DEPARTMENT OF DEFENCE
DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
AERONAUTICAL RESEARCH LABORATORIES
MELBOURNE, VICTORIA
STRUCTURES NOTE 484

EXPERIENCE WITH TWO ESTIMATORS FOR THE
THREE-PARAMETER WEIBULL DISTRIBUTION

by
A. D. GRAHAM

APPROVED FOR PUBLIC RELEASE

© COMMONWEALTH OF AUSTRALIA 1982

NOVEMBER 1982
EXPERIENCE WITH TWO ESTIMATORS FOR THE
THREE-PARAMETER WEIBULL DISTRIBUTION

by

A. D. GRAHAM

SUMMARY

Two methods for estimating the three-parameters of the Weibull extreme value
distribution are described and tested using Weibull distributed data. Graphical techniques
used to support the estimation indicate that any bias may arise from estimations on the
boundary of the parameter space.

POSTAL ADDRESS: Director, Aeronautical Research Laboratories,
Box 4331, P.O., Melbourne, Victoria, 3001, Australia
1. INTRODUCTION

No adequate computer program existed at ARL to estimate the parameters of a three-parameter Weibull distribution from a set of experimental data. A method using Maximum Likelihood was developed and programmed, and tested with Weibull distributed data. Contour plots of the likelihood function have been made as a check on the convergence of the solution, and to help locate the maxima when the method fails to converge. A computerized version of a graphical method using extreme value probability paper [Ref 1] was also developed, and the results of both methods compared.

2. THE THREE-PARAMETER WEIBULL DISTRIBUTION

The three-parameter Weibull distribution is an extreme value distribution which takes the following form:

\[F(x) = 1 - \exp\left[-\left(\frac{x - \varepsilon}{\psi - \varepsilon} \right)^\alpha \right] \]

(1)

and

\[f(x) = \frac{\alpha}{\psi - \varepsilon} \left(\frac{x - \varepsilon}{\psi - \varepsilon} \right)^{\alpha - 1} \exp\left[-\left(\frac{x - \varepsilon}{\psi - \varepsilon} \right)^\alpha \right] \]

(2)

with the conditions \(\psi > \varepsilon, \alpha > 0, F(\varepsilon) = 0, F(\psi) = 1 - 1/\alpha \). Here \(f(x) \) is the probability density function of the random variable \(x \), \(\alpha \) the dispersion parameter, \(\psi \) the characteristic value and \(\varepsilon \) the lower bound of \(x \). \(F(x) \) is the cumulative distribution function:

\[F(x) = \int_{-\infty}^{x} f(x) \, dx. \]

3. THE MAXIMUM LIKELIHOOD METHOD

The likelihood function of data \(f(x_i) \) is given by

\[e^{L'(x)} = \prod_{i=1}^{n} f(X_i) \]

(3)

where \(n \) is the total number of data values available. Then, from (2)

\[e^{L'(x)} = \left(\frac{\alpha}{\psi - \varepsilon} \right)^n \prod_{i=1}^{n} \left(\frac{X_i - \varepsilon}{\psi - \varepsilon} \right)^{\alpha - 1} \exp\left[-\left(\frac{X_i - \varepsilon}{\psi - \varepsilon} \right)^\alpha \right]. \]

(4)

Taking logarithms

\[L'(x) = n \ln\left(\frac{\alpha}{\psi - \varepsilon} \right) + \sum_{i=1}^{n} \ln\left(\frac{X_i - \varepsilon}{\psi - \varepsilon} \right)^{\alpha - 1} \exp\left[-\left(\frac{X_i - \varepsilon}{\psi - \varepsilon} \right)^\alpha \right] \]

\[= n \ln \alpha - n \ln(\psi - \varepsilon) + (\alpha - 1) \sum_{i=1}^{n} \ln(X_i - \varepsilon) - \sum_{i=1}^{n} \left(\frac{X_i - \varepsilon}{\psi - \varepsilon} \right)^{\alpha}. \]
If we make the substitution $V = v - \varepsilon$ and reduce the magnitude of the numbers involved by dividing through by n, we get

$$L(x) = \frac{L(x)}{n} = \ln x - \ln V + (a - 1) \left(\frac{1}{n} \sum_{i=1}^{n} \ln(X_i - \varepsilon) - \frac{1}{n} \sum_{i=1}^{n} \left(\frac{X_i - \varepsilon}{V} \right)^a \right).$$

The Maximum Likelihood equations for V, α and ε are:

$$\frac{\partial L}{\partial V} = -\frac{\alpha}{V} \sum_{i=1}^{n} \left(\frac{X_i - \varepsilon}{V} \right)^a = 0,$$

(6)

$$\frac{\partial L}{\partial \alpha} = \frac{1}{\alpha} - \ln V + \frac{1}{\alpha} \sum_{i=1}^{n} \left(\frac{X_i - \varepsilon}{V} \right)^a \ln(X_i - \varepsilon) + \ln V \sum_{i=1}^{n} \left(\frac{X_i - \varepsilon}{V} \right)^a = 0,$$

(7)

$$\frac{\partial L}{\partial \varepsilon} = \frac{1}{\alpha} \sum_{i=1}^{n} \left(\frac{X_i - \varepsilon}{V} \right)^{a-1} - (a-1) \sum_{i=1}^{n} (X_i - \varepsilon)^{-1} = 0.$$

(8)

Equations (6), (7) and (8) are then solved for V, α and ε; the solution method employed is the second-order Newton-Raphson method [Ref 3], an iterative process described in Appendix 1. The method requires the second derivatives to provide the terms for the Hessian matrix $\frac{\partial^2 L}{\partial \alpha \partial \varepsilon}$. These are:

$$\frac{\partial^2 L}{\partial V^2} = \frac{\partial^2 L}{\partial \alpha^2} = -\frac{1}{\alpha^2} \sum_{i=1}^{n} \left(\frac{X_i - \varepsilon}{V} \right)^a \ln(X_i - \varepsilon),$$

$$\frac{\partial^2 L}{\partial \alpha \partial \varepsilon} = -\frac{1}{\alpha^2} \sum_{i=1}^{n} \left(\frac{X_i - \varepsilon}{V} \right)^{a-1} - (a-1) \sum_{i=1}^{n} (X_i - \varepsilon)^{-2},$$

(9)

To check that a maximum is being obtained, L is printed after each iteration, the determinant of the Hessian matrix is found, and this, as well as the terms on the leading diagonal, must be negative.

