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I. INTRODUCTION

In applying the Uniform Geometrical Theory of Diffraction (UTD) to
antenna radiation problem involving curved surfaces, a major task is to
determine the final diffraction point and the geodesic path on that
surface, For the antennas mounted on the fuselage of an aircraft, the
fuselage can be modeled as an ellipsoid in the UTD analysis. Geodesic
paths on an ellipsoid have been studied in detail in References [1,2]
using an elliptic cylinder perturbation method which is very efficient.

Using this perturbation method and another numerical technique,
which will be given in this report, the radiation patterns for ellipsoid
mounted antennas is efficiently obtained. The theoretical UTD concept

employed to calculate the actual radiatfon fields is given in Reference

f1,3].

II. NUMERICAL TECHNIQUE
A. INTRODUCTION

The ellipsoid simulated by a perturbed elliptic cylinder model is
examined here. Since the elliptic cylinder is a developable surface,
geodesics can be easfly obtained [1,2). Given a radiation direction
(8¢, #¢), one can find the final diffraction point (8g, #¢q) by following
the geodesic path, step by step, until the geodesic tangent coincides

T
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with the radiation direction (68, ¢¢). This is a rather tedius and time
consuming process if applied for each new radiation direction.
Considering a new radiation direction, which does not deviate greatly

from the previous direction, one should be able to develop a solution

which uses the properties of the surface and the previous geodesic path
to find the new diffraction point. Such an approach is attempted here
to make this solution as efficient as possible.

Since the field decays exponentially along the ray path on the
surface, it is assumed that only one or possibly two dominant rays exist
in the problems treated. One is referred to References 1,27 for more

details on this topic.

B. NUMERICAL APPROACH FOR PATTERN CALCULATION

Assuming the diffraction point is located at Q (a cos ve cos vp,
b cos ve sin vp, c sin vp) and the field point at P (Ry sin 6¢ cos ¢,
Rt sin 8 sin ¢, Ry cos 9 ), then at the diffraction point Q the
radiation direction (6, ¢¢) should coincide with the geodesic tangent E

as shown in Figure 1. Thus,

ot
1]
x
r
+
<
r
+
N
(ad

= t1 cos vy + te sin vy

where
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S . 2 2.2
. -xas1nvr(b251n va+c“cos “ve

a? cos2y 4+ b2 sinzvr) + €2 sin

; _a
sin 9, cos ¢ E__cos Vg COS V_
t, = t
X D
i in o - b
sin 8, sin ¢ E__cos Vg COS v
t, = t
y D
and
cos 9, - & _sinv
R
t, = t
z ) .
Note that
p? - (sin®,cos¢ - 3 _ cosv_cosv )2 + (sin@ _sin¢
t t RE’ e r t t
- b cosv.sinv )2 + (cos8 - € sinv )2
Re eSinv,) ( \ RE.s e)
=1 - i a b
1 2[s1n9tcosve (R_E_cos%cosvr + 7
+C_cos8 sinv | + [coszv (
R-t_ t7 e eiz' PEQ'
t t
» and
t1 = te Xn

)+ §bcosvr(azsin2ve+c

[azbzsinzve+c2c052ve(

+zc(b2-a2)sinvr co

azsinzvr+bzcoszvr)]1/2

SVp Sinve COSVe

[czcoszve+sinzve(ézcoszvr+bzsin2vr)]1/2

s1n¢ts1nvr)



t = e _ -xa sinve cosvp - yb sinvg sinvp + 2c cos ve
[azsinzvecoszvr+bzsinzbesin29r+c2coszve]1/2

R

v - . + ‘b
t = r = -Xa COSVe s‘nVr Yy COSVe COSVr

> [azcoszvesihzvr+bzéo§2§ecos?;}]1/2

r
laR
9
Yr

and

-~

n = trxte

[tr x tel

xbc cosve cOsvp + yac cosve sinvpe + zab sinvg
[abCsincv, + czcosz]re(gzﬁinzvr + bécosey )72 .

