WPITELN('NEGATIVE RAINFALL IMPCSSIBLE. TRY AGAIN' }.
S READLN
% READ’ RAINFALL)
END
. ELSE IF RAINFALL > 0 THEN :
- DAYS = DAYSe] :
WIGNEST 3 RAINFALL i
| 1F RAINFALL > WIGHEST THEN i
i IF (RAINFALL >= 0) AND (RAINFALL <> 99999) THEN BEGIN
TOTAL = TOTAL » RAINFALL f
NUMBER = NUMBER+1 I
READLN
. READ(RAINFALL)
! END
1
(e

== BUG-FINDER's Amatysis of User36's Prograe)

ses | AST [TERATION BUG ese
THE wHILE LOOP STARTING ON LINE 34 IS WRITTEN IN SUCH A WAY THAT
IN THE (AST ITERATION WHEN RAINFALL299999 IT WILL STILL INCREMENT NUMBER
THEREFCRE AFTER THE LJOP NUMBER wILL BE OFF BY 1!
i AND YOU WILL NOT GET TWE CORRECT AVERAGE
YOU SHOULD USE A WHILE LOCP INSTEAD OF A REPEAT LOOP OR USE AN
IF STATEMENT INSIGE THE LOOP TO CHECK IF RAINFALL=99999 BEFORE INCREMENTING
NUMBER

-

; Figure 18: Code and Analysis of User36's Program

P

‘ ' MENO-II: An Intelligent Programming Tutor Page 29
FINDER failed to point out that the program does not find the maximum rainfall.) In a correct
program, the first loop would be embedded in the loop at line 32, and the IF test would also be
) embedded in this loop. While the BUG-FINDER pointed out that the loop at line 32 is an infinite

: loop, this is only a symptom of the problem; the correction it suggests ignores the fact that the
i student did recognize that he needed to read in the values of RAINFALL — the student bad a
"_ : correct read loop starting at line 18. Moreover, bug #4, the VALID INPUT BUG, also ignores
§ the fact that the student did have a loop that did filter out invalid (i.e., integers less than zero)
input. The fact that there was a filter loop (line 18), a processing loop (line 32), and an IF test
(line 44), all at the same level should have indicated to the BUG-FINDER the deeper
misconception that was responsible for all three bugs. That is, apparently the student was trying
to segment the task into 3 subtasks: filter the input, process the input, and search thru the input
for the maximum. Conceptually that is precisely what the problem requires. From a global
standpoint, the student's misconception is that he doesn’t seem to be able to integrate pieces of »
code into a workable whole. Miller (12, 11] has observed bugs of this sort in his examination of r
non-programmers problem solving behavior.

Finally, the BUG-FINDER missed a serious bug in line 46; notice that the number of days in
which there was no rainfall was not counted properly. NORAIN :== RAINFALL, at line 46, does
not count the non-rainy days. But notice that at line 47, the student has a valid counter update:
COUNT := COUNT + 1. However, the student has already used COUNT to keep track of the
total number of days (rainy and non-rainy). Moreover, while the indenting indicates that the
j ' COUNT update should be part of the IF body, there is no BEGIN-END block surrounding the
statements. We saw a similar bug in BUGGY EXAMPLE 3 (Figure 18); we needed to infer that a
BEGIN-END block was missing. If we assume that a BEGIN-END does wrap lines 46 and 47, the
nature of the student's misconception becomes a bit clearer; apparently the student recognized

e

that he needed to keep track the non-rainy days, but he was unable to implement that goal in
code.

7.4. Why the BUG-FINDER Performed So Poorly

The BUG-FINDER'S database of bugs was built up primarily from an analysis of buggy
programs povices generated for the problem in Figure 20a [20]. We thus tailored BUG-FINDER
to find instances of those bugs in students’ programs. However, for pedagogical reasons, the
instructor of the class in which we tested BUG-FINDER insisted on giving the students a
programming assignment which turned out to be more complex than we had intended. That is,
the pencil and paper generation studies were carried out on a problem such as depicted in Figure
] 20a while BUG-FINDER was tested on the problem given in Figure 20b. The more complex

L abe LBl g ade

ota b

PSP G

MENO-II: An Intelligent Programming Tutor Page 30

problem permitted the students a great deal more variability for implementing a correct solution
- and a great deal more freedom to make errors. The result, as we mentioned above, was that
the effectiveness of BUG-FINDER was significantly lessened.

We did not appreciate the range of variability that was introduced when students were asked
to do a bharder programming assignment than was anticipated. Not only were our 18 types of
bugs insufficient in magnitude, but more importantly, the number of ways that the same bug
could crop up was signficantly more than was expected. Moreover — and here is the rub
-— there were signficant dependencies between pieces of code that had to taken into account.
The best example of this problem is in BUGGY EXAMPLE 4 {Figure 19); here we had to step back
from the specific bugs and instead, draw a more coherent, total picture of the underlying
misconceptions. In particular, we had to see that the program had all the pieces of the loop
(more or less), and the problem was in integrating the pieces; because the BUG-FINDER was
looking at local pieces of code, this global view could not be obtained. Inotherwords, finding
bugs can not be context independent.

