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INTRODUCTION

This report presents a study of the indirect boundary element
method and its potential advantages for solving one- and two-dimensional 1
linear structural/stress analysis problems. Currently, the finite
element method is very capable of performing these tasks. However, the
boundary element method potentially offers an opportunity for increased

productivity in these areas.

Background

Because the application of the boundary element method requires
only that the boundary of the structure be subdivided, as contrasted
with the requirement that the entire domain of the structure be sub-
divided when applying the finite element method, the boundary element
method may increase productivity in linear structural analysis. Some-
times the former method is called a boundary method and the latter a
domain method.

A good account of boundary element methods from the perspective of
finite element methods can be found in Reference 1. There are two
types of boundary element methods: a direct method and an indirect
method. The difference between the two methods is not easily explained
in a brief manner. The indirect method is rather intuitive, while the
direct method is more formal. Both methods are equally effective in
general. A comparison of indirect and direct boundary element methods
can be found in Reference 2. An early treatment of indirect boundary
methods can be found in Reference 3.

Accuracy aside for the moment, the effectiveness of any numerical

stress analysis procedure depends primarily on the manual effort required
for pre- and post-processing of the required input and output data, and
to a lesser extent on the computer usage cost of the associated structural




computer program. The boundary element method requires considerably
less input and output data preparation, particularly input data, because
fewer subdivisions are necessary to describe the structure boundary than
the structure itself. The manual effort associated with pre- and post-
processing finite element data is often very considerable and frus-
tratingly long, notwithstanding the advantages of current automated

techniques. (Obviously, such techniques are also applicable to the #
boundary element methods as well.) Thus, the boundary element methods
offer potential savings by reducing the manual labor of the stress

analyst and the engineering technician, particularly at the input data
level, for a given structural problem.

The second advantage of the boundary element method involves reduced
computational effort in the structural analysis computer program. In
linear, static structural analysis by the finite element method it is
well known that most of the computational cost lies in the solution of
the system of linear algebraic equations that result from the finite
element subdivision. In finite element computer programs very effective
Gaussian elimination, equation-solving algorithms have evolved that

minimize this cost (Ref 4). However, for the same structural analysis

problem, the number of linear algebraic equations that must be solved :
when employing the boundary element method is generally far smaller than
in the finite element method. This is because the boundary element

approach immediately reduces the structural problem by one dimension due ;
to the necessity of having only to subdivide the boundary of the struc-
ture. Thus, three-dimensional problems, as in the stress analysis of 4

solids, are reduced to two-dimensional problems; two-dimensional problems,

as in the stress snalysis of membranelike plates, are reduced to one-dimensional
problems; and one-dimensional problems, as in the analysis of beams, are

reduced to what can be termed "point problems." In theory, this amounts

to a distinct computational advantage of the boundary element method

over the ubiquitous finite element method. There are mitigating

L1}

considerations, however. In the case of a materially homogeneous problem,
for example, the coefficient matrix in the linear algebraic system is

RN SNILE " § W IENN WS W X

full in the boundary element method, whereas the coefficjent matrix,
though much larger, is both sparse and symmetric in the finite element
method.

2's 2 & 3,




Objective

The objective of this study is to assess the accuracy and potential
of the indirect boundary element method in linear structural analysis
through numerical experimentation. The indirect boundary element method
is to be explicated and then demonstrated by developing a one-dimensional
computer program and a two-dimensional computer program. Another objec-
tive is to determine the suitability of the method as a structural/stress

analysis tool when implemented on microcomputers.

Scope

The theoretical formulation of the indirect boundary element method
is illustrated first by developing the framework of one-dimensional
beams resting on elastic foundations, and then extending the same concept
to the framework of two-dimensional plane stress or plane strain elasto-
statics.

Computer programs are written both in BASIC and FORTRAN that numer-
ically implement the theoretical formulations for the one-dimensional
application. The program for the two-dimensional application is written
in FORTRAN. Accuracy of the indirect boundary element solution is
assessed through comparison with theoretical solutions and with solu-
tions from the alternative, direct boundary element method.

THEORETICAL BASIS OF THE INDIRECT BOUNDARY ELEMENT METHOD

The indirect boundary element method is a general numerical solu-
tion technique for solving boundary value problems in engineering science.
A bibliography is included in this report which shows the breadth of
engineering boundary value problems that can be approached with the
method.* The necessary theoretical relationships and equations for the
method as applied to structural problems come from the theory of elasticity.

#Also see Reference 5 for a wide selection of applications.
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This theoretical basis is explicated herein, first with a one-dimensional

example of a beam resting on an elastic foundation, and second, with the

general problem of two-dimensional elastostatics.

Once the boundary value problem has been completely stated, the 1
numerical solution of that problem by the indirect boundary element y
method follows three basic steps. i

1. Establish the infinite-domain Green's functions appropriate to

the boundary value problem.

f
2. Form and solve the auxiliary boundary value problem in the i

infinite domain by employing superposition of the established solutions.

3. Invoke the Kirchhoff uniqueness theorem to obtain the solution
to the original boundary value problem from the solution of the aux-
iliary problem.

Since these steps also contain information on the natural limitations of
the indirect boundary element method, they are discussed below.

A Green's function is a known solution to the governing differ-
ential equation of the given boundary value problem. It is very much
like an influence function, s concept familiar to undergraduate civil
engineers, which algebraically determines the response, say displacement
at some field point, due to a prescribed unit concentrated force at some
other point, called a source point. The important concept here is that
such a solution to the governing differential equation must be known at
the outset for the method to be applicable.* Step 1 implies that the
appropriate Green's functions must exist.

The key word in Step 2 is superposition. Thus, the boundary value
problem must be linear for the indirect boundary element method to be
applicable as a solution technique. It should be noted, however, that .
despite this limitation, some nonlinear problems are solved with boundary

*It is also true that a Green's function satisfies boundary conditions
as well. See References 6 and 7 for good accounts of Green's functions.




element methods (Ref 5 and 8). These approaches must inevitably use a
sequence of linearizations. Nonetheless, the principal application of
the boundary element method at present is to linear problems. The
solution to the auxiliary problem is built up from the superposition of
unit solution components provided by the known Green's functions.

Finally, Step 3 implies that the solution to the actual problem can

be obtained only if Kirchhoff's uniqueness theorem can be invoked.

According to Reference 9, this theorem states: g

If, in addition to the body forces, either the surface

forces or the surface displacements are given on the boundary i
of an elastic body, there exists only one form of equilibrium ;
in the sense that the distribution of stresses and strains in 3

the body is determined uniquely.

The theorem requires that the structural problem be limited to infinites-
imal strains and displacements. Exactly why this theorem is invoked
will become clearer when applications of the indirect boundary element

method are presented in the next section.

Beam Resting on an Elastic Foundation

The necessary equations to be programmed into a computer for the X
numerical solution of beams on elastic foundations by the indirect :
boundary element are developed below. This development closely follows
the account given in Reference 10. The class of problems addressed is
shown in Figure 1. The boundary value problem is stated mathematically

as follows. Solve the fourth order differential equation

dbu
» El % = b(x) - k u(x) (1)
dx
h.
|« vhere u = lateral deflection
b = prescribed lateral load

elastic foundation stiffness per unit length

| .

beam bendi. ~‘gid
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The equation is to be solved subject to the following four boundary

conditions:
at x = 0, m=20 and s=0
(2)
at x = L, 6=0 and s =0
where m = bending moment .
s = shear force
= slope v

The boundary condition at x = 0 implies a free end condition, and
at x = L a symmetry condition is implied. Other beam boundary conditions
can also be imposed.

Step 1 of the procedure requires the Green's functions to be given
for the above problem. These functions can be found in Reference 11 and
are applicable to an infinitely long beam and foundation as shown in
Figure 2. The appropriate beam response functions at a field point Q

for a unit concentrated force at point P are

;(r) = EEE e-Br (cos Br + sin Br)
~ 2 -
e(r) = -E—-e Br sin Br - sgn(y-x)
(3)
P -Br
m(r) = ea B (cos Br - sin PBr)
e Pr

;(r) = =5— cos fr - sgn(y-x)

1 y>x

where sgn(y-x) -1 y <x

undefined y = x
“i/4ET

Similarly, the required Green's functions for the beam response at Q due

and

™
H

to a unit moment at P are

.......................
..............
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u*(t) = giﬁ- 0(xr) = -E— e-ﬂr sin Br - sgn(y-x)'
W C R M SR L - s
r) = g o(r) = e cos Br - sin PBr)
" (4)
- -Br
. m*(r) = s(r) = e2 cos Br * sgn(y-x)
- -Br
s*(r) = -%- (r) B e2 (cos Br + sin Br)

In Step 2 the auxiliary problem is formed first by imbedding the
actual beam and foundation complete with loading into the infinite
domain as shown in Figure 3. It is apparent that the required boundary
conditions at points 1 and 2 are not imposed in the infinite beam unless
something else is done to enforce them. Therefore, the unknown forces wi’
and unknown moments ¢f, are applied to these two points to impose the
given boundary conditions. The auxiliary problem can now be stated as:
find the unknown forces and moments at points 1 and 2 such that the
prescribed boundary conditions of the actual problem are satisfied.

The distributed load b(x) can be resolved into N statically equiva-
lent concentrated forces acting on the beam, and, in general, there may
also be M concentrated moments acting on the actual beam. Using the
Green's functions and the principle of superposition, a set of linear
algebraic equations in the two unknown forces ¢i and the two unknown
moments wg can be established such that the required boundary conditions
are satisfied upon their solution. Construction of this system of

equations proceeds as follows:

. For 8, = 0 at x = +¢

s, = s(e,008, + 8 (£,000) + s(e,L), + 5" (e, L)y

M

* *

s (e,x.)b, = 0
= 33

N .
+ 2: s(e,xi)bi +
i=1

;." %‘v‘;."’ '.‘.“ ‘“-"t-.'». ‘:.'-‘ '.."-' s, '.'~'~_' T . R A A T IR AL TR B
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5 For-1=03tx=+e
5
3 - * x - * *
m, = mn(e,0)y, +m (£,0)§, + n(e,L)y, + m (e,L)¢
‘ 1 1 1 2 2
3
. N . Mo, *
: + Z: ll(e,xi)bi + E o (t:,xj)bj = 0
3 i=1 =1
Forsz=Oatx=L-e

- - * * * *
- s, = s{L-c.0)yp, + s (L-¢,0)¢, + s(L-¢,L)¢, + s (L-¢,L)¢
- 2 i 1 2 2
N
: N - M & *

+ Z s(L-¢,x,)b, + ‘_[, s (L-e,xj)bj = 0
. i=1 j=1
3 For 02=0atx=L-e
A
Y - * * * *
v 62 = 6(L-e,0)¢1 +0 (L-e,0)¢1 + 0(L-e,L)¢2 +0 (L-e,L)¢2

N - M & *
+ Z 8(L-£,x,)b, + Z ] (L-e,xj)bj = 0
i=1 j=1

3 The term € represents an arbitrarily small distance to indicate that
3 these functions are evaluated just inside the actual or real beam domain.
In matrix form, these equations are written as
N 2,0 0 ael)  sfen) | v
; a(e,0)  w'(e,0)  me,l)  wie,n) |\

s(L-2,0) s (L-¢,0) s(i-e,L) s (L-¢,L) v,
| 8(L-¢,0) 6(L-¢,0) 6(L-¢,L) 6 (L-c,L) ¢;

E(c,xl) E(c,xz) ... E(e,xn) | s*erp  sfexy  stEm) (v, 0
; :(e,xl) :(e,xz) :(e,xn) I -*(c,xl) -*(e,xz) n*(e,xH) b2 . 0 (5)
- s(L-c,xl). l(l.-c,xz) s(L-e,x") I l*(l.-e,xl) s*(L-e,xz) s*(L-e,xH) 0
. Lo(L-e,x)) B(L-e,x)) ... 8(L-g,mp) | 6" L-e,x)) €' (L-e,xy) ... 8 -e,mp] | by 0
) *
g bl
*
) bZ
S
By
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Gy+HD = E (5a)

k) ~ ~

o The solution to the auxiliary problem is then given by

~ g = ¢'E-ED ®)
S

X It is interesting to note that the order of the coefficient matrix
‘?' G is only four, and that this will always be the case independently of
'. the beam and foundation length so long as the they are prescribed homo-
l;ﬁ geneocus. Thus, the solution will always require that matrices of only
;ié order four be inverted. The one-dimensional boundary value problem has
.tﬁ been reduced to a discrete boundary element problem involving only two
:-i points in the domain — the boundary points 1 and 2 of the actual beam
é:i and foundation problem. This is in contrast to a standard finite element
,f:' solution approach that would have reduced the continuous problem to a
L~ discrete problem at n points (nodes) in the domain along the beam.

y For all practical purposes the greater part of the solution effort
'fa in the indirect boundary element method is accomplished in Step 2.

és‘ Since the forces and moments at the end points are now known for the

) auxiliary problem, and since they, by definition, impose the prescribed
ot boundary conditions in the infinite domain, Step 3 can be addressed.
'f Kirchhoff's uniqueness theorem simply specifies that the solution in the
?: domain [0,L] of the actual problem is the same as the solution for the
§§ domain [0,L] of the auxiliary problem. The solution of the actual

-~ problem can then be obtained by superposition of the Green's functions
Eﬁ: applied to the auxiliary problem as follows.

;{} . Suppose the beam response is desired at some set of K points within
o the domain [0,L]. Then for k = 1,2,..., K the displacement, moment,

o - slope, and shear force can be written directly as
riﬂ

o a -
{3 ux) = uCx, 008 + ulx, L)y, + u (x,008 + u' (x,L)¥

;f: + i‘: “(xk'xi)bi + '_l u*(xk,xj)b;

:3 i=1 J=1

N 9

XX 3

e
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n) = B0, 00, + mGx, LY, + u (00, + " (x, L)
N - M . .
+ i; m(x,,x. )b, + j§="i m (xk’xj)bj
8(xy) = B(x,, 008, + 0(x,,L)¥, + 8" (x 000, + 6" (x,, L), .
N . M . .
+ 1=21 (x,x;)b, + jgl 0 (xk,xj)bj
S(Xk) = ;(xk’o)"’l + ;(xk’L)d’z + S*(xk,O)d‘: . s*(Xk,L)q’;
N 4 M . .
+ lgl (xk’xi)bi + J;l s (xk’xj)bj

In matrix form these equations are

Il(xk) l-;(l ,0) ;(xk'L) “*(xkyo) u*(xkyll) *1
a(x,) a(x,0) a(x,l) = (x,0 = (0|,
-3 =1 - * * X
-
2 - - * % *
] 'o 9
s(xk) bl(xk,O) -(xk L) s (xk ) s (xk L)_] ¢2
. . . -
“('k’xl) u(xk,xz) u(xk,x") l u*(xk,xl) “*(‘k"z) u*(!k.xu) b,
~ - - * %* * bz
-(xk,xl) -(xk,xz) '('k"ﬂ) | ™ ('k"l) » (xk,xz) oo W (xk,xu) .
;('k’xl) 8"&"2) a(xk,xn) I 0*(xk,xl) 0*(xk,x2) °*("u”‘n) bll ¢))
_;(xk,xl) ;('k"z) ;(xk,x") | s*(xk,xl) 3*(xk,x2) ‘*('k’xll)d :;
o

Note that no further inversion of matrices is necessary. The above
equations are merely algebraic equations giving the desired solutiom to

the actusl beam and foundation problem at a set of prescribed points.

10
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The rectangular matrix is the largest matrix to be formed and it is
order 4x(N+M), where N is the number of concentrated or statically
equivalent lateral forces prescribed on the beam, and M is the number of
concentrated moments prescribed along the length of the beam.

With the largest matrix to be inverted (see Step 2) an order four
matrix, and the largest matrix to be formed (but not necessarily stored)
a 4x(N+M) matrix, the indirect boundary method appears to be ideally

suited to microcomputers.

Two-Dimensional Elastostatics

The application of the indirect boundary element method presented
here is for the calculation of stresses and displacements in the plane
of two-dimensional elastic plates that are subject to stretching due to
prescribed edge forces and edge displacements. The form of this presen-
tation follows that given in Reference 12. Figure 4 illustrates the
general elastostatics problem under consideration. The normal stress
components are o, and o&, and the shear stress component is txy’ rela-
tive to the x-y coordinate system shown. The corresponding displacement
components are u and v. The mechanical properties of the plate are
defined by the modulus of elasticity, E, and Poisson's ratio, .