To enable this method to be used for determining the parameters of a two-parameter Weibull distribution, i.e. $\varepsilon = 0$, it is only necessary to set $\varepsilon = 0$ in (6), (7), (8) and (9), and solve (A3) with $i = j = 2$ where $a_1 = \alpha$ and $a_2 = \alpha$.

4. INITIAL ESTIMATES OF THE PARAMETERS V, α, AND ε

Initial estimates of the three parameters are required for the application of the Newton-Raphson method.

From equation (7)

$$\frac{1}{\alpha} + \frac{1}{\alpha} \sum_{i=1}^{n} \ln(X_i - \varepsilon) = \ln V + \frac{1}{\alpha} \sum_{i=1}^{n} \left(\frac{X_i - \varepsilon}{V} \right)^a \ln(X_i - \varepsilon) - \ln V \sum_{i=1}^{n} \left(\frac{X_i - \varepsilon}{V} \right)^a.$$

(10)

* Any further reference to "likelihood function" in the remainder of the report will strictly mean the scaled log likelihood function L.

2
From equation (6)
\[a = \frac{1}{\alpha} \frac{1}{\sum_{i=1}^{n} \left(\frac{X_i - \epsilon}{V} \right)^a} \]
that is
\[\frac{1}{\alpha} \frac{1}{\sum_{i=1}^{n} \left(\frac{X_i - \epsilon}{V} \right)^a} = 1. \]
(11)
Substituting (11) into the right-hand side of (10) gives
\[\frac{1}{\alpha} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{X_i - \epsilon}{V} \right)^a \ln(X_i - \epsilon) - \frac{1}{n} \sum_{i=1}^{n} \ln(X_i - \epsilon). \]
(12)
Now, from (1), the definition of the three-parameter Weibull probability function gives:
\[-\ln(1 - F(X_i)) = \left(\frac{X_i - \epsilon}{V} \right)^a. \]
Substitution into (12) leads to
\[\frac{1}{\alpha} = -\frac{1}{n} \sum_{i=1}^{n} \ln(X_i - \epsilon) + \frac{1}{n} \sum_{i=1}^{n} (-\ln(1 - F(X_i)) \cdot \ln(X_i - \epsilon)). \]
(13)
Values of \(F(X_i) \) can be approximated from the data by listing it in ascending order of magnitude and ascribing probabilities to the ordered data viz:
\[1 - F_i \approx \frac{n+1-i}{n+1}. \]
This approach is used by Gumbel [Ref 3], but he also uses a correction parameter \(A_n \), to allow for different sample sizes \(n \), to obtain a better estimate of \(1 - F \). The corrected value is:
\[1 - F_i \approx \left(\frac{n+1-i}{n+1} \right)^{A_n}, \]
where \(A_n = \frac{n}{\ln(n+1) - \ln(n!)} \) for \(n < 100, \)
\[= 1 + \frac{[\ln(2mn) - 2]}{2N} \text{ for } n > 100. \]
On using this corrected value (13) becomes:
\[\frac{1}{\alpha} = \frac{1}{n} \sum_{i=1}^{n} \ln(X_i - \epsilon) - A_n \frac{1}{n} \sum_{i=1}^{n} \ln\left(\frac{n+1-i}{n+1} \right) \ln(X_i - \epsilon). \]
(14)
The initial estimate of \(\epsilon \) is taken as the data minimum, \(X_{\text{min}} \), i.e. \(\epsilon = X_{\text{min}} \). Using this value in (14), a first approximation to \(\alpha \) is obtained.
The initial estimate of \(V \) is obtained from the mean of the data, i.e.
\[V = \frac{1}{n} \sum_{i=1}^{n} X_i - \epsilon. \]
(16)
Although \(V \) can also be obtained from (11) as a function of \(\epsilon \) and \(\alpha \), i.e. \(V = \left[\frac{1}{n} \sum_{i=1}^{n} (X_i - \epsilon)^a \right]^{1/a}, \) an initial estimate using this function contains uncertainties inherent in the initial values of \(\epsilon \) and \(V \). Using the population mean gives quite a reasonable estimate of \(V \) and it is independent of the other parameters.

5. LEAST SQUARES OF THE REDUCED VARIATE \(y \)

Define a new variate
\[y = -\epsilon [\ln(x - \epsilon) - \ln(y - \epsilon)]. \]
(17)
From equation (1),
\[1 - F(x) = \exp(-\epsilon \cdot x) \]
\[y = -\ln(-\ln(1 - F(x))). \]

From (17) it can be seen that \(y \) and hence \(\ln(-\ln(1 - F(x))) \) is a linear function of \(\ln(x - \epsilon) \).

In general, using experimental data, only the \(x \) values are available, but \(F(x) \) may be approximated using order statistics as in the previous section (in this case factor \(A_n \) was not used).

i.e. \[1 - F(x_i) \approx \frac{n+1-i}{n+1}. \]

Using the graphical method of Reference 1, \(y_i \), determined using \(\ln(-\ln(1 - F(X_i))) \), is plotted against \(\ln(X_i - \epsilon) \), and by adjusting \(\epsilon \), a least squares best fit straight line is fitted to the data, from which \(\alpha \) and \(\beta \) can be determined.

To obviate the need to estimate \(\epsilon \), the computational procedure solves equation (17) for \(v \), \(\alpha \) and \(\epsilon \) using a nonlinear least squares fit of \(y \) against \(X_i \). The method used for doing this is described in Appendix 1.

6. TEST DATA

Both methods were tested using data that were known to be Weibull distributed. The test data were produced as follows.

