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SIGNIFICANCE AND EXPLANATION

This paper studies the existence of spatially periodic solutions of a

singular perturbation problem for a family of elliptic equations. A simple

one dimensional example is

(*) -u* + u = £ f(x,uu',u",u'')

where f is 2w periodic in x and a 2w periodic solution u is

sought. Assuming only that f is smooth, there exists a one parameter family

of periodic solutions u(xE) of (*) with u(x,e) + 0 as c + 0. The most

natural approach to (*) using the method of successive approximations fails

because of a loss of derivatives problem. However a Newton type or rapid

convergence method due to Moser is shown to be applicable to (*)I
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A RAPID CONVERGENCE METHOD FOR A
SINGULAR PERTURBATION PROBLEM

*
Paul H. Rabinowitz

Introduction

Consider the equation

n2 3
(0.) Lu = - I (a ij(x)u ," + u - E f(,u,Du u,Du)j ii xj xI

i~j-j i

In (0.1), x = (xl,...,xn) e R1, L is uniformly elliptic with coefficients

aij which are periodic in xl,...,xn, and e e f. The function f depends

on u and its derivatives up to order three and is also periodic in

x1,...,x n with the same periods as the coefficients aij. Our goal is to

establish the existence of periodic solutions of (0.1) for small values of

lei. This is a singular perturbation problem since the f term is of third

order while L is merely of order two. We will show (0.1) possesses a one

parameter family of periodic solutions depending continuously on e for small

li provided that the coefficients aij and f are sufficiently smooth.

Surprisingly other then this differentiability requirement, no hypotheses are

needed concerning the dependence of f on u and its derivatives.

We assume the functions f and the aij have the same period, say 2w,

in each of xI, ...,xn . The analysis is unchanged if they have different

periods T,,...,T n  with respect to Xl,...,x n . For notational convenience we

further set

2 3
F(x,u) - f(x,u,Du,D u,Du) 
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Note that when C - 0, (0.1) has a unique solution u E 0. A natural

way in which to attempt to solve (0.1) for small lei is via the iteration

scheme: u0 - 0 and for J ) 0,

(0.2) Luj+1 = C F(x,u .

For various choices of function spaces, L can be inverted with a gain of two

derivatives. However since F depends on u and its derivatives up to order

three, in passing from uj to uj+l,  we have a net loss of one derivative.

Thus if f e Cm , we can only iterate for a finite number of steps and even if

f e c , convergence of this scheme is unlikely due to the above loss of

derivatives phenomenon.

Methods have been developed by several authors to treat "loss of

derivatives" and "small divisor" problems. See e.g. Nash [11, Moser (2],

Schwartz [3], Sergeraert [41, Zehnder [5], Hrmander [6], and Hamilton (7].

We shall show how the approach of Moser can be applied to (0.1). The main

difficulty in doing so is in finding approximate solutions of the

corresponding linearized equation

a
(0.3) Lv L Lv - C Aa(u)D v - gIoI'3

af
In (0.3), the usual multiindex notation is being employed, A = for0 0D~

101 4 3, and the dependence of A on x has been suppressed. Approximate

solutions of (0.3) will be obtained as exact solutions of an elliptic

regularization of (0.3):

m m
(0.4) (-1) Av + Lv = g

where A denotes the usual Laplacian.

In I1, we will state Moser's result from [2] and show how it can be used

to solve (0.1). With the exception of the technicalities associated with

(0.3) - (0.4), this is not a difficult process. The technicalities of
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treating (0.3) - (0.4) are carried out in 12. In 13, a local uniqueness

result will be obtained. Our approach to (0.1) relies in part on ideas from

(8]. See also [9].

In [10], the written version of a talk delivered at the University of

Alabama in Birmingham International Conference on Differential Equations, a

one dimensional version of (0.1) was discussed. As an outgrowth of that

lecture, Tosio Kato has found another approach to the problem using the

stationary version of his theory of quasilinear evolution equations.