Moreover, predictions about what should be in the code are needed in order to interpret pieces
of code that would seem at first glance to be rather bizarre. For example, in BUGGY EXAMPLE 3
(Figure 18), we needed to hypothesize that a BEGIN-END should have surrounded pieces of code
in order to make sense of the program. To make this hypothesis, we needed to know what the
programmer might be intending to accomplish, i.e., we need to be able to make predictions about
what should be in the code.

8. Concluding Remarks
Clearly, the MENO-II bas quite limited functionality. We plan to significantly extend its
capabilities along several dimensions.

1. The range of bugs and misconceptions which MENO-II is capable of coping with
needs to be enlarged. The keys to this task are: (1) the continued development of a
theory of programming knowledge [20, 21) and (2) empirical studies which seek to
evaluate that theory and to identify additional bugs and misconceptions.

2. The ability to more accurately diagnose misconceptions is very important.
Currently, only evidence from the program being analyzed is used in this process.
We plan to bave the TUTOR engage in a limited question-answer dialogue with the
student in order to gather more informatiorn upon which to base its diagnosis. The
student will not answer in natural language, but rather, will choose among a set of
alternatives. Also, the history of the students’ interactions will be kept and used in
the analysis. By watching the pattern of bugs and patches that the student makes to
the program, the system will be able to build up a better model of the student's
understanding.

[R

T e P = 7Y

MENO-II: An Intelligent Programming Tutor Page 31

3. The question-answering interaction serves another purpose: it combines features of a
Coaching strategy [7] with features of a Socratic Tutoring strategy [22]. That is, if
one observes how a Program Consultant works with novice programmers who are
baving difficulties with their programs, one sees that oftentimes the students come to
understand their misconceptions themselves; the Consultant's role was to ask
carefully crafted questions which forced the students to confront their understanding
of what they wanted to do with what they did in fact do. We feel that this
paradigm of Consulting is one that is within the state-of-the-art reach of intelligent
tutoring systems, .

Our intention has been to build a CAI system with enhanced ability to understand and respond
to students’ buggy programs. In order to realize this objective, we have had to:
1. map out the deep structure knowledge used in programming
2. build a catalogue of common bugs
3. build a program analysis system which can find bugs in programs
4. associate misconceptions with bugs.

We have borrowed quite liberally from Artificial Intelligence and Cognitive Science in order to
achieve these goals. Moreover, we feel that the time is ripe for just such limited AI-CAl systems
- systems with enhanced ability to understand and respond to the answers input by students.
Personal computers with sufficient computing resources are becoming available, and the
techniques for building Al-based systems are becoming less an art and more an engineering
endeavor. Thus, we feel confident that the next generation of CAl systems will incorporate some
Al techniques -— and will start appearing soon.

ACKNOWLEDGEMENTS

We would like to thank Bill Bregar for his encouragement and helpful comments on this paper,
and we would also like to thank the reviewer for his helpful comments.

%
|

B i

BT R VG

MENO-II: An Intelligent Programming Tutor Page 32

REFERENCES
1. Barstow, David. Knowledge-Based Program Construction. Elsevier North Holland Inc., 1979.

2. Bonar, J., Ehrlich, K., Soloway, E. "Collecting and Analyzing On-Line Protocols from Novice
Programmers .” Behavioral Research Methods and Instrumentation 14 (1982), 203-209.

3. Brachman, R., Ciccarelli, E., Greenfield, N., Yonke, M. KLONE Reference Manual. Tech.
Rept. 3848, Bolt, Beranek and Newman, In¢, Cambridge, Mass., 1978.

4. Brown, J.S,, Collins, A., and Harris, G. Artificial Intelligence and Learning Strategies. In
H.O'Neil, Ed., Learning Strategies, Academic Press, New York, 1978.

6. Clancey, W.J., Bennett, J.S., and Coben, P. Applications-oriented Al Research: Education.
Tech. Rept. STAN-CS-79-749, Computer Science Department, Stanford University, 1979.

8. Goldstein, I.P. Understanding Simple Picture Programs. Tech. Rept. 294, MIT Al Lab,
1974.

7. Goldstein, I. The Computer as Coach: An Athletic Paradigm for Intellectual Education.
Tech. Rept. 389, MIT Al Lab, Cambridge Ma., 1978.

8. Goldstein, 1.P. "The Genetic Graph: A Representation for the Evolution of Procedural
Koowledge." International Journal of Man-Machsne Studies 1, 11 (1979), 51-78.

9. Jobnson, L., Draper, S., Soloway, E. An Effective Bug Classiﬁéation Scheme Must Take the
Programmer into Account. SIGPLAN/SIGSOFT Workshop on High-Level Debugging, in press.

10. Johnson, L., Draper, S., Soloway, E. The Nature of Bugs in Novices’ Pascal Programs. in
preparation

11. Miller, L. A. "Natural Language Programming: Styles, Strategies, and Contrasts.” IBM
Systems Journal 20 (1981), 184-215.