Equating the x-, y-, and z- components, respectively, one obtains

t = -asinvp COSY(bzsinzve + czcoszve)

[a2b2sincy +cZcos?v, (alsinly +blcoslv )]1/2 -

. 2¢0c? 2 2c0c2 2¢in 1/2
[c2cos vtsin?y, (aZcos?v _+bsin vr)] /

asinva cosvp siny
[c2cos2v  +sinv  (alcoslv +bZsiny )]1/2

a
) -
sin tcos¢t Re cosve cosv

r (1)
)
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- bcosvp cosY(azsinzve + c2cosve)
y [azbzsinzve+62hoszve(azsinzvr+b2coszvr)]1/2 .

. 2 2 in? 2c0c2 2¢in 1/2
[clcos v tsin ve(a cosv +bfsin vr)] /

bsinve sinve siny
[czcoszve+siﬁ?§e(a2coszvr+5251n2vr)]1/2

sin® sin¢t - g cosv_ sinv

- t t e r (2)
D .

- c(bz—az)sinvr cosvp Sinvg COSVe COSY
z [a?bzsin2ve+62coszve(a?sin2§r+b2coszvr)]1/2 .

. 2 2 inl 2 2 2¢in 1/2
[c2cos v *sin?v (alcoslv +bsin vr)l

C COSVe siny
[czcoszve+s1'nzve(azcoszvr+bzsin2vr)]1/2

cos 9 sinv
_ t Ry e (3)

When the source is located at the mid-section (z = 0 in Figure
1), the ellipsoid is modeled by a perturbed elliptic cylinder. The
associated unfolded surface is shown in Fiqure 2(b). It is noticed

that v is a constant along the geodesic path as shown in the figure.
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(b) UNFOLDED PLANAR SURFACE

Geodesic path on a developed elliptic cylinder.,
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Now, [tybcosVy + tyasinVpJccosVe + tzabsinVe yields

H(etp ‘btp Veo vr’ Rt)

= absinVe cosfy + csindg cosVe (asindy sinVp. + bcoséy cosVy)

-abc =9 (4)
Ry~

-

Next, from Equations (1) and (2) one obtains

ty (-b sin V) + ty (a cos Vp):

e e .~ SN LR -

172
ab COSY{Sinzve (bzsinzvr + a2coszvr) + czcoszve}

{a2b2sin2V_ + c2cos?V_ (alsin2V_ + blcos2v_)}1/2
e e r r

=1 inB cind - heinV  <i
U.{acosvr sin6, sine, - bsinV_ sino, cost | . |
i
;
i
Accordingly,
| (22052 L 220 2 20 o2 2 vy M
1 cosY = [a%sin“V, + c“cosV (a®sinV +b%cosV )] .
. sindy (acosVpsindg-bsinVpcos oy ) (5)

Dab{sin?Ve(b?sinZVr+a2coszvr] + ézcoszve}1/2 .




Substituting Equation (5) into Equation (3),

« (acosVy sin¢y - bsinV. coséy)
[c(bz-az)sinvr cosVp sinVa cosVe singy
Se <+ . , .
+ ¢ cosV, gF,s1n 5, (acosvr sine, - bsinV_ cos¢t)
2,2 . 2 2. 2 2 .2 2

. {a°b%sin“Ve + c“cosVe(a®sin“Vp + b coszvr)}l/z ]
ab[c2c052Ve + sinzve(azcos?vr + b2sindy )]

- C ;
cos Gt R{'S1n Ve i

Thus, one finds that

G(eto ¢t’ Ve, V,-, Rt)

Sp c(b2-a2)sinV, cosVp sinVg cosVe sinfy

+ (a cosVp sineg - b sinVp. cosdy)

172
+ Se ¢ cosVe [a2b2s1n2Ve + c2c0s2Vo(a2sin2V,. + bZcos2Vy)] /

* sin6 (a cosVp singy - b sinVp cosdét)

Sp ab cosf [c2cos2Ve + sinVg(aZcosV, + b2sin2v,)]

Sp 2 2 2 2 2 2 2
+ R abc sinV, [cCcos Vo + sin®V (a%cosV_ + b%sin Vr)]
=0 . (6)

A




where
Ve 1/2
) 2 2., 2 2 2.2y v 2y \
Se = IO {c“cos Vo + (a®cosV_ + bsin V. )sin Ve} v,
and
Ve 1/2
_ 2.. 2y, 2. .2 '
S, = IVr cosV {a%sin V. + bcos Vr} av; .