-3-



11. Moser's Theorem and its application to (0.1).

Some functional analytic preliminaries are required before Moser's result

can be stated. Let FP denote the closure of the set of C functions on

ln which are 2w periodic in x 1 , ... ,x n with respect to

(1.1) lul ( Y f JDTu 2dx) 1/ 2

(1. 1)m

In (1.1) and elsewhere in this paper, integration is over the set

{x e n I x1 e (0,2w], 1 4 i 4 n)

Let 0 < p < r and u 0  Hr. Set

U {u e HP I lu-u01P < 11

and Ur U n H r. Suppose F: Ur + Ha where s < r. The equation

F(u) - * is said to have an approximate solution of order X (>0) in Ur if

for all large K, there exists u u. < Ur such that

I (u) - 10 < K and lul < K

For u e ur , let F' (u) denote the Frechet derivative of F at u. The

equation F'(u)v is said to have an approximate solution of order ij(>0)

if there exists a constant c > 0 and a function *(M) such that whenever

u eU r , g e Ha, and

(1.2) lul < K, Igi C MX, Igi < K
r s 0

then for all large Q, there is a v = vQ e H satisfying

(1.3) IF'(u)v - g10 4 *(M)KQ -

(1.4) ii 4 *(M)KQ ,r

and

(1.5) IF'(u)v10 ) clvI 0

For u e ur and v e Hr, let

(1.6) Q(u,v) F(u+v) - F(u) - F'(u)v

-4-
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Theorem 1.7 (Moser [2]): Let F: + and suppose there are constants

cpXi,B, and 1 and a function *(M) such that

10 Fe C1(Ur,Ho )

20 If u e Ur , then IF(u) - *010 <1 and IF(u) - *0Ia <

30 For all large K, OF(u)l, -C NK whenever u e Ur and lul < K

40 The equation F'(u)v = g admits approximate solutions of order P.

50 IQ~u~v1- ClM1v
50 I(u,v)l0 -C Mvl0 for all u e U , v e Hr

60 (i) B e (0,1)

(ii) P/r < X

1
(11) 0 < X+1 < (1+1)

(iv) 0 < 0 < --L + P(-2
XL+1 ii+1U+

Then there exists a constant K0  (depending on M, ce B, X, ) > 0 such that

if

,,-,o00 <  0

(i) u0
1

r < K0

and (iii) 0 41i MK0

hold, the equation F(u) - * possesses a sequence of approximate solutions of

order A in Ur* Moreover the sequence is a Cauchy sequence in Hp  with

u +ue eU and F(u = .

Remark 1.9. Moser states the result somewhat less formally in [2]. The proof

of Theorem 1.7 shows that if F depends continuously on a parameter e, then

so does u.

We wili demonstrate how Theorem 1.7 yields a solution of (0.1). Before

doing so it is convenient to make a technical modification of f. When

C - 0, u - 0 is the unique solution of (0.1). Therefore we expect a small



solution in so, 3 for mall e so the behavior of f only when e.g.C
1

ul 3 < - should be of importance. Therefore we can multiply f(x,F) (where
3 ~~ 2 +

t e Rl n )n n ) by a smooth function X(M) with x(E) - 1 if It I I for

all I and X(M) - 0 if any I& I I 1. Thus we can and will assume f(x,A)

has compact support with respect to &. Of course it must be shown later that
1

Iu( )I < - for the solution we find.3 2
C

To apply Theorem 1.7 to (0.1), set r - k+3 and s - k where k is

free for the moment. We will determine lower bounds on k later when 50 is

verified. Choose p to be the smallest integer that exeeds 4 + 2" The2

Sobolev inequality then implies u e C4 whenever u e u. Define

(1.10) F(u) - Lu - C F(xu)

Further set u0 = 0, +0 = F(0) - -E F(x,0), and * - 0. Our choice of P

shows there is a constant R > 0 such that

(1.11) lul 4 4 R
C

for all u e U. Moreover F e c 1 (c 3 0 H0 ,C0 ) and a fortiori Fe c (Ur,H0 )

so 10 of Theorem 1.7 holds.

The following "composition of functions" inequality from [2] is useful in

verifying 20 and 30 of Theorem 1.7 for (0.1).

