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Abstract A ’

Bias and variance equations are presented for two-dimensional location

estimators of a nonmoving point source of radiation in an isotropic, sta-
tionary random medium. The estimators are calculated from spatially corre-
lated angle-of-arrival data which are collected simultaneously at two sensor
positions and assumed to consist of true (unbiased) source angles plus zero-
mean angular noise with equal variances at both sensors and negligible higher
moments. Under these assumptions the square of the estimator bias is, in
general, a quadratic function and the estimator variance a linear function of
the spatial data correlation coefficient. However, for source ranges much
larger than sensor separation, both the bias and the variance tend to increase
linearly with decreasing correlation coefficient, whereas they tend to
decrease with increasing sensor separation. The combined effect for a distant
source in a stationary random medium, when evaluated for typical spatial
wavefront autocorrelation functions, is a significant reduction in the esti-
mator bias and variance dependence on sensor separation, as compared to the
uncorrelated case. With minor modifications, the same results apply to the

equivalent problem of using time-of-arrival data from three colinear sensor

positions. ?‘ ~

*Fellow, IEEE
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Introduction

In sonar or radar, passive source localization is concerned with the
estimation of an object's location from its emitted random radiation (acoustic
or electromagnetic waves). For the two-dimensional case, this estimation of
the source coordinates (x,y) requires simultaneous wavefront angle-of-arrival
measurements by at least two separate sensors (or, equivalently, time-of-
arrival measurements by at least three sensors). In many cases of practical
interest, the angle measured by each sensor can be regarded as a random varia-
ble whose mean is the true (unbiased) source direction and whose variance is a
constant (independent of source direction). In addition, the two random
variables thus generated are jointly characterized by a spatial correlation
coefficient which accounts for such factors as wavefront coherence, sensor
assembly rigidity, etc. For sound propagating through the ocean, typical
spatial coherence lengths range from 1 to over 103 meters.(l)

It is well known that even though the angles measured by the sensors may
have unbiased means and constant variances, the source location estimated from
these angles by direct calculation has a bias and variance which are functions
of the source-sensor geometry. Several authors have investigated this problem

under the assumption of spatially uncorrelated angle-of-arrival (or time-of-

arrival) data.(2’3’4’5) In this paper, we present equations for the estimator
bias and variance resulting from spatially correlated data (Section I).
Section Il examines the bias and variance dependences on correlation coeffi-
cient and source-sensor geometry and presents some of the results graphical-
ly. In Section III, the joint effects of spatial data correlation and sensor

separation are examined for distant sources in a stationary random medium.

Conclusions are drawn in Section IV,
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I. General

In this section, we develop equations for the bias and variance of source
location estimators calculated from correlated angle-of-arrival data. The two
sensors are positioned at x = D in the x,y plane (Figure 1) and the true
source location is (xs,ys) and (R,0) in Cartesian and polar coordinates,
respectively. The true source angles at sensors I and II are 6 and 6,. All
angles are measured counterclockwise from the positive x direction.

Iﬁ terms of 8, 65, and D the true source location coordinates are as

follows:

s1n2(0,-9,)
.1 f €05(8,-0,)~cos(e,4,)
o =tan ( sin{e,4,] ) (2)
sin(ez+el)
-0 BEOTH ) (3)
cos(6,-8,)-cos(8,49,)
Ys * ( sTa(e,-67) ) (4)

(Note that these and the following equations are written in terms of (92+91)
and (92-61) to simplify their interpretation for specific sensor-source orien-
tations. Thus, for a "broadside" source located along the y-axis, 8140, = w.)
Now assume that the angle-of-arrival data generated at sensor positions 1
and 11 are random variables with means 6] and 85 (i.e., true source
angles), variance 02 (same for both sensors and independent of direction),

correlation coeffic%ent P and negligible higher moments. The source coordi-

nates (x,y) which are calculated from these data by (3) and (4) will then also

R el ud  w e
MR A R A
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be random variables whose moments can be determined in terms of the angle-of-

arrival moments by expanding (x,y) into a Taylor series about the true source

6
location (xs,ys). (6)

Thus, the mean and variance of x are given by

_ 02 azxs azxs azxs
1 2

ax ax ax_ ax
2 2 $12 s\ 2 s s)
o = g + + Zp —— ——
X ((ael) (302) 3, 9,

2

where all terms involving moments higher than ¢< and p have been neglected.

