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PREFACE

In the Fall of 1980, we had high hopes for continuing our
long-term study of energy deposition due to ion bombardment in metals
and semiconductors. However, due to shifts in ONR personnel and program
priorities, we reformulated our research gvuals to study the stopping of

ions under "exotic"

conditions. We felt that since high-intensity

pulsed irradiation is technologically close at hand, this study appeared
timely and worthwhile. Nevertheless, in the decislon process this
direction was considered tc be too far afield from the program objectives.
Very kindly, ONR did grant us funding for what was to be an extension to
ONR NC0014-76-C-0482, in order to tidy things up and write a final report.

Due to further delays, however, it became impossible to extend the nld

contract and a new one had to be issued. This meant that a final report
now had to be written in the late Fall of 1931 covering the period
7 January 1976 to 31 October 1981.

This rather complicated series of events left the new contract
M00014-81-C-0632 with its main purpose accomplished and reported upon.
Powever, not anticipating all these events early enough, we had started
a research effort on the gimulation of radiation damage in semiconductors
quite complementary to our previous work in metals. By scraping together
various resources, we have been able to complete the studies on single
crystal Si and give these results here as the main body of this final
report. Readers interested in our previous work are referred to the final
report of contract N00014-76~C-0482.
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I SUMMARY

A combined theoretical and experimental study of primary
recoil spectira effects or radiation darage in silicon is presented.
Calculations dete&mined how the damage erergy is particioned into free
defects and casc %es by fast collisions. The theory also showed that
on a time scale jziﬂ’&f sec, a very weak mass dependence of the lattice
damage is to be expected. Channeling experiments were fhen performed
on <111> single crystal silicon implanted with 1.0 Me;,é?&e, 0.5 Me}@é]e,
and 75 ke;,iﬂ. Energies and fluences of the ions were matched such that
over the first 0.3 ud:’the damage energy deposited and the rate of
energy deposition weré\the same for all species. The experimental data were
analyzed assuming that QQuivalent primary damage states will evolve into
statistically esquivalent final damage states at high fluences. Th-wy
confirm that the final damage is essentially independent of the mass of

the bombarding ion. N
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1. INTRODUCTION

A primary concern in the simulation of neutron damage by ion
beams and in the study of ion beam induced damage in general revolves
around how the initiating (incident) particle interacts with the target
to produce recoll atoms and atomic displacements. Some of the key
questions relate to understanding how the energy is partitioned in the
host, both on a fast collision time scale of lO_14 to 10"12 sec and on
the longer time scale associated with cascade collapse. One needs to
determine whether the amount of damage created by particles of different
mass and energy depends on the total energy deposited into displacement
processes. Another fundamental question pertains to the spatial distribu-
tion or degree of localization of the damage produced by recoiling atoms

of different energies.

Considerable interest in the above problems prompted a combined
theoretical and experimental study of primary recoll spectra effects at
the HEIBS (High Energy Ion Bombardment Simulation) facility at the University
of Pittsburgh.* The theoretical effort was aimed at calculating the
relative energy deposited in free defects and subcascade regions for

energetic recoils (E 2 1 keV) before annealing.

There is considerable experimental evidence and some previous
theoretical calcul:tions which suggest that the energy in a displacement
cascade does not increase indefinitely with increasing primary recoil
atom energy in materials where cascades can occur. Rather, above some
energy, E , cascades split into well-defined separate subcascade regioms.

u
Merkle(l) has summarized much of the experimental evidence for subcascade

*The HEIBS effort is jointly comprised of Westinghouse R&D Center and
University of Pittsburgh personnel.
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This means that techniques used to "measure' the resulting damage, such
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formation, and their existence has also been suggested by computer ’?E
s’mulations of atomic displacenient cascades using the binary-collision -ié
appraximation.(z’ 3) In this work, the subcascade production ‘:;
probabi.ity was calculated on the basis of the LSS-LNS theory of ion ii
scattering and energy 1oss(4’ 6) and clearly shows thar the primary ‘:
Jamage state is remarkably independent of the jon species and its PKa ;
spectrum. f%
Since it is zimost impossible experimentally to determine é:

the partitioning of energy into subcascades and "free'" defects on the ;Q
fast collision time scale, experiments were designed cn the premise that :ig
statistically equivalent primary damage states (calculated) will evolve EE
into statistically equivalent final damage states at high fluences. ;i

as Rutherford backscattering/channeling experiments, should not be szble
to distinguish between damage resulting from ions of different mass and

energy (and therefore PKA spectra) if the total damage energy deposited

Y
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into the target and the rate of energy deposition are the same for all