2 3
Proposition 1.12: Suppose G(x,&) e ( x n  n ,R) and G is 2v

periodic in X,1 ...Ixn If u e Hm+3 3 C3 with luE 3 R, then

G(x,u,Du,D 2u,D 3u) e lm. Moreover there is a constant c = c(m,R) such that
2 3+1

IG(x,u,Du,D u,D u)Em 4 c(m,R) (lul m+3  1)

With the aid of Proposition 1.12 and our choice of p, 20 of Theorem 1.7

follows trivially. For 30, by (1.10), (1.11), and Proposition 1.12, we have

EF(u)I k < all k+2 + Ide lF(x,u)lk

(1.13)

a IllEUk+ 2 + I€1 c(k,R) (lUlk+3 + 1) C MK

-6-
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provided that Ie 4 1 4 K and a 1 + 2 c(k,R) 4 M. In (1.13), a, depends

on A max Ia j IC k +  "
1-(I, j~n

To verify 40, some notational preliminaries are needed. Let

F T
A (u) 1- (x,u) where F corresponds to the D u argument of F. Define

A(u)v E A (u)D'v
I1Jc3

Set

IA(u),j - X IA(u)I .IrI(3

In §2, we will 
prove

k+ 1Proposition 1.14: If y > 0, aij, f e c l, u e Ur , and g e Hk, then there

is an £k > 0 such that for ei ( Ck , the equation

(1.15) Lv S (-1)my Amv + F'(u)v = g

2m+kpossesses a unique solution v e H Moreover there Is a K(M) such that

if u,g satisfy (1.2), K ) K, and y 4 1, then

(1.16) Y1v2m+k.1 + Iv1k+2 4 bk(Ig1k + CIA(u) k)

where bk depends on k, the ellipticity constant of L, and A.

Proposition 1.14 implies (1.3) - (1.4). Indeed by (1.16), (1.2) and

Proposition 1.12,

(1.17) Il C b (MK + ii C(kR)(K+1)) - 2 b NK
k+2 k kc

for I 4 1 4 K and 2 c(k,R) 4 M. Also by (1.16) and (1.17),

(1.18 ) 1 vA 2k- 1 2bPi"

A standard interpolation inequality - see e.g. (2) - asserts if 0 < p < q,
1-p/q Iwlp/q

IWp 0 q

for all w e Hq  where c is a constant depending only on p and q. Let

w - DTv where ITI k*2. By (-.19),

2m-4 I

(1.20) 'W4 m2 o W1 2m-3

-7-



Hence combining (1.17), (1.18), and (1.20) yields

1

(1.21) lk+3 2a3 2m-3 bkMK

1

Set Q 2m-3 so (1.21) becomes

(1.22) IVlk+3 4 
2a3 bkMK Q ' *(M)RQ

where

(1.23) O(M) E 2( + a 3)( + a 4)bk M

and the constant a4 is defined in (1.24). Thus (1.4) holds.

Next note that from (1.15) we get

in -(2m-3)
(1.24) IF'(u)v - gl 0 = yID v 0 4 Q a4 1vt2m

Choose m so that 2m = k+2 if k is even and 2m - k+3 if k is odd. In

the first case, (1.17) and (1.24) show

-(k-i)(1.25) IF'(u)v - gh0 C (Q 04) 2 bkMK

In the second case, (1.22) and (1.24) imply

(1.26) IF'(u)v - g10 4 (Q -ka4 ) 2 a3bkMQK .

Hence in either case we have

IF'(u)v - g 0 4 '(M)KQ

where P = k-1. Thus (1.3) is satisfied.

At this point 40 of Theorem 1.7 has been verified except for (1.5). In

12 we shall show that (1.5) holds with c depending on the ellipticity

constant of L provided that Jel is sufficiently small.

Next let u e Ur  and v e *+3. Then u, v e C3 and by Taylor's

Theorem we have

2
(1.27) .(u,v) 2 D avITIT3
"i~ ~ 3ET D~ ~

where &T again corresponds to the D Tu argument of F. In (1.27), F is

evaluated at (x,u(x) + e(x)v(x)) where O(x) e (0,1) via Taylor's

-8-
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Theorem. By earlier remarks about truncating f, there is a constant a5

such that
T 2

(1.28) IQ(u,v)I 4 tcl a5  2 ID vl
ITIO3

Consequently

(1.29) IQ(u,v)l0 r lel a 6 vl 3VI l3
C

Applying (1.19) gives

k 3

(1.30) Ivl3  < k + 3  I k+33 C&7'vVok+3

The Gagllardo-Nirenberg inequality [11] further implies

n n
k--i 3+-2 2

(1.31) IVl 3 CL IVI Ivk+3 IVlk+3

C3 e 0 k3c

Thus for eil 4 1 and M a 6(a 7+a 8), 50 of Theorem 1.7 obtains with

8 (6 + 2)/(k+3

We turn now to the verification of 50, determining k in the process.

