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Abstract [A
Bias and variance equations are presented for two-dimensional location

estimators of a nonmoving point source of radiation in an isotropic, sta-

tionary random medium. The estimators are calculated from spatially corre-

lated angle-of-arrival data which are collected simultaneously at two sensor

positions and assumed to consist of true (unbiased) source angles plus zero-

mean angular noise with equal variances at both sensors and negligible higher

moments. Under these assumptions the square of the estimator bias is, in

general, a quadratic function and the estimator variance a linear function of

the spatial data correlation coefficient. However, for source ranges much

larger than sensor separation, both the bias and the variance tend to increase

linearly with decreasing correlation coefficient, whereas they tend to

decrease with increasing sensor separation. The combined effect for a distant

source in a stationary random medium, when evaluated for typical spatial

wavefront autocorrelation functions, is a significant reduction in the esti-

mator bias and variance dependence on sensor separation, as compared to the

uncorrelated case. With minor modifications, the same results apply to the

equivalent problem of using time-of-arrival data from three colinear sensor

positions.
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' *( * ,-;* ~ *~*~~~..i .**-.~~



•

Introduction

In sonar or radar, passive source localization is concerned with the

estimation of an object's location from its emitted random radiation (acoustic

or electromagnetic waves). For the two-dimensional case, this estimation of

the source coordinates (x,y) requires simultaneous wavefront angle-of-arrival

measurements by at least two separate sensors (or, equivalently, time-of-

arrival measurements by at least three sensors). In many cases of practical

interest, the angle measured by each sensor can be regarded as a random varia-

ble whose mean is the true (unbiased) source direction and whose variance is a

constant (independent of source direction). In addition, the two random

variables thus generated are jointly characterized by a spatial correlation

coefficient which accounts for such factors as wavefront coherence, sensor

assembly rigidity, etc. For sound propagating through the ocean, typical

spatial coherence lengths range from 1 to over 103 meters.(1)

It is well known that even though the angles measured by the sensors may

have unbiased means and constant variances, the source location estimated from

these angles by direct calculation has a bias and variance which are functions

of the source-sensor geometry. Several authors have investigated this problem

under the assumption of spatially uncorrelated angle-of-arrival (or time-of-

arrival) data.(2 ,3,4,5) In this paper, we present equations for the estimator

bias and variance resulting from spatially correlated data (Section I).

Section II examines the bias and variance dependences on correlation coeffi-

cient and source-sensor geometry and presents some of the results graphical-

ly. In Section II, the joint effects of spatial data correlation and sensor

separation are examined for distant sources in a stationary random medium.

Conclusions are drawn in Section IV.
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I. General

In this section, we develop equations for the bias and variance of source

location estimators calculated from correlated angle-of-arrival data. The two

sensors are positioned at x = ±D in the x,y plane (Figure 1) and the true

source location is (xsYs) and (Re) in Cartesian and polar coordinates,

respectively. The true source angles at sensors I and II are 81 and e2. All

angles are measured counterclockwise from the positive x direction.

In terms of 01, e2, and D the true source location coordinates are as

follows:

R = D (1+cOs 2 (e2 -ej)-zcos(e 2 -el)cos(e+ej) (1)

sin2 (e2-81 )

ose0e1)-cos(e ze1)
e -tan 1 (coS(0 2 +) 0 (2)

sin(02401C si n(e2 9e1 ) /

x= sin(02 +e1 ) (3)

=D cos(02-e 1)-cos(8 2+e 1) )Ysfn(e2el)

(Note that these and the following equations are written in terms of (02+81)

and (02-01) to simplify their interpretation for specific sensor-source orien-

tations. Thus, for a "broadside" source located along the y-axis, e1+02 - w.)

Now assume that the angle-of-arrival data generated at sensor positions I

and 11 are random variables with means 81 and 82 (i.e., true source

angles), variance a2 (same for both sensors and independent of direction),

correlation coefficient p and negligible higher moments. The source coordi-

nates (x,y) which are calculated from these data by (3) and (4) will then also

4 '" ' .. . , .. - ' -/ ' ' .. ? , ' -." -/ I , -L .. .- , . . - .
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be random variables whose moments can be determined in terms of the angle-of-

arrival moments by expanding (x,y) into a Taylor series about the true source

location (xsys).( 6)

Thus, the mean and variance of x are given by

a2. axS a2xS a 2Xs
x2 axe + x+  e

ae1  ae 2  1 2)

a (as2 as , xs ax s

x ~ ae +(e2J 12/

where all terms involving moments higher than a2 and p have been neglected.