The formal boundary value problem can be stated as the requirement
for a solution to the two-dimensional stress equilibrium partial dif-

ferential equations (ignoring body forces) in the domain Q:

at
+ =X
3y

20,
o
%
Oy,
dy

It
o

in Q (8)

Xy
* 9x

n
o

And further, that the solution also satisfy the stress and displacement

boundary conditions

11
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"." o, = ;‘n and o, = ;.t on l‘F
& ) . (9)
u = u and v = v on FD
% where ;.n and ;t are prescribed tractions, in the normal and tangential
directions, respectively, along a section of the boundary FF, and 4 and .
'5 V are the prescribed components of displacement in the x and y direc-
% tions, respectively, along the remaining section of the boundary FD. -
ff The indirect boundary element approach to the solution begins with
the establishment of the Green's functions appropriate to the governing
E partial differential equation. In this case, these functions are solu-
f tions for the three stress components and the two displacement compo-
‘; nents at a field point Q due to a unit concentrated force at a source
- point P in the plane of an infinite two-dimensional elastic region as
<X shown in Figure 5. The following functions can be found in Reference 12,
‘§ and pertain to plane strain conditions (i.e., the strain component
R normal to the flat plate is zero, and the stress component normal to the
. plate is, in general, nonzero). These functions are generally given in
X terms of polar coordinates in standard references on the theory of
é elasticity; see, for example, Reference 13. Nonetheless, the Green's
% functions in the Cartesian xy system are
i A A 2
i 0,@p) = 2 [‘ %t B 'fi‘]_:f
8in 8 [ ¢ _20+6) x|y o)
’ *Ir [Kem S Avm zZ[2 (10a
4
1
g sin 0 | 20+ 36 20 + 6) x|y
0p(Q,P) = S [' A+ 26 A+26 :i’]j[
~ , cos @ [ 6 _2(A+6) f_]_x_ (10b)
j 2n |[A+ 26 A+ 26 2 r2
[ 4
~
<
N
2 12
L 4




\| r 2.
' . _Ctos ® G 2(\ + 6) x*
Ty@B) = - SR+ 26t A+ %6 lrzj'ff
- sin @ [_G 200 + 6) ¥2| x
; Tm |Xem AT 2|2 (10c)
{ L r r
) w@p) = 228 [ _A+r36 . Are 52
i ’ 2m | 26(k ¥ 26) 26\ + 26) 2
g sin6 [_A+G  xy
] M [26()\ ¥ 36) lr2] (11a)
vgpy = 308 | _A+36 o Are L
’ 2n |” 26(A + 20) A + 26) 2
cos 0O r A+ G xy
*Zn [26Gk + 20) rz] (11b)
y
where r = xz + yz (12a)
» - E u
; ME Ty wa oo (12b)
- —E

Though these equations are for plane strain conditions, they can easily

5 be converted to apply to plane stress conditions with the substitution

, everywhere of A' for A where
. _2AG
3 M= X (13)

T

In that event the class of problems being considered would be such that

.

the stress component normal to the plane is zero, and the strain compo-

nent normal to the plane is nonzero.

¢ Step 2 of the indirect boundary element procedure begins with the
formation of the auxiliary problem by scribing the actual problem boun-
dary on the infinite sheet of the same material and thickness. An

\ 13
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unknown system of normal and tangential tractionms, Pn and Pt’ are applied
to the scribed boundary in the plane. These forces are shown in Figure 6.
The specific task is to solve the auxiliary problem for this unknown

system such that the given boundary conditions are satisfied in the

infinite sheet.

The Green's functions (Equations 10 and 11) and superposition are
employed to write equations relating the stresses and displacements at a
field point Q on the scribed boundary (but also in the infinite sheet)
in terms of the unknown forces at a source point P as P is successively
moved around the entire scribed boundary. That is, the influence of the
tractions at each source point P on the boundary is superimposed at the
field point Q in forming the equations for the total response at field
point Q. Since the unknown force system is continuous, the superposition
is accomplished by an integral on the boundary, and a boundary integral
equation corresponding to the field point Q results.

Since the integration is around the entire boundary £, there will
occur a singularity condition when the source point P and the field
point Q coincide. To provide for this instance, the boundary integral
is divided into two integrals, one along a small segment A{ that contains
the field point Q, and the other along the remaining portion of the
boundary £ - Af. The contribution of the former integral is evaluated
in the limit as the distance r between P and Q v;nishes. Determining
the singularity value of the integrals is a lengthy mathematical exercise
that is omitted here. However, this singularity contribution is important
as it will form block diagonal entries (or submatrices) in the coefficient
matrix of the system of algebriac equations that will result from the
numerical implementation.

The boundary integral equations thusly formed for an arbitrary

boundary point Q are given below in Equations 14 and 15, where the first

6 L Db pp g e g

terms on the right-hand side in brackets are contributed by the
singularity condition.
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206 Pn - 8in 6 cos O Pt]?

~

2-A2

2
Yo - YP (xg - 'P) (YQ e YP)
+ (P_cos 6 ¢+P :ine)lcl(qz )-c de
2-/ n t [ r 2 4

2
- |A*+ 2G cos” 6 .
(ay)Q = [—Y_T-Z X ¥ 20 P, + sin @ cos 0 Pt’]?

2
- (x, - x)(y, - ¥p)
+ / (- pn sin 0 + Pt cos 0), [’ S €1 (l;’) + <, xQ *p l.yQ Yp ae

(l4a)

2
- (xy = xp)°(y, = ¥p)
+ / (Pn cos 0 + Pt sin 0)1 [- N (&72) tc, Ll P. . Yo = Yp

2-AL r r
[
2
Xy - Xp (xy - x)(y, = ¥p)
+ (-P_sin 0 + P_ cos 8),]|c Q -c Q PQ P ase
!_/M n t l[l( l,2 ) 2 r‘

(txy)Q = [- ﬁsin 6 cos 0P - % (tin2 0 - cos? o) Pt]P

2
Yo = ¥ (x, - x,)%(y, = ¥p)
- /(-Pnsin0¢l’tcoae)‘[cl<qz P)q»czi IP‘YQ yP]u
-0 r r

- l (l"l cos O + Pt sin 0)‘[ 3
r r

- - x) (v - yo)?
°1(‘ 'P) * 2 2 ):yq a ]
a0

(n)Q = [c3 ln%-l +c4]Mlin0Pn-c3(lni£-l)McosOPt

2
(yq - ¥p)
+’ l(-l’n sinO*Pt cos 9)1|:- 3 lnr-c‘ -—Q—Q—P—]dl

2-at £

(x, - x;)(y, - ¥p)
+ I(PncoleortsinO)l[ck 9 Laad P]dl

3
2-at ¥
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4
< = |- A _y) - - A i
3 (v)Q = [ c3<én 3 l) c“] AL cos © Pn c3(%n 3 ]) AL sin 6 Pt
4
> (x, - xl,.)2
N +[(P cos 6 + P_ 8in 0), -|c lnr-c—q—dz
. n t 2 3 4 2
3 2-A2 r
~
. (x = x5)(y, = ¥p) '
T - . Q P°*7Q P
; + / ( P, sin 6 + P, cos 6)‘e A daz (15b)
* 2-A2 r
‘ where c = 1+ 2_(A+_(;)
o G
E,
“ c. = —S8
N 1 2n(A + 2G)
» 2 n(A + 2G)
: e = At36
v 3 4nG(A + 2G)
) _ +
8 €4 = WnG(A + 26)
l? At an arbitrary point Q on the boundary, the prescribed boundary
%
. condition either for stress or for displacement is imposed. The unknown
N force distributions Pn and Pt appearing on the right-hand sides of
: Equations 14 or 15 will correspond to these conditions. The equilibrium
:1 of a material point Q on FF is considered with the aid of Figure 7.
Eguating the horizontal and vertical forces to zero on the stress block
- shown yields the two following equations:
4 (O'x)Q Ay - (txy)Q Ax + Ft cos 6 As - Fn sin 8 As = 0

- + + F,_ si + 0 = 0
(oy)Q ax (txy)Q Ay ¢ 8in 0 As Fn cos 0 As

~

Lo

All variables refer to the point Q. These equations can easily be
simplified to the following form:
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(O’x)Q sin2 0+ (0'y)Q cos2 e - 2(txy)Q cos 0 sin 6 = ;
[("y)q - (°x)Q] cos O sin 6 - (txy)Q (sin® 0 - cos? 8) = ;‘t

Though Equations 16 appear to contain three unknowns, (ok)Q’ (0&)0’
and (txy)Q’ there are only two actual unknowns, since by substituting
Equations 14 for these variables, the left-hand sides then contain only
Pn and Pt as unknowns. In this way two equations in two unknowns are
vwritten for each point Q on the boundary FF.

Likewise at each point Q on FD, two equations in the unknowns Pn

and Pt are obtained since

Uy = U
- (17)
Vo =V

and substitution of Equations 15 for uQ and vQ leaves the left-hand
sides expressed in terms of Pn and Pt'

The numerical implementation of the boundary integral equations
proceeds as follows. The entire boundary is subdivided into N straight
line segments at the center of which the pair of equations in either
Equations 16 or 17 is applied. The result is a system of 2N boundary
integral equations containing the unknown tractions Pn and Pt acting
over each segment. Pn and Pt are interpolated at the same N points, and
2N equations in 2N unknown discrete values of Pn and Pt are obtained.
Interpolation of the unknown traction distribution at the N center
points is consistent with assuming the tractions to be constant over the
segment. Other numerical schemes can be constructed also. For example,
the unknown tractions can be interpolated assuming a linear or parabolic
distribution over the segment. In this study the constant interpolation
scheme was implemented, although the equations were also developed for

linear interpolation.

Once the interpolation scheme has been applied, the discrete variables

Pn and Pt can be factored outside the integrands. The remaining integral
expressions, when evaluated over each segment, form the coefficieants of

17
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these discrete variables in the system of algebraic equations. The
integrations were carried out analytically in this study, as was the
evaluation of the singularity contribution given in Equations 14 and 15.
The integrals could have been evaluated numerically instead. However,

such an approach essentially would have resulted in a numerical integra-

LR ST L LS P

tion over each segment occurring within a straight line approximation of

the boundary (i.e., an approximation within an approximation). Again,
the details of the analytical integration are omitted. The system of 2N

linear algebraic equations which results is

LR

-

[}
W >

(18)

The square coefficient matrix K contains the results of the
analytical integration of the singufarities in 2x2 blocks on the diag-
onal and the analytical integrations of the terms other than the sin-
gularities in the off-diagonal blocks. The vector P contgins unknown
variables Pn and Pt at each of the N points. The vector B Sontains the
prescribed boundary values of either the tractions (Fn and Ft) or the
displacements (ii and V) at each of the N points. Some details of the
numerical implementation and these matrices may be found in Appendix A.

The solution of this system yields 2N values for the unknown trac-
tions on the scribed boundary such that the prescribed boundary condi-

tions are imposed in the infinite sheet. The solution is written as

1y (19)

L]

g:

~
~

In this study the solution was carried out by a Gaussian elimination
algorithm with partial pivoting. It should be mentioned that for homoge-
neous problems the coefficient matrix K is both full and nonsymmetric.

It has no special structure that could otherwise have been exploited as
in finite element solutions of the same class of problems. The solution,

Equation 19, concludes Step 2 of the indirect boundary element procedure.
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Step 3 is described as follows. The prescribed displacement and
stress conditions of the actual problem have been imposed on the scribed
The Kirchoff

uniqueness theorem is invoked, which specifies that the solution to the

boundary in the infinite sheet of the auxiliary problem.

actual problem is therefore identical to the solution of the auxiliary
problem. As a result, the stresses and displacements on and within the
scribed boundary of the infinite sheet are identical to the stresses and
displacements on and within the finite elastic sheet of the actual
problem.

Given the 2N values for Pn and Pt’ the stress or displacement
response at any prescribed field point Q within the scribed boundary can
be found using the appropriate Green's functions, Equations 10 or 11.
Referring to Figure 8, the stress and displacement responses at a pre-

scribed field point Q are given by the following equations. The stresses

at Q are
©). = g: (Foj 810 8; + Py o8 801 aa v 36, 200 + 6) [¥%) |/
x°Q &~ 2 n A+ 26 A+ 26 2 2
i=1 r/.I\\r /.
i i
N (Pni cos ei + Pti sin Oi) G 2(A + 6) x2 vy 20
+ ) - X (20a)
= 2 rn A+ 26 A+ 2G 2 2
i=1 r i r i

Ix
NN

, cos 0. + P_. 8in 0.)
ni i ti i’]_2A+ 36, 2(A+ 6
(0) = X 27 e

7)),

X
(_§> (20b)
r/.

1

(-Pni sin Oi + Pti cos 013 G

N
+2 2n

(t)=-%(-Pnisinei+l’ticos6i) G +2A+G i
xy’Q &1 2n A+ 26 A+ 26 rzi‘]lr .

_ 55 (Pni cos Oi;nPti sin Oi) G 2(A + G) <ZE)




The displacements at Q are

Yo Y I sl 8T S EERE S S

N (-;.sinﬂ.*;.cosﬂ.) 2

- ni i ti it _ A+ 36 __A+G6 y
(wq = 1=21 Zn [ Z6(A + 26) 1 Fi T IG(A ¥ zc)(:f) }
i

N (;’.cosﬁ. +;’ . sin 0.) [
ni i ti i A+ G xy
+ 1§=_:1 Zn 2G(k + 26) <’;2‘)} (21a)
i

~ ~

. = N (Pui cos ei + Pti sin Oi) ( A+ 3G

* ) e - A+t (&
Qe 5 2n A+ 26 " Ti "W+ 20| 2
i

L

~ -~

. il: (-Pni sin Gi + Pti cos ﬂi) A+GC xy
= 2n 2G(A + 2G) 2
i=1 r i

COMPUTATIONAL PERFORMANCE OF THE INDIRECT BOUNDARY ELEMENT METHOD

(21b)

Beam Resting on an Elastic Foundation

A numerical study was conducted by comparing computed results from
two indirect BEM programs with theoretical solutions for beam-on-an-
elastic-foundation problems. The first program was written in FORTRAN
and implemented on a Cyber 175 mainframe computer. The second program,
developed independent of the first, was written in Applesoft BASIC on an
Apple II Plus microcomputer. Other boundary element computer programs
have been written for microcomputers (Ref 14 and 15), but the authors
are unaware of any based upon the indirect method for stress analysis.
The FORTRAN ver-

sion contains closed-form solutions for full-span uniform and bilinear

There are some differences in these two programs.

L ax ol p -

varying loading, requires batch input, and assumes free-end boundary
conditions. The BASIC version approximates both uniform and linear

varying loads (partial or full span) with equally spaced concentrated

loads. The input is interactive, and each

can be specified in terms of displacement,
The larger real word size of the Cyber 175
40 .bits for the Apple) and the closed-form

20
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set of boundary conditions
rotation, moment, or shear.
computer (60 bits versus

solution for linear varying
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L4 loads contribute to the better sccuracy of FORTRAN versions. The BASIC

;j version has more flexibility with interactive input, more general loading,

' and the ability to model more complex boundary conditions.

'ﬁ The problems shown in Figures 9 through 14 are the subjects of the

g numerical study for one-dimensional applications. These problems include

.i concentrated loads, a partial uniform load, and exploit symmetry condi-~

; ) tions. Appendix B includes additional problems for the BASIC version,

.ﬁ showing linear varying loads and asymmetry modeling. The listing of the

ﬁ: ) BASIC program is included in Appendix C.

ﬁ% As shown in Figure 9, the first problem consist of a 50-kip load on

i the center of a beam. The moment and deflection at the center of the

;% beam are compared with theory. The results show both programs agreeing

‘? exactly (to the indicated accuracy) with theory for deflection at the

7& midspan. Both programs give accurate results for the moment value, the

= FORTRAN version being the most accurate. Figure 10 demonstrates the use

" of symmetry in the solution of the same problem.

:: The mainframe version of the program executed 100 times faster than

' the microcomputer version. Using a compiled version of the BASIC program
nearly doubled its speed. Though the programs were constructed indepen-

‘g dently, this does give a rough estimate of the speed difference between

; the mainframe and this generation of microcomputer.