S

Provided that one has obtained a diffraction point (Vo, Vp) for a
receiver location (R¢, 6¢, #¢), a numerical technique can now be
developed from Equations (4) and (6) to solve for (Ve + AVe, Vp +
AV.) associated with a new receiver location (Ry + ARy, fp + ABp, 6¢ +
Adt). Assuming that the ith set of (Ry, 9%, ét, Ve, Vp) is first known
to satisfy Hi = Gj = 0, or at least approximately so, the next set
(Rt + ARy, B¢ + ABg, dp + Adp, Vo + AV, Vo + AV.) is obtained by

enforcing Hi4+1 = Gj+]1 = 0, such that

Hi+1 = Hi + HRtARt + Het Aet + H¢tA¢t +

H AV + H AV
Ve e Vr r

=0

and

o
n

i+l % +q%A% +G%A% +G%A% +

+

G AV + G AV
Ve e Vr r

10




In matrix form, it is given by

Hy Hy Ay THy - HRtARt - Hyg Aet - H¢tA¢t—

t

G G A -Gi - G - Gg Ag - G4 A
v v v i RtARt et et ¢, B0,

Note that the partial derivatives are given by the following:

- . . . s :
HVe ab cosVecoset c s1nves1net\as1n¢ts1nvr + bcos¢tcosvr)

Hy. = ¢ cosVe smst (as1n¢tcosvr - bcos¢ts1nvr)

()

Het = -ab s1nVes1net +cC cosVecoset(as1n¢ts1nVr + bcos¢tcosvr)
H¢t = ¢ cosVesmet (a cos¢ts1nvr -b s1n¢tcosvr)

HR = 2

Rt abc/Rt

Gy = Sp c(b?-a2) sinVpcosVp(cos2Vg-sin2Vy) -
+ sinBg(a cosVye singg - b sinV. cosep) +

dSe 2

dVe

2. 2

* sindg(a cosVy sindy - b sinV. cos¢y) +

11

1/2
2 . 2 2 2.
c cosVe[a bZsin®V + c®cosV (a%sin®V_ + bcos“V




+ Sa ¢ sinfy(a cosVp. sindy - b sinVp cosdg)sinVg .

2,2

a“b (coszve-sin2

2.2 ( 2. 2 2. 2

Ve) - 2c"cos Ve a“sin Vr + b"cos Vr)

[ab?sinV, + ccos?V (a®sin?V_ + becoseV )|1/2

+ 2 S, abcos®y cosVe sinVe (cZ2-a2cos2V, - b2sin2V,)

2 2 2

. 2 2 2... 2
cos Ve + sin Ve(a cos Vr +b

Sr .
+ u___abc cosVe[c sinv )

t

+ 25in2Vq(a2cos?Vp + b2sin2V,. - c2)) !

where "
?
e - {c2c052V + (a%cos®v_ + bZsin?v )sinZy }1/2
Ve e r r e
Gy = | d4Sp o 2y _ <inl . :
V. { HVF'S1"VPCOSVF + Sr(cos V. - sin Vr)} ;

+ c(b2-a2) sinVe cosVe sind; (a cosVp singg - b sinV. cosoéy)

Sp c(b2-a2) sinV. cosVp sinVe cosVe sinB «

(a sinVp. sindy + b cosVp cosdy) +

dSe 2 2

v,

2,2 . 2 2

2, .2 2, \11/2 |
+ c cosVe[a b°sin°V, + c“cos“V (a%sin®V_ + bcos Vr)]

sinfy(a cosVpe singg - b sinV. cosép) +

3

3 2 .2, . . . .
Sec cos Ve(a -b )srnvrcosvrs1n9t(acosvrs1n¢t-bs1nvrcos¢t)

A~ AT~ IR St~ -0t 5

[dzﬁzéinzve + c7cos?Ve(a7§in2Vr + blcoséV )|1/¢
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- Se ¢ cosVp[aZb2sin2Ve +c2cos2V(a2sin2V, + b2cos2V,)]1/2 .