From equation (1)

\[-\left(\frac{x - \epsilon}{\alpha - \epsilon} \right)^\alpha = \ln(1 - F(x)) \]

and

\[x = \epsilon + (v - \epsilon)(-\ln(1 - F(x)))^{1/\alpha}. \]

By choosing random values of \(F(x) \) between 0 and 1, a sample of \(x \) can be obtained that will be Weibull distributed with parameters \(v \), \(\alpha \) and \(\epsilon \). In this way samples ranging in size from 20 to 1,000 were obtained.

The random numbers were generated using the DEC system library subroutine RAN. RAN is not clock-dependent; it will reproduce the same random numbers if the same number of calls to the subroutine are made. To produce different sets of random numbers, a chosen number of calls to the subroutine is made before generating the data set.

7. GRAPHICS SUPPORT

Both methods have some supporting graphical output, to help indicate the success of the estimation.

7.1 Graphical output for the Maximum Likelihood Method

Contour plots of the likelihood function as a function of \(\epsilon \) and \(\alpha \) can be produced, together with a contour plot of \(\epsilon \) over the same \((\epsilon, \alpha)\) domain. It becomes obvious from these plots where the solution is located, and when the solution method fails to converge they can provide alternative estimates. Figures 1 and 2 are examples of the contour plots produced.

7.2 Graphical output for least squares of variate \(y \) method

Since this method determines the best linear fit of \(y_i \) to \(\ln(X_i - \epsilon) \) the \(y_i \) is plotted against \(\ln(X_i - \epsilon) \), together with the fitted function. An example is shown in Figure 3.

8. RESULTS

The two methods were applied to a large number of generated samples. One set, generated with \(v = 1.0, \alpha = 3.0 \) and \(\epsilon = 0.7 \), demonstrates the effect of sample size, while a larger set, with \(v = 1.0, \alpha = 2.5 \) and \(\epsilon = 0.7 \), demonstrates the effectiveness of both methods when only
A small sample is available. Sample sizes of 1,000 were also generated with various values of the three Weibull parameters.

To determine the effect of sample size on estimates, various sizes, from 20 to 1,000 were used, with five different samples being produced for each size. The mean values of each parameter for each sample size are shown in Table 1.

Generally, the larger the sample, the greater the accuracy of estimation. This is an observation from the known asymptotic efficiency of maximum likelihood estimators, and it probably indicates that the least squares method is also very efficient. There appears to be little difference between the accuracy of the two methods for the data considered in Table 1.

Extensive testing was carried out with a typical sample size of 20. Thirty-six different samples were produced for \(v = 1.0, \alpha = 2.5 \) and \(\epsilon = 0.7 \). (Each sample is identified by a number IST which represents the number of calls to the random number generator prior to producing the set of random numbers. This enables any sample to be reproduced.) The results are shown in Table 2, together with the sample identification number IST and the minimum value in each sample, \(X_{\text{min}} \).

The maximum likelihood method failed to converge in only one of these cases (for this case, the least squares method returned values of 0.968, 1.152 and 0.790 for \(v, \alpha \) and \(\epsilon \) respectively).

In three other cases both methods failed to produce estimates for a three-parameter distribution, although they provided estimates for a two-parameter distribution. Table 3 shows three different data samples that lead to different types of solution using the maximum likelihood method.

Case 32 had a successfully converged solution with \(v = 0.96, \alpha = 2.572 \) and \(\epsilon = 0.7076 \). The contour plots of the likelihood function and \(v \) are shown in Figures 1 and 2 respectively. The location of the maximum in the likelihood function is enclosed within the 0.95 contour, the + indicating the location of the solution values. In case 8, the Maximum Likelihood method failed to converge to a solution. The contour plot of Figure 4 shows that a peak does not exist within the \(\epsilon,\alpha \) domain. The likelihood function has a maximum value on the \(\epsilon = X_{\text{min}} = 0.804 \) boundary at \(\alpha \approx 0.8 \). Since no converged solution exists, the best estimates of \(v, \alpha \) and \(\epsilon \), from Figure 4 and the corresponding contour plot of \(v \), Figure 5 are 0.94, 0.8 and 0.804 respectively.

Case 9 would only converge to a solution if \(\epsilon \) was set to zero for both methods of estimation, i.e. a two-parameter Weibull distribution appears to be the best fitting distribution for this data. The contour plots, Figure 6 and 7, show that no peak exists for \(\epsilon > 0 \), and that the maximum value of the likelihood function lies on the \(\epsilon = 0 \) boundary at \(\alpha \approx 9.5 \) and the corresponding value of \(v \approx 1.069 \) (the maximum likelihood method returned values of \(v = 1.0693 \) and \(\alpha = 9.5259 \)). Considering all 36 cases of Table 2, the following means and standard deviations of the three parameters are obtained.

<table>
<thead>
<tr>
<th>Weibull parameter</th>
<th>Values used in data generation</th>
<th>Least squares of variate (Y)</th>
<th>Maximum likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>S.D.</td>
<td>Mean</td>
</tr>
<tr>
<td>(v)</td>
<td>1.0000</td>
<td>1.0068</td>
<td>0.0300</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>2.5000</td>
<td>4.3525</td>
<td>5.4620</td>
</tr>
<tr>
<td>(\epsilon)</td>
<td>0.7000</td>
<td>0.5714</td>
<td>0.2344</td>
</tr>
</tbody>
</table>
The mean values obtained for α and ε have been affected greatly by the three cases in which ε was assumed to be zero, cases 9, 26 and 35. If these are ignored, the mean values of α and ε are much closer to the generating parameters. For both methods there is a large scatter in the value of α. Ignoring cases 9, 26 and 35 the following values are obtained.

<table>
<thead>
<tr>
<th>Weibull parameter</th>
<th>Values used in data generation</th>
<th>Least squares of variate Y</th>
<th>Maximum likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>S.D.</td>
<td>Mean</td>
</tr>
<tr>
<td>ν</td>
<td>1.0000</td>
<td>1.005</td>
<td>0.028</td>
</tr>
<tr>
<td>α</td>
<td>2.5000</td>
<td>2.944</td>
<td>1.653</td>
</tr>
<tr>
<td>ε</td>
<td>0.7000</td>
<td>0.623</td>
<td>0.163</td>
</tr>
</tbody>
</table>

The Maximum Likelihood method provides better estimates for α and ε; both methods accurately estimate ν.