:é Figure 11 illustrates the second example involving two symmetric

| concentrated loads. The moment and deflection at the center of the beam

‘ﬁ are compared with theory. Figure 12 shows the model of the problem

f incorporating symmetry boundary conditions. Both programs give equally

" good results. The symmetric modeling gives the same values as the full

i beam model.

é Figures 13 and 14 illustrate the third example involving a partial

éf . uniform load symmetric about the centerline. The moment and deflection

?; at the center of the beam and the slope at the ends of the beam are

. compared with theory. The BASIC program gives better results for the

%} end slopes, while the FORTRAN program gives better results for the

i centerline moment. The accuracy of the bending moment calculation from

i? the BASIC version using symmetry is equal to that from the FORTRAN

&

¥

B!
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version. The full model uses 20 concentrated loads to approximate the
partial uniform load. The symmetry model uses both 10 and 20 concen-
trated loads to approximate the partial uniform load. All models indi-
cate about the same accuracy, indicating that 10 concentrated loads are
adequate to represent the partial uniform load in the symmetry model.
The interactive mode, allowable with the BASIC version, makes the micro-
computer version more valuable as an engineering tool.

Other examples presented in Appendix C include a partial span,
linear varying load, and antisymmetric loading. The inversion test (see
Appendix B for an explanation) indicated that the solution might have
been inaccurate. A possible problem with the boundary integral method
is that the principal coefficient matrix ([G] in this case) contains
terms that can vary by orders of magnitude. The printout of the [G]
matrix indicates zero terms (to three decimal places) for the displacement
and rotation rows. The matrix might require preconditioning to ensure
consistently good numerical accuracy.

Of the 11 problems studied, all but one indicate the BEM to be very
accurate for the beam-on-an-elastic-foundation problems. The only
approximations made in the algorithms were the reduction of continuous

loads to a series of concentrated loads in the BASIC program.

Two-Dimensional Elastostatics

A brief numerical study was conducted on three simple example prob-
lems in which the solutions from an indirect BEM program, a direct BEM
program, and theory were compared. Both programs incorporated constant
boundary elements. The indirect BEM program (BIM2D) was developed as
part of this study, while the direct BEM program (PGM18) was developed
by C. A. Brebbia at Southampton and is described in Reference 16.
Appendix D contains a listing of the BIM2D program.

In the boundary element method, most of the computer time is spent
integrating the boundary integrals over the elements to form the system
matrix K and calculating internal responses depending on how much inter-
nal information is sought. In the finite element method the solution of

the system of algebraic equations is usually the longest calculation.
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In addition to accuracy considerations, BIM2D was developed using ana-
lytical integrations over the elements to minimize the cost of boundary
integrations. This offered better accuracy for a given cost. Integra-
tions within the direct BEM program are carried out numerically except
for the singularity coefficients - diagonal blocks of the system matrix.
Several observations drawn from the numerical study are discussed below.

The ripple effect (as shown in Figures 15 and 16) occurs near a

boundary where a relatively few number of elements are used. The greatest

deviations occurred near abrupt geometry discontinuities (corners) and
loading discontinuities.

The first problem studied was a l-inch-thick square plate in hydro-
static tension. As shown in Figure 17 the model consisted of 12 ele-
ments of unit length on a side, all with a prescribed normal traction of
1,000 psi. Internal stresses were calculated in the upper quarter of
the plate. The stresses at four lines of 30 response points each are
shown plotted in Figure 15.

Except for the edge region, within one element length of the bound-
ary, the direct method algorithm is more accurate. Excluding the edge
region, the indirect algorithm's error, 5.6% and less, is on the order
of 10 times that of the direct algorithm's error. In the edge region
the indirect algorithm is more accurate, and this is the critical region
in most applications. The direct method behaves pathologically near the
boundary, while the indirect algorithm is relatively stable. Both
methods exhibit a ripple effect or artificial stress oscillation, but it
is much more pronounced in the direct algorithm. It is interesting that
the normal stress computed from the direct method changes direction of
instability near the corner. That is, 0& goes one way and o, goes the
other.

The indirect method always underestimates the response where the
stresses are largest. For most response lines examined the response
begins with a nearly constant accuracy, decreases in accuracy, and then
recovers near the boundary. The presence of the boundary influences a

larger region in the indirect algorithm, but this effect is less severe.
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The second problem studied was a l-inch-thick rectangular plate
subjected to 1,000 psi hydrostatic tension. As shown in Figure 18, the
model consisted of two 20-element sides and two 4-element sides. Each
element had a length of unity. The internal responses were calculated
in the upper quarter of the plate. The stresses along four lines of
50 response points each were calculated and are shown plotted in Figure 16.
This problem was also the subject of a numerical study conducted by John
Bode (Ref 12).

In this example the computed stress response was sampled within
one-tenth of an element length of the plate edge. The resulting ripple
effect is much more pronounced than it was in the square plate results.
The indirect method exhibits a ripple effect of about *1.0%. This is
overshadowed by the strong divergence from the solution exhibited by the
direct method algorithm. As with the first example the direct method is

more accurate excluding the edge region. However, a high boundary/domain

A

ratio problem (in two and three dimensions) requires an algorithm that
is more accurate in the edge region, since this region comprises a
greater portion of the domain. The indirect method continues to exhibit
a loss and then recovery in accuracy near the boundary except in the
corner region.

The cormer region is the area of strongest divergence for both

[l
.
o
4
]
/%y
¥

methods. Since the term "constant element" alludes to the artificial

boundary loads, the BEM will not give an exact solution for a uniform

stress field (unlike the finite element method with a constant strain

PO O

element, for example). In the first two problems considered the pre-
scribed boundary conditions were constant (hydrostatic tension). The
indirect BEM solves the problem in the infinite domain, and the gradient
of the artificial boundary stresses is noted to be high near the cor-
ners. It is believed that the artificial boundary stresses tended to
increase near the corners to maintain the square shape of the plate.

A concentration of elements near the corners yields a more accurate
solution by better modeling of the artificial tractions. However, for a
model with a fixed number of elements, overconcentration near the corners

increases the ripple effect near the large elements. One method for
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refining a boundary mesh might be based on maintaining a constant value
for the total artificial traction per element. Bode's study showed that
beveling the corners was not effective with constant elements.

In Bode's study, 96 well-placed elements gave average values almost

as good as 288 equally spaced elements. The ripple effect, however, was

e more prominent. Central processing unit (CPU) time is the major factor
) in the number of elements. The following table shows the relationship

E% between the number of elements and CPUs in Bode's study. The third

:g; ' problem in our study, a stress concentration problem, did not show cost

{E? as strongly dependent on the number of elements (see Figure 19).

5 Number of Elements Normalized CPUs

L.t 96 1.0

=ned 192 3.5

5; 288 8.65

qu

‘2’ Forty-eight elements of unit length were used in both the square
'i and rectangular plate problems. At the response lines half an element
2, length away from the edge, the results from the square plate problem

e were more accurate. At the center of the plate, stress errors of 2% to
?;‘ 3% were observed for the square plate and 5% to 7% were observed for the

E;f rectangular plate. Thus, the proximity of edges has an adverse effect
X on stress response accuracy.

P The higher inaccuracies in the rectangular plate problem are prob-
k;;f ably due to each response point being relatively closer to more edges
:§§‘ and a greater number of elements. In this example the BEM slightly

decreased in accuracy as the narrowness of the domain increased. For a

given accuracy the difference in analysis cost for the two plate problems

would not vary much with the BEM. However, the cost would be expected

to vary if the finite element method (FEM) were to be used.

The third problem studied was a 1-inch-thick square plate with a

. circular cut out that involves high stress gradients or stress concen-
trations. Uniform compression stress of 1 psi was applied to two opposite
edges. Various numbers of elements were used to model the external and

internal boundaries, but in all cases the elements for a given boundary
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were of uniform size. The various models are indicated in Figure 19. A

vertical and a horizontal line, of 37 response points each, extended

from the hole to the outer boundary. Figure 20 shows the stress response
for the different models. The theoretical solution shown assumes the
elastic plate to be of infinite extent.

Since the response lines did not closely parallel an edge, no

b

ripple effect was observed. As with the other two problems the direct
algorithm diverges strongly at about half an element length from the .
boundary. Because of the strong divergence, the direct algorithm was

e o A

only used for comparison with the coarse model, model 1. For the indirect
algorithm the responses are relatively accurate, diverging slightly in

the edge regions. The models with the finer element subdivision on a
given boundary tend to give the most accurate results near that boundary.
The level of subdivision on distant boundaries has only a secondary 3
effect. Figure 20b illustrates the variation of Oy along the vertical i
response line. For this response the localized effect of the boundaries ]
is evident. Near the circular edge where the stress gradient is highest, ;
models 3 and 4 show the best results and contain approximately 4% error. ]
Models 1 and 2 have an error of between 5% and 6%. The number of elements i
used on the square has only a secondary effect.

Models 2 and 4 show the best results along the square edge and
contain approximately 8% error. Models 1 and 3 have an error of approx- 4
imately 13%. Again, the number of elements used to model the distant A
boundary, in this case the circular edge, has only a secondary effect. ]

Figure 20c illustrates the variation of oy along the vertical E
response line. In theory oy should be zero at both boundaries. As j
mentioned earlier the theoretical curve corresponds to an infinite -
plate, and this is the main source of discrepancy. For models 1 and 3
(both having a 28-element square boundary) a slight decrease in accuracy
with a recovery near the square boundary is exhibited again. .

Figure 20d illustrates the variation of o, along the horizontal . 1
response line. In theory this stress should be 0 at the circle and
-1 psi (the applied traction) at the outer boundary. The theoretical

solution is approaching -1 psi slower than the BEM solution.
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Figure 20e illustrates the variation of oy along the horizontal
response line. The accuracy trends previously mentioned are slightly
deviated from near the circle because in this example model 2 gives
slightly better results than model 3 while having fewer elements on the

circular boundary. The maximum error for oy on the circular boundary

D Iy -J:_*

was 20% for this response line. But it must be noted that oy is of les-
ser importance in the stress concentration example.
In general, the constant-element BEM exhibited a good ability to

model stress gradients. Unlike the uniform stress field problems, the

3 stress gradient problem showed the BEM to overestimate stress values
" (i.e., to be conservative). The boundary effects are observed to be
g local and relative to the element size. Distant boundaries are seen to

have only a secondary effect.

3 il

SUMMARY AND CONCLUSIONS

20 il 34
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The indirect boundary element method has been investigated for

X

application to one- and two-dimensional elastostatics problems in struc-

~

tural analysis. The theoretical basis of the method has been described

4
.

Y-
Y

by beginning with the simple problem of a beam resting on an elastic

0N

foundation and then extending the theory to a more useful class of
problems pertaining to the plane stress and plane strain analysis in
elastostatics.

The numerical implementation of the theoretical formulation was

illustrated with the development of computer programs for both small and

‘ISP, PV P

large computers. Stress analysis capability using these computer pro-
grams was assessed by comparison of results to theoretical solutions and
. to results from another computer program that is based on the alterna-

tive direct boundary element formulation.

4+ DR OO Sy

Three basic concepts constitute the theoretical formulation of the

indirect boundary element method: Green's functions, superposition, and

.,
4

the Kirchhoff uniqueness theorem.

L] “;".4‘.:

27

C CPET T




1 ety

-y
PO Y R RN

R e 2" s ¢ avs -8

| i, gt BiecC g g g i A A A LAY A i AR A M A Ll M gt Sl Y LN LT R SRTRT T

Green's functions are akin to the more familiar influence functions,

and they give the stress and displacement response at an arbitrary field
point due to a unit force at an arbitrary source point in the domain.
These functions are classical results from the theory of elasticity, and
those which were used herein apply to infinite domains only. They sug-
gest the reformulation of actual problems in the finite domain in terms
of problems in the infinite domain. This gives rise to the auxiliary
problem, which is solved in place of the actual problem, and thus the
origin of the word "indirect" in the indirect boundary element method.

Through superposition of the Green's functions, a set of boundary
integral equations is constructed whose solution imposes the prescribed
boundary conditions on a contour in the infinite domain that is identi-
cal to the boundary contour of the actual finite problem.

Kirchhoff's uniqueness theorem then requires that the solution of

the auxiliary problem be identical to the solution of the actual problem.

The solution of the auxiliary problem is accomplished numerically. The
boundary is discretized into N straight line segments over which unknown
artificial normal and tangential stress tractions are interpolated. 1In
this study a constant value for the unknowns was assumed over each
segment. The integration of the boundary integrals over a segment was
carried out analytically, and the results are the coefficients of the 2N
unknown tractions. A linear system of 2N algebraic equations in the 2N
unknowns occurs and is solved by Gaussian elimination. The coefficient
matrix has little exploitable structure for the homogeneous examples
considered. It is both fully populated and nonsymmetric. Once the
artificial tractions along the boundary are known, the stress and dis-
placement response may be determined by superposition.

The results from the rather simple two-dimensional numerical exper-
iments carried out in this study suggest that the boundary element
methods are susceptible to accuracy deterioration within one element
length of the boundary or edge of the domain. However, within the
domain the accuracy is very satisfactory, usually always within 5% of

exact solutions.
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Very near the edges, however, a ripple effect occurs in the computed

stress values. The ripple effect is an oscillation in the stress magni-
tude about the exact value. The oscillation along a line paralleling an
edge increases as a corner of the domain is approached. That is, as
another edge is approached, the ripple effect becomes worse.

Since the critical region of the ripple effect is within one element
length of an edge, element size is a factor in achieving accuracy.

Local element size gradation can be employed to achieve improved accuracy
near an edge, while distant element size has little influence on the
accuracy in the vicinity of this edge.

Inasmuch as significant stresses often occur on boundaries, fine
subdivisions of those boundaries may be necessary to achieve desired
accuracy.

With regard to edge effects, the indirect boundary element method
faired better than the particular direct boundary element implementation
that was available for comparison.

The results pertaining to the accuracy of the indirect boundary
element method to correctly capture stress gradients were very encourag-
ing, even for the constant stress elements employed. The results suggest
that the method may be a very economical analysis tool for determining
stress concentration factors in elastostatics.

Compared to finite element methods, the necessary input data require-
ments are less, and smaller matrices result. The boundary element
methods are therefore more suited to small computers. This would then
allov the personal interactive advantages of microcomputers to further

enhance the boundary element methods as effective stress analysis tools.

RECOMMENDATION

From the results of this study, it is believed that a combined
finite element and boundary element computer program may prove successful
in contributing to the reduction in the high costs now associated with

nonlinear finite element programs. A two-dimensional program could be

29
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?f developed and used to evaluate potential advantages in the solution of

;‘ nonlinear problems, particularly soil-structure interaction problems

14 vwhere, for example, a buried structure along with some surrounding soil

55 may be behaving nonlinearly and the remaining half-space soil is behaving

:2 linearly. However, the proper theoretical and numerical treatment of

X the interface equations must be thoroughly evaluated and then implemented.
28 This step is a necessary prerequisite to an effective implementation.

g The recommendation is to undertake the theoretical and numerical treatment
?j of coupling the finite element and indirect boundary element methods.
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Figure 1. Beam resting on an elastic foundation —
the actual problem.
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Figure 2. Infinite beam and elastic foundation.
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Figure 4. Two-dimensional elastostatic plate — !
the actual problem.
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Figure 6. Actual two-dimensional region embedded in
infinite two-dimensional region — the
auxiliary problem.
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< - 80 in. >
40 in—>]
P = 50,000 b
E = 10x106 zsi l
I =26.2 in.
7.
K = 1,000 1b/in.
Results at Centerline
Boundary Element
Theory Micro-BASIC  Mainframe-
FORTRAN
Deflection (in.) 0.861 0.861 0.861
Moment (in.-1b) 417,135 416,898 417,130
Execution time (sec) 3%-interpreted  0.35

21-compiled

Figure 9. Full model of a concentrated load on centerline.

bt——40 in.—-—I
E = 10x100 psi P = 25,000 Ib
I =26.2 in4

boundary conditions

rotation = 0
_ shear= 0

7.
K = 1,000 Ib/in.

Results at Center Line

Boundary Element
Theory Micro-BASIC

Deflection (in.) 0.861 0.861
Moment (in.-lb) 417,135 416,948

Figure 10. Symmetric model of a concentrated load on centerline.
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000 1b
I =26.2in4 150. 150,000 b
i
/4
K = 1,000 Ib/in,
Results at Ends of Beam
Boundary Element
Theory Micro-BASIC Mainframe-
FORTRAN
Deflection (in.) 1.104 1.103 1.103
Moment (in.-1b) o o o

Figure 11. Full model of symmetric concentrated load.

lt——40 in, ——

20 in,
E = 10x105 psi 000 Ib
1=26.2in* i
Ve boundary conditions
rotation = 0
shear = 0

K = 1,000 Ib/in,

Results at End of Beam

Boundary Element
Theory Micro-BASIC

Deflection (in.) 1.104 1.103
Moment (in.-lb) o ]

Figure 12, Symmetric model of symmetric concentrated loads.
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E = 10x10° psi
I=262in4

20 concentrated load

sppraximation

- 80

e-20 in.-bl l-ozo in. o
10 Ib/in.

in

211X

\2EAR

K = 1,000 Ib/in.
Results
Boundary Element
Theory Micro-BASIC Mainframe-
FORTRAN
Deflection at center (in.) 6.25x10°3 6.26x10°3 6.26x10°3
Moment at center (in.-lb) 1535 1531 1532
Slope at ends (rad) 1.1539x104  1.1539x10¢ 1.1533x1074

Figure 13. Full model of partial uniform load.

