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I. INTRODUCTION

In applying the Uniform Geometrical Theory of Diffraction (UTD) to

antenna radiation problem involving curved surfaces, a major task is to

determine the final diffraction point and the geodesic path on that

surface. For the antennas mounted on the fuselage of an aircraft, the

fuselage can be modeled as an ellipsoid in the UTD analysis. Geodesic

paths on an ellipsoid have been studied in detail in References [1,21

using an elliptic cylinder perturbation method which is very efficient.

Using this perturbation method and another numerical technique,

which will be given in this report, the radiation patterns for ellipsoid

mounted antennas is efficiently obtained. The theoretical UTD concept

employed to calculate the actual radiation fields is given in Reference

[1,3]. 1

II. NUMERICAL TECHNIQUE

A. INTRODUCTION

The ellipsoid simulated by a perturbed elliptic cylinder model is

examined here. Since the elliptic cylinder is a developable surface,

geodesics can be easily obtained [1,2]. Given a radiation direction

(0t, ot), one can find the final diffraction point (60 , 00) by following

the geodesic path, step by step, until the geodesic tangent coincides

j : _



with the radiation direction (et, )t. This is a rather tedius and time

consuming process if applied for each new radiation direction.

Considering a new radiation direction, which does not deviate greatly

from the previous direction, one should he able to develop a solution

which uses the properties of the surface and the previous geodesic path

to find the new diffraction point. Such an approach is attempted here

to make this solution as efficient as possible.

Since the field decays exponentially along the ray path on the

surface, it is assumed that only one or possibly two dominant rays exist

in the problems treated. One is referred to References r1,2] for more

details on this topic.

B. NUMERICAL APPROACH FOR PATTERN CALCULATION

Assuming the diffraction point is located at Q (a cos ve cos Vr,

b cos ve sin Vr, c sin Ve) and the field point at P (Rt sin et cos t,

Rt sin Ot sin h, Rt cos Ot), then at the diffraction point 0 the

radiation direction ( 0t , ft) should coincide with the geodesic tangent t

as shown in Figure 1. Thus,

t x xt x+ y t y+ z t
x ytx

- ti cos y + te sin y

where

2
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Vr Ve SOURCE

AP
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Gz

Figure 1. Geodesic path from the source on an ellipsoid.
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sin 3 cos b cos ve cos Y

si si n - Co e CsVr

and
Co t-LEsin v

t R e

Note that

D' (sine tcst- a cosv ecosv r 2 + (sine sin I

bcosv e.iv 2 + (cose tc ive )

-1 - 2lsine tcosv e (a..cos4tcosv r + b slfl4stsflVr)

+ cj cose tsinv e + [Cos 2 Ve (a2 Co 2 + b2 sinl2v r+ C2 sin 2v e1
t t t

and

t t te x nl

--xasinvr(b 2sin 2ve+C 2 cOS2ve) + Ycsra2sn2v+ o e
[a~b~si~ e +c2cos2v (a251n2v r+b~c0s2v r)11/2

+zc(h2 -a )sinvr cOsvr sinve cOSVe

[c~cos2v e+si n2v e (a2co-svr +bZslfl2vr )11/2

4



where

te a -x sinve COsvr -yb slflve Siflvr + ZC COs ve
e + [a2sin 2v cos2v +b2sin 2v sin 2 v +c2 cos2 v 117-

Ae r e r e

ae1

tr r. -;a cOsve siflvr + yb COsve COs Yr
tr+[a~cos 2v sl n2 v r+bcos2VeCOS2 vr1 2

and

n tr x te

Itr x tel

xbc cOsve COSvr + yac COSVe slflvr + zab slflve

[a~b2sin 2 ve + c2cos~ve(a2 sin 2vr + b2cos2 v)3 1

Equating the x-, y-, and z- components, respectively, one obtains

2.2 2 2
=x -asinvr cosy(b sin ve + C COs ve)