When all the sample data is pooled, providing a sample size of 720, the following estimates for ν, α and ε are obtained from the two methods.

<table>
<thead>
<tr>
<th>Weibull parameter</th>
<th>Values used in Data generation</th>
<th>Least squares of variate Y</th>
<th>Maximum likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>S.D.</td>
<td>Mean</td>
</tr>
<tr>
<td>ν</td>
<td>1.0000</td>
<td>1.0029</td>
<td>1.0018</td>
</tr>
<tr>
<td>α</td>
<td>2.5000</td>
<td>2.5761</td>
<td>2.4800</td>
</tr>
<tr>
<td>ε</td>
<td>0.7000</td>
<td>0.6792</td>
<td>0.6884</td>
</tr>
</tbody>
</table>

Both methods were tested using data generated with various other values for the three parameters, and the results are shown in Table 4. In most cases the Maximum Likelihood method gave the best estimates of the three parameters.

9. DISCUSSION

The Maximum Likelihood procedure requires relatively good initial estimates of ε and α, otherwise the procedure may tend to diverge. The results given in Table 2 reveal that the mean value of ε is 10% lower than the mean value of X_{min} and if the initial estimate of ε is slightly less than X_{min}, the procedure is more likely to converge. The values of ε are plotted against X_{min} in Figure 8.

It was also found that introducing a relaxation parameter into the Newton–Raphson solution procedure improved convergence.

Of particular interest are the contour plots of the likelihood function. All have a relatively steep gradient along the $\varepsilon = X_{\text{min}}$ boundary with a "ridge" running from $\varepsilon = X_{\text{min}}$, $\alpha = 1.0$ to a point on the $\varepsilon = 0$ boundary. There is only one maximum located on this ridge.

Although the contour plots give the impression that the function has a well-defined "peak", in fact the "peak" is poorly defined, as can be seen from the values of the contours; the ridge is the dominant feature in the ε, α domain.

The contour plot of ν indicates that it changes slowly throughout the ε, α domain and explains why the Maximum Likelihood procedure is relatively insensitive to the initial value of ν.

Various distributions from Table 2 with parameters determined using the Maximum Likelihood method are plotted in Figure 9. Three of the distributions are for the data sets given in Table 3. Another, case 17, was plotted because of its high α value but relatively good estimates of ν and ε. A plot of the parent distribution ($\nu = 1.0$, $\alpha = 2.5$ and $\varepsilon = 0.7$) was plotted as a comparison.

The interesting feature is the difference between the distribution of case 32 and the parent distribution. The parameter estimates for case 32 are nearly equal to the parameter of the parent distribution yet there is a marked difference between the distributions.
10. CONCLUSIONS

The three parameters of a Weibull distribution can be successfully determined using a Maximum Likelihood approach. The method can be used with as little as 20 data values, and in the event that the method fails to converge, the associated graphics enable the three parameters to be estimated.

When a solution is located on either of the c boundaries of the parameter space, the data used is probably biased, and thus caution should be exercised in its use.

The least squares of the reduced variate y method, developed purely as a comparison with the Maximum Likelihood method, is generally less accurate, especially when c is large, and there may be inherent errors in the method caused by the need to assign probabilities to the data.

Its one advantage over the Maximum Likelihood method is that the initial parameter values do not have to be as accurately determined to ensure convergence.

11. ACKNOWLEDGMENTS

Assistance was gratefully received from Dr. T. Ryall and Dr. D. G. Ford.
REFERENCES

1. Engineering Sciences Data Item No. 68015—"The Analysis of Data Conforming to an Extreme-Value Distribution."

APPENDIX 1

The Newton–Raphson Method

If \(X = X_K \) is an approximation to the solution \(X = A \) of \(f(x) = 0 \), then the sequence

\[
X_{k+1} = X_K - \frac{f(X_K)}{f'(X_K)}
\]

will converge quadratically to \(X = A \) if the following conditions apply:

1. for Monotonic convergence \(F(X_0)f'(X_o) > 0 \) and \(f'(x), f''(x) \) do not change sign in the interval \((X_0, A) \);
2. for Oscillatory convergence \(f(X_0)f''(X_o) < 0 \) and \(f'(x), f''(x) \) do not change sign in the interval \((X_0, X_1), X_0 < A < X_1 \).

If \(\delta x \) represents the change in \(X_K \) after each iteration then (A1) can be written as

\[
f'(X_K)\delta x = -f(X_K).
\]

In terms of the Maximum Likelihood function and representing \(V, \alpha \) and \(\epsilon \) by \(\alpha_1, \alpha_2 \) and \(\alpha_3 \) respectively, sequence (A2) can be used to solve equations (6), (7) and (8), viz.:

\[
\frac{\partial^2 L}{\partial \alpha_i \partial \alpha_j} \delta \alpha_i = -\frac{\partial L}{\partial \alpha_i}, \quad j = 1, 3, \quad i = 1, 3
\]

or expressed in matrix form

\[
\begin{bmatrix}
\frac{\partial^2 L}{\partial \alpha_1^2} & \cdots & \frac{\partial^2 L}{\partial \alpha_1 \alpha_3} \\
\frac{\partial^2 L}{\partial \alpha_2 \alpha_1} & \cdots & \frac{\partial^2 L}{\partial \alpha_2 \alpha_3} \\
\frac{\partial^2 L}{\partial \alpha_3 \alpha_1} & \cdots & \frac{\partial^2 L}{\partial \alpha_3 \alpha_3}
\end{bmatrix}
\begin{bmatrix}
\delta \alpha_1 \\
\delta \alpha_2 \\
\delta \alpha_3
\end{bmatrix}
= -
\begin{bmatrix}
\frac{\partial L}{\partial \alpha_1} \\
\frac{\partial L}{\partial \alpha_2} \\
\frac{\partial L}{\partial \alpha_3}
\end{bmatrix}
\]

This system of equations is solved for \(\alpha_1, \alpha_2 \) and \(\alpha_3 \) using a subroutine SOLEQU contained in the ARL DEC10 library. It uses Gaussian elimination with the pivot selected as the largest element of the first row of each submatrix.
APPENDIX 2
Nonlinear Least Squares Fit Method

From (17)
\[y_i = -a(ln(X_i - \epsilon) - ln(\eta - \epsilon)) + e_i. \]

The residual sum of squares is given as
\[E = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} [y_i + a(ln(X_i - \epsilon) - ln(\eta - \epsilon))]^2. \]

Suppose we have trial values \(a_0, \nu_0 \) and \(\epsilon_0 \). We shall increment these by \(\Delta a, \Delta \nu \) and \(\Delta \epsilon \) respectively so as to minimise \(E \) using linear approximations.