I =26.2in

je—— 40 in.,
. *uniform load approximated by 10 and
E= 10x105 xn e-20 in. > 20 concentrated loads
10 1b/in.
XX \_— boundary conditions
rotation = 0
74 shear= 0
K = 1,000 Ib/in.
Results
Boundary Element
Theory Micro-BASIC (10)*  (20)*
Deflection at center (in.)  6.23x10°3 6.26x10°3 6.26x10°3
Moment st center (in.-1b) 1538 1532 1532
Slope at left end (rad) 1.1539x10%  1.1541x10°* 1.1534x1074

Figure 14, Symmetric model of partial uniform load.
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Appendix A
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ASPECTS OF THE NUMERICAL IMPLEMENTATION

L]

2

>

A

This appendix includes further detail on the numerical implementa-
tion of the indirect boundary element method (BEM). Each section explains
one aspect that was omitted for clarity in the text of the report on
two-dimensional elastostatics. Though some of the detail is unique to

the BIM2D program, the overall methodology is general in nature.

it
‘. -" LI
ifatats

"o
E§i SIMPLIFIED BOUNDARY INTEGRAL EQUATIONS
&

Equation l4a is rewgitten as follows. The contribution of the
singular element is written as a product of influence coefficients and
discrete artificial tractions. The integration along the remainder of
the boundary is written as the summation of the integrations along the
nonsingular elements. In the present study, these integrations were
carried out analytically, but these details are omitted and only the

results are given. Using the following substitutions,

2
_ At 26 sin” 0O -
SXNQ,Q = 2(h + 26) (A-1a)
. SXTQ,Q = =~ 8in 6 cos O (A-1b)
2
) Xo = Xp (xq = xp)(yg - ¥p)
YIQ,P = / A -3;7— +c2 rl' d2 (A-2a)
P

......




.........................

(yQ - yp) i

L ,/

P

(A-2b)

Equation 14a can be rewritten in the following form:

(ox)Q = SXNQ’ Pn + SXT Pt

Q'ngq

Q,Q Q

sin 0 + Pt cos 0) yl

N
"&| P QP
PAQ

+ (Pn

P

cos © +/Pt sin 0) y2Q P (A-3)
P ’

P
Combining terms with respect to the boundary tractions gives

P

t

(°x)Q = SXNQ,Q PnQ + swa’Q

Q

A
5ty

e '0 »
- -.% ‘:“ “. -:‘

N

+ Y|P (-sin @ y1 + cos 0 y2
P=1| %p Q,P Q,P
PAQ

3 + P

+ sin 6 y2 (A-4)

tP(cos YIQ,P Q,P)

The integration along the remainder of boundary can now be written in

coefficient form. The nonsingular influence coefficients are given by:

-5
%
£ SXNQ,P = -38in 0 YIQ,P + cos yZQ’P (A-5a)
& SXTQ,P = cos YIQ,P + sin YzQ,P (A-5b)
%3 Thus, Equation A-4 is further simplified to:
(0.), = P SXN + P, SXT (A-6a)
Qg5 o QP gy QP

vhere the singular coefficients, subscripted Q,Q, are given by Equa-

tions A-1, and the nonsingular coefficients, subscripted Q,P, are given

by Equations A-5.
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(A-6b)

(A-6¢c)

(A-64d)

PORPEPE %t

(A-6e)

id

The coefficients SYNQ P and SYTQ P are defined in a manner similar to
? ?
that shown in Equations A-1 and A-5 using Equations 14b; the coeffi-

P T

cients TN and TT use Equation 14, the coefficients UN and UT use Equa-
tion 15a, and the coefficients VN and VT use Equation 15b.

P IV ¥

PRESCRIBED BOUNDARY TRACTIONS IN TERMS OF THE ARTIFICIAL BOUNDARY
TRACTIONS

Equation 16 gives the prescribed boundary tractions in terms of the
unknown stresses (oi)Q’ (o&)Q, and (txy)Q. Writing the unknown stresses
in terms of the artificial boundary tractions, using Equations A-6a, b,

and c, gives:

)+ cosl 0(SYN

N
Pgl PnPlsinz G(SXNQ Q,P) - 2 8in 0 cos 0 (TNQ,P)]

,P

= F (A-7a)
o
)

. + P, [sin? B(SXT, p) + cos B(SYT

tp

)} - 2 gin 0 cos 8 (TN

Q,P o,p]

N
&tl’%[-cos 0 sin 0 (SYNQ’P) + cos 0 sin © (s“Q,P) + (cos? @ - sin? 0)(TNQ’P)]

>

+ P, [-cos 8 sin 0 (SXTy ) + cos 6 sin 0 (STT, p) + (cos? 8 - sin? e)mQ’P)]‘ = F . (A-7b)

tp

------------------
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The quantities within the square brackets are the coefficients of the

matrix K. Thus, Equations A-7 can be rewritten as:

~

N -

le Pan PtP Ki,j+l‘ = rnQ (A-8a)

N )

2 PnP Kivn,5 * PtP Kivr,jor| = FtQ (A-8b)
vhere i = 2xQ - 1

j=2xP -1

In this form it is apparent that the influence of the artificial boundary
tractions at each element P with the prescribed boundary tractions at
element Q results in a block of four terms (a 2x2 submatrix) in the
coefficient matrix.

PRESCRIBED BOUNDARY DISPLACEMENTS IN TERMS OF THE ARTIFICIAL BOUNDARY
TRACTIONS

Equation 17 gives the prescribed boundary displacements (i, V) in
terms of the unknown boundary displacements (u Uy’ vQ). Writing these
displacements in terms of the artificial boundary tractions, using

Equations A-6d and e, gives:

N -
P};‘,l pnp 0, l,] + P, [u'rQ pIl = Y (A-9a)
N R

P2=:1 PnP[vn pl + By [V'rQ Pt = Yo (A-9b)

The quantities within the square brackets are the coefficients of the

matrix K. Thus, Equations A-9 can be rewritten in the same form as

Equations A-8:




F’J\J [ S ¥ o g bl it e nife e Jaivte, b o P ik S T A R
.I +
v
)
~

3 N -

.'- . . P . . = A'lo
3 Pgl PuP 1,] tp 1’J"‘l‘ “Q (A-10a)
{

- N -

b\ P K. .+ . . = A-10b
N P§l np itl,j P"P “ia1, 541 ‘q ( )
.3

N wvhere i = 2xQ - 1

) j=2xP - 1

2

:.., - Again, the interaction of an ordered pair of elements results in a block
of four terms in the coefficient matrix.

"

3 SYSTEM OF EQUATIONS

?:
Equations A-8 and Equations A-~10 each yield a set of two equations
'.2:3 in 2N unknowns. Either set of equations can be written in matrix notation
A

Pa as:

K K K e |

= i1 Ko K3 K, Koy Ko 2, B
™ =
X P

2 Kir1,1 Kinn2 Kinns Kinns - Kinana Kinan| 4 B+

"2

3 {e }

r; l.'2 ‘

Zi P

oy

% P

> | N )

X cer. (A-11)
.

- - where i =2xQ - 1
:3;?

o Bi = prescribed x displacement or normal traction at

3‘-, element Q

%1
- B = prescribed y displacement or tangential traction

i+l
5 at element Q
K]

|
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For each straight-line element around the model boundary, either
the boundary displacements or tractions are prescribed. Thus, each
element produces two equations. The total system of equations (Equation 18)
is formed by combining N pairs of equations, such as Equations A-10.
Thus, 2N unknown artificial boundary tractions are expressed in terms of
2N prescribed boundary tractions or displacements.
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Appendix B

BIMID DOCUMENTATION AND LISTING,
BASIC VERSION

PURPOSE

This appendix illustrates how the nature of the boundary integral
method lends itself to the solution of structural analysis problems on a
microcomputer.

SCOPE

The BIMID program solves the problem of a beam on an elastic founda-
tion. The loading is limited to concentrated loads; however, it is set
up to generate loads to approximate linear varying continuous loads.

The boundary condition at each end of the finite beam can be specified
by entering the value of two of the following quantities:

¢ shear

e moment

e displacement
e rotation

This allows modeling half of the beam for symmetrical and asymmetrical
loading cases (see Appendix C).
METHODOLOGY

The theory for the program is explained in detail in the body of
the report. The following discussion briefly explains the major sub-
routines.
Input Routine (Beginning Statement Number 1050)

The input routine is interactive only to the extent that it prompts
the user for input. It does not check the range of the user's input
(wvith the exception of allowing a maximum of 20 uses of defined concen-

trated loads) and does not allow editing of input.

Generator Routine (Beginning Statement Number 920)

The generator routine generates concentrated loads to approximate
the continuous loads. These loads are added to the concentrated load
arrays (both positions and values).

3
]
.'
§
A
1
3
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Matrices Development Routine (Beginning Statement Number 600)

The matrices development routine initially adjusts the position of
all concentrated loads such that no load is within a given distance,
epsilon, from either boundary. The routine then develops both the [G]
and [Hp) matrices.

Matrix Inversion Routine (Beginning Statement Number 750)

The matrix inversion routine inverts the 4x4 [G] matrix and per-
forms an accuracy test. In the accuracy test the flexibility matrix [G]
is multiplied by its inverse to give the identity matrix. The sum of
all terms in the identity matrix is printed on the screen and should
approach 4 (the order of the matrix). If [G] is a singular matrix the
program ends.

Solve Routine (Beginning Statement Number 730)

The solve routine solves for the boundary forces and moments such
that when they are applied to the infinite beam, the points within the
boundaries respond as if they were on the finite beam.

Response Input Routine (Beginning Statement Number 1800)

The response input routine, as the initial input routine, is inter-
active only to the extent of prompting the user for input. It allows a
maximum of 50 response points and does not allow a response point outside
of the span.

Response Routine (Beginning Statement Number 250)

The response routine initially adds the boundary moments to the
applied moment array (it is set up in this manner so that applied moments
are a simpler addition); similarly, the boundary forces are added to the
applied force array. Each response point is then compared to each
concentrated load position. If they coincide the response point is
moved to the right by the amount epsilon (response points at L are moved
to the left). With singularities avoided, the responses can be cal-
culated. For each response point, [kB] and [kM] are developed then
multiplied by (B) and (M), respectively. This routine prints on the
screen the response point that is being calculated.

Ouput Routine (Beginning Statement Number 3000)
The output routine formats and prints the calculated results and

user input. A "DEBUG PRINTOUT" is optional as explained in the User
Instructions. Very large numbers can cause an illegal quantity error.
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USER INSTRUCTIONS

I. PROGRAM INPUT

A. Model Input.

1. Enter the foundation spring constant.
Enter the modulus of elasticity of the beam.
Enter the moment of inertia of the beam.
Enter the span of the beam.
Enter the number of continuous loads.

N WwWwN

For Each Continuous Load

5a. Enter the position and value of the left end of the
continuous load in the format position, value.

Sb. Repeat Step 6 for the right end of the continuous load.

5c. Enter the number of concentrated loads to approximate the
continuous load.

6. Enter the number of concentrated loads.

For Each Concentrated Load

Enter the position and value of the load in the format position,
value.

For Each Boundary Condition

7. Enter the numerical code of the known boundary value.
8. Enter the value of the known boundary condition.

Following the problem input, the program prints on the screen the
title of the major subroutines it enters. Within the matrix inversion
subroutine an accuracy test is performed. (For an explanation of the
individual subroutines see the METHODOLOGY section of this appendix.)

I. PROGRAM INPUT (Continued)
B. Response Input
1. Enter the number of response points where shear, moment,

displacement, and rotation are to be calculated.

For Each Response Point

2. Enter the position of the response point

The response subroutine prints the number of the response point
where the solution is being calculated. Following the last response
point the printing of the output begins.
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II. PROGRAM OUTPUT

The user input and response output are always printed. The user
has the option to obtain a "DEBUG PRINTOUT." The "DEBUG PRINTOUT"
consists of a list of the concentrated loads that approximate the con-
tinuous loads and the boundary loads (boundary moments are not included).
) The flexibility matrix and its inverse are also printed. Appendix C
3 contains a few printouts. The last problem includes an annotated copy
i of the user interaction. 3
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Appendix C

BIM1D EXAMPLE PROBLEMS, BASIC VERSION
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BEAM ON AN ELASTIC FOUNDATION 1 I

INDIRECT EOUNDARY INTEGRAL METHOD
THEORY: DR. TED SHUGAR
FPROGRAM: JAMES V. COX

USER INFUT
MODULUS OF MOMENT OF
ELASTICITY INERTIA
1 Q000000 . 00 25.00

SPRING
CONSTANT
1000. 00

SFAN
80,00

CONCENTRATED

LOAD NO. FPOSITION

1 20.00 100000, 00
2 &HOQ L 00 =1 00000, OO0

RIGHT END

MOMENT =
SHEAR =

LEFT END

MOMENT
SHEAR

0. 00
Q0,00

Q.00
Q.00

I}

QUTPUT

RESFONSE

FPOINT NO. DISPLACEMENT

POSITION SHEAR MOMENT

.03 0. 00 2,00 3.506
10.00 F1536.83  1463395.97 2.803

LOLYT7 .57 2.024
250467.75 1.064

0. 00 0. Q00
-250467.73 -1.064
-606084. 80 -2.026
—-163395.97 —-2.803

0. 00 -3.506

-4418%.,37
-28616.21
~-232594,.173
~-28616.21
09782.23
I15346.83
Q.00

20.01
J0.00
40, 00
50,00
&H0,.01
70,00
79.99

SRt IRN I i I R N R

c-11

ROTATION
- Q70
-. 072
-. 087
- 103
-.108
~-. 103
-. 087
- 072
- 070
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CONCENTRATED
LOAD NO.

o 7.920
1 “a 500
2 . 878

GI MATRIX
8]

WK - O

AR

Sl AL AT

e M bt

-.128
-4.037
FE-0O3
-« 110

e

FOSITION

0. 00
80. 00

0. 000

1

-4,0864
-64.853

~13.050

e e e

-
-

P IO DA TR IOLA SuR it Sair ey

"
'

VALUE

145799.80
~145799.80

2
-.878
—a Q33
7.902
« 500

2
E-0O3
110
-.128
4,037

Bl g

-ta .