.
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icns. This presupposcs that the ions are sufficiently energetic to

launch recoils which can produce cascades. To determine whether

.
[
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differences in th> primary recoil energy spectra result in mezsurably

-

different damage states, single crystal silicon targets were bombarded ?3
with jons of different m ss and energy and the resulting damage states ﬁj
compared. This comparison was accomplished by Rutherford backscatterin,/ k@
channeling studies of the damaged crystals. ;E
"
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2. PKA SPECTRA AND CASCADES

Primary knock-on atoms (PKAs) are atoms of the target substance
which directly receive energy in a collision with the initial radiation
(neutrons, ions, or electrons). The number of PKAs as a function cf their
energy constitutes the PK4A spectrum; it is directly determined by the
collision kinematics and the differential cross section. For example, the
maximum PKA energy is determined by the masses of target and incident

particle.

Electron beam irradiation produces only low-energy PKAs because
cf the great mass difference of electrons from target atoms. Much more
energetic PKAs are produced by fast neutrons (E 2 1 MeV), but because the
neutrons are uncharged they do not produce very many low-energy PKAs.
Although the ion PKA spectrum can be controlled to some extent by selection
of ion species and energy, it is clear that cne cannot exactly match a
realistic neutron PKA spectrum with fast ions since the ions will always

produce many more low-energy PKAs than will neutrons.

The dissimilarity of PKA spectra naturally leads tc concerns
about the suitability of ion beams to simvlate neutron damage in materials.
At first sight, it appears that for ions a hatder PKA spectrum will cause
more energy to be deposited in cascades relative to free defects. Careful

examination of the subcascade productior process reverses this impression.

PKA events have been divided into three categories depending on

the recoil energy:

1. low-encrgy PKAs (below 1 - 2 keV) which produce

defect pairs or only small clusters;

2. intermediate-energy PKAs (2 - 12 keV} which produce

single cascades; and

3. high-energy PKAs (E Z 12 keV) which produce

multiple subcascades and free defects.
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The boundary energies are not sharply defined, and calculations

have been performed to explore the range of uncertainty in the boundary

(7)

energies. The probability calculations strongly support the general

Kanainraraltomedmi e ercam=t 2 .t s bvmax

division into three energy categories; for example, our calculations show
that an 18 keV PKA in Si has a probability greater than 90% to launch a

subcascade before dropping below v 12 keV to form its own subcascade. For

this reason, that part of the PKA spectrum which lies above E, v 12 keV
has no direet physical significance or manifestation; PKAs in this range
are instead converted into lower-energy subcascades and free defects.

This conversion occurs on the fast-collision time-scale (~ 10-14 sec)

and is complete before any thermally activated atomic motions. Because of

this conversion, the hard neutron spectrum produces free defects and

subcascades very much like the damage resulting

Because the process discussed here is
scattering (E 3 12 keV), it can be moaeled with
by the screened Coulomb potential introduced by
Scharff.(é) Calculations of the probability to

the demonstration that an energy E, exists such

from ion irradiation.

relatively energetic
reasonable accuracy
Lindhard, Neilsen and
launch subcascades and

that subcascades are

almost certain to be launched for PKA energies above E_ have been

described in detail previously.(7) 7N

Similarly, this refernece also
discusses the specifics of the sequel calculations which follow the
collision sequence in which a PKA having energy greater than E, is

allowed to transfer energy to electrons, low-energy recoils, and

:
K
}
g
|
'

subcascade-forming recoils. What will be presented here are the results

of such calculations as parformed for seli-ion bombardment of silicon.
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3. EXPERIMENTAL BACKGROUND

3.1 Selection of Target Materials

Single crystal specimens have veer. selected to permit
application of the Rutherford backscattering/channeling technique. The
Si specimens were cut from crystals with a <111> growth axis. Small
wafer specinens of approximately 1.5 cm on an edge and 250 ym thick were
cleaved along {111} directicns from larger, 250 um thick, wafers.