12. Miller, L.A. "Programming by Non-Programmers.” International Journal of Man-
Machine Studies 6 (1974), 237-260.

13. Miller, Mark L. " A Structured Planning and Debugging Environment for Elementary
Programming.” Int. J. Man-Machine Studies 11 (1978), 79-95.

14. Miller, J. R,, Kehler, T. P., Michaelis, P. R., & Murray, W. R. . Intelligent Tutoring for
Programming Tasks: Using Task Analysis to Generate Better Hints. Tech. Rept. TI ONR-
TR-82-0818F, Texas Instruments, Inc., 1982,

15. Rich, C. Inspection Methods in Programming. Tech. Rept. AI-TR-604, MIT Al Lab, 1981.

16. Rich, C. and Shrobe, H. "Initial Report on a LISP Programmer’s Apprentice.” IEEE
Traneactions on Software Engincering 4, 6 (November 1978), 342.376.

i
|
%
i
i
!
|
|

Ly
-
B8

. st oMo
i amis et o -

BT it AN Pl " ™ = S ome -

MENO-II: An Intelligent Programming Tutor Page 33

17. Soloway, E. and Woolf, B. Problems, Plans, and Programs. Proceedings of Eleventh ACM
Technical Symposium on Computer Science Education, ACM, 1979.

18. Soloway, E., Bonar, J., Woolf, B., Barth, P., Rubin, E., and Ehrlich, K. Cognition and
programming: Why Your Students Write Those Crazy Programs. Proceedings of the National
Educational Computing Conference, NECC, No. Denton, Tx., 1981.

18. Soloway, E., Bonar, J., Ehrlich, K. . Cognitive Strategies and Looping Constructs: An
Empirical Study. Communications of the ACM, in press.

20. Soloway, E., Ehrlich, K., Bonar, J., Greenspan, J. What Do Novices Know About
Programming? In A. Badre, B. Shneiderman, Ed., Directions in Human-Computer Interactionas,
Ablex, Inc., 1982.

21. Soloway, E., Ehrlich, K., Bonar, J. Tapping Into Tacit Programming Knowledge.
Proceedings of the Conference on Human Factors in Computing Systems, NBS, Gaithersburg,
Md., 1982.

22. Stevens, A. and Collins, A. The Goal Structure of a Socratic Tutor. Bolt Beranek and
Newman, Cambridge, Mass., 1977.

23. Teitelbaum, T. and Reps, T. The Cornell Program Synthesizer: A Syntax-Directed
Programming Environment. Tech. Rept. 80-421, Cornell University, Dept. of Computer Science,
1980.

24. Waters, R.C. "A Method for Analyzing Loop Programs.” IEEE Trans. on Software
Engineering SE-5 (May 1979}, 237-247.

25. Westcourt, K.T., Beard, J. Gould, L. and Barr, A. Knowledge-Based CAl: CINS for
Individualized Curriculum Sequencing. Tech. Rept. Technical Report 290, Institue for
Mathematical Studies in the Social Sciences, Stanford, 1977.

+ OWprin oo R

0
i

MENO-II: An Intelligent Programming Tutor Page 34
X BUGCY EXANPLE 4
_‘ 1 PROCRAN AVEMRAIN (INPUT/. QUTPUT)
2
3 cons?
E 4 SENTINEL v 99999
N '
"3 6 VAR
T RAINFALL GVERWAIN WIOMRRIN WORAIN MEAL.
¢ TOTALNAIN vALIORAINS RAINYDAYS COUNT REAL.
]
10 BECIN

11 WRITELN (‘W1 NOAN THIS IS A PROCRAR THAT COMPUTES TME AVERACE').
12 WRITELN (RMAINFALL MIOHMEST SAINFALL MURBER OF RAINFALL DAYS').
13 WRITELW (ENTCRED AND T™™E YOTAL BUMBER OF MAINYOAYS ENTERED).

16 WRITELW (ENTER YOUR RAINFALL DATA NOW AND TRY T0 REREWGER THAT').
15 WRITELR ("YOU CAM NOT ENTER MECATIVE INPUT").

16

17 READLN

10 READ (RAINFALL)Y

19 WHILE RAINFALL < 0 00

20 SECIN

N WRITELN ('NOAM YOU IDIOT YOU ENTERED NEGATIVE RATWFALL').
22 WRITELH (°YOU CANT NAVE NECATIVE RAINFALL WNOW ENTER °).
23 WRITELN (CORRECT RAINFALL AGAIN WOAM '),

4 READ (RAINFALL

&5 En0

i
27 WRITE ("TWE RAINFALL ENTENED WAS' RAINFALL 0 2. “INCHES').