For simplification, let \(f_i(X_i, a_0 + \Delta a_j) = -a(ln(X_i) - ln(\eta - \epsilon)) \) where \(a_j \) \((j = 1, 2, 3)\) replaces \(a, \nu \), and \(\epsilon \) respectively, \(a_0 \) replaces the initial values \(a_0, \nu_0 \), and \(\epsilon_0 \) and \(\Delta a_j \) replaces the incremental values \(\Delta a, \Delta \nu \) and \(\Delta \epsilon \) then
\[E = \sum_{i=1}^{n} [y_i - f_i(X_i, a_0 + \Delta a_j)]^2 \]

thus
\[\frac{\delta E}{\delta \Delta a_j} = -2 \sum_{i=1}^{n} \frac{\partial f_i}{\partial a_j}(X_i, a_0 + \Delta a_j) \frac{\delta f_i}{\delta a_j}(X_i, a_0 + \Delta a_j), \quad j = 1, 2, 3 \]

neglecting higher order terms.

For a minimum \(\frac{\delta E}{\delta \Delta a_j} = 0 \)
\[\sum_{i=1}^{n} \frac{\partial f_i}{\partial a_j}(X_i, a_0 + \Delta a_j) \cdot y_i = \sum_{i=1}^{n} f_i(X_i, a_0 + \Delta a_j) \cdot \frac{\delta f_i}{\delta a_j} \quad j = 1, 2, 3 \]

These equations must be solved for \(\Delta a_j \) on which \(\Sigma \frac{\partial f_i}{\partial a_j}(X_i, a_0 + \Delta a_j) \) depends.

Now
\[f_i(X_i, a_0 + \Delta a_j) \approx f_i(X_i, a_0) + \sum_{j=1}^{3} \frac{\partial f_i}{\partial a_j}(X_i, a_0) \cdot \Delta a_j. \]

Substitution into (A8) gives
\[\sum_{i=1}^{n} \frac{\partial f_i}{\partial a_j}(X_i, a_0) \cdot y_i = \sum_{i=1}^{n} f_i(X_i, a_0) \left(\frac{\partial f_i}{\partial a_j}(X_i, a_0) + \sum_{j=1}^{3} \frac{\partial f_i}{\partial a_j} \Delta a_j \right) \]

transposing,
\[\sum_{i=1}^{n} \frac{\partial f_i}{\partial a_j}(y_i - f_i(X_i, a_0)) = \sum_{i=1}^{n} \frac{\partial f_i}{\partial a_j} \left(\frac{\partial f_i}{\partial a_j} \Delta a_j \right) = \sum_{j=1}^{3} \sum_{i=1}^{n} \frac{\partial f_i}{\partial a_j} \frac{\delta f_i}{\delta a_j} \Delta a_j \]
In matrix form
\[
\begin{bmatrix}
\sum_{i=1}^{n} \frac{\partial f_i}{\partial x_1} & \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_2} & \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_3} \\
\sum_{i=1}^{n} \frac{\partial f_i}{\partial y_1} & \sum_{i=1}^{n} \frac{\partial f_i}{\partial y_2} & \sum_{i=1}^{n} \frac{\partial f_i}{\partial y_3} \\
\sum_{i=1}^{n} \frac{\partial f_i}{\partial z_1} & \sum_{i=1}^{n} \frac{\partial f_i}{\partial z_2} & \sum_{i=1}^{n} \frac{\partial f_i}{\partial z_3}
\end{bmatrix}
\begin{bmatrix}
\Delta x_1 \\
\Delta y_1 \\
\Delta z_1
\end{bmatrix}
=
\begin{bmatrix}
\sum_{i=1}^{n} \frac{\partial f_i}{\partial x_1} (y_i - f_i) \\
\sum_{i=1}^{n} \frac{\partial f_i}{\partial y_1} (y_i - f_i) \\
\sum_{i=1}^{n} \frac{\partial f_i}{\partial z_1} (y_i - f_i)
\end{bmatrix}
\]

In terms of equation (4a), we have
\[
\begin{align*}
\frac{dy}{dx} &= \ln(v - e) - \ln(X_i - e) \\
\frac{dy}{du} &= \frac{\alpha}{v - e} \\
\frac{dy}{de} &= \frac{\alpha}{(X_i - e)} - \frac{\alpha}{(v - e)}
\end{align*}
\]

and the matrix equation above, in terms of \(v, \alpha\) and \(e\) becomes
\[
\begin{bmatrix}
\sum_{i=1}^{n} \frac{\partial y}{\partial v} & \sum_{i=1}^{n} \frac{\partial y}{\partial u} & \sum_{i=1}^{n} \frac{\partial y}{\partial e} \\
\sum_{i=1}^{n} \frac{\partial y}{\partial v} & \sum_{i=1}^{n} \frac{\partial y}{\partial u} & \sum_{i=1}^{n} \frac{\partial y}{\partial e} \\
\sum_{i=1}^{n} \frac{\partial y}{\partial v} & \sum_{i=1}^{n} \frac{\partial y}{\partial u} & \sum_{i=1}^{n} \frac{\partial y}{\partial e}
\end{bmatrix}
\begin{bmatrix}
\Delta v \\
\Delta u \\
\Delta e
\end{bmatrix}
=
\begin{bmatrix}
\sum_{i=1}^{n} \frac{\partial y}{\partial v} (y_i + \alpha (\ln \frac{X_i - e}{v - e})) \\
\sum_{i=1}^{n} \frac{\partial y}{\partial u} (y_i + \alpha (\ln \frac{X_i - e}{v - e})) \\
\sum_{i=1}^{n} \frac{\partial y}{\partial e} (y_i + \alpha (\ln \frac{X_i - e}{v - e}))
\end{bmatrix}
\]