Impurity levels in this material are ~ 1015/cm3.

3.2 Choice of Bowbarding Ions and Implant Conditions

ince the experiments utilized ions of different mass, both
the energy of the bombarding ions and their flux had tz b2 selected such
that the total damage energy deposited into the target and the rate of
energy deposition was the same for all icns. In addition, chemical
effects from the implanted ions and from point defect concentration
gradients induced by proximity of a free surface had to be minimized.

Heuce, in this study, the inert gas ions 20Ne and 4He as well as lﬂ

were empioyed. The 1 MeV 2oNe+ ions were selected as the reference ion
and energy for establishing the damage profile, SD(x) in the Si crystals.
Fluences and energies for the other two species were then determined

to provide as close a match as possible to the reference Ne damage
profile. There are difficulties with the present range-energy theories
but we believe that SD(X), energy oer unit depth deposited into atomic
displacements, may be caleulated reliably for the region starting at the
surface and going into the sample to a depth corresonding to approximately
three-quarters of the way to the peak of the displacement damage. Figure 1
shows curves of SD(x) calculated from a modified EDEP-1 code of Manning
and Mueller(s) for 75 keV 1H, 0.5 MeV AHe, and 1 MeV 2ONe, which yield

equal energy deposition near the surface of the Si target (0 to 0.2 im).
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The Sy(x) curves are normalized at the front surface and the fluences

o"/“ M

adjusted to agree with 20Ne damage.

Table 1 presents the choice of bombarding ions, energies, and

relative fluences selected to produce approximately matching damage profiles

N VIOV

over distances of ~0.3 ym. Also included are the relevant range parameters

(Rp and ARp) for each ion, and the maximum transfer energy, Tmax'

Table 1 -~ Experimental Parameters i

Energy ¥y T .

Ion (MeV) (:3) éﬁg) _ e (ke¥) ’

20ye 1.0 1.52 0.168 1 972 “

“He 0.5 1.95 0.122 38 219 i
1y 0.075 0.71 0.063 99 9.98

X LRI

4. EXPERIMENTAL PROCEDURES

>rett

The final silicon single crystal surfaces utilized for é
implantation were perpendicular (within 1 to 2°) of the [111] growth 2
direction and were free from mechanical damage. Specimens were implanted E
5 to 7° off the [111] axis normal to the surface to minimize channeling gf
effects and, during the bombardment, one-hilf of each was masked to E
provide a nonimplanted reference crystal for the channeling studies. E

The channeling experiments were performed o:: a 4.8 meter beam
line of the 2 MV Van de Graaff accelerator using 1.5 MeV 4get ions. The
*He beam was collimated to give a full angular divergence of 0.03°. For

the aligned spectra, the He beam was oriented normal to the crystal surface

L AR

(within 2°) and all spectra were collected at a backscattered angle of

-
4

MU AT

168°, Tie aligned spectra were obtained in a <111> axial direction from
both the implanted and nornimplanted half of each crystal and the randon
spectrum was obteined from the nonimplanted half. The random spectrum

was measured by setting the symmetry axis 8° froa the incoming beam
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direction and rotating the sample continuously. Each spectrum was
obtained under a constant total He fluence as determined by the
backscattered yield from a rotating Au foll, which sampled the beam
approximately 7% of the time. The energy scale of the backscattered
spectra was converted to a depth scale by employing the electronic
stopping powers of 4He+ in Si, with the assumption that the energy loss

of the channeled ions is the same as that for ions impinging along a

(9

random direction.