Carrying out the indicated operations on (3) we obtain

_ ZDozsin(ezs*el) 2
X =xo+ - cos (02-61) - 9 (5)

2 2
oi = ——-2—"——— (1 - cosZ(ezwl)cosz(ez-el)
Sin (02‘91)

+ p[c052(02+61)-cosZ(02-91)]) (6)

Similarly, the mean and variance of y are

Zﬂozcos(ez-el)

y - Yo * (1 - °°s(°2+°1)c°s(°2'°1)

cos(6,49,)
+olees 92'61 - 1]) (7)

Sy > ~.\' ) -.'-.' N et e T e
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5
02 =—4—2°-2°—?-—— [1 - cos(e,%,)cos(6,-8 )]2 +s1’n2(e +0 )sinz(e -0,)
y sin (02-61) 21 21 271 21
- p[COS(ez'el) - cos(ezwl)]z) | (8)

The covariance of x and y is (again retaining only terms up to o2 and p):

¢ .2 axg 3y +ax ays [ax ay, axs ays]
xy ¢ 38, 96, aezae2 20 aez 30, 36

Performing the indicated operations on (3) and (4) yields

ZoZD sin(62+e1)

Cxy =

cos(0,-6,) - cos(e,+9,)cos2(6,-6,)
sin (02_91) ( 271 271 271

+ p[cos(ezwl) - cos(ez-el)]) (9)

It is convenient to consider the calculated source coordinates (x,y) as
the rectangular components of a two-dimensional source-location estimator
(i.e., 2 two-dimensional random vector) with mean (x,y) and variance S. From
(5) and (7), the magnitude B of the estimator bias (i.e., the Euclidean dis-
tance between the estimator mean (X,y) and the true source location (xgs¥s))

is obtained as

B - ((i'- x )2+ (7 - ys)z)“z = afE + oF + 5q)1/2 (10)

where




6
& X
N A= —3-————2""2
= sin"(6,-9,)
,‘f.: E = cosz(e -8, )f1 - 2cos(0,%0,)cos(0,-0,) + cosz(e -8,)
O 21 271 271 271
k!
s F = 2cos(02-01)(cos(02+el)(1 + COS (02-91)) - 2cos(92-el))
B 2
! The angle & of the estimator bias is, from (5) and (7):
2 Yy . (1-p)cos(6,-6,)
§ = tan 1(_ s) = tan 1( ( )[ 2% 1 ) - COt(92+91)
. X=X sin(6,+9,){cos (6,-0,)-p
A s 2% 2701)-¢) (o)
f Similarly, from (6) and (8), the estimator variance S (i.e., the mean-
,g-' squared Euclidean distance between the estimator (x,y) and the estimator mean
A
o (x,y)) is obtained as
X
24 2,2
:3,: S=o, + oy HLI + pJ] (11)
K, where
g, L P
= sin (ez-el)
QJ( .
; _ J = cos(ez-el) cos(92+el) - cos(ez-el))
#)
; I[I. Estimator Bias and Variance
:-‘ The strong estimator dependence on the data correlation coefficient o is
—
- shown qualitatively in Figure 2 for a particular source-sensor geometry. The
%
e
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+ cases p =+l or p = 0 arise, for example, when the angle-of-arrival errors are

primarily due to the random structure of the propagation medium between source

':J and sensors, and the sensor separation is much smaller or much larger, respec-
ﬁ\j tively, than the medium's spatial coherence length. Similarly, the

T cases p =+1 or p =-~1 can arise when the errors are primarily due to the

.”' random motion (rotational or translational) of the rigid two-sensor assembly

relative to the propagation medium.