This system of linear equations is solved for \(\Delta v, \Delta u\) and \(\Delta e\) and the initial values of \(v, \alpha\) and \(e\) updated; the calculation being repeated until there is convergence to final values of \(v, \alpha\) and \(e\). The initial values are determined as described in section 4.
TABLE 1
The Effect of Data Sample Size for Data Generated from a Distribution
with $V = 1.0, \alpha = 3.0, \epsilon = 0.7$

<table>
<thead>
<tr>
<th>Sample size*</th>
<th>Least squares method</th>
<th>Maximum likelihood method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V</td>
<td>α</td>
</tr>
<tr>
<td>20 Mean S.D.</td>
<td>0.989</td>
<td>2.436</td>
</tr>
<tr>
<td></td>
<td>0.017</td>
<td>0.291</td>
</tr>
<tr>
<td>50 Mean S.D.</td>
<td>1.002</td>
<td>3.021</td>
</tr>
<tr>
<td></td>
<td>0.007</td>
<td>1.371</td>
</tr>
<tr>
<td>100 Mean S.D.</td>
<td>1.007</td>
<td>3.396</td>
</tr>
<tr>
<td></td>
<td>0.011</td>
<td>0.671</td>
</tr>
<tr>
<td>200 Mean S.D.</td>
<td>0.997</td>
<td>3.163</td>
</tr>
<tr>
<td></td>
<td>0.006</td>
<td>0.692</td>
</tr>
<tr>
<td>500 Mean S.D.</td>
<td>1.003</td>
<td>3.249</td>
</tr>
<tr>
<td></td>
<td>0.003</td>
<td>0.253</td>
</tr>
<tr>
<td>750 Mean S.D.</td>
<td>0.999</td>
<td>3.119</td>
</tr>
<tr>
<td></td>
<td>0.003</td>
<td>0.196</td>
</tr>
<tr>
<td>1000 Mean S.D.</td>
<td>1.003</td>
<td>3.143</td>
</tr>
<tr>
<td></td>
<td>0.004</td>
<td>0.115</td>
</tr>
</tbody>
</table>

* The values shown are the mean and standard deviation of the results obtained from applying each method to five different samples for each sample size.
TABLE 2

Results Obtained for Data Samples of Size 20, for \(v = 1.0, \alpha = 2.5, \epsilon = 0.7 \)

<table>
<thead>
<tr>
<th>Case No.</th>
<th>IST</th>
<th>Least squares of variate (y)</th>
<th>Maximum likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(v)</td>
<td>(\alpha)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0.7626</td>
<td>0.9764</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>0.7811</td>
<td>0.9646</td>
</tr>
<tr>
<td>3</td>
<td>40</td>
<td>0.7819</td>
<td>0.9915</td>
</tr>
<tr>
<td>4</td>
<td>60</td>
<td>0.7400</td>
<td>0.9651</td>
</tr>
<tr>
<td>5</td>
<td>80</td>
<td>0.7958</td>
<td>1.0805</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>0.7720</td>
<td>1.0345</td>
</tr>
<tr>
<td>7</td>
<td>120</td>
<td>0.7572</td>
<td>0.9872</td>
</tr>
<tr>
<td>8</td>
<td>140</td>
<td>0.8040</td>
<td>0.9682</td>
</tr>
<tr>
<td>9</td>
<td>160</td>
<td>0.7574</td>
<td>1.0775</td>
</tr>
<tr>
<td>10</td>
<td>180</td>
<td>0.7530</td>
<td>1.0090</td>
</tr>
<tr>
<td>11</td>
<td>200</td>
<td>0.7241</td>
<td>1.0006</td>
</tr>
<tr>
<td>12</td>
<td>220</td>
<td>0.7063</td>
<td>1.0369</td>
</tr>
<tr>
<td>13</td>
<td>240</td>
<td>0.7866</td>
<td>1.0065</td>
</tr>
<tr>
<td>14</td>
<td>260</td>
<td>0.8441</td>
<td>1.0327</td>
</tr>
<tr>
<td>15</td>
<td>280</td>
<td>0.7612</td>
<td>1.0089</td>
</tr>
<tr>
<td>16</td>
<td>300</td>
<td>0.7283</td>
<td>0.9871</td>
</tr>
<tr>
<td>17</td>
<td>320</td>
<td>0.8056</td>
<td>1.0264</td>
</tr>
<tr>
<td>18</td>
<td>340</td>
<td>0.7592</td>
<td>0.9661</td>
</tr>
<tr>
<td>19</td>
<td>360</td>
<td>0.8098</td>
<td>1.0157</td>
</tr>
<tr>
<td>20</td>
<td>380</td>
<td>0.7661</td>
<td>1.0062</td>
</tr>
<tr>
<td>21</td>
<td>400</td>
<td>0.7139</td>
<td>1.0268</td>
</tr>
<tr>
<td>22</td>
<td>420</td>
<td>0.7274</td>
<td>1.0507</td>
</tr>
<tr>
<td>23</td>
<td>440</td>
<td>0.8635</td>
<td>1.0330</td>
</tr>
<tr>
<td>24</td>
<td>460</td>
<td>0.8033</td>
<td>1.0168</td>
</tr>
<tr>
<td>25</td>
<td>480</td>
<td>0.7233</td>
<td>0.9987</td>
</tr>
<tr>
<td>26*</td>
<td>500</td>
<td>0.7541</td>
<td>0.9853</td>
</tr>
<tr>
<td>27</td>
<td>520</td>
<td>0.7995</td>
<td>1.0030</td>
</tr>
<tr>
<td>28</td>
<td>540</td>
<td>0.7539</td>
<td>0.9740</td>
</tr>
<tr>
<td>29</td>
<td>560</td>
<td>0.8161</td>
<td>1.0186</td>
</tr>
<tr>
<td>30</td>
<td>580</td>
<td>0.8325</td>
<td>0.9816</td>
</tr>
<tr>
<td>31</td>
<td>600</td>
<td>0.8072</td>
<td>1.0166</td>
</tr>
<tr>
<td>32</td>
<td>620</td>
<td>0.7772</td>
<td>0.9715</td>
</tr>
<tr>
<td>33</td>
<td>640</td>
<td>0.7978</td>
<td>1.0419</td>
</tr>
<tr>
<td>34</td>
<td>680</td>
<td>0.7126</td>
<td>1.0157</td>
</tr>
<tr>
<td>35*</td>
<td>680</td>
<td>0.7528</td>
<td>1.0318</td>
</tr>
<tr>
<td>36</td>
<td>700</td>
<td>0.7452</td>
<td>0.9631</td>
</tr>
</tbody>
</table>