If k > 3 + , i) holds and (iii) is satisfied via setting
24

(Recall v - k-i.) To get (ii), we need

(1.32) 
.p k-4
k+3 k+4

Since p < s + -, it is easy to check that (1.32) holds for e.g. k > 12 + n.

Lastly (iv) requires that

n

6+ C I k-4 k-i
(1.33) k+3 2 k k

and k > 28+2n is sufficient for (1.33). Thus if k > 28+2n and

II < £28+2n' all of the hypothesis of Theorem 1.7 are satisfied and there is

a K0 (M,c,OA,u) > I such that if (i) - (iii) of (1.8) holds, (0.1) has a

solution. But by our choices of *0' *, and u0, (ii) and (iii) are

trivially true and (i) also obtains if IJE is so small that

(1.34) let if(x,0)l < K 0
0 0

-9-



With this further restriction on IdE, by Theorem 1.7 and Remark 1.9, (0.1)

with the modified f possesses a curve of solutions u(xE) e C3 with

u(x;O) - 0 and u continuous in C. Therefore for small IC1,1
Iu(xIC)l < I and (0.1) is satisfied with the original f. Thus we have

3 2C
shown:

Theorem 1.35: If f and the coefficients of L are sufficiently smooth

there is an C* > 0 such that for all lel < E*, (0.1) has a solution

u(xie) which is C3  in x and continuous in C with u(x,0) = 0.

-to-



12. The modified problem

The goal of this section Is to find approximate solutions of F'(u)v - g

in the sense of (1.2) - (1.5). This will be accomplished via Propositions

2.1, 2.18, and 2.36 below. The inequality (1.5) happens to be valid for all

v e Hk+3 . To make this precise a few notational preliminaries are needed.

Set

A(u)v - (u)DTv and A3(u)v - AT(u)v
ITI(2 ITI-3

so

A(u)v - 1(u)v + A3 (u)v

Set

IA(u)i 1 IAT(u)Iif 1A3 (u)I T IAtu)l I
C I12 T C C ITI-3 C

and

IA(u)Ic1 IA(u)I1 + 1A3 (U) 1I•

The H0  inner product will be denoted by (oo). Finally note that F'(u)v -

Lv - £ A(u)v.

Proposition 2.1: There are constants C1 and c depending on the

n
ellipticity constant of L and on laili I such that if IJE 4 Ci'

3 ij1 C1

u e Ur , and v e H,

(2.2) IF'(u)vlU c iV:2

Proof: To establish (2.2), we will estimate (a) (F'(u)v,v) and (b)

(F'(u)v,- Av). The first quantity is easy to treat:

:F'(u)vl0 1v: 0 (F'(u)v,v) ) (Lv,v) -

(2.3) - Ile 1A(u)I 1 Iv|2 iv' 0- Icl(A 3 (u),vv)

C

Since L is uniformly elliptic, there is an w ) 0 such that

n - 21 a (lx) [~ 11

i, i-I

-11-



for all x, E e Rn. Therefore

(Lv,v) ) lvl 2
1

where w - min(1,;). Expanding the last term in (2.3) gives

(2.4) (A3 (u)v,v) -f I AT (u) (DT vv dx
ITI-3

Writing D Tv = v x , a typical term in (2.4) can be integrated by parts:

f A (u)v v dx = -f[A (u)) v v
S ixjm x xjx

(2.5)
+ AT((u)v v I]dx

Thus (2.4) - (2.5) and crude estimates yield

(2.6) I(A3(u)vv)l 4 IA3(U)Ic1 I vilVi 2

Combining (2.3) and (2.6) then gives

(2.7) IF'(u)vl0 ) WIVI 1 - ICIA(u)l 1 Ivl2
C

The estimate for (b) requires more care. As in (2.3) we have

IF'(u)vl0  ID' vl0 ) (F'(u)v, - Av) -

(2.8) Iol2

= (Lv, - Av) + e(A(u)v,Av) + C(A (u)v,Av)
3

The terms on the right hand side of (2.8) will be estimated separately. First

n n
(2.9) (Lv,-Av) I V x  I 1 .- aI ' I ,vi I ,Dv,

I I ij I C 101 2

Next

(2.10) 1(A(u)v,Av)j 4 IA(u)I Iv 2 2 ID'vI'!
c 101-2

A typical term in (A3 (u)v,Av) is

(2.11) I A v V dx.
Ir p p

This must be handled carefully. Integrating by parts,

-12-



I f[-(A T (U))x Vx x v + (A (u)) v vXmpp Xp xim xip

(2.12)
+A T(U)v V x dx

Interchanging the roles of I and j and adding the resulting expression to

(2.12) yields

2 I Tf-(A(u))v + (A (u)) v ]v

(2.13) (AT(u)) xp (Vx xmVxixp + VxiM VxjxpI

+ AT(u)(v x x ) )dx
J p Ip mt

Thus one final integration by parts shows

(2.14) 111 IA (u) IV *D'V1
2 TI 1 1V12 0

Consequently
(2.15) l(A (u)v,hv)I I -- I I"

3 2 1 3() 11'V2 ' Dvl
C 101-2

and combining (2.15) with (2.8) - (2.10) shows

n n
(2.16) IF'(u)vl0  ) w I Iv - . la jl Il - lei 1 B OOA(u)I IvI 2i-I x3  l1 I 1 1

Adding 02 times (2.16) to (2.7) yields

n
(1+0 2) IF'(u)v10 ) (w- 2  ,l ulIC I)IVlI +

(2.17)
n

+ WO2  1 Iv 11 - 01+01 B) IClA(u)Ic 1 Iv12

Choosing

0 (2 n -11
2 w(2J., I la. .1l 1 1 ClA(u)I 1(1+002)1  = min(' 1 w 2 )

and li , gives (2.2).

-13- bo



It remains to prove Proposition 1.14. Its existence and uniqueness

assertions follow from the next result and the estimates follow from

Proposition 2.36 below.

Proposition 2.18: Suppose f e k*,u e ur, 9 e Hk, M > 1, and Iii 4 E

Then there exists a unique v e H m~ satisfying (1.15).

Proof: First we will establish the existence and uniqueness of a weak

solution of (1.15). Regularity will then follow easily from elliptic theory.

For 2mH, le ~ -8AC. The estimates of (2.3) - (2.17) show

for lei 4is

D'+1
(2.19) (Li,AO) > Y I ID T C12 + COI2

-sIM 0

Let H8 denote the negative norm dual of Hs with respect to H 0. (Recall

(2.20) *IC-= sup (C-lw)

see e.g. Lax Eli].) Let # e C' n H 0. Using e.g. Fourier series, it is easy

to see that there isa unique w eC AH such that Av=* Let L*

vhere L* denotes the formal adjoint of L. Then by (2.19) and (2.20),

lIW 1 14*1- ( )> (w,4*) - (w,L*+) (Lw,#)

(2.21)
(Lw,Aw) > W 2

where Y I depends on y and c. Moreover

(4.2) (Aw~z)(2.22) sup1 sup W V
2 0O'zeH 2  Z 2 O0$zem 12  2 2 2 +

Consequently by (2.21) - (2.22),

(2.23) 1412 < ( *-MI

for all e C' (HO.

-14-



Now for fixed g H 2, define a linear functional on C ( H via

(2.24) 10) - (4,9)

Setting 4 - L*, (2.24) can be used to define a new linear functional-

(2.25) "*(M) B 1()

for * e L*(C n H 0). By (2.23)- (2.25),

(2.26) 1* (#) 1 ¥319121#' (re ,l) •- H-(m+l)

Thus L* is continuous on L(C fl H 0 ) C Therefore by the Hahn-

Banach Theorem it can be continuously extended to all of H" (1+0) with

preservation of norm. It then follows frcm a lomma of Lax [11] that there

exists v e 1P+  satisfying

(2.27) ,*(W) - (*,v)

for all * e H-5 +1 ) and

(2.28) Iv 1+1 C Y31912 .

In particular for 4- L* with * e C A N 0, by (2.24) - (2.25), (2.27),

(2.29) I(W) - (Og) - t(') - (LW,v) .

Hence v Is a weak solution of (1.15). The uniqueness of v follows from

(2.28).

It remains to establish the regularity of v. The following lenmma Is

helpful for that purpose as well as In the sequel.