* sinBy(a sinVy singt + b cosV,. coséy)

dSp 2 2 2, 2.2
" ab coset[c cosV, + sin®V_(a%cosV_ + b

2 ,.2
sin Vr)]

+ 25 ab(a2-b2) cosby sinVe cosVpsinVy.

2 2 2 .2 2

+ 95r abc sinVe[czcos cosV_+ b

. 2
V + sin"V sin"V
IRy e *oInele ]

Sy abc sin3ve(b2-a2) cosVrsinVr

2.2 2.2 1/2
= cosV {a®sin V. + bcos Vr}

and

v 2_2 2y
dSe _ | e (b“-a“) sinvrcosvrsin Ve o

dv
V. o [czcoszvz + (azcoszvr + bzsinzvr)sinzvéllf2 e

[}
<D
L

= Sp c(b2-a2) sinVpcosVpsinVecosVecos8y .

(a cosVp singy - b sinV, coséy) +

+

Se ¢ cosVe[abZsin2Ve + c2c0s2Vq(a2sin2V, + b2cos2vpy|l/2 |

13




* cosBy(a cosVp sindg - b sinV. cosdp) +

+ Sp absingy [c2cos2Vy + sinVg(alcos2Vy + b2sin2V.)]

G¢t = Sp c(b2-a2) sinVpcosVpsinVacosVasindy .
* (a cosVp coséy ~ b sinVp singy) +
+ So ¢ cosVa[a2b2s5in2Vy + c2cos2Vg(aZsin2V, + b2cos2Vp)|1/2 @
!
:
* sin9(a cosVp cosdy + b sinVp sindy)
Gp = _ Sr . 2.2 . 2 2. .2 2_. 2
Rt E_z.abc s1nve[c cos Ve + sin Ve(a cos Vr + b%sin Vr)] ]

t

It is seen that one can solve for (AVe, AVp), for a known (ARt,AB¢,Adt),
using Equation (7). To determine the initial diffraction point (Ve, V)
for a given receiver location (R¢,6:,d), one can always assume a

diffraction point at the source (0, V. ) with the radiation direction
S A ~ ~

(6f sb¢ = + ;) with respect to the source coordinate system (tN, tr’ te)

and gradually add increments (ARy,ABp,Ady) until the desired receiver
lTocation (Ry,0y,4¢) is reached as depicted in Figure 3.

In this process one can construct a cone where the rim of the cone
is traced out by the receiver trajectery with the tip of the cone at the

source point Q' and the cone axis aligned with te. The half cone angle

8¢ is given by

14




P'(N)

A
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Figure 3. Illustration of the diffraction point finding for a
given receiver location.
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-~ > 2 ~ > 2
-1 //ltN'Pos| + |tpePos|

9 =
£ tan > —
te'POS
> > >
with Pgg = Pg - Pg
and 4¢(N) is given by
~ s
be (N) = tan~} |trePos .

>
‘tN°Pos

Note in the figure that P(1) denotes the position vector of the

assumed observation point tangential to the source, i.e., (Qf,¢f = ;J

with respect to (tN,tr,te) and P(N) denotes the position vector of the
actual observation point tangential to the diffraction point Q, i.e.,

t ) or (et,¢t) with respect to

(ef,¢f + Nag) with respect to (ty t o

A A A

(x,y,z). [t is observed that there exists a one-to-one correspondence

between the points (from P(1) to P(N)) on the rim of the cone and the
points on the ellipsoid surface.

After the initial diffraction point is identified by (Va, Vp); v,
and therefore, the geodesic path is determined by the following

equation:

tan v =

16




since v is a constant along a given geodesic path on the perturbed
elliptic cylinder. Such a numerical approach is illustrated in Figure
4, One need not trace out the complete geodesic path from the source
location to the diffraction point for each new radiation direction. As
shown in Figure 4, the diffraction point (Ve+AVa, Ve+aV.) for the next
receiver location is determined from (Va, Vp), using Equation (7), if
(8Ry,A8p,A4) is small which is the case when a complete radiation
pattern is computed.