—-. 03X
0. 000
- 300

016

~. 639
-13. 050
4.08646
~&4.853
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BEAM DN AN ELASTIC FOUNDATION

INDIRECT BOUNDARY INTEGRAL METHOD

THEORY: DR. TED SHUGAR N
PROGRAM: JAMES Y. COX

USER INFUT
SPRING MODULUS OF MOMENT OF
CONSTANT ELASTICITY INERTIA SFaN
1000.00 10000000, 00 25.00 40,00

CONCENTRATED
LOAD NO. FPOSITION VAL UE

1 20,00 1 QOGO0, OO

LEFT END RIGHT END

MOMENT = Q.00 DISFLACEMENT
SHEAR = 0.00 MOMENT

0. 00
Q.00

QuUTPUT

v e e G4 4t it et s dmstn Y 400D Sl 44200 e e o PO P S e M et SeoFS 46 Mot S ran M Sedbe e CHuMS Mo imimn s efS et Shems e St HES R fvim S Ay T 026 A o Tkt Sk bt Tt et R Akt hd ekt e il e S S T voves S et v Thom

RESPONSE
FOINT NO. POSITION SHEAR MOMENT DISPLACEMENT ROTATION

Q.00 Q.00 Q.00 J.508 ~. Q70
10.00 31541.23 1463T486.32 2.802 - 072

20,00 -441946.82 606448.52 2.024 -. 087
J0.00 =-28625.78 250496.21 1.064 - 103
40,00 -23268. 66 Q.00 Q. 000 -. 108

L4 I IR I R
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CONCENTRATED
. LOAD NO. FOSITION ValllE
| 2 0, 00 145741.48
3 40,00 ~77289.86

6 MATRIX
Q i 2
0 7.904 - o S0 -1.4%56 L0473
1 - v 00 L0146 . 047 HE-OZ
2 O, Q00 0. OO O, 000 Q. OO0
~1.454 - 043 7.904 » D00

ol

v

ol

GI MATRIX

) 1 2
-« 138 -4,724 —-D22267.167 « 065

-4.1446 =-77.903 ~784819.603 1,226
- 022 . 47 6G1323.234 —2E-QF

-. 408 ~25.8746 ~1130194.410 2.328

4

LA h. 5 %

AR -

i e

Ce L MUCLATRT SR ¢ §

A e e wtatas

*
1
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EBEAM ON AN ELASTIC FOUNDATION

3 INDIRECT EOUNDARY INTEGRAL METHOD !
A THEORY: DR. TED SHUGAR 7
% PROGRAM: JAMES V. COX
:"} rtoe Gemee e e S b Lteme Ht0n s St S Pt etk SA3ns Sased e Fum vnss ensh Sl St oreus 5t b L4bos Saseh e FRees et e o s Socos S <4A86 Ao Semee e shbiE beres e st P8BS S1e8 Sebst Sows Mk 1008D imbes eadm SV SAAD it b o0 S0t Shaes Setoe bnemh e SLiws mast ettt eres bamen P coaa soert
' USER INFUT
\ SPRING MODULUS OF MOMENT OF
3 CONSTANT ELASTICITY INERTIA SFAN
'y 1000, 00 10000000, 00 25.00 80.00
S
CONTINUOUS  LEFT END RIGHT END NO. OF LOADS
" LOAD NO. FOSITION  VALUE FOSITION VALUE TO AFFROXIMATE
y 1 0. 00 20. 00 80.00  -20.00 20

N t.EFT END RIGHT END

: MOMENT = Q.00 MOMENT = 0, 00

é SHEAR = 0.00 SHEAFR = Q.00

y e e
: OUTRUT

RESFPONSE

POINT NO. FPOSITION SHEAR MOMENT DISFLACEMENT ROTATION

DTGNS - § )

.01 0, OO 0. QOO0 . 20 Q. Q00

10.01 -29.41 32.86 LO15 0,000

o 20.00 ~.74 I.34 L 010 Q. 000
f 30.01 -9.81 11.93 SE-QO3 O, QOO0

40, 00
S50.01
6000
70.01
79.99

—-. 38
10.11
~-.74
30.36
Q.00

0.00 0. 000
-11.93 -SE-03
~3.354 . 010
-32.85 ~. 015

O, 00 - D20

Q. QOO0
O, OO0
Q. QOO0
0, Q00

;J‘))&.“.;‘A
NONOU S WR -
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CONCENTRATED
LOAD NO. FOSITION VAL LE

200 T Q0

&, 00 &HB. 00
1O, OO &HD L 00
14,00 50,00

18, 00 44, O
22,00 b 00

26,00 28.00
D, 00 20, O
4,00 12,00
I8.00 400
452,00 ) o )
44,00 -12.00
0, ) -2, (:)i:)
4 =, 0 —-28.00
15 58.00 -y W DD
1é &H2. 00 e d 00
o 17 &b, 00 52, 00
v 18 70, 00 b0, 00
w 19 748,00 ~&68. 00

20 78,00 -7 &, 00
o« 21 0, 00 B80. 14
i 22 80, 00 ~-880. 14

0 00 N O L) -

o
L,

O T W NN
IRy
iff.l

Eg G MATRIX
Q 1 iy =
Q 7.902 — SO0 -.878 - 033
1 -« GO0 016 ~ .33 0. 000
N 2 -. 878 LOZ3 7.902 « 500
- 3 LOZE 0. 000 . 500 016
.
¥

61 MATRIX

rJ

0 1 3
-.128 ~4,086 FE~Q3 ~. 63
~4, 03 ~b4.,853 110 13,050
PE-O3 . 639 -.128 4.086
~. 110 ~13.050 4,037 ~&4.853

'y %
o PO

&
gl
)
2
d
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Eg BEAM ON AN ELASTIC FOUNDATION ‘
o INDIRECT BOUNDARY INTEGRAL METHOD
~ THEORY: DR. TED SHUBGAR

PROGRAM: JAMES V. COX S

USER IMFPUT

MODULUS OF
ELASTICITY

SFRING
CONSTANT
1000, 00

MOMENT OF
INERTIA SFan

25.00 40, 0D

CONT INUOUS LEFT END RIGHT END MO. OF LOADS
LOAD NO. FOSITION VaLUE FOSITION valLUE TO AFFROXIMATE
N 1 0,0 (8] :} Q. [§) [§) QO D0 O, 00 10
LEFT END RIGHT END
MOMENT = 0,00 DISFLACEMENT = 0. 00
SHEAR = Q.00 MOMENT = O, 00
QuTrFUT
- RESPONSE
o FOINT NQO. FOSITION SHEAR MOMENT DISFLACEMENT ROTATION
5_: e oo e s s vt e s 20000 et s som s seste s ot i [ PO, e o et e 4100 oo e e sonm bt e semns e o e et e o
“ 1 0, 00 0. 00 Q.00 R bels) Q. 000
2 10,00 -29. 473 33.52 L0115 Q. OO0
& 20,00 -.74 4,01 LOLO 0. 000
4 TO.00 -7 .86 12,43 SE~0Z QL OO0
5 40,00 -.94 0, 00 0. 000 O, 000
123
P
W
25
S
I

L

A vy

c-17

P A e T T Tt et e SN e e T s,
Aot A Satadad wB o h s e T et e e T e e e T, e




LA P Y P —v_—v._-;; .vavw l"‘?,. Tl"‘" "‘"" Ll Wl Al e
e e R R R i T N S e e A A P

CONCENTRATED

LLOAD NO. FOSITION VAL UE
i 2. 00 76.00
2 &.00 &8.00
3 10,00 60,00
4 14,00 52,00
S 18.00 44,00
() 22.00 F6.00
7 26.00 28. 00
a8 30,00 20.00
9 34,00 12.00
10 8. 00 4,00
11 Q.00 877.82
12 40,00 =250.66

5 MATRIX

Q 1 2
7.904 - D00 -1.4568 043
-« 500 016 <047 6E-0O3
Q. QOO0 Q. OO0 Q. Q00 QL O00
—-1.4%56 -, 043 7.904 « IO0

L2

R = O

GI MATRIX

0 1 2
-.138 -4.724 ~-32267.163 . 065

-4.146 =77.9203 -784819.603 1.226
- 022 . 347 61323.234 ~2E-03
~-.408 ~25.876 ~1130194.410 2.328

i

WK =-O

o—
CECRLAR
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Annotated User Interaction

IRUN
BOUNDARY INTEGRAL METHOD
SPRING CONSTANT = 1000

E = 10E6
I =25
L= 100

ﬁUMBER OF CONTINUOUS LOADS = 1

CONTINUOUS LOAD NUMBER 1

FOSITION AND VALUE OF LOAD ON

LEFT END = 20,2000

POSITION AND VALUE OF LOAD ON

RIGHT END = 60,500

NUMBER OF CONCENTRATED L™4DSE TO AFFROX-
IMATE THE CONTINUOUS LOAL

NUMBER OF CONCENTRATED LOADS = 1
CONCENTRATED LOAD NUMERER 1
POSTION AND VALUE OF LOAD = B0, 10ET

BOUNDARY CONDITION INPUT
ENTER AFPROFPRIATE NUMERIC CODE FOR ENOWN

BOUNDARY CONDITION

1. DISPLACEMENT
2. ROTATION

3. MOMENT

4. SHEAR

LEFT BOUNDARY

]
[

EOUNDARY CONDITION 1, CODE
DISPLACEMENT VALUE = O

BOUNDARY CONDITION 2, CODE
MOMENT VALUE = O

i
Just

RIGHT BOUNDARY

BOUMDARY CONDITION 3, CODE
ROTATION VALUE = Q

2

BOUNDARY CONDITION 4, CODE 4
SHEAR VALUE = ©
*GENERATING CONCENTRATED LOADS
*MATRIX DEVELOPEMENT

G MATRIX

HF MATRIX
*MATRIX INVERSION

INVERSION TEST = 4.17263406
*SOLVE FOR ACTUAL BEAM UNKNOWNS

c-19

.... O e e e % PO .
e Tt et T T et e et

............

«RESFONSE INPUT

TE T e TR TR TR YR YN TaT sy T Y Y, YWY ‘ e e e P
. - B . Pl DRl S

v v av.
.....

NUMEBER OF RESFONSE FOINTS = 11

RESFONSE FOINT
)

RESFONSE FOINT
10

RESFONSE FOINT

RESFONSE FOINT
"_': (:i

RESFONSE FOINT
40

RESFONSE POINT
50

RESFONSE FOINT
60

RESFONSE FOINT
70

RESPONSE FOINT
@

RESFONSE POINT
@

RESFONSE FOINT
100

« REGFONSE
RESFONSE FT
RESFONSE FT
RESFONSE FT
RESPONSE FT
RESFONSE FT
RESFONSE FT
RESFONSE FT
RESFONSE FT
RESFONSE PT
RESFONSE FT
RESFONSE FT

QBN U PG -

o Jast
e

Underlined quantities represent user input,
* . indicates the printout of a subroutine

1

+J

i

o

7

8

Q

o
-
ot

FOSITION =

FOSITION =

FOSITION =

FOSITION =

FOSITION =

FOSITION =

FOSITION =

FOSITION =

it

POSITIUN

10 POSITION = |

1

1 FOSITION =
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~— BEAM ON AN ELASTIC FOUNDATION
INDIRECT BOUNDARY INTEGRAL METHOD

X 7
NN THEORY: DR. TED SHUGAR

.-: FROGRAM: JAMES V. COX & T

.:”‘. e omas o088 e 10t S0 ek Bt 4RSS et SR R B S48 S50 4480 B 58 B a5 et ko e e R P s S 4£23 S SR 1o b 2 21 13198 AR e oo ons it S0 o ort #1008 shroe 4t o107 o0t B 2 saron 3 et +eee Sere oaes srn e 3t s armm 5 oot s o 2 rret
% USER INPUT

vy

SPRING MODUL.US OF MOMENT OF
CONSTANT ELASTICITY INERTIA SFAN
1000, 00 10000000, 00 25,00 100.00

.
@

oy
R
aly.

lude

I
f?* CONTINUDQUS  LEFT END R1GHT END NO. OF LOADS
LDAD NO. FOSITION  VALUE FOSITION VALUE TO APPROXIMATE .
:@ i 20,00 2000, 00 &, 0 500, OO 20
A%
it CONCENTRATED
o LOAD NO. FOSITION VALUE
o 1 80. 00 10000, 00
L LEFT END RIGHT END

T DISPLACEMENT

= 0. 00 ROTATION = 0. 00
-~ MOMENT = 0.00 SHEAR = 0. 00
P
e ——————
ki OUTFUT
e e e e e e 2 o e e e e e 2 e e e 1 o e e e et e e e
=
' RESPONSE
2 POINT NO. POSITION  SHEAR MOMENT DISPLACEMENT  ROTATION
Pt e e st e s e ot s e e s e o e e st e e e s v e s s s i s
% 1 .01 7596. 64 0. 00 0. 000 .028
o 2 10.00 8965.02  80464.25 .271 . 026
a0 3 20,00  12914.83 187869.61 .510 .021
4 30.00 790.72 252020.07 . 675 A .012
o 5 40.00  ~6419.81 220317.12 .742 2E-03
] & S50.00  -9662.24 137073.14 .722 ~SE-03
A 7 60.00  ~9651.91  38122.64 . 649 ~9E-03
et 8 70.00  -3616.04 -27461.57 .S58 -9E-03
iy 9 80.01  -8444,32 -37195.25 .477 -7E-03
10 90.00  -4005.30 -98869.39 416 -4E-03
o 11 99.99 0.00 -118683.19 . 393 0. Q00
7 DO YOU WANT THE DEBUG FRINTOUT (Y/N)?Y -

SR T -
Flets foats
I Y

L) ’

o o )
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L - .
o CONCENTRATED [
R LOAD NO. FOSITION VAL UE
et e it i s s s st e s s et o0 s 1 b P, ‘
i 2 21,00 392G, 00 1
s 3 2T 00 77500 ]

4 2. 00 T625. 00 i
: 5 27.00 475,00
% -6 29. 00 AT2S. 00

7 S1.600 3175.00

8 33,00 TO2S. 00
% 9 5. 00 2875, 00 f

. 10 37.00 2725. 00
; 11 39,00 2575, 00
3 12 41,00 2425, 00 1
3. 173 F.00 RRTS.00 ;
3 14 45, 00 2125. 00 f
& 15 47 .00 1975, 00
: 16 49,00 1825. 00
o 17 51. 00 1675, 00
o) 18 53, 00 1525. 00
' 19 55. 00 1375.00
% 20 57,00 1225. 00
n 21 59.00 1075. 00
¥ 22 0.00 ~21444, 46
‘ 23 100. 00 12439.27 i
%
¥ 6 MATRIX
"y © i 2 =
¥ 0. 000 0. 000 0. 000 0. 000
7.901 - . SO0 ~.328 -.021

0. Q00 0. 000 0. 000 0.000
021 —1E-03 . 300 016

[E 8 N o

N 61 MATRIX
K o 1 2 3

0 63152, 345 0. 000 A1453.797 . 086
g 1 998138.796 -1.998 1337181.850 . 053
3] 2 ~2674,363 0.000 998913.4625 1.996
;| 3 43117.033 - 083-31576172. 600 . 025
-
\ i
X

kel P
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# PROGRAM BIM2D(INPUT,OUTPUT,TAPES=INPUT,TAPE6=0UTPUT,TAPE7)
C
a C MAIN PROGRAM
C
DIMENSION X(152),Y(152),BC(304),KBC(152),P(304),LNODE(5)
REAL MU,K(304,304),LAMDA
COMMON /CEES/ €0,Cl1,C2,C3,C4
MK = 304
C INPUT AND INPUT PRINT ROUTINES .
y CALL INFO(X,Y,KBC,BC,NOE,E,MU,KPROB,LNODE,MK)
) CALL INPRNT(X,Y,KBC,BC,NOE,E,MU,KPROB,LNODE)
> PI = 2,.*AC0S(0.)
§ C
3 C CALCULATIONS WHICH ARE FUNCTIONS OF THE MATERIAL ONLY
c
¥ G = E/2./(1.+MU)
N C PLANE STRAIN
. LAMDA = E*MU/(1.+MU)/(l.-2.*MU)
§ C PLANE STRESS
b IF(KPROB.EQ.0) LAMDA = 2.*LAMDA*G/ (LAMDA+2.*G)
- C
] CO = 1, + 2.*(LAMDA+G)/G
e C4 = PI*(LAMDA + 2.*G)
o cl = G/2./C4
- C2 = (LAMDA+G)/C4
A C3 = (LAMDA+3.*G)/4./C4/G
C4 = (LAMDA+G)/4./G/Ch
R C
-f C INFLUENCE MATRIX DEVELOPMENT ROUTINE
: CALL KMAKER(NOE,LAMDA,G,PI,X,Y,K,KBC,MK,LNODE)
C
t C
C SOLVE FOR ARTIFICIAL BOUNDARY LOADS
| N = 2*NOE
3 CALL AXEQB(K,P,BC,N,MK)
C
C
: C CALCULATE RESPONSE AT SPECIFIED POINTS
- CALL RESPON(NOE,LAMDA,G,PI,X,Y,P,LNODE)
i STOP
B END
t
:
g
5
-
¥
§
5
' D-2
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SUBROUTINE MANUAL

VARIABLE LIST

A: A VALUE FOR NONSINGULAR INTEGRATIONS.