i ke {OUNT = 0
- 29 HICHWRAIN = O
: 30 TOTALRAIN =
i n
E - 32 WMILE RAINFALL <> SENTIMEL DO
3 8ccIn
: k" IF RAINFALL > NICHRAIN
L k1Y IHEN
, 36 WICHRATN = RAINFALL.
a TOTALRAIN = TOTALRAIN o RAINFALL .
£ ZOUNT = COUNT o I
- k] AVERRAIN = TOTALRAIN / COUNT
* «© YALIORAINS = COUNT - NORAIN.
" RAINYOAYS = VALJORAINS
It} En 4
4
“ IF RAINFALL = 0
). o THEN
. 46 NORAIN = RAINFALL .
4 COUNT = COUNT « |
.“

L] WRTTELN (THE NUMBER OF YALIDRAIN DAYS ENTERED WAS'. VALIDRAINS 0 2)
s¢ WRITELN (DAYS)
st WRITELN (THE AVERRAIN WAS' AVERRAIN 0 2. "INCHES PER DAY‘).
52 WOITELN ("THE MICHRAIN IS°. WIGHMRAIN O 2. °*INCHES']
3 83 WRITELN ('THE WURBER OF RAINYDAYS IN TMIS PERIOD WAS').
s ! L WRITELN (RAINYOAYS 0 2. ‘DAYS').
p $$ END

eoe UNINITIALIZED VARIABLE BUC eve
THE ASSIZMRENT STATEMENT ON LINE 40 REFERS 70 THE VALUE OF NORAIN
BUT AT TNIS POINT NORAIN MASN'T COTTEM A VALUE YET

ese INFINITE LOOP BUC eoe

. THE WWILE LOOP STARTING OW LINE 32 IS Aw INFINITE LOOP

: THE VARTABLE RAINFALL IS WOT MODIFIED IN THE BODY OF TWE LOOP.
SO IF TME CONDITION RAINSALLCOSENTINEL IS TRUE OM ENTERING THE LOOP
37 WILL WEVER BECOME FALSE. AND TWE LOOP WILL EXECUTE FOR EVER

eve LAST ITERATION BUC see

THE wILE LOOP STARTING O LINE 32 IS WRITTEN IN SUCH A VAY THAT

0% THE LAST ITERATION WNEW PAINFALL#09999 IT WILL STILL INCREMERT COUN?

THEREFORE AFTER THE (00P COUNT WILL OE OFF 8v |

AND YOU WILL WOT CET THE CORRECT AVERACE

YOU SHOWLD USE A WMILE LOOP INSTEAD OF A WEPEAT LOOP O USE AN

IF STATERENT INSIDE THE LOOP TO CHECK IF RAINFALL=9099 BEFORE INCRERENTING COUNT

d see VALID INPUT BUC sve
10U WAVE NOT CORRECTLY CMECKED THAT RAINFALL IS POSITIVE
SEFORE ADDING RAINFALL INTO TOTALRAIN ON LINE 37

soe DIVIOE BY ZERD QUG ooe

b YOU WAVE NOT CORRECTLY CHECKED THAT COUNT IS NOT ZERD

i BEFORE DIVIDING BY COUNT ON LINE 39

YOUR PROGRAR ¥ILL NOT MANDLE THE CASE WMEW N0 YALID RATNFALLS ARE ENTERED

—— e

[l
{

K Figure 19: Archtypical Example of » Complicated Buggy Program

LTI

,\,}f(.

P S

MENO-II: An Intelligent Programming Tutor Page 35

A Simple Looping Problem:
€))

Read in 2 set of integers and print out their asverage. Stop resding
numbers when the nuaber 99999 is seen. Do NOT inciude the 99999 in
the average.

(b)
A More Complez Problem:

Write a program vhich vill input a set of numbers, where esch number
stands for the amount of rainfall in New Haven for 3 day. Compute
the average rainfall, the number of rainy days, and the highest daily
rainfall. Stop reading when 99999 is input; do not include this value
in subsequent calfculations. If the number input is negative, do not
include it in the calculstions and prompt the user to input another
value.

Figure 20: Simpie and Complex Problems

e ot s s

L3

o

- OFFICIAL DISTIRUBTION LIST -

Arey

Technical Director

U S Army Research Institute for the
Behavioral and Social Sciences

5C01 Erserhower Avenye

Alexandria Virgisia 22323

Mr James Baker

Army Reseaech Inst:itute
5001 Ersennower Avenye
Aterandfia Virg:r:g 22322

Dr Beatrice s Farr

U S Army Research Institute
S0Ci Eisenncwer Avenye
Atexangria Virginia 27335

Dr Milton § Katz

weot:iams Tectnica! Area

U S5 Army Research Inrstitute
8271 fosexfower Avenye
Aievandria, Veorgirog 22323

Or M3-sha!'' Narya

U S5 Army Resea-ct Institute for the
Berav-oral 8 Scc 3! Screrces

£321 Ersenhouer Avenye

Aterandria. Virgin 3 20233

Dr MHarciga & CoNer' Jr
D.rectcr Tra:ning Research Lab
Arey Researct Institute

5001 Ersernrcyes Avenye
Alerandrea Virg-mia 22333

Ccemander US Army Research Instityte
for the Behaviorai & Sccra!l Sciences
Aten PERI-EP (Dr Jydith Orasany)d
SC01 Ergantoper Avenye

