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ABSTRACT

" Maximum likelihood estimates for errors-in-variables models are not
: always root-N consistent. We provide an example of this for logistic

regression.

N

SOME KEY WORDS: Binary regression, Measurement error, Logistic regression,

Maximum likelihood, Functional models.
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§ I. INTRODUCTION
P
14 Logistic regression is a popular device for estimating the probability

]

of an event such as the development of heart disease from a set of predictors,

% e.g., systolic blood pressure. The simplest form of this model is logistic
:
3 regression through the origin with a single predictor:
: - - - -1
: (1) Pr{Yi-llci} = G(a,c,) {1+exp(-apci)} ,
&
4 where e, and {ci} are scalars (i=1l,...,N). In many applications, the predictors
; are measured with substantial error; a good example of this is systolic blood
o pressure, see Carroll, et al (1983). Thus, we observe
Y
; (2) C; =c; + vy,

where the errors {vi} are assumed here to be normally distributed with mean zero

Viianell N

and variance 02.
The functional errors-in-variables logistic regression model is the case

where (1) and (2) hold and the true values {ci} are unknown constants. The

§
parameters are ao and {ci}; there are (N+1) parameters with N observations, so
yJ
{
v classical maximum likelihood theory does not apply. Up to a constant, the
) log-likelihood is
6 N
' 2, -1
: N log o - (207 ] (€;-c))?

i=1

N
‘ + ) {Yi logeG(aci)+(l-Yi)loge(l-G(aci))J .
; i=1

- The linear functional errors in variables model (Kendall and Stuart (1979))

takes a form similar to (1) and (2), although of course (1) is replaced by the

usual linear regression model with variance az. I1f oz, 02

2,2,
or ¢ is k
: € e /oe s known,
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then the linear functional maximum likelihood estimate exists and is both
consistent and asymptotically normally distributed.

In this note, we show that for the functional logistic errors-in-variables
model (1) and (2), even if 02 is known, the maximum likelihood estimate cannot
be consistent and asymptotically normally distributed about 0y The result
can be extended to mult;ple logistic regression, and it is true even it we
replicate (2) a finite number M times. If the number of replicates M + » as
the sample size N + «, then the functional maximum likelihood estimate can

be shown to be consistent whether 02 is known or not.

I1. THE THEOREM
In model (1) with the {cj} known, the ordinary maximum likelihood estimate

for ao satisfies

N
= iZlci(Yi-G(alci)) .

In the presence of measurement error, the naive estimator would solve

N
(3) 0= iZlci(vi-c(azci))
However, because of correlations, it turns out that
-1 g
(4) 1im E N C.(Y.-G(a,C:)) # 0 .
Nooo i=1 iti 071

Condition (4) says that the defining equation (3) for 4, is not even

2
consistent at the true value ao. Under these circumstances, it is well
known from the theory of M-estimators that the usual naive estimator &2
converges not to % but to the value o, satisfying
-1 N
;i: EN izlci(yi-c(a,ci)) =0,

assuming such a value o, exists and is unique.

A
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Assuming it exists and is unique, the functional MLE &, satisfies an

equation analogous to (3): ’
5) o =N igl &; (89 Y;-6(8,8, (6)))

where

(6) &, (@ = C; + oo’ (¥;-G(at; (@)))

It is easy to construct examples for which an analogue to (4) holds:

N
%) }1;: E N izlei(ao) (¥; 602, (@,))) # .

One example of (7) is the extraordinarily easy problem 02 = 1 and c; = (-1)1.

The only question is whether (7) is enough to guarantee that the functional

MLE G, cannot be asymptotically normally distributed about the true value a

0
This is the case.

0

Theorem Suppose that 02 is known and that

(A.1) The maximum likelihood estimate a exists;

0
-1 N
(A.2) N7 T >A (JA] < =) ;
i=1
a1 N2
(A.3) N~ Yc;+B (0 <B<w .
i=1?
Then, if
P -
(A.4) N (ao-ao) = Op(l) s
we must have that (7) fails, i.e.,
N
(8) lim E N1 ] 2 (a,) (Y, ~Glage, (ap))) = O.

N0 i=1
The theorem as stated does not readily follow from the theory of M-estimators

unless one assumes the existence of a unique a, which satisfies (8), along with
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other regularity conditions. The proof we give avoids these complications

because it exploits the form of the logistic function G.