* Only solutions for two-parameter Weibull distribution existed.
† Solution would not converge, values obtained from contour plot.

IST—used in the generation of random numbers; given here so that any of these random number data sets may be reconstituted.
<table>
<thead>
<tr>
<th>Case 32</th>
<th>Case 8</th>
<th>Case 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.777221</td>
<td>0.803982</td>
<td>0.757371</td>
</tr>
<tr>
<td>0.787285</td>
<td>0.809143</td>
<td>0.775983</td>
</tr>
<tr>
<td>0.788506</td>
<td>0.826658</td>
<td>0.802988</td>
</tr>
<tr>
<td>0.801296</td>
<td>0.843383</td>
<td>0.870959</td>
</tr>
<tr>
<td>0.837540</td>
<td>0.854666</td>
<td>0.877282</td>
</tr>
<tr>
<td>0.873750</td>
<td>0.866742</td>
<td>0.911713</td>
</tr>
<tr>
<td>0.915978</td>
<td>0.868289</td>
<td>0.969554</td>
</tr>
<tr>
<td>0.917450</td>
<td>0.872045</td>
<td>1.00788</td>
</tr>
<tr>
<td>0.928643</td>
<td>0.899308</td>
<td>1.01243</td>
</tr>
<tr>
<td>0.935790</td>
<td>0.911857</td>
<td>1.02508</td>
</tr>
<tr>
<td>0.970270</td>
<td>0.926751</td>
<td>1.05588</td>
</tr>
<tr>
<td>0.975081</td>
<td>0.948090</td>
<td>1.07683</td>
</tr>
<tr>
<td>0.976064</td>
<td>0.948586</td>
<td>1.08666</td>
</tr>
<tr>
<td>0.978354</td>
<td>0.955043</td>
<td>1.09314</td>
</tr>
<tr>
<td>0.984281</td>
<td>0.992642</td>
<td>1.11991</td>
</tr>
<tr>
<td>0.991846</td>
<td>1.03085</td>
<td>1.12657</td>
</tr>
<tr>
<td>1.000006</td>
<td>1.05241</td>
<td>1.13691</td>
</tr>
<tr>
<td>1.00728</td>
<td>1.11716</td>
<td>1.16721</td>
</tr>
<tr>
<td>1.03115</td>
<td>1.22371</td>
<td>1.17037</td>
</tr>
<tr>
<td>1.15549</td>
<td>1.23370</td>
<td>1.20426</td>
</tr>
</tbody>
</table>

Converged solution | Did not converge to a solution | Only converged to a two-parameter solution, i.e. $\epsilon = 0.0$
TABLE 4

Estimates of the Weibull Parameters Using the Two Method with Various Distributions of Sample Size 1000

<table>
<thead>
<tr>
<th>Weibull parameters of the test data</th>
<th>Least squares of variety solution</th>
<th>Maximum likelihood solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>IST</td>
<td>ψ</td>
<td>α</td>
</tr>
<tr>
<td>0</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>2000</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>0</td>
<td>100</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>100</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2000</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3000</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>4000</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1000</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>
FIG. 1 CONTOUR PLOT OF THE LIKELIHOOD FUNCTION FOR CASE 32
(Data are shown in Table 3)
FIG. 2 CONTOUR PLOT OF PARAMETER ν FOR CASE 32
(Data are shown in Table 3)
Minimum sample value
Test data sample of 500
IST = 1000 with \(\nu = 1.0 \)
\(\alpha = 3.0 \)
\(\epsilon = 0.7 \)

Best fit straight line gives parameter estimates of
\(\nu = 1.005 \)
\(\alpha = 3.653 \)
\(\epsilon = 0.651 \)

FIG. 3 A PLOT OF VARIATE Y FOR A DATA SET OF 500, SHOWING THE BEST FIT STRAIGHT LINE FITTED BY THE LEAST SQUARES OF VARIATE Y METHOD
FIG. 4 CONTOUR PLOT OF THE LIKELIHOOD FUNCTION FOR CASE 8
(Data are shown in Table 3)
FIG. 5 CONTOUR PLOT OF PARAMETER ν FOR CASE 8
FIG. 6 CONTOUR PLOT OF THE LIKELIHOOD FUNCTION FOR CASE 9
(Data are shown in Table 3)
FIG. 7 CONTOUR PLOT OF PARAMETER ν FOR CASE 9
FIG. 8 MAXIMUM LIKELIHOOD ESTIMATE OF ϵ AGAINST x_{min}
FOR THE 36 CASES SHOWN IN TABLE 2
FIG. 9 WEIBULL DISTRIBUTIONS, $f(x)$, DETERMINED BY THE MAXIMUM LIKELIHOOD METHOD FOR VARIOUS DATA SAMPLES CHOSEN FROM TABLE 2, SAMPLE SIZE = 20