[a2b2sin 2ve +c2c0 2v (a2Sin 2v +b2cos2v ) 11/2

[C2C052v e +s ln 2v e(a 2cos2v r+b2sn 2vr )111 2

asinve cOsvr siny

[ccsve +snve(acosvr +bslnvr )11/2

Cot a covcs
sine (oIt Rt e r(1

5



2 2 2bcosvr cosy(a sin ve + C cosve)

y =[a2b2sinZve+c 2cos2ve (aZsin2vr+bZcos2vr) 11/2

[c2cos2ve+sin2ve(a2cos 2vr+b2sin 2vr)111 2

bsinve sinvr siny

[c2 cos 2v e +sin Ve (a2cos 2v r+b2sin2v r) 11/ 2

si~tint b covsinv
Sin )sint " Rt C eSV r (2)

t = c(b2-a2)sinvr cOsvr sinve cOsve cosyz [a2b 2sin2 ve +c2cos Ve (a2sin 2v r+b2cos2v r )'1/ 2

S[c2coS2Ve +sin 2ve(a 2cos 2vr+b 2sin 2vr) 111 2

+ c cOsve sinY

[c2cos Ve+ sifn2ve (a2cos2vr+b2sin
2vr )JI/ 2

- sinv
t Rt e (3)

D

When the source is located at the mid-section (z = 0 in Figure

1), the ellipsoid is modeled by a perturbed elliptic cylinder. The

associated unfolded surface is shown in Figure 2(b). It is noticed

that y is a constant along the geodesic path as shown in the figure.

6
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Figure 2. Geodesic path on a developed elliptic cylinder.
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Now, rtxbcosvr + tyasinVr~ccosVe + tzabsiflVe yields

=absinVe COSet + Csiflet COSVe (asin't slflVr + bco54~t COSYr

abc = 0(4)

Next, from Equations (1) and (2) one obtains

tx (-b sin Vr) + ty (a cos Vr):

ab cos'rlsin 2Ve (b 2 sn
2 Vr + a 2 COS2Vr) + C 2COS 2 Vl1/2

Ia~bsin2Ve + C2COS2Ve (a2sin 2V r+ b2COS2V rJ1

=e {aos sir r

ras sin sin4~t -bsinr sinOt COSY

Accordi ngly,

COSY =[a 
2b 2 in2Ve + c2cos2V e(a 2sin 2 V r+b 

2 COS2 vrI 1/2

sinet(acosVrSin~t-bsinVrcOS h) (5)

Dab~sin2V e(b2sin2V r+acos2V r) + c2cos2V e 1112



Substituting Equation (5) into Equation (3),

(acosVr sinlt bslfVr cOsht)

[c(b2-a2)sinVr COSVr sinVe COSVe siflat

+ C CosV Se sin 9 racosV sin~ - bsinV cos
eg-r t r t r t

l a'b 2si n 2Ve + C2 Cos 2Ve(a 2 sin 2 Vr + b 2COS 2Vr')1 112 1

ablC2COS2V e + sin 2V e(a2COS 2V r+ b2sin 2V1 )

r e

Thus, one finds that

Sr c(b2-a2)sinVr COSVr sinVe CO5Ve sin~t

*(a cosVr sin~t - b sinVr cos~t

+ Se c cOsVe [a2b2sin
2V e + c2cos2V e(a2sin

2 Vr + b2cOS2V 01'/

*sinet (a cOsVr sinht - b slflVr cosh)

S r ab coset [c2cOS2 Ve + sif 2Ve(a 2cos2Vr + b2sin 2Vr)1

+ Srabc slnV e ccSVe+ si a2Cs2Vr+ b2sn2vd

=0 *(6)

9



where

Ve 1/2

Se =O {c2cos 2V' + (a2cos2Vr + b2 sin 2V )sin 2Ve} dV'
e 0 r r e e

and

VrI/

Sr = f VcosV la2sin2 VI + b2cos 2V'1 dV'
SVrs r r

Provided that one has obtained a diffraction point (Ve, Vr) for a

receiver location (Rt, Ot, 4t), a numerical technique can now be

developed from Equations (4) and (6) to solve for (Ve + AVe, Vr +

AVr) associated with a new receiver location (Rt + ARt, Ot + A6t, lt +

Ak). Assuming that the ith set of (Rt, 9t, h, Ve, Vr) is first known

to satisfy Hi = Gi = 0, or at least approximately so, the next set

(Rt + ARt, 8t + AOt, h + At, Ve + AVe, Vr + AVr) is obtained by

enforcing Hi+1 = Gi+1 = 0, such that

Hi+1 Hi  HR tARt + H Ae t  A t +

HVe AVe + HVrAVr

=0

and

Gi+ I  Gi + GR ARt + G Ot+ Gt A~t +

+ G AVe + GV AVr

=0

10



In matrix form, it is given by

THV HV r Ve-Hi - HR tAR - He tAet - N tA0

GVe GVr AVreGi- t ARt - ot t -ot At

Note that the partial derivatives are given by the following:

HV e= ab cosVe Cose0t - c sinV esineIt asinotsin Vr + bcos OtcosVr)

H Vr= CCOSe snot (asin 0tcoSVr - bcosotsin Vr)

HeI = -ab sinV esine t+ C CosV eCos 6 aiosnV csOCSr

Hot ccsVe ie t ea eto in absin Ot inV r)+bo~to

t

GV e Sr c(b2-a2) sinVrcOsVr(cOs2Ve-sin 2 Ve)

*sinet(a COSVr sin4t - b SinVr COS h) +

+ d~ c osV a~bsin V +c~c1/2
+~~~~ ~ d~ OVa2b2sn2V+C os 2Ve(a 2sin 2V + b2 Cos 2V]

*sinet(a COSVr sifl4, - b siflVr COSO~) +



+ Se c sinet(a cos~r sin'? b sinVr Cos h)siflVe

a 2 2 (Cos 2 ve-sin 2 ve - 2c 2 Cos2V e(a 2sin 2~ V Cs2Vr

Ia2b2sin 2V e + C2COS 2V e (a2sil 2vr + b2cOS2V r)11/2

+ 2 Sr abcos~t cOsVe siflVe (c2-a2cos2 Vr - b2Sifl2Vr)

r abc cosVreC 2 cos2V e i 2V e(a2 os2 Vr+b 2sin 2 V r)

+ 2sin2 Ve(a2COS2 Vr + b2sin 2 Vr - c2)]

where

dSe = c2CaS2V + (a2 Cos 2 V+ b 2 sn2 )sn2 0/
dee r r e

GV r d~r sinV rCOOsr + S r(Cos vr - sinvd

*C(b2-a2) sinVe COSVe sinfet (a COSVr sin4h b siflVr COS~t)

- r c(b2-a2) siflVr COSVr siflVe COSVe SIfl~t

*(a siflVr sin + b COS~r COSh) +

+ dSe CCOSV [a2b 2 S n 2V + C2 Cs 2 v(a2 sin2 V + b 2 s2 v )11/2
d~e ccoeeas r r

*sin~t(a cOsVr si~ - h siflVr COS h) +

+ S e c3 Cos 3Ve (a2_b 2)siiV r cosV r sin rt (acos r sin t-bsilV r costt)

[a2b2sin 2V e+ c2COS2V e (a2sin2V r + b2COS2V r)1l/2-

12



-Se c cOsve[a2b2sin 2V e +c2cos2 Ve(a2sin2 Vr + b2cos2Vr)]11/2

*sinet(a sinVr sinh + b COs~r cOs h)

dSr ab cos [c2 cos2V + sn 2v (a2CSV+ b 2sin 2v)
dVrt e e r r

+ 2Sr ab(a2-b2) cosOt slfl2Ve COSVrsiflVr

+ dSr abc sinV [c2cs 2V + sin 2V (a2 Cos 2V + b 2 V)]dVrIt- e e e r r

+ 25,- abc sin 3V e(b 2_a2) cosV rsinVre r r

where

dSr =CosV l { 2 n2V +b csVi/
dVr es r rsV}1

and

Ve (,2-a 2) slnV CosV sin 2v
dSe f r r e dV'

0r [c2cos2v' + (a2cos2  + b2sin 2V )sin2V 11/2 e
er r e

Geot Sr c(b 2-a2) SifVrcOsVrsinVecosVecoset

*(a COSVr sinh - b sinV- cos h) +

+ Se cCcosVe[a2b2sln 2V e + c2cos2V e(a2sinVr + b2COS2Vr)1 1/2

13



* coset(a CoSVr sinet - b sinVr cos t) +

+ Sr absin~tfc2cos 2 Ve + sin 2 Ve(a2 cos 2Vr + b2sin 2 Vr) 1

G = Sr c(b2-a2) sinVrCoSVrsinVecOsVeSin~t

• (a cosVr COs5t - b sinVr sint) +

+ Se C cOSVe[a 2b2 sin 2Ve + c2cOs2Ve(a 2sin 2 Vr + b2cos 2Vr)1 1 /2

- sin 9 t(a COSVr coslt + b sinVr sint)