Alesandria Virgenra 20333

Joseph Festig. PR D

Avin PER]-1C

A-ry Research Institute
£301 E:senhowe- Avenye
Alezandria. virg-mia 22233

Dr Rcbert Sismor

U S A-my Researchr Institute for the
Behavicral and Social Scrences

5001 Ersentower Avenue

Atexsndria, Virginig 22333

Or Robert Wisher

Arey Resesrchr lnstitute
5001 Ersenhover Avenue
Aterandris Virginrs 22333

-—

—

—

—

—

—

copy

copy

copy

copy

copy

cepy

copy

copy

copy

copy

Private Sector

Or Michael Genesereth
Depariment of Computer Science
Staaford University

Stanforg. California 94305

Dr Dedre Gentner

Bolt Beranet 3 Newsmaa

10 Mouviton Street

Cantridge. Massachusetts 02139

Dr Robdert Gisser

Learning Research & Developwent Center
University of Pittstergh

3939 D°Hara Street

Pittsburgh. Pennsyivania 15260

Or Josept Coguen

SRI Iaternationa!

333 Raverswood Avenve

Menio Para. Cafifornia 94025

Dr Bert Greena

Jehns Hophins University
Department of Psychology
Charies & 34th Street

Balt imore. Maryland 21218

Cr James G Greeno

LRDC

University of Pittsturgh

3629 C'Mara Streer

Pittsburgh. Peansyivania 15213

Or Bardara Mayes-Rotr
Cepariment of Cemputer Scrence
Star’crs Un.versity

Stanford. Catifora:g §530%

Dr Frederict Mayes-Roth
Tesnowliedge

525 University Avenve

Pato Alto. Catifornias 94301

Glens Greenvaie E¢

Hueas Tateitigence Wewsietter
? 0 Bor 1163

Birminghan Michigan 48012

Dr Ear) Weat

Departaent of Psychology
University of Washington
Sestiie. Washington 98105

Dr Marce! Jest

Departaent of ’sychology
Carnegre=Merion University
Pittsburgh. Pesasyivania 15213

—

—

—

—

—

—

—

copy

copy

copy

copy

copy

copy

copy

copy

copy

copy

copy

I ———

Air Ferce
; US Air,Force 01fice of Scient fic 1 copy
-,%» Researce Dr David Kieras 1 copy
N Life Sciences Directorate. ML Department of Psychology
3 Botling air Force Base Uniyersity of Arizona
N wasaington DC 20332 Tuscon. Arizoma 85721
B2
-4 Or Earl A Atie s 1 copy Dr Walter Kistsch 1 copy]
L NG AFHRL (AF5(0) : Department of Psychoiogy
+ 3 Brooks AFB Tesas 70225 Unrversity of Colorado
Ny - Bouider (clorado 80302
&
i\ d Bryan Dailman 1 copy
R ASHRLJLRT Or Stephen Kossiyn 1 copy
i . Losry AFB. Cciorado 8€230 Department of Psychology
g The John Hophins University
A Dr Genevieve Haddad 1 copy Baltimore, Maryiang 21218
A Program Manager
i Life Sciences Directocate Dr Pat Langley 1 copy
7Y AFZSR The Robotics Institute
-3 Boilirg AFB DC 20232 Carnegre-Meilon University
Pittsdurgh Pennsylvamia 15213
Y Lr Jchn Targney 1 copy
= AFOSR/NL Dr Jull Larkan ! copy
Y Bo.ling AFE OC 20332 Departaent of Psychology
v Carnegie=Meilon University
E-. Cr Joseph Yasatuse 1 copy Pritsburgh. Peansylvania 15213 .
R ACHR_/LRT
o Lowry AFB. Colcrasc 80230
F Cr Atan Lesgold ° 1 copy
R Marire Corps Learning RED Center i
- University of Pretsdurgh
i N Withiam Greeryp 1 copy 3339 0 Hara Street
. E¢ucation Advrsor (EG31) Pittsburgh Pennsyivania 15213
k- Education Center MCDEC
3¢ G.artico, Virgimia 22134 Dr Jie Levin 1 cepy
'3 University of California
Spec:a! Ass:stant for Marine 1 copy at San Diego
(Corps Matle-s Ladoratory for Comparative
Code 100M Human Cognition = DOO3A
i D¢¢1ce 2f Nava' Research La Jolla, Califoraia 92093
) BCC N Quincy Street
i Artoagien Virginig 22217 Dr Michae! Levine 1 copy
‘ Depariment of Educat:onal Psychology
Dr A L Siafecshy 1 copy 210 Education Bidg
Scientific Adv ser (Code RD=1) University of 111inots
He US Marine Corps Champargn. Illincrs 61801
Wasdengton DC 2036
Or Marcia Linn 1 ccpy
Oepariment of Defense Urtversity of Catiforaia
Director Adolescent Reascning Project
Defense Technica! Information Center 12 copres Berteley California 94720
! Cameron Station Blag §
' Alevandrig, Virgintg 22314 Dr Jay McClelland { copy
‘ Aten TC Departmest of Psychoiogy
1 it
i Miiitary Assistant for Trainiag and 1 copy Cantridge. Massachusetts 02139
1 Personne! Technology R
. Office of the Under Secretary of Defense Dr James R Miller 1 copy
- for Research & Engineering Computer Thought Corporation
3 Roce. 30129 The Pentagon 1721 west Plano Nighusy
[: Washiagtos DC 20301 Plano. Terss 75075
4
’ Megor Jach Thorpe 1 copy Or Mary Miiler 1 copy
DARPA Computer Thought Corporation
o 1400 Wrison Bivd 1721 Vest Planc Mighuay
i Ariington, Virginig 22209 Prano Terss 78075