B: " n

BC(I),BC(I1l): BOUNDARY TRACTIONS OR DISPLACEMENTS FOR ELEMENT (I+1)/2
CTHETM: COS(THETAM).

CTHETN: COS(THETAN).

CO: A CONSTANT FOR A GIVEN MATERIAL.

Cl . "nn

c2: "nn

c3: "o

Ch: " on

CSX: .EQ.0: CALCULATE SX RESPONSE AT A GIVEN POINT.
CSsY: wau SY

CT: nn T

Cu: non U

cv: "o v

DL: ELEMENT LENGTH.

DX: FOR A GIVEN ELEMENT = X(N) - X(N+1).

DY: FOR A GIVEN ELEMENT = Y(N) - Y(N+l).

E: MODULUS OF ELASTICITY.

EC: SQUARE OF DISTANCE FROM CENTER OF M TO NODE 1 OF N.

EE: X DISTANCE FROM CENTER OF M TO NODE 1 OF N,

EG: Y DISTANCE FROM CENTER OF M TO NODE 1 OF N.

EPSIL: A TOLERANCE USED TO DECIDE BETWEEN INTEGRAL EQUATIONS.
G: SHEAR MODULUS OF ELASTICITY.

GAMl: INTEGRATIONS OVER THE LENGTH OF ELEMENT N.

éAMlO: won

I: (K) FIRST SUBSCRIPT.

Il: I+1

J: (K) SECOND SUBSCRIPT.

Jl: J+1

JB: FLAG TO INDICATE A BOUNDARY RESPONSE POINT.

K(I,J): INFLUENCE MATRIX TO OBTAIN ARTIFICIAL BUUNDARY LOADS.

KBC(M) : KNOWN BOUNDARY QUANTITIES .EQ.0: STRESSES AND .NE.O: DISPLACEMENTS.
KPROB: .EQ.0: PLANE STRESS AND .NE.O: PLANE STRAIN.

LAMDA: LAME' CONSTANT.

LNODE(NBOUND) : LAST NODE OF BOUNDARY NBOUND.

M: OUTER LOOP ELEMENT NUMBER TO DEVELOP 2 (K) ROWS,
MBOUND: A BOUNDARY NUMBER COUNTER.
Ml: M+l

MK: MAXIMUM ORDER OF (K), NOE * 2
MU: POISSON'S RATIO.
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N: INNER LOOP ELEMENT NUMBER TO DEVELOP 2 (K) COLUMNS.
NBOUND: A BOUNDARY NUMBER COUNTER.

Nl: N+l

NOE: NUMBER OF BOUNDARY ELEMENTS.

P(I),P(Il1): ARTIFICIAL BOUNDARY LOADS AT ELEMENT (I+1l)/2

PI: 3.14159...

THETAM: ANGLE OF ELEMENT M.

THETAN: ANGLE OF ELEMENT N.

STHETM: SIN(THETAM).

STHETN: SIN(THETAN).

SXN: SX INFLUENCE COEF DUE TO NORMAL BOUNDARY STRESS.
SXT: SX INFLUENCE COEF DUE TO TANGENTIAL BOUNDARY STRESS.
SXR: SX STRESS AT A GIVEN RESPONSE POINT.

SYN: SY INFLUENCE COEF DUE TO NORMAL BOUNDARY STRESS.
SYT: SY INFLUENCE COEF DUE TO TANGENTIAL BOUNDARY STRESS.
SYR: SY STRESS AT A GIVEN RESPONSE POINT.

TN: T INFLUENCE COEF DUE TO NORMAL BOUNDARY STRESS.

TT: T INFLUENCE COEF DUE TO TANGENTIAL BOUNDARY STRESS.
TR: T STRESS AT A GIVEN RESPONSE POINT.

UN: U INFLUENCE COEF DUE TO NORMAL BOUNDARY STRESS.

UP: UPPER LIMIT ON ELEMENT INTEGRATION.

UT: U INFLUENCE COEF DUE TO TANGENTIAL BOUNDARY STRESS.
UR: U DISPLACEMENT AT A GIVEN RESPONSE POINT.

VN: V INFLUENCE COEF DUE TO NORMAL BOUNDARY STRESS.

VT: V INFLUENCE COEF DUE TO TANGENTIAL BOUNDARY STRESS.
VR: V DISPLACEMENT AT A GIVEN RESPONSE POINT.

X(N): X COORDINATE OF NODE N, THE FIRST NODE OF ELEMENT N.
XQM: X COORDINATE OF THE CENTER OF ELEMENT M.

XR: X COORDINATE OF THE RESPONSE POINT.

Y(N): Y COORDINATE OF NODE N, THE FIRST NODE OF ELEMENT .
YQM: Y COORDINATE OF THE CENTER OF ELEMENT M.

YR: Y COORDINATE OF THE RESPONSE POINT.

INPUT FILE

THE FOLLOWING DESCRIPTION OF THE INPUT FILE IS WRITTEN AS THOUGH
A DECK OF CARDS IS BEING USED AS THE INPUT MEDIUM. ONE MUST
REFER TO THE VARIABLE LIST TO USE THIS BREIF DESCRIPTION.

CARD/SET

DATA DESCRIPTION FORMAT

1

KPROB (PROBLEM TYPE: PL STRESS/PL STRAIN) (15)

E,MU  (MATERIAL PROPERTIES) (E10,F10)

LNODE(1),...,LNODE(5) (LAST NODE NUMBERS) (515)

D-4
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SET 4 BOUNDARY DESCRIPTION CARDS

X(1),Y(1),KBC(1),BC(1),BC(2) (2F10,15,2F10)

X(NOE) ,Y (NOE) ,KBC(NOE) , BC(2*NOE-1) , BC (2*NOE)

SET 5 RESPONSE SPECIFICATION CARDS
IF THE USER INDICATES THAT THE RESPONSE IS BEING
CALCULATED ON A BOUNDARY ELEMENT (JB.NE.O) THEN
THE ELEMENT NUMBER (I) MUST BE ENTERED, AND BOTH
XR AND YR ARE SET TO THE MID-ELEMENT COORDINATES.
THE PROGRAM DOES NOT LIMIT THE NUMBER OF RESPONSE
POINTS.

JB,I, ,XK,YR,CSX,CSY,CT,CU,CV (215,2F10,515)

JB,I,,XR,YR,CSX,CSY,CT,CU,CV

SUBROUTINE LIST

THE FOLLOWING SUBROUTINE LIST INDICATES THE LEVELS OF HIERARCHY
WITHIN THE PROGRAM, BUT DOES NOT COMPLETELY DEFINE THE FLOW

OF EXECUTION. SOME OF THE SECOND ORDER, AND LOWER LEVEL,
ROUTINES ARE NOT ALWAYS EXECUTED. FUNCTIONS ARE NOT LISTED.

BIM2D: MAIN PROGRAM
INFO: INPUTS DATA, EXCEPT FOR RESPONSE DATA.
INPRNT: PRINTS THE INPUT DATA.

KMAKER: GENERATES THE INFLUENCE COEFFICIENT MATRIX (K).
PREK: CALCULATES THETAM, AND MATRIX ROW NUMBERS I AND Il.
PREK: CALCULATES THETAN, AND MATRIX COL NUMBERS J AND Jl.
PREGAM: CALCULATES VALUES IN PREPARATION FOR NONSINGULAR

INTEGRATIONS, UP, EE, EG, A, B, AND EC.
GAMMAF: CALCULATES NONSINGULAR INTEGRATIONS WHEN ELEMENT
M BOUNDARY STRESSES ARE KNOWN.
SXC: CONTROL ROUTINE FOR SXN AND SXT CALCULATIONS SENDS
CONTROL TO SINGULAR OR NONSINGULAR ROUTINE.
SXNS: CALCULATES NONSINGULAR SXN AND SXT.
SXS: CALCULATES SINGULAR SXN AND SXT.
SYC: SY CONTROL ROUTINE.
SYNS: NONSINGULAR CALCULATIONS.
SYS: SINGULAR CALCULATIONS
TC: T CONTROL ROUTINE.
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TNS: NONSINGULAR CALCULATIONS.
TS: SINGULAR CALCULATIONS.

PREK: CALCULATES THETAN, AND MATRIX COL NUMBERS J AND Jl.
PREGAM: CALCULATES VALUES IN PREPARATION FOR NONSINGULAR
INTEGRATIONS, UP, EE, EG, A, B, AND EC.

GAMMAU: CALCULATES NONSINGULAR INTEGRATIONS WHEN ELEMENT

M BOUNDARY DISPLACEMENTS ARE KNOWN.
uc: U CONTROL ROUTINE.
UNS: NONSINGULAR CALCULATIONS.
UsS: SINGULAR CALCULATIONS.
vC: V CONTROL ROUTINE.
VNS: NONSINGULAR CALCULATIONS.
VS: SINGULAR CALCULATIONS.

AXEQB: MATRIX SOLUTION ROUTINE TO SOLVE FOR ARTIFICIAL
BOUNDARY LOADS.
FACTOR
SUBST

RESPON: READS INPUT DATA FOR RESPONSE CALCULATIONS,
CALCULATES THE USER SPECIFIED RESPONSES,
AND PRINTS THE CALCULATED RESPONSES.
THE ROUTINES CALLED FROM RESPON ARE NOT LISTED. THEY ARE
MUCH THE SAME AS THOSE CALLED FROM KMAKER.

s sNsNsNsNsNsNsNsRErNoNeNs NeNsNe N NoNo N Ns e Ro K2 K2 K 2]

RETURN
END
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Iﬁ SUBROUTINE INFO(X,Y,KBC,BC,NOE,E,MU,KPROB,LNODE,MK)
'f'.‘- C
-§ﬁ C THIS ROUTINE READS ALL THE INPUT DATA EXCEPT FOR THE RESPONSE
{ C POINT DATA. A TRAILER CARD IS USED TO INDICATE THE END OF THE
; C ELEMENT INPUT, AND THE NUMBER OF ELEMENTS IS COUNTED TO
. C PREVENT TOO MANY ELEMENTS.
c
-y DIMENSION X(1),Y(1),KBC(1),BC(1),LNODE(1)
s REAL MU
. c
v C ENTER PROBLEM TYPE, PLANE STRAIN OR PLANE STRESS.
.:: C
WO READ(5,1000) KPROB
P 1000 FORMAT(IS)
pooi c
. C ENTER MATERIAL PROPERTIES
.- ¢ c
A READ(5,1010) E,MU
Y 1010 FORMAT(E10.3,F10.3)
I c
N C ENTER LAST NODE NUMBER FOR EACH BOUNDARY
c
READ(5,1050) (LNODE(I),I=1,5)
jg 1050 FORMAT(5I5)
- c
. C LOOP FOR ELEMENT INPUT
M C
" C INITIALIZE
e NOE = 0
X N=20
B C
o 10 N=N+1
wr I =2*%N -1
I1=1+1

C CHECK FOR EXCESSIVE ELEMENT INPUT
IF(N.GT.MK/2) GO TO 20

c
C ELEMENT INPUT
READ(5,1020)X(N),Y(N) ,KBC(N),BC(I),BC(Il)
1020 FORMAT(2F10.3,110,2F10.3)
c

OO e
a & e &%,

. e
a*

0
.

"
YRR
. LN,

X C CHECK FOR TRAILER

3 IF(X(N).GT.7.777E+6) RETURN
b GO TO 10

-~ c

.z-_-'; C

N C N .GT. MK/2

.:'..f‘ C

i 20  REAN(5,1030)TR

[

.
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1010
1020
1025
1030

1040

1050

1060

1070

1080
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FORMAT(F10.3)

IF(TR.GT.7.777E+6) RETURN

N=MK/2

WRITE(6,1040) N

FORMAT (1HO,38HNUMBER OF ELEMENTS EXCEEDS MAXIMUM OF ,12,1H.)
STOP

END

SUBROUTINE INPRNT(X,Y,KBC,BC,NOE,E,MU,KPROB,LNODE)

THIS ROUTINE PRINTS THE INPUT DATA, NOT INCLUDING RESPONSE INPUT,
IN TABULAR FORM.

DIMENSION X(1),Y(1),KBC(1),BC(1),LNODE(1)
REAL MU

PRINT PROGRAM TITLE

WRITE(6,1000)

FORMAT(1H1)
FORHAT(IX,TZZ,36“************************************)
FORMAT (1X,T22,1H*)

FORMAT (1X,T22,1H*,T57, 1H*)

FORMAT (1H+,T57, 1H*)

WRITE(6,1010)

WRITE(6,1025)

WRITE(6,1025)

WRITE(6,1020)

WRITE(6,1040)

FORMAT (1H+,T37,SHBIM2D)
WRITE(6,1030)

WRITE(6,1025)

WRITE(6,1020)

WRITE(6,1050)

FORMAT (1H+,T27,27HA BOUNDARY INTEGRAL PROGRAM)
WRITE(6,1030)

WRITE(6,1020)

WRITE(6,1060)

FORMAT (1H+,T27,29HFOR 2D ELASTOSTATICS PROBLEMS)
WRITE(6,1030)

WRITE(6,1025)

WRITE(6,1020)

WRITE(6,1070)

FORMAT (1H+,T32, 17HDEVELOPED AT NCEL)
WRITE(6,1030)

WRITE(6,1025)

WRITE(6,1025)

WRITE(6,1010)

WRITE(6,1080)

PORMAT(/////1)

D-8
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WRITE(6,1110)

IF(KPROB.EQ.0) WRITE(6,1090)
IF(KPROB.NE.O) WRITE(6,1100)

1110 FORMAT(1X,24HPROBLEM TYPE: PLANE STR)

4,

-~

3 1090 FORMAT(1H+,T26,3HESS)
s 1100 FORMAT(1H+,T26,3HAIN)
C
2 C MATERIAL PROPERTIES

. WRITE(6,1120)

'A 1120 FORMAT(1HO,20HMATERIAL PROPERTIES,T30,1HE,T45,2HMU)
:3 WRITE(6,1130) E,MU
{i - 1130 FORMAT(1X,T22,E10.3,T39,F10.3)
1 c
C MULTIPLE BOUNDARY LAST NODES
WRITE(6,1200) (LNODE(I),I=1,5)
1200 FORMAT(1HO,19HBOUNDARY LAST NODES/515)

4

1 c

¥ C ELEMENT DATA

: i WRITE(6,1140)

& 1140 FORMAT(1HO,12HELEMENT DATA)

-~ WRITE(6,1150)

3- 1150 FORMAT(1X,T10,3HNO.,T25,1HX,T35,1HY,T41,8HKNOWN BC,T55,3HBCI,
&T65,3HBC2)

% c '

By DO 10 N=1,NOE

WRITE(6,1160)N,X(N),Y(N)

1160 FORMAT(1X,I12,F10.3,F10.3)
IF(KBC(N) .EQ.0) WRITE(6,1170)

5 1170 FORMAT(1H+,T45,1HF)

B IF(KBC(N) .NE.0) WRITE(6,1180)

1180 FORMAT(1H+,T45,1HU)

: I =2*N -1

Il =1 +1

WRITE(6,1190)BC(1),BC(11)

-§ 1190 FORMAT(1H+,T50,2F10.3)

2 10 CONTINUE

: RETURN

X END
o

; ] SUBROUTINE KMAKER(NOE,LAMDA,G,PI,X,Y,K,KBC,MK,LNODE)
. c

& c MATRIX GENERATION ROUTINE
- c THIS ROUTINE DEVELOPS (K) FOR THE EQUATION (K)(P)=(BC).
2 c WHERE (P) IS THE THE COLUMN MATRIX OF ARTIFICIAL BOUNDARY
C STRESSES AND (BC) IS THE COLUMN MATRIX OF KNOWN

j’ C BOUNDARY CONDITIONS.

1
"

]

3

:{- D-9
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DIMENSION X(1),Y(1),KBC(1),LNODE(1)

REAL K(MK,1), LAMDA

COMMON /SHOE/ FOR,F1R,F2R,F3R,F4R,FO1,F11,F21,F31,F41,F02,F12,
&F22,F32,F42,FLG

COMMON /CEES/ €0,C1,C2,C3,C4

SET BOUNDARY NUMBER

MBOUND = 1

DO 10 M=1,NOE

IF (M.GT.LNODE(MBOUND)) MBOUND = MBOUND + 1

CALL PREK(M,M1,I,Il,STHETM,CTHETM,DL,X,Y,LNODE,MBOUND)
XQM = (X(M)+X(M1))/2.