5. RESULTS AND DISCUSSION

5.1 Subcascade Spectra

In the calculations, it was considered thatc a cascade was

produced by a reccil of energy greater than E2 0.6 - 2 keV. As El ;
is varied thrcugh this range, the upper limit Eu (above which multiple
cascades are produced) will also vary. However, the general features of f

the energy partitioning remain constant. )

Figure 2 presents the calculated direct and reduced energy )
spectra for various PKA energies in self-bombardec silicon. The direct
spectrum shows the energy deposited in secondary events by PKAs of
specified energy. Values of El and E; were 1.6 keV and 12 keV,

respectively. As the PKA energy rises, a larger fraction of th2 energy is

Y R T AR B I

delivered to energetic (E > Eu) secondaries (shaded box). The reduced
spectrum is the result of distributing the energy of the shaded box into
energy of free defects, cascades, and electrons. A most important finding
is that the partitioning of the energy into trce defects and cascades, as ¥
indicated by the reduced spectra, is almost the same for all recoil ﬂ
energies up to the maximum energy transfer permitted by kinematics. A
schematic interpretation of w™at these results mean in terms of defect d
and cascade formation is shown in Figure 3. Since the ratio of reduced

spectra nistogram heights in Figure 2 is almost indeperdent of PKA energv,

R X

it is relatively insensitive to the PKA spectrum.
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Figure 2. Calculaticns of the direct and reduced energy spectra for
various PKA energies. The direct spectrum shows the energy j::-j
deposited in secondary events by PKAs of specified energy. -
Tg is 1.6 keV and E; is 12 keV in this figure. As the PKA ,_:
energy rises, a larger fraction of the energy is delivered to NS
energetic (E > E,) secondaries (shaded box). The reduced x|
spectrum results from distributing the energy of the shaded box -
into energy of free defects, cascades and electrons. In the .{
reduced spectrum, the cascade energy is a constant multiple j}.:
of the free defect energy, independent of PKA energy. o
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5.2 Backscattering Data

Figures 4 through 6 show aligned backscattered spectra for
1 MeV 20Ne. 0.5 MeV aHe, and 75 keV 1H, respectively. Also shown on
each figure is a representative aligned spectrum for a nonimplanted
(n-1i) reference crystal and a random nonaligned spectrum. All yields
are normalized with respect to the random spectrum. The peak at zero
depth for the aligned spectrz is due to the direct backscatte+ing from
the surface layer of ions which do not enter a channel and is known as
the "surface peak." For the bombarding ions, the surface peak is
15 Ne+/cm2 and 5.31 x 1016 He+/cm2,

but is somewhat larger for 1.37 x 1017 H+/cm2, perhaps due to th:

essentially the same for 1.39 x 10

increase in fluence. The "errors" in the backscattered spectra are
represented by the recorded yield variations on the curves (i.e., the

smail peaks and valleys).

Comparison of the implanted spectra behind the surface peak
reveals very similar behavior up to depths of ~40G0 nm, or slightly beyond
the region over which the deposited damage energy was matched (Figure 1).
(Note that the large peak at v600 nm in Figure b6 corresponds to the peak
of the Sp(x) curve at 640 nm.) The spectra shown in Figures 4 and 6 can
be compared more easily at equivalent damage levels by an approach

outlined by Merkle et al.(lo’ll)

This analysis is frequently applied

in channeling experiments and relates the rate of dechanneling to the
concentration of defects of type (3) and density (nj) with a cross

section for dechanneling par defect (oj). If one normalizes the aligned
spectrum by the random spectrum, the normslized yield (x) represents the
dechanneled fraction of ions up to the depth (z), and {l-x) represents the

remaining channeled fraction. Therefore, at any depth z:

dxi k
——d;- = (l"'XQ jio Gjnj (1)
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Figure 4. Comparison of normalized yield spgctra (<111> axis) for
silicon implanted wjith 1.0 MeV Ne to a fluence of

1.39 x 101° ions/cm® and nonimplanted silicon (curve

marked (n-1)). Implants were made at approximately 5°

off-axis and all spectra were obtained with a 1.5 MeV Yfe
beam.
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where the subscript (i) refers to the aligned spectrum from the implanted
crystal. This equation simply states that the rate of dechanneling

at any depth is given by the fraction of ions remaining in the channels
times the probability that a single ion will be dechanneled by all the
defects of type (j) as it progresses a unit distance along the channel.
If the intrinsic Adechanneling as measu. :d in the nonimplanted reference

crystal is simply additive to that produced by tne defects, then equation 1
can be written as

d d r- k
xi _ Xn-1
(1")(1) (1‘Xn_i)

[ 5]
Q
=
[= 1
N
~~
~
~r

i

where the subscripts (i) and (n-i) refer to the spectra from the implanted
and nonimplanted crystals, respectively. This expression strictly holds
when the defects introduce dechanneling of the ions into random
trajectories without any direct backscattering of ions in the channels.
Therefore, according to equation 2, the density of defects and thus the
damage level as measured by a channeling experiment is related to the

slope of the aligned spectrum.
k

The quantity I ojn. wus calculated using a computer program
which first determines =1 the slopes of the channeling spectra. The
depth range was selected to avoid the proximity of the small surface

peak and to extend only to the limit over which the SD(x) curves were
matched.