Revy

Rodert Adiers

Code 4711

Hesan Factors Ladorstory
RAVTRAEQUIPCEN

Orlsndo. Florids 326813

Code W71}

Atts Arther S Blsives

Wova! Trainiag Equipment Center
Ortsndo. Florigs 32613

Listson Scientist

Office of Naval Research
Branch Office. Loadon

Bor 39

FPO New Yori, New Yort 09510

Dr Richard Cantone

Navy Research Ladoratory
Code 7510

Washiagton. DC 20375

Chief of Mava! Education and Training

Liason Office

Avr Force Human Resource Ladoratory

Operations Training Division
WILLIAMS AFB. Arizons 85224

Dr Staniey Collyer

0ffice of Naval Techsology
800 ¥ Quincy Street
Arliagtos, Virgimia 22217

COR Mike Curran

Office of Waval Research
800 4 Quincy Street

Coge 270

Arlington, Virginie 22217

Dr Johs Ford
Navy Personnei RED Center
San Diego. Califormis 92152

Dr Jude Fraatiia

Cote 7510

Navy Research Ladorstory
Washington, DC 20375

Dr Mike Gaysor

Navy Researc) Ladorstory
Code 7510

Weshiagton, DC 20375

Or Jis Molles

Code 14

Navy Persossel RED Center
Soa Diego. Californin 92152

Or E¢ ¥Watchins
Sevy Parsoese! RED Center
$Son Diego, Coliforers 92182

—

-

-

-

copy

copy

copy

copy

copy

copy

copy

copy

copy

copy

copy

copy

Dr Tom Moras

Xero: PARC

3333 Coyote Hill Road

Pato Alto. Colifornis 94304

Dr Allen Myaro

Betsviorsl Techaology Lsboratortes

1845 Elena Averse, Fourth Fioor
Redondo Beach, Califorsia $0277

Dr Donaid Normen

Cognitive Scieace, C-018

Uaiy of Catifornia. Ses Diego
Ls Jolla. Californis 92093

Or Jesse Orisnsty

Isstitute for Defense Analiyses
1801 N Besuregard Street
Alerandria. Virgimis 22311

Professor Seymour Papert
20C-109

mIt

Casdridge Massachusetts 02139

Or Nancy Pesniagton
University of Checago
Graduate School of Business
1101 E 58th Street
Chicago. Iliinors 60637

Dr Rickard A Poliat
Derector. Special Projects
MECC

2354 Hidden Valley Lase
Stilivater Minnesots 55082

Dr Peter Polsor
Department of Psychology
University of Colorado
Boulder Coforado 80309

Dr Fred Reit

Physics Departaent
Unrversity of Catiforais
Berieley. Californias 94720

Dr Laures Resnict

LRDC

University of Pittsburgh

3939 0'Hars Street

Pittsburgh. Peaasylvenie 15213

Mary S Riley
Progrsm tn Cogritive Science

Center for Humar Inforsstion Processing
University of Catiforaia. Sea Diego

Ls Joits, Californta 92093

Dr Asdrev Rose

Aserican Jastitetes for Research
1055 Thomss Jefferson Street WY
Vashiagton, DC 20007

[

—

—

copy

copy

copy

copy

copy

copy

[=-13]

copy

copy

copy

copy

oy

i — n

]
‘

-tk

Dr Norman J Rerr

Chief of Naval Techn.cal Trasnming
Nava' Air Statice Memphis (75)
M-i1ington Tearessee 38054

Dr James Lester

ONF Detachment

495 Symmer Street

Boston. Massachusetts 02210

Dr Withiam{ Maloy (02)

Chie! of Naval Education and Traiming
Maval Air Station

Persaz2ia Ficrrea 32809

Dr Joe “clactlan
Navy Fersonne: RRM Center
San Liego Caliform.a 92182

Or Wwilliam Mcatague
NFRIC (ode 13
Sar Diege. Cairformia 92182

Library. Code FIUiL
Navy Perscane: FRI lerter
Sar Diegs Califormia 92152

Tectnecal Drrector
Navy Personnet RAL Center

Sar Crego Califorria 92152

Commarc ing Dff.co-

Nava! Research Lateratcry
Coge 2£27

wash agton D¢ 20290

C¢%:ce of Navai Reseprch
Cede 433

B0C N GQuincy Sireet
Ariragton, veeginia 22017

Perscane!
Code 442PT
0ffice of Nava: Research
Ariongton, Virginia 22217

Train:ng Research Group

0ff.ce of the (hief of Navai Operatiors
Research Development 8 Studres Branch
OF 115