- Case 17: $\nu = 1.0196$, $\alpha = 4.5134$, $\epsilon = 0.6681$
- Case 8: $\nu = 0.94$, $\alpha = 0.80$, $\epsilon = 0.804$
- Case 32: $\nu = 0.96$, $\alpha = 2.5722$, $\epsilon = 0.7076$
- Parent: $\nu = 1.0$, $\alpha = 2.5$, $\epsilon = 0.7$
- Population: $\nu = 1.0$, $\alpha = 2.5$, $\epsilon = 0.7$
- Case 9: $\nu = 1.0693$, $\alpha = 9.5259$, $\epsilon = 0.0$
DISTRIBUTION

AUSTRALIA

DEPARTMENT OF DEFENCE

Central Office
Chief Defence Scientist
Deputy Chief Defence Scientist
Superintendent, Science and Technology Programmes
Controller, Projects and Analytical Studies
Defence Science Representative (UK) (Doc. Data sheet only)
Counsellor, Defence Science (USA) (Doc. Data sheet only)
Defence Central Library
Document Exchange Centre, DISB (17 copies)
Joint Intelligence Organisation
Librarian H Block, Victoria Barracks, Melbourne
Director-General—Army Development (NSO) (4 copies)

Navy Office
Navy Scientific Adviser

Air Force Office
Air Force Scientific Adviser
Aircraft Research and Development Unit
Scientific Flight Group
Library
Technical Division Library
Director-General Aircraft Engineering—Air Force

Central Studies Establishment
Information Centre

DEPARTMENT OF DEFENCE SUPPORT

Aeronautical Research Laboratories
Director
Library
Superintendent—Structures
Divisional File—Structures
Author: A. D. Graham
D. G. Ford
T. Ryall
J. Grandage

Materials Research Laboratories
Director/Library

Defence Research Centre
Library

RAN Research Laboratory
Library

Government Aircraft Factories
Library
DEPARTMENT OF AVIATION
Library
Flying Operations and Airworthiness Division

UNIVERSITIES AND COLLEGES
Adelaide Barr Smith Library
Flinders Library
Latrobe Library
Melbourne Engineering Library
Monash Hargrave Library
Newcastle Library
Sydney Engineering Library
New South Wales Physical Sciences Library
Queensland Library
Western Australia Library
RMIT Library

CANADA
CAARC Co-ordinator Structures
NRC—Aeronautical and Mechanical Engineering Library

Universities and Colleges
Toronto Institute for Aerospace Studies

FRANCE
ONERA, Library

INDIA
CAARC Co-ordinator Structures
Defence Ministry, Aero Development Establishment, Library
Hindustan Aeronautics Ltd., Library
National Aeronautical Laboratory, Information Centre

ISRAEL
Technion—Israel Institute of Technology, Professor J. Singer

JAPAN
Institute of Space and Astronautical Science, Library

NETHERLANDS
National Aerospace Laboratory (NLR), Library

NEW ZEALAND
RNZAF, Vice-Consul (Defence Liaison)

Universities
Canterbury Library

SWEDEN
Aeronautical Research Institute, Library

SWITZERLAND
F+W (Swiss Federal Aircraft Factory)
UNITED KINGDOM
CAARC, Secretary (NPL)
Royal Aircraft Establishment, Bedford, Library
National Engineering Laboratory, Library
British Library, Lending Division
CAARC Co-ordinator, Structures
Fulmer Research Institute Ltd., Research Director

Universities and Colleges
Bristol
Manchester
Nottingham
Southampton
Strathclyde
Cranfield Inst. of
Engineering Library
Professor, Applied Mathematics
Science Library
Library
Library
Library

UNITED STATES OF AMERICA
NASA Scientific and Technical Information Facility
Boeing Co., Mr. R. Watson
Lockheed—California Company

Universities and Colleges
Johns Hopkins
Massachusetts Inst. of
Professor, S. Corrsin, Engineering
MIT Libraries

Spares (10 copies)
Total (99 copies)
DOCUMENT CONTROL DATA

<table>
<thead>
<tr>
<th>1. a. AR No.</th>
<th>2. Document Date</th>
<th>3. Task No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR-002-927</td>
<td>November, 1982</td>
<td>Air 81/092</td>
</tr>
</tbody>
</table>

4. Title
EXPERIENCE WITH TWO ESTIMATORS FOR THE THREE-PARAMETER WEIBULL DISTRIBUTION

5. Security
- a. document: Unclassified
- b. title: U.
- c. abstract: U.

6. No. Pages
15

7. No. Refs
3

8. Author(s)
A. D. Graham

9. Downgrading Instructions

10. Corporate Author and Address
Aeronautical Research Laboratories, P.O. Box 4331, MELBOURNE, Vic. 3001.

11. Authority (as appropriate)
- a. Sponsor: d. Approval

12. Secondary Distribution (of this document)
Approved for public release

Overseas enquirers outside stated limitations should be referred through ASDIS, Defence Information Services, Branch, Department of Defence, Campbell Park, CANBERRA, ACT 2601.

13. a. This document may be ANNOUNCED in catalogues and awareness services available to...
No limitations

13. b. Citation for other purposes (i.e. casual announcement) may be (made) unrestricted (up) to...

14. Descriptors
- Weibull density functions
- Maximum likelihood estimators
- Curvilinear regression
- Least squares method

15. COSATI Group
1201

16. Abstract
Two methods for estimating the three parameters of the Weibull extreme value distribution are described and tested using Weibull distributed data. Graphical techniques used to support the estimation indicate that any bias may arise from estimations on the boundary of the parameter space.
This page is to be used to record information which is required by the Establishment for its own use but which will not be added to the DISTIS database unless specifically requested.

<table>
<thead>
<tr>
<th>16. Abstract (Contd)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. Imprint.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerohautical Research Laboratories, Melbourne</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. Document Series and Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structures Note 464</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19. Cost Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 1070</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>20. Type of Report and Period Covered</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>21. Computer Programs Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEIBUL.FOR</td>
</tr>
<tr>
<td>WEINEW.FOR FORTRAN 10</td>
</tr>
<tr>
<td>PICTLF.FOR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>22. Establishment File Ref(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>