Flgure 7 shuws a plot of I anj as a functior of depth (as s
determined by equation 2) for the danage level equivalent tov 1.39 x 10
Ne+7cm2. The data are aiso tabulated in Table 2. It is clear that the
extent of dechanneling for the damagad crystals bombarded with 1.0 Mev
20Ne and 0.5 MeV 4He superimpcse, which suggests that equivalent final
damage states were produced for these two ions This further suggests

that, provided the de<posited damage energy and the rate of energy deposition
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are the same, the damage state produced is essentially independent of the

mass and energy of the hombarding ion in the silicon substrate. Such a

conclusion is in excellent agreement with data recently reported on

N
i;:

ion-bombarded nolybdenum.(lz)
A
7
Table 2 - Dechanneling Rates as a Function of Depth 5%
;;
1 ad
Implanted Ion Depth (um) pX 0.0 (" /ym) »
20 _ i
1.0 MeV ""Ne 0.11 0.14 P
0.22 0.18 N
0.31 0.19 E
0.41 0.19
0.5 MeV AHe 0.10 0.14
0.20 0.15 :
0.30 0.16 .
0.40 0.15 a
|
75 kev 'n 0.13 0.23 =
0.20 0.33 o
0.30 0.48 ]
0.39 0.62 .
1 o
The higher slope of the 75 keV "H curve corresponding to
a greater dechanneling rate, is due to the influence of the large peak ?
observed at 0.6 um in Figure 6. The implanted hydrogen, with Rp = 0.71 um, i
is introducing lattice strain which yields an additional contribution $
-4
to the fraction of dechanneled ions in the near surface region. This X
does not necessarily indicate that the damage state produced by the 75 keV E
lH as it enters the crystal differs from the states produced by 1.0 MeV -
Ay
ZoNe and 0.5 MeV 4He. Further work, including electron microscopy, is -
required to elucidate this question. One might expect that the resultant !
damage state for lH would differ from those produced by 20Ne or 4He

because the recoil spectrum for 75 keV lH in silicon would primarily

yield free defects. However, since the maximum transfer energy is stiil
v10 keV in silicon, which is considerably larger than Ez, a significant

amount of cascade formation could still occur.
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An interesting question which is still to be answered concerns
thte nature of the damage produced by the ion bombardment. It is hoped

that transmission electron microscopy (TEM) will be able to determine

) SRR 38

whether amorphous regions have been produced, or if the dechanneling is

(13)

primarily due to loop formation, for example. Ligeon has suggested

NG

that 30 keV H implanted into silicon does not produce amorphicity,

R

even at the peak damage region, but that hydrogen bubbles may be

&l

contributing to the observed dechanneling. This is difficult to

rationalize because of the weak dechanreling effect normally caused by
(13)

oo

bubbles, and so Ligeon further suggests that the bubbles are active

.

as generalized stacking faults. TEM characterization of the implanted

region may shed light on this question, as it has iu previous work

on molybdenum.(lz)
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6. CONCLUSIONS

7
-a.

>
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A

e Theoretical calculations have shown that, on the fast-collision

D :d’.{{;

time scale, the ratio of energy deposited into free defects and

>} PRI

subcascades is independent of PKA spectrum and thus of incident ien

o
energy and mass {provided the damage energy deposited and the rate of 5@
2
energy deposition remain the same). 3
X

e Channeling experiments on <111> single crystal silicon

o
impianted wi:h 1.0 MeV 20Ne+, 0.5 MeV aHe', and 75 keV lH+ ions have

shown that equivalent final damage states were produced for all three

e gt *
DAY

ions.

LIRYN
La"a.»

e These two results further support the premise that equivalent
primary damage states wiil evolve into statistically equivalent final

. l‘. T,

0
T

.

damage states at high fluences.
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