wastiagton. DC 203%C

LT Frank C Petho M5 USN (Py» D)
CRET (N-432)
WS

* Pensacole. Floriga 22508

Dr Gary Pooct

Operstions Research Deveiopment
Code 55PN

Nava! Postgraduste Schoo!
Monterey. Colifornip 93940

—

—

—

-—

-~

-

copy

Copy

copy

copy

cops

copy

tepy

copres

copy

copres

copy

copy

cony

Dr Erast Z Rothiop?
Bell Laborator es
Rurray Hiil. New Jersey 07974

Dr Wittiam 8 Rosse

Georgia Institute of Techrotogy
School of Industrial & Systess
Engineering

Atlanta. Georgias 30332

Dr David Rumelhart

Ceater for Muman Informat:on Process:ng
Untversity of Califormia, San Diego

La Jotla. California 92093

Dr Michael J Samet
Perceptronics. Irc

6271 Variel Avenve

Woodlang Hitls California 91364

Dr Roger Schantk

Yale University

Department of Corputer Scierce
PO Ber 2158

New Haven Conmmecticut C6520

Dr Watter Schneider
Psychotogy Degartyent

€C3 E Danie!

Crampargn. Itlinors 61820

Or Alan Schoenfeld
Mathematics ang Education
The Univers.ty of Rochester
Rochester New York 14627

Mr Colin Sheppard

Acplied Psychology Unit
Adeiralty Mar.ne Technology Est
Teddington Midgleser

United Kingdos

Or W watiace Stnaito

Program D:rector

Maspower Research and Agvisory Service
Seithson:an Jrstitetion

801 North Pitt Street

Alerandria Virginia 22314

Dr Edvard £ Seith
Bolt beranet & Newssn
50 Moulton Street
Comdbridge. Wassachusetts 02139

Dr Richard Serow

Schoo! of Edvcation
Stasforg University
Stanford. Californis 94305

Dr Rathrya T Spoenr
Pagchology Depariment

Brown University

Providensce. Rbode Istend 02912

-

-

—

~—

-

-

—

-

copy

copy

copy

cepy

copy

co0y

copy

copy

copy

copy

copy

copy

Dr Gi1 Rigard

Coge N711

NTEC

Or:ango. Florids 32813

Dr worth Scaaiand
CNET (N-5)
NAS, Pensacols. Florids 32508

Dr Robtert G Samith

Office of Chief of Naval Operations
OF-987H

washiagtor, DC 20350

C- Alfred F Smode. Director
Tea:inang Anatysrs 8 Evalyation Grouwp
Degariment of the Navy

Qrtango. Fiorida 32813

Dr Richarg Sorersen
Navy Personnei R$C Center
San D-ege Californ:a 92152

Cr Frede-.ch Steinhesser
ll‘. - ‘p“l
Lo = TPLE

Navy Aaner
Ariisglon, Virging 20370

Roger veiss:nger-Baylon

Dega-tment of Admie.sirative Sciences
Naval Postgraduate Schoo!

Mcnterey Californis §3940

M- Jaan M Wolfe
Navy Persorne! RRC Center
San Diego Carformia §7152

Dr wattace Wulfect III
Navs Pacscare’ RED Clerter
Sar Diego. Cat . fornia 92152

Private Sector

Dr John R Angerson

Depariment of Psychoiogy
Carregie-Mellcn Univers:dy
P.ttspurgh Fesnsylvansa 15213

Dr Jesn Annest
Departmest of Psychology
Univers: ity of wareictk
Coventry CV4 TAJ
ENGLAND

Dr Michael Atwood
11T = Programmiag
1000 Oronoque Lane
Stratford, Connecticut 06497

Dr Atlsr Badderey
Medica! Resesrch Cownc!
App!ied Psychoiogy Unit
15 Chaecer Road
Combrigge CB2 26F
ENGLAND

=3

—

—

—

—

-

—

—

copy

copy

copy

copy

copy

copy

<opy

copy

copy

copy

copy

copy

copy

Or Robert Sternberg
Department of Psychology

Yale Univers:ity

Bor 11A Yaie Station

New Haven (ommecticut 06520

Dr Albert Stevens

Boit Beranes & Newsan

10 Mouiton Street

Cambridge Massachusetts 02238

David € Stone, P D
Hazelitine Corporation
7680 Qtd Springhouse Road
Mclean Virginia 22102

Dr Patrick Suppes

Institute for Mathematical Studies 1n
the Socia!l Sciences

Stanford University

Stanford, Catifornia 943CS

Dr Xikym) Tatsuoka

Computer Based Education Research Lad
282 Engineer ng Research Laboratory
Urtana, Ittisors 61801