YQM = (Y(M)+Y(M1))/2.

NBOUND = 1

IF(KBC(M).NE.O) GO TO 20

BOUNDARY STRESSES KNOWN

DO 30 N=1,NOE

IF (N.GT.LNODE(NBOUND)) NBOUND = NBOUND + 1

CALL PREK(N,N1,J,J1,STHETN,CTHEIN,DL,X,Y,LNODE,NBOUND)
IF(I.EQ.J) GO TO 40

FOR NONSINGULARITY

CALL PREGAM(UP,DL,A,B,EC,EE,EG,XQM,YQM,X,Y,CTHETN,
&STHETN,N)

CALL GAMMAF(A,B,EC,UP,GAM1,GAM2,GAM3 ,GAM4 ,GAMS ,GAM6 ,EE,CTHETN,
&EG, STHETN)

CALL SXC(SXN,SXT,STHETN,CTHETN,GAM1,GAM2 ,LAMDA,G,1,J)
CALL SYC(SYN,SYT,STHETN,CTHETN,GAM3,GAM4,LAMDA,G,I,J)
CALL TC(TN,TT,STHETN,CTHETN,GAMS ,GAM6 ,LAMDA,G,1,J)
K(I,J) = STHETM*STHETM*SXN + CTHETM*CTHETM*SYN -

&2 . *STHETM*CTHETM*TN
K(1,J1) = STHETM*STHETM*SXT + CTHETM*CTHEIM*SYT -
&2 .*STHETM*CTHETM*TT

K(I1,J) = -CTHETM*STHETM*SXN + CTHETM*STHETM*SYN +
& (CTHETM*CTHETM - STHETM*STHETM)*TN

K(I1,J1) = -CTHETM*STRETM*SXT + CTHETM*STHETM*SYT +
& (CTHETM*CTHETM - STHETM*STHETM)*TT

CONTINUE

GO TO 10

BOUNDARY DISPLACEMENTS KNOWN

DO 50 N=1,NOE

IF (N.GT.LNODE(NBOUND)) NBOUND = NBOUND + 1

CALL PREK(N,N1,J,J1,STHETN,CTHEIN,DL,X,Y,LNODE, NBOUND)
IF(I.EQ.J) GO TO 60

FOR NONSINGULARITY

CALL PREGAM(UP,DL,A,B,EC,EE,EG,XQM,YQM,X,Y,CTHEIN,
&STHETN,N)

CALL GAMMAU(A,B,EC,UP,GAM7 ,GAMB ,GAM9 ,GAM10, EE,CTHETN, EG, STHETN)
CALL UC(UN,UT,STHETN,CTHETN,GAM?7 ,GAM8,DL,C3,C4,1,J)
CALL VC(VN,VT,STHETN,CTHETN,GAM9,GAM10,DL,C3,C4,1,J)
K(1,J) = UN

D-10

AN

PR IR AR P I T P P SRR S P T YR Y S T TR S S I R S S S

«" -

W, e




‘ SEMT

N e

A T
3;" Y Ao

“FLAL
P

'i..i'-" o, AN e
LAy

D52

1 SR,

.
¢ ]

- "
' w

¥

&

A~

el T

.‘w. -
-
4
%
l g

A

RCZNCRE A TREATN S

K(1,J1) = UT
K(11,J) = VN
K(11,J1) = VT
50 "CONTINUE
10 CONTINUE
RETURN
END

SUBROUTINE PREK(N,N1,J,J1,STHETN,CTHEIN,DL,X,Y,LNODE,NBOUND)

DETERMINES ELEMENT ANGLE AND SEVERAL ARRAY INDICES

aQaQ

DIMENSION X(1),Y(1),LNODE(1)

N1l = N+l

IF (N.EQ.LNODE(NBOUND) .AND.NBOUND.EQ.1) Nl=1
IF (N.EQ.LNODE(NBOUND) .AND.NBOUND.NE.1) N1=LNODE(NBOUND-1)+1
DX = X(N1) - X(N)

DY = Y(N1) - Y(N)

DL = SQRT(DX*DX + DY*DY)

STHETN = DY/DL

CTHETN = DX/DL

J = 24N - 1

J1 =J+1

‘RETURN

END

SUBROUTINE PREGAM(UP,DL,A,B,EC,EE,EG,XQM,YQM,X,Y,CTHETN,
&STHETN,N)

DETERMINES SEVERAL VALUES IN PREPARATION FOR NONSINGULAR
INTEGRATIONS

aoO0On

DIMENSION X(1),Y(1)

UP = DL

EE = XQM - X(N)

EG = YQM - Y(N)

A=1,

B = -2.*(CTHETN*EE + STHETN*EG)
EC = EE*EE + EG*EG

RETURN

END

D-11
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SUBROUTINE GAMMAF(A,B,C,UP,GAM],GAM2,GAM3 ,GAM4 ,GAMS ,GAM6 ,
&E,F,G,H)

S Py Sl 2x

CALCULATES NONSINGULAR INTEGRATIONS WHEN BOUNDARY STRESSES
ARE KNOWN.

aOO0

COMMON /SHOE/ FOR,F1R,F2R,F3R,F4R,FO1,F11,F21,F31,F41,
1 FO2,F12,F22,F32,F42,FLG

COMMON /CEES/ c0,C1,C2,C3,Cé4

FO1=S01(A,B,C,UP)

Fl1=S11(A,B,C,UP)

F02=S02(A,B,C,UP)

F12=S12(A,B,C,UP)

F22=S22(A,B,C,UP)

F32=S832(A,B,C,UP)

Q1l=E*FO1-F*F11

Q2=G*F01-H*F11

Q3=E*G*GAF02-(2 . *EXGXH+G*G*F) *F12+ (EXH*H+2 , *FAGXH) *F22-F*H*H*F32
Q4=E*E*GXF02-(2 . *EXF*G+E*E*H) *F12+ (FXFXG+2 , XEXFXH) *F22-F*F*H*F32
GAM1=-CO*C1*Q1+C2*Q3

GAM2=C1*Q2-C2*Q4

GAM3=-C0*C1%Q2+C2*Q4

GAM4=C1*Q1-C2*Q3

GAM5=C1*Q2+C2*Q4

GAM6=C1*Q1+C2*Q3

RETURN

END

AR AT R

AR Y

- bl R

SUBROUTINE GAMMAU(A,B,C,UP,GAM7 ,GAMS,GAM9,GAM10,
&E,F,G,H)

AL AR T,

CALCULATES NONSINGULAR INTEGRATIONS WHEN BOUNDARY DISPLACEMENTES
ARE KNOWN.

o000

COMMON /SHOE/ FOR,F1R,F2R,F3R,F4R,FO1,F11,F21,F31,F41,
1 FO2,F12,F22,F32,F42,FLG
COMMON /CEES/ ¢0,Cl1,C2,C3,C4
FO1=S01(A,B,C,UP)
Fl1=S11(A,B,C,UP)
F21=S21(A,B,C,UP)
FLG=SLG(A,B,C,UP)
Q5=G*G*F01-2.*G*H*F1 1 +H*H*F21
Q6=E*E*F01-2 . XEAF*F11+FAF*F21
Q7=E*G*FO1-(EAH+FAG)*F1 1+F*H*F21
Q8=FLG

GAM7=-C3*Q8 -C4*Q5

GAM8=C4*Q7

GCAM9=~C3*Q8~-C4*Q6

GAM10=C4*Q7

RETURN

END
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& FUNCTION SO1(A,B,C,UP)
A COMMON /SHOE/ FOR,F1R,F2R,F3R,F4R,FO1,F11,F21,F31,F41,
) 1 FO2,F12,F22,F32,F42,FLG
FUN1(X)=2,/R*ATAN((2.*A*X+B) /R)
B FUN2(X)=2./(2.*A*X+B)
‘J} FUN3(X)=1,/R*ALOG((2.*A*X+B-R) / (2.%A*X+B+R))
3 BAC=BXB - 4.%A*C
E: R=SQRT(ABS (BAC))
pt EPSIL = 1,0E-10
. IF(BAC.GE.~EPSIL.AND.BAC.LE.EPSIL) GO TO 2
/ IF(BAC) 1,2,3
‘ 1 S01=FUNI1 (UP)~-FUN1(0.)
Y RETURN
’ 2 SO01=FUN2(UP)-FUN2(0.)
¢ RETURN
3 S01=FUN3(UP)-FUN3(0.)
; RETURN
3 END
f7
N
Y
- FUNCTION S11(A,B,C,UP)
% COMMON /SHOE/ FOR,FI1R,F2R,F3R,F4R,FO1,F11,F21,F31,F41,
¥ 1 F02,F12,F22,F32,F42,FLG
A FUN(X)=1./(2.%A)*ALOG(A*X*X+B*X+C)
2 S11=FUN(UP)-FUN(0.)-B/ (2. *A)*FO1
E RETURN
END
9 FUNCTION S21(A,B,C,UP)
¥ COMMON /SHOE/ FOR,F1R,F2R,F3R,F4R,FO1,F11,F21,F31,F41,
1 FO2,F12,F22,F32,F42,FLG
& FUN(X)=X/A-B/ (2.*A) *ALOG (A*XAX+B*X+C)
2 S21=FUN(UP)-FUN(O. )+ (B*B~2.%A*C) /(2.*A*A)*FO1
3 RETURN
g END
%
wp-
Ey FUNCTION S02(A,B,C,UP)
ﬁ . COMMON /SHOE/ FOR,F1R,F2R,F3R,F4R,FO1,F11,F21,F31,F41,
A 1 FO2,F12,F22,F32,F42,FLG
“ FUN1(X)=(2.*A*X+B) / ((~BAC) * (A*X*X+B*X+C) )
¥ FUN2(X)=-1./A/A/3./(B/2./A+X)**3,
N BAC = B*B ~ 4, *A*C
) EPSIL = 1,0E-10
N IF(BAC.GE.~EPSIL.AND.BAC.LE.EPSIL) GO TO 2
i IF(BAC) 1,2,1
K 1 S02=FUN1(UP)-FUN1(0.)+2.*A/(~BAC)*FO1
. RETURN
M 2 802=FUN2(UP)-FUN2(0.)
R RETURN
; B
. D-13
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FUNCTION S12(A,B,C,UP)
COMMON /SHOE/ FOR,F1R,F2R,F3R,F4R,FO1,F11,F21,F31,F41,
1 FO2,F12,F22,F32,F42,FLG
FUNI (X)==(2.*C+B*X) / ((~BAC) * (A*X*X+B*X+C))
FUN2(X)=-(B/2.+3 . *A*X) / (3.*A*X+]1,5%B)
BAC = B*B - 4.%A*C
EPSIL = 1.0E-10
IF(BAC.GE.-EPSIL.AND.BAC.LE.EPSIL) GO TO 2
IF(BAC) 1,2,1

1 S12=FUN1 (UP)~FUN1(0.)-B/(-BAC)*FOl
RETURN

2 S12=FUN2(UP)-FUN2(0.)
RETURN
END

FUNCTION $22(A,B,C,UP)

COMMON /SHOE/ FOR,FIR,F2R,F3R,F4R,FO1,F11,F21,F31,F4l,
1  FO2,F12,F22,F32,F42,FLG

FUN(X) =-X/ (A* (A*X*X+B*X+C))

$22=FUN(UP)-FUN(0.)+C/A*F02

RETURN

END

FUNCTION S32(A,B,C,UP)

COMMON /SHOE/ FOR,FI1R,F2R,F3R,F4R,FO1,F11,F21,F31,F41,
1 PFO2,F12,F22,F32,F42,FLG
FUN(X)=-X*X/ (A* (AXXAX+B*X+C))
$32=FUN(UP)-FUN(0.)+F11/A+C*F12/A

RETURN

END

FUNCTION SLG(A,B,C,UP)

COMMON /SHOE/ FOR,F1R,F2R,F3R,F4R,FO1,F11,F21,F31,F41,
1 PO2,r12,F22,F32,742,FLG

FUN(X) =X*ALOG (SQRT (A*X*X+B*X+C))
SLG=FUN(UP)~A*F21-B*,54F11

RETURN

END
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i SUBROUTINE SXC(SXN,SXT,STHETN,CTHETN,GAM1,GAM2,LAMDA,G,1,J)

SX CONTROL ROUTINE TO DECIDE BETWEEN SINGULAR AND NONSINGULAR
INFLUENCE COEFFICIENTS. ;

O0OMO

REAL LAMDA
IF (1.EQ.J) GO TO 10 ]
NONSINGULAR b
CALL SXNS(SXN,SXT,STHEIN,CTHETN,GAM1,GAM2)
. RETURN
C SINGULAR
10 CALL SXS(SXN,SXT,STHETN,CTHETN,LAMDA,G)
RETURN
END

e

ot
(2}

S T ko e
]

P SUBROUTINE SXNS(SXN,SXT,STHETN,CTHETN,GAM1 ,GAM2)

: c
¢ c SIGMA X INFLUENCE COEFS FOR NONSINGULARITY CONDITIONS
c

L

SXN = —-STHETIN*GAM1 + CTHETN*GAM2
SXT = CTHETN*GAM]1 + STHETN*GAM2
RETURN

END

ek g X W

SUBROUTINE SXS({SXN,SXT,STHETN,CTHETN,LAMDA,G)

SIGMA X INFLUENCE COEFS FOR SINGULARITY CONDITIONS

[z N> Ne!

Cpt k& ey

REAL LAMDA

SXN = (LAMDA + 2.*G*STHETN*STHEIN) /2. /(LAMDA + 2.%*G)
SXT = -STHETN*CTHETN

RETURN

END

A SUBROUTINE SYC(SYN,SYT,STHETN,CTHETN,GAM3,GAM4 ,LAMDA,G,1,J)

SY CONTROL ROUTINE

Al
OO0

£ REAL LAMDA
: IF (I.EQ.J) GO TO 10
. C NONSINGULAR
: CALL SYNS(SYN,SYT,STHETN,CTHETN,GAM3,GAM4)
RETURN
N C SINGULAR
10  CALL SYS(SYN,SYT,STHETN,CTHETN,LAMDA,G)
RETURN
END

D-15
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SUBROUTINE SYNS(SYN,SYT,STHETN,CTHETN,GAM3,GAM4)
SIGMA Y INFLUENCE COEFS FOR NONSINGULARITY CONDITIONS
SYN = CTHETN*GAM3 - STHETN*GAM4

SYT = STHETN*GAM3 + CTHEIN*GAM4

RETURN
END

SUBROUTINE SYS(SYN,SYT,STHEIN,CTHETN,LAMDA,G)

SIGMA Y INFLUENCE COEFS FOR SINGULARITY CONDITIONS
REAL LAMDA

SYN = (LAMDA + 2,*G*CTHETN*CTHEIN) /2. /(LAMDA + 2.*G)
SYT = STHETN*CTHETN

RETURN
END

SUBROUTINE TC(TN,TT,STHETN,CTHETN,GAMS ,GAM6,LAMDA,G,I,J)
TAU CONTROL ROUTINE

REAL LAMDA
IF (I.EQ.J) GO TO 10

C ' NONSINGULAR

CALL TNS(TN,TT,STHETN,CTHETN,GAMS ,GAM6)
RETURN

C SINGULAR

10

ann

CALL TS(TN,TT,STHETN,CTHETN,LAMDA,G)
RETURN
END

SUBROUTINE TNS(TN,TT,STHETN,CTHETN,GAMS ,GAM6)
TAU INFLUENCE COEFS FOR NONSINGULARITY CONDITIONS

TN = STHETN*GAM5 - CTHETN*GAM6

TT = -CTHETN*GAM5 - STHETN*GAM6

RETURN

END .
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;;‘ SUBROUTINE TS(TN,TT,STHETN,CTHETN,LAMDA,G)
23 c TAU INFLUENCE COEFS FOR SINGULARITY CONDITIONS
c.
REAL LAMDA
TN = =G / (LAMDA + 2.*G)*STHETN*CTHETN
TT = -.5 * (STHETN*STHETN - CTHETN*CTHETN)
o RETURN
“ END
g - SUBROUTINE UC(UN,UT,STHETN,CTHETN,GAM7,GAM8,DL,C3,C4,1,J)
%> - C
e c U CONTROL ROUTINE
' c
g& C NONSINGULAR
7S CALL UNS(UN,UT,STHETN, CTHETN,GAM7 ,GAM8)
3§% RETURN '
Fy C SINGULAR
-~ 10  CALL US(UN,UT,STHETN,CTHETN,DL,C3,C4)
' RETURN
END
43 SUBROUTINE UNS(UN,UT,STHETN,CTHETN,GAM7 ,GAM8)
'{,“I C
%3 c U INFLUENCE COEFS FOR NONSINGULARITY CONDITIONS
Ee) C
=
R Y UN = -STHETN*GAM7 + CTHETN*GAMS
UT = CTHETN*GAM7 + STHETN*GAM8
RETURN
END
SUBROUTINE US(UN,UT,STHETN,CTHEIN,DL,C3,C4)
c
c U INFLUENCE COEFS FOR SINGULARITY CONDITIONS
i c '
i UN = DL * STHEIN * (C3*(ALOG(DL/2.) -1.) + C4)
g UT = -C3 * (ALOG(DL/2.) -1.) * DL * CTHETN
- RETURN
gy END
gt
%
g
e
.'B D-17
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SUBROUTINE VC(VN,VT,STHETN,CTHETN,GAM9,GAM10,DL,C3,C4,1,J)