After the geodesic path is determined, various other parameters
associated with actual field calculations must be found. The Fock

parameter £ was obtained in Reference [1] as follows:

.1 ;vrl kegy1/3
£ = (59)

cosy Vrg og

. 2co¢l inlV' 2c0c? AT 1
jﬁ cos Vess1n Vr + b‘cos Vescos Vr dVr

or

Ve
=1 1 (kegyl/3 .
: siny o Pq ( )

. 2 3 2cind 2v' 4+l 2y’ '
J/ (acos V +b2sin Vr)sin V tccos?V V)

where pg = 1/(k1C052Y + kzsinzY) and kl and k2 are two principal

curvatures,

17
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Next, the ray divergence factor /a““b(D ) is defined as the change
dv(Q)

in the separation of adjacent surface rays as shown in Figure 5. Since

the ellipsoid simulating the aircraft fuselage will be long and slender,

it is assumed that the ray divergence factor is unity in the analysis.
This completes the elliptic cylinder perturbatior solution for the

antenna mounted on the mid-section of an ellipsoid.

ITT. RESULTS

The solutions presented in the previous chapter are employed to
compute the near field radiation patterns for short monopoles or slots
mounted on the mid-section (85=90°) of an ellipsoid.

To examine different conical pattern cuts, a cartesian coordinate
system (x',y',z') originally defining the ellipsoid geometry is now
rotated into a new system (x,y,z) as shown in Figure 6. Note that the
new cartesian coordinates are found by first rotating about the z'-axis
a angle ¢c and then about the y-axis a angle 6.. The pattern is, then,
taken in the (x,y,z) coordinate system with 8y, fixed and ¢p varied.

To show the validity of the elliptic cylinder perturbation
solution, some typical sources, i.e., short monopole, axial slot and
circumferential slot, and various source locations are chosen and

examined.

19
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Figure 5. Tllustration of the divergence factor (Vdy o/dV) terms.
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NEAR FIELD
RECEIVER
LOCATION

Figure 6. Definition of pattern axis.
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For each case the following typical radiation patterns are

obtained:
a) 8 = 0°, ¢ = 90°, 9 = 90° (roll plane pattern)
b) 8¢ = 30°, o = 90°, 9y = 90°
c) 8¢ = 60°, o = 90°, a5 = 90° |
d) 8¢ = 90°, & = 90°, 8 = 90° (elevation plane pattern) [
e) 8 = 90°, ¢c = 90°, Ay = 90° (azimuth plane pattern). 1

The radiation patterns obtained hy the ellipsoid program, which
uses an ellipsoid to simulate the aircraft fuselage, are compared to
those obtained using the spheriod solution (4] in each case.

It is noted that the geodesic tracing method of the ellipsoid

program for the side mounted antennas (Figures 8, 10, 12, 14, 16, 18)

is different from that of the spheroid program because the ellipsoid
is not a surface of revolution.

The exact agreement between the results of the ellipsoid program
and the spheroid program as shown in Figures 7-12 gives one confidence
about the validity of the elliptic cylinder technique.

Next, the ellipsoid program is employed to calculate the radiation
patterns due to antennas mounted on an ellipsoid surface. The typical
ellipsoid geometry (2X x 4x x 10X) is chosen and examined for various
sources and source locations as shown in Figures 13-18,

The cone boundary shown in Figure 19 is used in determining whether
one or two rays are used in the solution. Note that 317 is defined

automatically by determining the caustic angle in the elevation pattern
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(8c) and adding a few additional degrees to that value, i.e., 812 =
Bc + AB where 2° < A3 < 10°. One would expect to observe slight
discontinuities somewhere, because various numbers of rays are included

in different regions.