Carrying out the indicated operations on (3) we obtain

2Do 2sin(e2+01 ) /o2
x xs + sin-o ( )0 (5)

2 0 2 a2

ax sin4 (e2-e1 )  cos2(e2+ej)cos2(e 2 -e 1 )

+ p[cos2(6 2+e 1 )-cos2(o-e) (6)

Similarly, the mean and variance of y are

2D°qcos(0 2-01 )
S" Ys + -i---2.-. .. ( - cos(e 24e1 )cos(e 2-e l )sin3(02-el)

+ cos(e2+e,) ]

+ Cos (0e2e 1) (7)

I'' .: -'' : -,,-',i",-:::,,-o i"i-.: i ;:- . .--%:i----:"-: -. :",:".:-.<".i"--: . "
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2 /
2, -sn4e2-l [1 - cos(e 2 e)cos(e 2-e)] + sin (e2 +e )sin (e2-el)

sin (a 2-0)
P[cos(e 2 -el) - cos(e2+0l) ]  (8)

The covariance of x and y is (again retaining only terms up to 02 and p):

x- - - +nI? -+--(s'y s Y x YIiae 1  3e0 362 3 2 30 36e2 62 0-I9

Performing the indicated operations on (3) and (4) yields

2 22D 2 sln( 24) +e
2aDsin (e2+01 ) (cos(e 2-8 1 ) - cos(e 2 +e1 )cos2( e 2 -e 1 )

+ Pcos(e2 +e1 ) - cos(o2 -el) ) (9)

It is convenient to consider the calculated source coordinates (xy) as

the rectangular components of a two-dimensional source-location estimator

(i.e., a two-dimensional random vector) with mean ('7,) and variance S. From

(5) and (7), the magnitude B of the estimator bias (i.e., the Euclidean dis-

tance between the estimator mean (7,Y) and the true source location (xsYs))

is obtained as

I ~1§ ~21)1/2B. x,),' + (- y5)7L/2 A(E + pF + (10)

where

. *

, 'I\e 5 - * * ~ . . '-4
',,"g .o'" ,"3"~ ~ ~~ -". *"o-b"'-i

. ' °
, .u 4

-"-".'-",,i'., ''',,.--.. "
•".. """ "" "" ' -.
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A 21o 2

sin 3(02-el)

22E -cos (e2-e)(l - 2cos(e 2+61 )cos(e 2 -e1 ) + cos2(2-el))

F - 2cos(e 2 -ei)(cos(e2 +1)(1 + cos 2 (2-e)) - 2cos(e 2-ei))

6 = 1 - 2cos(e 2 +e-)cos(e 2- 1 ) + cos 2 (e2-el)

The angle 6 of the estimator bias is, from (5) and (7):

6 tan"1(:-) =tan" ( (l-P)cos(0 2-01) cot(e + )
l' S sin(62 +e)[cos2 (02 -0)-P) 21)

(10a)

Similarly, from (6) and (8), the estimator variance S (i.e., the mean-

squared Euclidean distance between the estimator (x,y) and the estimator mean

(x,)) is obtained as

S 02 +2 .H[I +pJJ (11)x Oy

where

H = 
aD2

sin (02-el)

I 1 - cos(e2+e1 )cos(e2-el)

J-cos(e2 -01 )(Cos(e 2 +e.) -cos(e 2 -e))

II. Estimator Bias and Variance

The strong estimator dependence on the data correlation coefficient p is

shown qualitatively in Figure 2 for a particular source-sensor geometry. The

I. . ,. % .. ' . : .. ' .,.,., ... . '.' .. ' . , . . -.. . , .,.. . -. . . .. , , "..
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cases p =+1 or p = 0 arise, for example, when the angle-of-arrival errors are

primarily due to the random structure of the propagation medium between source

and sensors, and the sensor separation is much smaller or much larger, respec-

tively, than the medium's spatial coherence length. Similarly, the

cases p =+1 or p a-- can arise when the errors are primarily due to the

random motion (rotational or translational) of the rigid two-sensor assembly

relative to the propagation medium.