GRt = -Sr abc sinVe[C2Cos2Ve + sin 2 Ve(a 2cOs 2 Vr + b2 sin 2 Vr)1

t

It is seen that one can solve for (AVe, AVr), for a known (ARt,AOt,At),

using Equation (7). To determine the initial diffraction point (Ve, Vr)

for a given receiver location (Rt,ot, h), one can always assume a

diffraction point at the source (0, Vr ) with the radiation direction
5

(0f ,f = ±- ) with respect to the source coordinate system (tN, tr, te )

and gradually add increments (ARt,At,A4t) until the desired receiver

location (Rt,et,4t) is reached as depicted in Figure 3.

In this process one can construct a cone where the rim of the cone

is traced out by the receiver trajectery with the tip of the cone at the

source point Q' and the cone axis aligned with te. The half cone angle

Of is given by

14
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t P(2
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P00

P(N

(PROJECTION TO
tm - r PLANE/

Figure 3. Illustration of the diffraction point finding for a
given receiver location.
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lI -I
f = tan "  ItN'POsI + Itr'POS2

te'POS

with POS = PO - PS

and cf(N) is given by

7+

If(N) = tan-1  tr'POS
f +

jtN.POS

Note in the figure that P(1) denotes the position vector of the

assumed observation point tangential to the source, i.e., (9f,4f =

with respect to (tN,trt te) and P(N) denotes the position vector of the

actual observation point tangential to the diffraction point Q, i.e.,

(ef,.f + NA ) with respect to (tN,tr,te) or (tt with respect to

(xyz). It is observed that there exists a one-to-one correspondence

between the points (from P(1) to P(N)) on the rim of the cone and the

points on the ellipsoid surface.

After the initial diffraction point is identified by (Ve, Vr); y,

and therefore, the geodesic path is determined by the following

equation:

tan y = 
Se

16



since y is a constant along a given geodesic path on the perturbed

elliptic cylinder. Such a numerical approach is illustrated in Figure

4. One need not trace out the complete geodesic path from the source

location to the diffraction point for each new radiation direction. As

shown in Figure 4, the diffraction point (Ve+AVe, Vr+AVr) for the next

receiver location is determined from (Ve, Vr), using Equation (7), if

(ARt,A~t,At) is small which is the case when a complete radiation

pattern is computed.

After the geodesic path is determined, various other parameters

associated with actual field calculations must be found. The Fock

parameter F was obtained in Reference [1] as follows:

Vr (kP)13
~. 1 f 1L 22

cosy Vrs Pg

la2cos2V sin 2V' + b2cos2V cos2V' dV'

es r es r

or

Ve kl13
1 1
s -ny Pg -2

* /(a2cos2Vr+b 2sin 2Vr )sin 2V +c2cos 2ve dV'
rr e e

where pg 1/(klcos2y + k2sln
2y) and k, and k2 are two principal

curvatures.

17
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Next, the ray divergence factor is defined as the change

in the separation of adjacent surface rays as shown in Figure 5. Since

the ellipsoid simulating the aircraft fuselage will be long and slender,

it is assumed that the ray divergence factor is unity in the analysis.

This completes the elliptic cylinder perturbation solution for the

antenna mounted on the mid-section of an ellipsoid.

III. RESULTS

The solutions presented in the previous chapter are employed to

compute the near field radiation patterns for short monopoles or slots

mounted on the mid-section (Bs=90*) of an ellipsoid.

To examine different conical pattern cuts, a cartesian coordinate

system (x',y',z') originally defining the ellipsoid geometry is now

rotated into a new system (x,y,z) as shown in Figure 6. Note that the

new cartesian coordinates are found by first rotating about the z'-axis

a angle *c and then about the y-axis a angle ac . The pattern is, then,

taken in the (x,y,z) coordinate system with ep fixed and p varied.

To show the validity of the elliptic cylinder perturbation

solution, some typical sources, i.e., short monopole, axial slot and

circumferential slot, and various source locations are chosen and

examined.