III. PROOF OF THE THEOREM

It is most transparent to take oz = 1. By formal differentiation, &0

simultaneously satisfies (6) and
a ¥, o
9) N iélci(a){c(aci(a)) - Y} =0

Assumptions (A.2) and (A.3) imply that
(10) max{cZ/N : 154 sN >0,

From (2) and (6), it follows that

(11) lim max sup  |& (@)-v.[/(1+|a |+]|c.|) = 0 (1) .
>0 1sisN a-o j<c . LA P

Further, since the {vi} are normally distributed,

3

. P
(12) max{|v, [N : 1 si <N} =+0.

Lemma It follows that if (A.1)-(A.4) hold, then

A N A [ p
(13) max{lci(ao) - ci(go)l: 1<isN}~+o.

Proof of the Lemma. Define

Hi(u,a) = u-ci-vi+a{G(au) = Yi} ,
Hi(ci(a), a) = 0.
The partial derivatives of Hi are .
D, (u,0) = = H, (u,0) = 1 = o%G(a) {1-G(aw)} ,
Dzﬂi(u,aj = g%'ﬂi(u,a) = {G(au) - Yi} + auG(au) {I1-G(au) } .

By the chain rule,
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(14) g—aei(a) = -[D,H, (&, (@) R I X RCH RS

From (10)-(12) and (14) it follows that for every M > 0,

o )
N"* max sup - €. ()]
1<igN |<:L-<Jt0|<M/N!'s da 1
= 0_{ max sup 3 Ici(a)I/N%}—_E_+ 0.

Pician la-ary [ <M/N
This means that for every M > 0,

max  sup % IGi(a) - éi(ao)| P, ,
1<i<N |a-0q|<M/N

which by (A.4) completes the proof of the Lemma.

We must prove that (A.1)-(A.4) imply (8). We are first going to show

that
-1 N R . P
(15) N iglci(ao){c(aoci (aoj)-Yi} > 0.

The term in (15) can be written as AlN + A2N + ASN’ where

N
- ‘1 A A A A~

Ay =N iZl{ci(ao) - ci(ao)}[G{aoci(ao)} - Y1,

-1 N
Ay =N izlei(ao)[s{aoci(ao)}- G{&oci(&o)}],

N A
Ay = N 12181(60) (618,88} - Y, 1 -
By (9), ASN =0 and,“since G is 5;uﬁded, the Lemma and (A.4) gives AIN.;2—> 0

Because G and its derivative are bounded, the Lemma says that AZN P, 0

as long as N

N1 ¥ (&,(6,))%= 0_(1) and N7 Pf {2, (ag)}¥* = 0_(1)
i=1 i*vo P i=1 ivvo P ’
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which follow from (A.3), (10) and (11). Since (15) holds, to prove (8) we

merely need to show that

N
NI 1§ (a0, -6agé, (ap)))

i=1 P

+0

This follows from Chebychev's inequality and (A.3), completing the proof. [
The Theorem does not follow from ordinary likelihood calculations because

the number of parameters increases with the sample size.

IV. A SIMULATION STUDY
To give some idea of the effect of measurement error, we conducted a

small Monte-Carlo study of the logistic regression model
Pri{Y, = 1} = G(c;/2 - 1), i=1,...,N

Here the values {c,} were randomly generated as normal random variables with
mean zero and variance 3 = ci, while the measurement errors were normally
distributed with mean zero and variance 2 = 03, with each {ci} being
replicated twice. We chose the two sample sizes N = 200,400 and took 100
simulations for each sample size.

In Table 1 we report the Monte-Carlo efficiencies of the usual naive
estimator and the functional MLE with respect to the logistic
regression based on the correct values {c;}. If the replicates of éi are
cil’CiZ’ we used Ci = (Ci1+ci2)/2 and estimated the variance of Ci'ci by the
sample variance of (Cil-Ciz)/Z.

The results make it clear that neither the usual naive method nor the

functional MLE are acceptable. Further work is clearly needed to identify

good methods.
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¢ Monte-Carlo Mean Squared Error Efficiencies

XH Relative to Logistic Regression Based On The
S True Predictors
e Pr{Y,=1|c;} = G(a+Bc,), B = , a = -1.0
i i=1,...,N

X USUAL FUNCTIONAL
T LOGISTIC MLE

s a N=200 0.74 0.25
-2 N=400 0.46 0.32
X 8 N=200 0.27 0.15

g N=400 0.09 0.24

L]

) a+B  N=200 1.13 0.59
; » N=400 0.60 0.53

x o+28 N=200 0.38 0.28

¥ N=400 0.13 0.43
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