To investigate the estimator bias and variance dependences on p and on

the source-sensor geometry in more detail, we make use of the inverse rela-

tions

626 -e tan -1 (b1n7 (12)

R/
8 2 + = tan' 1( os'in.2e - (13)

(Note that for source locations in the first quadrant, both 82-61 and 02+01

range over (0,w)). Substitution of (12) and (13) into (10) and (11) yields,

after some straightforward but tedious algebra, the results for B, 6, and S:

B = W(L + PM +- p2 N1)' 2  (14)
~(14

%' where

R3a1 1 + D 2D2  11/2202 sin2 e - cos 

L (1- -2mR



D o2 o 2
M; . )( cos2o.

D4  2D2

N= 1 + - - - cos2e
R R2

20r 2 2
6 - ta an + ( 2)(L - j tane (14a)

LR

-= )P(Q + PT (15)

where

4" R4.2  (1 + 202 1
P = + - cos2e)

2 4 220 si ne R Rl

RT

T = -_ 1

"3y

Consider first the estimator bias B. Successive differentiation of (14)

M
reveals that B is a minimum when p - Pmin = - , ' or

_L1' 0 2D 2 -1
-min 2 - cos2e cos2e) "1  (16)

In Figure 3, Pmln is plotted against the normalized source coordinates

f~ s R 2 Xs 2 Ys 2
- , 1-" ) , where (j - (U!) + (.-) from Figure 1. We note that Pmin > 0

for all source locations except those in the region cos2e <

By substituting (16) into (14), we obtain the minimum estimator bias

ran . 8o0(1 . .2 )1/2 or

eI.- (
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Bin R 4 2R2 1/2
--- = si n2e 1 + - cos2 (17)

0

where Bo = W(Ll1/2 is the estimator bias obtained for uncorrelated data, i.e.
Brat n  Sx s Y

for p - 0. In Figure 4, B is plotted against U-
0

The maximum estimator bias Bma x is obtained by setting p = +1 or p = -1

in (14), according as to whether Pmin < 0 or Pmln > 0, respectively. The

result is

'max ((C1. cos~e ))1/2 1 R 2 - 1 oe R 2
- o (1- ; cose -, 1

02z~ O - 2e\! /L (18)

S= R R O\ 2 8) ; elsewhere

which is plotted in Figure 5 against D- , ).

Turning now to the estimator variance S, we note from (15) that S is a
R2

linearly decreasing function of p whenR > 1 and a linearly increasing func-
R D

tion of p when -< 1. Evaluating (15) for p = -1 and p = +1, we obtain the

maximum and minimum variances, Smax and Smin:

Smax 2 Smin 2 R2

"--o " 2  - ; >
0 + 1 + (19)

--- . - (19

Smax 2 S min 2:.0 + -- R 0 1o +-- D ---D<
-0 -- <
0 R

where So a P.Q is the estimator variance obtained for uncorrelated data, i.e.
S max SMi n

for p - 0. Thus, max and. n are concentric circles in the
" S YS . S max O/R 2

(.- , -plane. Also, y- - or - , according to whether the source
m mn D R R2

location is outside or inside the circle -a - 1, respectively.
0
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Figure 4. Normalized Minimum Bias (NON/Bo) vs. Source Location.
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Figure S. Normalized Maximum Bias (Bix/Bo) vs. Source Location.
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Finally, it should be noted that since (14) to (19) are given in terms of

the source-sensor parameters R, D, and e (rather than the measured angles 61

and 821,these results apply equally wel I to the equivalent problem of using

spatially correlated time-of-arrival measurements from three colinear sensors

located at x - -D, 0, and +D (Figure 1). In such cases, the angular noise

variance a used here must be evaluated from the corresponding time-delay

variance which characterizes the difference in wavefront arrival times between

adjacent sensor pairs. (An example is given in Section 1I1.)