To investigate the estimator bias and variance dependences on p and on

’; the source-sensor geometry in more detail, we make use of the inverse rela-
NN
X tions
;;' -1 % Sine
:: 92~31 = tan ‘—Ez— (12)
1-=
R2
. _ -1 sine
5 8,46, = tan (-———[-)-2-\ (13)
‘,::- cos2e - ;2/
)
A% (Note that for source locations in the first quadrant, both 8-68] and 8,+9,
X range over (O,r)). Substitution of (12) and (13) into (10) and (11) yields,
.~ after some straightforward but tedious algebra, the results for B, §, and S:
58 8 = WL + ot + o%N) /2 (14)
R,
iy
v where
— 32 4 2
. R%g ( p* 20 )1/2
W= |1+ - c0s20
:;f,’ 20%sin"e L
b 2
it D°y2
70t L =(] -
(+-22)
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"S M= 21 - -:-:—)(g; cos2s - 1)
N=1 +£—;-§gfc0526
§ = tan! { il + fgi (1 - g;)(L - pN)-I] tane} (14a)
s =Pfo + o) (15)
where
P =2—Dgsi:—r2‘—2:(1 +§;-§l22c0529)
Q=1 +%§
S

Consider first the estimator bias B. Successive differentiation of (14)

reveals that B is a minimum when p = Pmin = " %ﬂ’ s Or

2 2 4 2
D D D 2D -1
Pmin (1 - ;2- (1 - E-z- cosZG)(l +—-R4 - ——Rz cos?.e) (16)

In Figure 3, Pmin 1S plotted against the normalized source coordinates
X y X y
(-D-§ , -D-'e‘-), where (%—)2 = (T“)2 + (_D_§)2 from Figure 1. We note that p.;, > 0

2
for a1l source locations except those in the region cos2e < 3-2- < 1.
D

By substituting (16) into (14), we obtain the minimum estimator bias
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11
B 4 2
-%jﬂ = sin20(1 + g— - Bz%— <:osza)'1/2 (17)
()

where B, = H[L]I/Z is the estimator bias obtained for uncorrelated data, i.e.
. min . Xs Y5
for p = 0. In Figure 4, —— is plotted against (D—- R —T)-).
(]
The maximum estimator bias Bmax is obtained by setting p = +1 or p = -1

in (14), according as to whether pgin < 0 or pyip > 0, respectively. The

result is
B 2 2
_'g_ai = (2(1 - cos26))1/2 (1 - 3-2—)'1 ; €0s20 < R_Z <1
0 D D
2 2 i
2+ZD _D_ - Z)COSZQ /L (18)
= L+ ) ; elsewhere
o DNv2
(1 - 2

L Xs s
which is plotted in Figure 5 against (-b-— R 5—).

Turning now to the estimator variance S, we note from (15) that S is a
. . R .
linearly decreasing function of p when > 1 and a linearly increasing func-
____R.z_ﬂ o2 Jncreasing
tion of o when -5 < 1. Evaluating (15) for p = -1 and p = +1, we obtain the
D

maximum and minimum variances., Smax and Smin:

Smax . _2_ Smin__2 R,
S 0’ S, 2° '52‘
° 1+ 0 1+ R
RT B'i (19)
Smax S - Smin I - . 3,2, <1
s 1
o LR %0, 027 0f
o2 Y
where S, = P.Q is the estimator variance obtained for uncorrelated data, i.e.

S
for o = 0. Thus, rgax and %'1" are concentric circles in the

X y 0. - S o,/RZ ) 0l
( 5 s) plane. Also, 2% « or according to whether the source
LIRS " Snin 32' ;2 2

location 1s outside or inside the circle B’Z = 1, respectively.
D
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Finally, it should be noted that since (14) to (19) are given in terms of
the source-sensor parameters R, D, and e(rather than the measured angles 6,
and oz),these results apply equally well to the equivalent problem of using

spatially correlated time-of-arrival measurements from three colinear sensors

located at x = -D, 0, and +D (Figure 1). In such cases, the angular noise

2

variance o“ used here must be evaluated from the corresponding time-delay

variance which characterizes the difference in wavefront arrival times between

adjacent sensor pairs. (An example is given in Section III.)