Or Maurice Tatsucka

220 Edecation Bidg

1310 S Siath Street
Champargn. Illinous 61820

Dr Perry W Thorandyle
Perceptronics. Inc

545 Migglef,eld Road. Suite 140
Mento Park, California 94025

Dr Dougtas Towne

University of So California
Behavioral Technology Labs

1845 S Elena Avenve

Redondo Beach, Califerasa 90277

Or Kurt Van Lehn

Xerox PARC

3333 Coyote Hi!l Roag

Pato Atto, Catiferria 94304

Or Kesth T Wescoury
Perceptronics. Inc

8545 Migdief eid Road, Serte 140
Menio Park. Californis 94025

Willian B Whitten

Bet! Laboratories

20-610

Hotedel New Jersey 07733

Or Wike Witlivoms

Xeror PARC

3333 Coyote N1l Road

Pslo Aito California 94304

-

~—

—

-

copy

copy

copy

copy

copy

copy

cooy

copy

copy

copy

copy

copy

.
Dr Patricis Baggertt
Departeent of Psychology
University of Colorado
Boelider Colorado 80309

Ms Carole A Bagley

Minnescta Educational Computing
Consortium

2354 Niggen Valiey Lane
Stiiivates Minsesota S5082

Dr Jonathran Baaron
80 Clenn Ayenye
Beruwyn Pesnsyivania 183i2

M- Ayroe Barr

Deparimert of Computer Scrence
Starford Univers ity

Stasfard Ca!iforn:a 94305

Cr John B7ack

Yale Uniyers:ity

Brs 1A Yale Station

New Maven (onnect:cut 06520

Dr John § Brows

XEROX Paio Atto Research Center
3233 Coyote Road

Palo Alto. Calrfarnia 94304

Dr Bruce Bucharan

Pegartment of Computer Science
Stanfe~g University

Starfare Cairfornia 94305

De laime Cacdonell

Depa-tmers of Peychology
Carnegre=Merion University
Pittstuegh Peansylvania 15212

0r Pat Carpenter

Cepartment of Psychciogy
Carnegre=Melicn University
Pitisdburgh Pernsyivania 18213

~br wetiaam Chose

Degariment of Psychology
Carnegre~Meilon University
Pittsburgh Pennsyivania 15213

Or Micheiine Chy

Learning R 2 D Center
Uneiversity of Pittsdergh

3939 0'Hars Street

Pitisbergh. Pesnsyivanis 15213

—

—

—

—

—

—

—

copy

copy

ccpy

copy

copy

copy

copy

copy

copy

copy

copy

Civilian Agescies

Dr Patricia A Betler
NIE-BRN Blég. Stop 87
1200 19th Street W¥

Washiogton. DC 20208

Dr Susas Chipmarn

Learasng 3nd Development
Rationa!l Institete of Education
1200 19th Street N

Washiagtos. DC 20208

Edward Esty

Departaest of Educat:on OERI
MS 40

200 19th Street Nv
vashington. DC 20208

Edward J Fueates
Department of Education
1200 19th Street N
Washington . DC 20208

TARE . TEX

Nationa!l Iestitute of Education
1200 19th Street Nw
Washington, DC 20208

Or Jotn Mays

Nationa! Jast.tute of Education
1200 19th Street Nw
Vashington. DC 20208

Dr Arthyr Nelsed

724 Brown

U S Degt of Education
Wash ington. DC 20208

Or Andrew R Moinar

Office of Scientific an¢ Engineering

Personne! ang Educat:on
Nations! Science Foundation
Vastisgton. DC 20550

Everett Palmer

Research Screntist

Ma1! Stope 239-3

NASA Ases Research Center
Moffett Field Califormia 94038

Dr Mary Stoddare

< 10, Wa)t Stop B296

Los Alasos Nationa! Ladoratories
Los Alsmos, Rey Merico 87545

Chief. Pugchoiogecat Research Branch

U s Coast Geard (G-P=1/2/1P42)
Weshington. DC 20593

-

-

—

-

-

[

—

-—

—

copy

copy

copy

ccpy

ety

copy

copy

cosy

copy

copy

copy

Or William Clancey

Department of Computer Science

Stanforé University

Stanford Caitforais 94306

Dr Atiagn M Collrns

Bolt Beranes & Newsan Inc

50 Mouiton Street
Campriodgge Massachusetts

02138

ERIC Facitlivy=Acquisitions

4832 Rugby Avenve
Bethesda Maryland 20014

Mr Wallsce FeurZerg

Department of Educationa: Technotogy

Bolt Beranes 218 Newman
10 Moy!lton Street
Camcr.dge. Mastachusel:ls

Dr Dester Fletgher
SICAT Research Ilnstityte
16878 € State Street
Oree Utar 22333

Or Joha R Freceriksen
Bcit Berarer L Newman

80 Moy!lton Street
Cambr.gge Maissachuselts

02238

02138

—

—

copy

copy

copy

copy

copy

copy

Dr Frans WiLhkrow

U S Office of Education
400 Marytand Avenwe Sy
Washiagton DC 20202

Dr Joseph L Yousg. Director
Mesory & Cognitive Processes
National Science Foundation

wWashiagton DC 20550

1 copy

1 copy