I1I. Effect of Sensor Separation on Distant Source Localization

For the case of a distant source (R >> D) we obtain from (14) and (15)

the approximations

R3o2B R3 Dsn2e (-P) (20)

4 20 sin 0

R4 2

s 2Dsin~e (1 -0 ) (21)

Inspection of (16) to (19) (or Figures 3 to 5) shows that in this case

Bmin B max Smin maxi i mn ' 1,"- 0  0,' 0 87- 2,= 0, =a 2•

In passing, we note that for the uncorrelated case (p - 0), (20) and (21)

agree with the corresponding bias and variance expressions developed in refer-

ence 4, provided that the time-delay variance a2 used there is converted into

the corresponding angular variance a2 used here, according to

. . . . . . ,;, - - ... .:,t . ~ ~ ~ 4 ~ . ~. - .- . . . .... ,. : -,' . .N. .. -. *. ..
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2c

(where c - propagation velocity).

From (20) and (21) it is seen that for a fixed data correlation coeffi-

cient p both the estimator bias and variance increase with decreasing sensor

separation D, whereas for a fixed sensor separation they both decrease with

increasing correlation coefficient. These two effects therefore counteract

each other in cases where p is a decreasing function of D. Such situations

arise, for example, when the angle-of-arrival errors are primarily due to the

random structure of the propagation medium between source and sensors.

To gain some insight into this tradeoff between p and D, we represent

both (20) and (21) by the functional relation

f(DP) K ) (22)f~ -,, (1 - p)
D

where K is independent of D and p. The net effect of a small change in sensor

separation is therefore given-by the derivative

dLPd . " 2DK 1 - P + 0i (23)

For the special case where the data are uncorrelated for all sensor

separations we have p - 0, d 0, and

D ]o I 2K (24)
-J0

,D , % %., ,. . . .. .- '..." . *.' " .
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For the more general case we treat the angle-of-arrival data as a sta-

tionary random process with spatial autocorrelation coefficient p(D), where

p(O) 1 1, PH- O, and "-fis restricted by the requirement that p(D) oust be

positive-definite (i.e., its Fourier transform must be nonnegative for all

spatial wavelengths). Since this restriction cannot be expressed in a conven-

ient algebraic form, we evaluated (23) for some typical spatial autocor-

relation coefficients and different values of p(D). In Table I, the results

are normalized relative to the uncorrelated case. (24). The fact that

d -) < 0 for all cases considered suggests that, in practice, an increase

in sensor separation will alwlys result in a net decrease of estimator bias

and variance for distant targets. However, it is seen from Table I that the

rate of this decrease may be much smaller for the case of spatially correlated

data than for uncorrelated data.

IV. Conclusions

1 We have investigated the effect of spatial correlation between two-sensor

angle-of-arrival data on the source location estimates calculated from these

data. The conclusions are:

1. Both the estimator bias and variance are strong functions of data

correlation and source-sensor geometry.

2. For distant sources, estimator bias and variance both tend to de-

crease linearly with increasing correlation coefficient.

3. Data correlation dependence on sensor separation, as given by typi-

cal spatial autocorrelation coefficients in stationary random media,

can cause greatly reduced estimator bias and variance dependences on

sensor separation.
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4. The general estimator bias and variance equations (10,11,14,15) are

limited in accuracy by the assumption that the angle-of-arrival data

distributions have negligible moments above the second.
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df 2K

p (D)

(1) (2) (3) (4)
~1

0.9 0.002 0.005 0.050 0.053
0.8 0.013 0.021 0.10 0.11

4,

0.7 0.030 0.050 0.15 0.18

0.6 0.055 0.094 0.20 0.25

0.5 0.091 0.15 0.25 0.33

0.4 0.14 0.23 0.30 0.42

0.3 0.20 0.34 0.35 0.52

0.2 0.27 0.48 0.40 0.64

0.1 0.31 0.67 0.45 0.78

Table I: Estimator Bias and Variance Dependence on Sensor

Separation for the Following Autocorrelation

Coefficients (a > 0):

(1) p(D) aD

(2) p(D) = exp(-a2D2)

(3) p(D) 1 a{0 ; IDI > 1

(4) p(D) = exp(-a(DI)

.J I *

= ' ,% ',.,: %'"" .'", ..L". *,.-" . "..* • ,".".' I ,. " * . 4-,,,"-" 4 "-",", ," N.'.'","." "'. '""
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