I11. Effect of Sensor Separation on Distant Source Localization

For the case of a distant source (R >> D) we obtain from (14) and (15)

the approximations

8 —7—2—“3"2 (1 -p) (20)
2D"sin"e g

s ——{——2—"4"2 (1-5p) (21)
2D"sin"e g

Inspection of (16) to (19) (or Figures 3 to 5) shows that in this case

B 8 ) S

min max min ma x
P 2 ], =—— =20, = 2, 2 0, —===22 .,
min ’ Bo A R S0

In passing, we note that for the uncorrelated case (p = 0), (20) and (21)
agree with the corresponding bias and variance expressions developed in refer-
ence 4, provided that the time-delay variance of used there is converted into

the corresponding angular variance 02 used here, according to
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(where ¢ = propagation velocity).
From (20) and (21) it is seen that for a fixed data correlation coeffi-

cient p both the estimator bias and variance increase with decreasing sensor

separation D, whereas for a fixed sensor separation they both decrease with
increasing correlation coefficient. These two effects therefore counteract
each other in cases where p is a decreasing function of D. Such situations
arise, for example, when the angle-of-arrival errors are primarily due to the
random structure of the propagation mediun between source and sensors.

To gain some insight into this tradeoff between p and D, we represent

both (20) and (21) by the functional relation

£(D,p) = -';-, (1-0) (22)

where K is independent of D and p. The net effect of a small change in sensor

separation is therefore given by the derivative

el K (1, .38 e

For the special case where the data are uncorrelated for all sensor

separations we have p = 0, g%-- 0, and

(affRely . . §§ (24)

............
..............
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;i? For the more general case we treat the angle-of-arrival data as a sta-
L: | tionary random process with spatial autocorrelation coefficient p(D), where
gg p(0) = 1, p(=») = 0, and %ﬁ-is restricted by the requirement that p(D) must be
;: positive-definite (i.e., its Fourier transform must be nonnegative for all
R spatial wavelengths). Since this restriction cannot be expressed in a conven-
'3% ient algebraic form, we evaluated (23) for some typical spatial autocor-
Eg relation coefficients and different values of p(D). In Table I, the results
o8 are normalized relative to the uncorrelated case. (24). The fact that
g; Qiégual < 0 for all cases considered suggests that, in practice, an increase
jg in sensor separation will always result in a net decrease of estimator bias
A and variance for distant targets. However, it is seen from Table I that the
Eg rate of this decrease may be much smaller for the case of spatially correlated
,2 'data than for uncorrelated data,
2
‘gg IV, Conclusions
5 We have investigated the effect of spatial correlation between two-sensor
j\ angle-of-arrival data on the source location estimates calculated from these
3? data. The conclusions are:
<ﬁ 1. Both the estimator bias and variance are strong functions of data
- 4 correlation and source-sensor geometry.
ili 2. For distant sources, estimator bias and variance both tend to de-
:? crease linearly with increasing correlation coefficient.
}; 3. Data correlation dependence on sensor separation, as given by typi-
;23 cal spatial autocorrelation coefficients in stationary random media,
'2% can cause greatly reduced estimator bias and variance dependences on
f; sensor separation.
-
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4. The general estimator bias and variance equations (10,11,14,15) are
limited in accuracy by the assumption that the angle-of-arrival data

distributions have negligible moments above the second.
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) df 2K

%) an/ (-=3)

04

o p(D)

o (1) (2) (3) (4)
0.9 0.002 0.005 0.050 0.053
v 0.8 0.013 0.021 0.10 0.11
0.7 0.030 0.050 0.15 0.18

0.6 0.055 0.094 0.20 ©0.25

)

N 0.5 0.091 0.15 0.25 0.33
2

- 0.4 0.14 0.23 0.30 0.42
X 0.3 0.20 0.34 0.35 0.52
»

¥ 0.2 0.27 0.48 0.40 0.64
]

i 0.1 0.31 0.67 0.45 0.78
.:, Table I: Estimator Bias and Variance Dependence on Sensor
2N

Separation for the Following Autocorrelation
Coefficients (a > 0):

%

4

: in(ad

% (1) p(0) = 213f20)
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