1 19
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PATH S
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Fi(lure 5. Illustration of the divergence factor (V(401d ) terms.
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RECEIVER
LOCATION

-0c-
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Figure 6. Definition of pattern axis.
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For each case the following typical radiation patterns are

obtained:

a) Oc = 00, c 90 , %p = 90' (roll plane pattern)

b) c = 300, c = 900, qp = 90
°

c) c = 60', ) = qo0 , =9

d) ec = 90, " c = 900, 03  900 (elevation plane pattern)

e) Oc = 900, 4c 900, p = 900 (azimuth plane pattern).

The radiation patterns obtained by the ellipsoid program, which

uses an ellipsoid to simulate the aircraft fuselage, are compared to

those obtained using the spheriod solution r41 in each case.

It is noted that the geodesic tracing method of the ellipsoid

program for the side mounted antennas (Figures 8, 10, 12, 14, 16, 18)

is different from that of the spheroid program because the ellipsoid

is not a surface of revolution.

The exact agreement between the results of the ellipsoid program

and the spheroid program as shown in Figures 7-12 gives one confidence

about the validity of the elliptic cylinder technique.

Next, the ellipsoid program is employed to calculate the radiation

patterns due to antennas mounted on an ellipsoid surface. The typical

ellipsoid geometry (2X x 4X x 1OX) is chosen and examined for various

sources and source locations as shown in Figures 13-18.

The cone boundary shown in Figure 1q is used in determining whether

one or two rays are used in the solution. Note that 312 is defined

automatically by determining the caustic angle in the elevation pattern

22



(Bc) and adding a few additional degrees to that value, i.e., $12 =

ac + A6 where 20 < Aa 4 100. One would expect to observe slight

discontinuities somewhere, because various numbers of rays are included

in different regions.

IV. CONCLUSIONS

The object of this study has been to develop an efficient numerical

solution for the high frequency radiation patterns of an antenna mounted

on the mid-section (Z=O in Figure 1) of an ellipsoid. The UTD is used

in this study to calculate the radiation patterns, and the elliptic

cylinder perturbation method is applied to simulate the geodesic paths

on the ellipsoid, which in turn can be used to model an aircraft or

missile fuselage. For a given radiation direction in the shadow region,

the geodesic path and the final diffraction point on the ellipsoid can,

then, be found via an efficient numerical approach.

The exact agreement of the radiation patterns from two different

programs confirms that this elliptic cylinder perturbation solution is

efficient in predicting the high frequency radiation patterns for

antennas mounted on the mid-section of an ellipsoid.

This numerical solution will be employed, along with flat plates to

construct a general solution for calculating radiation patterns due to

airborne antennas.

23
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(b) ec 30-, (PCgao ep 90 0
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ELL i pwoi d Program Spheroid Program

Figure 7. Comparison of radiation patterns for a short
monopole miounted at *s = 00, Os = 900 on a 2x~ x lOX
spheriod.
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Figure 7. (continued)
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Figure 8. Comparison of radiation patterns for a short
monopole mounted at os = 300, Os = 90' on a 2X x X
spheriod. 
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Figure 9. (continued)
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Figure 10. (continued)
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Figure 11. Comparison of radiation patterns for a circumferential
slot mounted at =00, () 900 on a 2x x
10A spheriod.
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Figure 11. (continued)
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Figure 12. (continued) j
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Figure 13. Radiation patterns for a short monopole
miounted at os 00, (3s 9f0' on a 2A x 4A x lox
ellipsoid.
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Figure 14. Radiation patterns for a short monopole mounted
at Os-30%. Os - 90* on a 2X x 0A x 1O)X ellipsoid.
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Figure 15. Radiation patterns for an axial slot m'ounted
at %s 00, Os = 90 on a 2N~ x 4X x 10)X ellipsoid.
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Figure 17. Radiation patterns for a circumferential slot mounted
at Os = 00~, Ols - 900 on a 2A x 4X~ x 10)X ellipsoid.
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Figure 18. Radiation patterns for a circumferential slot mounted
at *s -300, es - 90*on a 2A x 4A x 1OA ellipsoid.
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Figure 19. Cone houndary used to define terms to he included
in the shadow region.
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