V CONTROL ROUTINE

IF (I.EQ.J) GO TO 10

NONSINGULAR

CALL VNS(VN,VT,STHETN,CTHETN,GAM9,GAM10)
RETURN

SINGULAR

CALL VS(VN,VT,STHEIN,CTHETN,DL,C3,C4)
RETURN

END

SUBROUTINE VNS(VN,VT,STHETN,CTHETN,GAM9,GAM10)
V INFLUENCE COEFS FOR NONSINGULARITY CONDITIONS
VN = CTHEIN*GAM9 - STHETN*GAM10

VT = STHETN*GAM9 + CTHETN*GAM10

RETURN
END

SUBROUTINE VS(VN,VT,STHETN,CTHETN,DL,C3,C4)
V INFLUENCE COEFS FOR SINGULARITY CONDITIONS
VN = -DL * CTHETN * (C3*(ALOG(DL/2.) -1.) + C4)

VT = -C3 * (ALOG(DL/2.) -1.) * DL * STHEIN
RETURN

END




SUBROUTINE AXEQB(A,X,B,N,M)
DIMENSION A(M,1), X(1), B(l), IPIVOT(304), D(304), W(304,304)

C
C THIS SUBROUTINE SOLVES THE LINEAR SYSTEM AX = B

) C IN THIS APPLICATION THE ARTIFICIAL BOUNDARY STRESSES ARE SOLVED FOR
N c
N CALL FACTOR (A,A,IPIVOT,D,N,IFLAG,M)
A IF (IFLAG .EQ. 1) GO TO 10
” WRITE (6,1000)
. STOP
39 10 CONTINUE
o) DO 100 I = 1,N
o 100 X(I) = 0.0 ,
s CALL SUBST (A,B,X,IPIVOT,N,M)
bo2 RETURN :
’ 1000 FORMAT(19HIMATRIX IS SINGULAR)
2 END
-0 SUBROUTINE FACTOR(A,W,IPIVOT,D,N,IFLAG,M)
s DIMENSION A(M,1),IPIVOT(1),D(l)
Nz DIMENSION W(M,1)
N IFLAG = 1
-.g c INITIALIZE W, IPIVOT, D
gy DO 10 I=1,N
: IPIVOT(I) = I
ROWMAX = 0.
‘o DO 9J=1,N
20 W(I,J) = A(I,J)
ﬁ 9 ROWMAX = AMAX1(ROWMAX,ABS(W(I,J)))
& IF (ROWMAX .EQ. 0.) GO TO 999
e 10 D(I) = ROWMAX
, c GAUSS ELIMINATION WITH SCALED PARTIAL PIVOTING.
n NMl = N-1
& IF (NM1 .EQ. 0) RETURN
A DO 20 K = 1,NM1L
!
g | J =K
oo KPl = K + 1
IP = IPIVOT(K)
%4 COLMAX = ABS(W(IP,K))/D(IP)
-'&5]-' DO 11 I = KPL,N
a0 IP = IPIVOT(I)
< % AWIKOV = ABS(W(IP,K))/D(IP)
"< IF (AWIKOV .LE. COLMAX) GO TO 11
- COLMAX = AWIKOV
<i J=1
¥ 11 CONTINUE
ek IF (COLMAX .EQ. 0.) GO TO 999
c

e a
X s

IPK = IPIVOT(J)
IPIVOT(J) = IPIVOT(K)
IPIVOT(K) = IPK

D-19
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DO 20 I = KP1,N j
IP = IPIVOT(I) ]
W(IP,K) = W(IP,K)/W(IPK,K) :
RATIO = -W(IP,K) -
DO 20 J = KP1,N

20 W(IP,J) = RATIO*W(IPK,J) + W(IP,J)
IF (W(IP,N) .EQ. 0.) GO TO 999
RETURN

999 IFLAG = 2
RETURN .
END

SUBROUTINE SUBST(W,B,X,IPIVOT,N,M)
DIMENSION w(M,1),R(1),X(1),IPIVOT(1)
IF (N.GT.1) GO TO 10
X(1) = B(1)/w(1,1)
RETURN
10 IP = IPIVOT(1)
X(1) = B(IP)
DO 15 K = 2,N
IP = IPIVOT(K)
KMl = K-1
SUM = 0.
DO 14 J= 1,KM1
14 SUM = W(IP,J)*X(J) + SUM
15 X(K) = B(IP) - SUM

X(N) = X(N)/W(IP,N)
K=N
DO 20 NPIMK = 2,N
KP1 = K
K=RK-1
IP = IPIVOT(K)
SUM = 0.
¥ DO 19 J = KP1,N
¢ 19 SUM = W(IP,J)*X(J) + SUM
; 20 X(K) = (X(K) - SUM)/W(IP,K)
RETURN
END

Seage 4
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SUBROUTINE RESPON (NOE,LAMDA,G,PI,X,Y,P,LNODE)

THIS ROUTINE CALCULATES THE RESPONSE AT EACH USER DEFINED
POINT OF INTEREST. THE RESULTS ARE SENT TO DEVICE 6, WHICH
IS INITIALLY OUTPUT.

THE USER HAS THE OPTION OF DEFINING THE RESPONSE POINT

AS WITHIN OR ON THE BOUNDARY. FOR THAT GIVEN POINT HE ALSO
HAS THE OPTION OF WHICH RESPONSES TO CALCULATE. !

OOOO00O00O00

COMMON/CEES/c0,C1,C2,C3,C4 I
DIMENSION X(1),Y(1),P(1),LNODE(1)
INTEGER CSX,CSY,CT,CU,CV

REAL LAMDA

a0

PRINT OUTPUT HEADER
WRITE(6,3000)
3000 FORMAT(1H1,T4,8HRESPONSE/1X,T4,8H=——————= )
WRITE(6,3010)
3010 FORMAT(1HO,T4 ,7HELEMENT,T16,1HX,T26,1HY,T36,2HSX,T46,2HSY,T56,1HT
&,T66,1HU,T76,1HV/)
C
C RESPONSE POINT CALCULATION LOOP
C
10 READ(5,3015)JB,I,XR,YR,CSX,CSY,CT,CU,CV
3015 FORMAT(215,2F10.0,515)
IF(JB.EQ.77777) RETURN
IF(JB.EQ.0) GO TO 20
C RESPONSE AT A BOUNDARY ELEMENT
WRITE(6,3020)1
3020 FORMAT(1X,T5,I5)
I1=1I+1
c
C DETERMINE LAST NODE NUMBER
DO 15 N=1,5
IF(LNODE(N) .EQ.0) GO TO 16
IF(I.EQ.LNODE(N) .AND.N.EQ.1) Il=l
15 IF(1.EQ.LNODE(N) .AND.N.NE.1) I1=LNODE(N-1)+1
C
16 XR = (X(I) + X(I1))/2.
YR = (Y(I) + Y(I1))/2.
GO TO 30
C RESPONSE NOT AT A BOUNDARY ELEMENT
20 WRITE(6,3030)XR,YR
3030 FORMAT(1X,T11,2F10.3)
I1=0

C INITIALIZE THE RESPONSES
30 SXR = 0.

SYR = 0.

TR = 0.

UR = 0.

VR-OO
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INITIALIZE BOUNDARY NUMBER

NBOUND=1

FOR EACH LOAD (ASSUMES BOUNDARY LOADS ONLY)

DO 40 N=1,NOE

IF(N.GT,LNODE(NBOUND)) NBOUND=NBOUND+1

CALL PREK(N,N1,J,J1,STHETN,CTHETN,DL,X,Y,LNODE,NBOUND)
CALL PREGAM(UP,DL,A,B,EC,EE,EG,XR,YR,X,Y,CTHETN,STHETN,N)
IF(CSX.NE.0.AND.CSY.NE.0.AND.CT.NE.O) GO TO 50

C THERE ARE STRESS CALCULATIONS

60

70

50

CALL GAMMAF(A,B,EC,UP,GAM1,GAM2,GAM3,GAM4 ,GAMS ,GAM6, EE, CTHETN,

&EG, STHETN)

IF(CSX.NE.0) GO TO 60

CALL SXC(SXN,SXT,STHETN,CTHETN,GAMI1 ,GAM2 ,LAMDA,G,I,N)
SXR = SXR + SXN*P(J) + SXT*P(J1)

IF(CSY.NE.0) GO TO 70

CALL SYC(SYN,SYT,STHEIN,CTHEIN,GAM3,GAM4,LAMDA,G,I,N)
SYR = SYR + SYN*P(J) + SYT*P(Jl)

IF(CT.NE.O) GO TO 50

CALL TC(TN,TT,STHEIN,CTHETN,GAMS,GAM6 ,LAMDA,G,I,N)

TR = TR + TN*P(J) + TT*P(J1)

1IF(CU.NE.0.AND.CV.NE.O) GO TO 40

C THERE ARE DISPLACEMENT CALCULATIONS

80

40

CALL GAMMAU(A,B,EC,UP,GAM7,GAM8,GAM9,GAM10, EE,CTHETN, EG, STHETN)
IF(CU.NE.O) GO TO 80
CALL UC(UN,UT,STHEIN,CTHETN,GAM7,GAM8,LAMDA,G,I,N)

UR = UR + UNX*P(J) + UT*P(J1)

IF(CV.NE.O) GO TO 40
CALL VC(VN,VT,STHETN,CTHETN,GAM9,GAM10,LAMDA,G,I,N)

VR = VR + VN*P(J) + VT*P(J1)

CONTINUE

C INDIVIDUAL RESPOPNSE POINT PRINT OUT

3400
90

3500
100

3600
110

3700
120

3800

IF(CSX.NE.0) GO TO 90

WRITE(6,3400) SXR

FORMAT (1H+,T31,E10.3)
IF(CSY.NE.O) GO TO 100

WRITE(6,3500) SYR
FORMAT (1H+,T41,E10.3)

IF(CT.NE.O) GO TO 110

WRITE(6,3600) TR
FORMAT (1H+,T51,E10.3)

IF(CU.NE.O) GO TO 120

WRITE(6,3700) UR
FORMAT(1H+,T61,E10.3)

IF(CV.NE.O) GO TO 130

WRITE(6,3800) VR
FORMAT (1H+,T71,E10.3)

C MAKE OUTPUT FILE (TAPE7) FOR PLOTTING.

130

4000

IF(JB.NE.O) GO TO 10

WRITE(7,4000) XR,YR,SXR,SYR,TR,UR,VR

FORMAT(2F10.4,5E15.6)

GO TO 10
END
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Norfolk; Code 440, Puget Sound, Bremerton WA L.D. Vivian; Library. Portsmouth NH; PWD (Code 420)

i
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o

% Dir Portsmouth, VA; PWD (Code 460) Portsmouth, VA; PWO, Bremerton, WA: PWO. Mare Is.; Tech

] Library, Vallejo, CA .
NAVSTA CO Roosevelt Roads P.R. Puerto Rico; Dir Engr Div, PWD, Mayport FL: Engr. Dir.. Rota Spain;

- Long Beach, CA; Maint. Div. Dir/Code 531, Rodman Panama Canal; PWD - Engr Dept, Adak, AK; PWD -

. Engr Div, Midway Is.; PWO, Keflavik Iceland; SCE, Guam: SCE. San Diego CA

N, NAVSUPPACT Engr. Div. (F. Mollica), Naples Italy; PWO Naples Italy .

3 NAVTECHTRACEN SCE, Pensacola FL

o NAVWPNCEN Code 2636 China Lake; Code 3803 China Lake, CA; PWO (Code 266) China Lake. CA: ROICC

1 (Code 702), China Lake CA

1 NAVWPNSTA Code 092, Concord CA

¥ NAVWPNSTA PW Office Yorktown, VA

* NAVWPNSTA PWD - Maint. Control Div., Concord, CA; PWD - Supr Gen Engr. Seal Beach, CA; PWO,

Charleston, SC; PWO, Seal Beach CA
NAVWPNSUPPCEN Code 09 Crane IN
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NCBC Code 10 Davisville, RI; Code 15, Port Hueneme CA; Code 155, Port Hueneme CA; Code 156, Port
Hueneme, CA; Code 430 (PW Engmng) Gulfport, MS; PWO (Code 80) Port Hueneme, CA: PWO. Gulfport,
MS

NCR 20, Commander

NMCB FIVE, Operations Dept; Forty, CO; THREE, Operations Off.

NOAA (Dr. T. Mc Guinness) Rockville, MD; Library Rockville, MD

NORDA Code 410 Bay St. Louis, MS; Code 440 (Ocean Rsch Off) Bay Si. Louis MS

NRL Code 5800 Washington, DC; Code 5843 (F. Rosenthal) Washington, DC: Code 8441 (R.A. Skop).
Washington DC

NROTC J.W. Stephenson, UC, Berkeley, CA

NSC Code 54.1 Norfolk, VA

NSD SCE, Subic Bay, R.P.

» NUCLEAR REGULATORY COMMISSION T.C. Johnson, Washington, DC

NUSC Code 131 New London, CT; Code 332, B-80 (J. Wilcox) New London, CT; Code EA123 (R.S. Munn),
New London CT; Code TAI131 (G. De la Cruz), New London CT

ONR Central Regional Office, Boston, MA; Code 481, Bay St. Louis, MS: Code 485 (Silva) Arlington. VA;

* Code 700F Arlington VA

PACMISRANFAC HI Area Bkg Sands, PWO Kckaha, Kauai, Hi

PHIBCB 1 P&E, San Diego, CA

PMTC Code 4253-3, Point Mugu, CA; EOD Mobile Unit, Point Mugu. CA

PWC ACE Office Norfolk, VA; CO Norfolk, VA; CO, (Code 10), Oakland, CA; CO, Great Lakes IL; CO,
Pearl Harbor HI; Code 10, Great Lakes, IL: Code 105 Oakland, CA; Code 120, Oakland CA; Library, Code
120C, San Diego, CA: Code 128, Guam; Code 154 (Library), Great Lakes, IL; Code 200, Great Lakes IL;
Code 400, Great Lakes, IL; Code 400, Oakland, CA; Code 400, Pearl Harbor, HI; Code 400, San Diego,
CA; Code 420, Great Lakes, IL; Code 420, Oakland, CA: Code 424, Norfolk, VA, Library, Guam; Library,
Norfolk, VA; Library, Oakland, CA; Library, Pearl Harbor, HI; Library, Pensacola, FL; Library, Subic
Bay, R.P.; Library, Yokosuka JA

TVA Solar Group, Amold, Knoxville, TN

UCT ONE OIC, Norfolk, VA

UCT TWO OIC, Port Hueneme CA

US DEPT OF INTERIOR Bur of Land Mgmnt Code 583, Washington DC

US GEOLOGICAL SURVEY Off. Marine Geology, Piteleki, Reston VA

USCG (G-MP-3/USP/82) Washington Dc; (Smith), Washington, DC; G-EOE-4 (T Dowd), Washington, DC

USCG R&D CENTER CO Groton, CT; D. Motherway, Groton CT

USDA Forest Service Reg 3 (R. Brown) Albuquerque, NM

USNA Ch. Mech. Engr. Dept Annapolis MD; ENGRNG Div, PWD, Annapolis MD; PWO Annapolis MD;
USNA/Sys Eng Dept, Annapolis, MD

USS FULTON WPNS Rep. Offr (W-3) New York, NY

NUSC Library, Newport, Rl
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