IV. CONCLUSIONS

The object of this study has been to develop an efficient numerical
solution for the high frequency radiation patterns of an antenna mounted
on the mid-section (Z=0 in Figure 1) of an ellipsoid. The UTD is used
in this study to calculate the radiation patterns, and the elliptic
cylinder perturbation method is applied to simulate the geodesic paths
on the ellipsoid, which in turn can be used to model an aircraft or
missile fuselage. For a given radiation direction in the shadow region,
the geodesic path and the final diffraction point on the ellipsoid can,
then, be found via an efficient numerical approach.

The exact agreement of the radiation patterns from two different
programs confirms that this elliptic cylinder perturbation solution is
efficient in predicting the high frequency radiation patterns for
antennas mounted on the mid-section of an ellipsoid.

This numerical solution will be employed, along with flat plates to
construct a general solution for calculating radiation patterns due to

airborne antennas.
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(b) 8 =30°, p=90°, 8, =a0°

- le1 8.=60°, pc=90°, Bp=00°
Ellipsoid Program Spheroid Program

Figure 7. Comparison of radiation patterns for a short
monopole mounted at ¢ = 0°, 85 = 90° on a 2x x 10x
spheriod.
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Figure 7. (continued)
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L (10,-60°, Pp=%0°, By =90
Etlipsoid Program ¢ ¢c TP

o
Spheroid Program

Figure 8., Comparison of radiation patterns for a short
monopole mounted at ¢g = 30°, 05 = 90° on a 2Xx x 10)
spheriod.
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Figure 8. (continued)




re

ot iatir stog

270°

y \
\z@b»r '*</
—an° -
°| ¢c=m°'9p _mo T

Spheroid Program

Figure 9. Comparison of radiation patterns for an axial
slot mounted at ¢ = 0°, 05 = 90° on a 2x x 10X
spheriod,
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(61§ =0°, b=0°, B =su°

Figure 9. (continued)
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Figure 10, Comparison of radiation patterns for an axial
slot mounted at 45 = 30°, 95 = 90° on a 2\ x
10X spheriod.

30




180°

(d) 8, =90°, ¢ =20°, 6 =50°

[e] ec =mo, ¢C =0°' epzmo

Ellipsoid Program Spheroid Program

Figure 10. (continued)
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(c) O =60°, pe=90°, B =%0°
Etlipsoid Program

Spheroid Program

figure 11. Comparison of radiation patterns for a circumferential
slot mounted at ¢g = 0°, 85 = 90° on a 2Xx x
10X spheriod.
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Figure 11. (continued)
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Figure 12. Comparison of radlation patterns for a circumferential
slot mounted at 4 = 30°, A = 90° on a 2\ «x
1IN spheriod.
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(e) 9c=90°,<# =0°, 8 _=

Ellipsoid Program

Figure 12,

35

/W\\
IO
ﬁ;/\/\é“*_r—“))

]
{
{

Spheroid Program

(continued)

2 e 2 ECE—

_ .

= =




Figure 13,

d) §,=90°, b =00°, 6, =000

Radiation patterns for a short monopole
mounted at ¢g = 0°, fg = 90° on a 2x x 4X x 10A
ellipsoid.
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(a) §, =%0°, <;b°=90°,9p =90°

Figure 14, Radiation patterns for a short monopole mounted
at ¢g = 30°, 6 = 90° on a 2x x 4x x 10X ellipsoid.
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(b) 6, =30°, p_=20°, B =a0°

Figure 15, Radiation patterns for an axial slot mounted
at ¢g = 0%, A5 = 90° on a 2X x 4x x 10X ellipsoid,
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6, =%0°

(e) 9c=90°. ¢c =0°

axial slot mounted
a 2x x 4x x 10X ellipsoid.

f
= 90° on

= 30°, 6

at ¢

Figure 16. Radiation patterns for an
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Figure 17. Radiation patterns for a circumferential slot mounted
at ¢g = 0°, 65 = 90° on a 2X x 4) x 10X ellipsoid.
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(d) B, =20°, . =0°, 6, =20°

Figure 18. Radiation patterns for a circumferentfal slot mounted
at ¢ = 30°, 65 = 90° on a 2X x 4X x 10 ellipsoid.
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