Lemma 2.30: if #* e H r~ nC and lot r, then #$ e Hr and

(2.31) MD(*4)I0 ( C(1*I ,1'r r I',

If further *e c then

(2.32) ID (0*) - * D0#1 4 crl1#ll 1  + I#1 1(1

where cr depends only on r.

Prooft We argue In a similar fashion to related results in (2) or [8]. By

the H8lder inequality

-15-



(2.33) fJD'( )I2dx _ ( ) * Do )2 dx r

Sconst I f I D T#11 I De *1 2 dx
T+

8
-0

1 I(D Tf) 2 1  I(D )2 1 rr r
ITI+11r L ITI LiseT

By the Gagliardo-Nirenberg inequality [11], if a e Hr 0 L and

0 4 IvI 4 r,

(2.34) IDal r c lal lal r

Employing (2.34) in (2.33) and using Young's inequality then gives (2.31).

Inequality (2.32) is proved in a similar fashion.

Completion of proof of Proposition 2.18: Set

- (-1)' + .

Standard elliptic results (12, 13] imply if h e Hs  there is a unique
H2 m+ s such that h

ww=h. Suppose feCk+l, u e ur, and v e H+l. By

Proposition 1.12, the coefficients of Au) belong to Hk. Hence Lemma 2.30

shows A(u)v e Ht where t = min(k,m+1). (For our application to Theorem

1.35, m e + , k + 21 in which case t = m+1.) Then by our above remarks
2 2 2

about L, there is a unique w e H2 m+ s such that

(2.35) Lw - g + C A(u)v .

A fortiori w is a weak solution of (2.35). But we already have obtained

2m~
v as a unique weak solution. Hence v - w e H s  In particular if
g e Hk, v e H2 A standard bootstrap argument shows v e H The proof

*of Proposition 2.18 is complete.

The estimate (1.16) requires a more delicate analysis.

-16-



Proposition 2.36: Under the hypotheses of Proposition 2.18, there are

constants Ck, bk depending on k, w, and A such that for lel < ck' the

solution v of (1.15) satisfies

(2.7) in(,I)vl + lVI -C ; (Ugi + tl *A(u) I vi
(2.37) minly,1)IV 2s+k- k+2 n I k 3

If further u and g satisfy (1.2) with I - - - I and Y < 1, then there
4

exists a K i 1(N) and C such that for K ) K and lei 4 e,

(2.38) 1vi 3 1C
C3

Proof: by (2.19) we have

(2.39) 1g 0  ; clv 2

Suppose we have shown

(2.40) IVI < c (Igq + :lei IAC(u) l )
q q q-2 C 3 -2

By (2.39), (2.40) holds for q - 2. We will then establish (2.40) for q + 1.

Consider

(2.41) (Lv,hqv) _ (g,Aqv).

On the one hand,

(2.42) (g'Aq) C Ig q-1 -q+ IDVI

On the other hand,

(2.43XLvAqv) - (Lv,hqv) - C(Alu)v,Aqv) - C(A (u)v,v) S 11 - C(1 2 +13  •
323

Integration by parts and crude estimates show

depnd n a-+
(2.44) , 0 Wv,- ,v1 ,iv,I I0- t,:j=llatj Cq q Il'lq+l

where ; depends only on q. (A m~re careful estimate could be made using

Lemm 2.30.)

To estimate 12 and 131 we will make use of Lemma 2.30. A typical

term in 12 has the form

-17- f
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(2.45) (D (A(u)v), D0 v )x x
pp

where Jul = q-1. Therefore (2.31) implies

1121 1 IA(u)vIq- 1 C IDvU 0 C

(2.46) a (IA(u)I lvIq+1  + IvI 2IAU)Iq 1 ) ID'vl0

q -IOl-q+l

A typical term in 13 has the form

(2.47) D
(247 D( T (u)v x)Dcv xdx

-f A (u)w w dx + (Rw X )

1 4 + 15

where w = D v. Comparing 14 to (2.11), we have
5

(2.48) 1141 i IAT(u)| lvi ID'v0C I o I -q+1

Next

(2.49) I151 4 i~i0 i ID v
5~ ~ 0 t 10 +1 0

and by (2.32),

(2.50) RI aq (IA (u)I lCvIq+1 + IvIC3 IA (u)I q 1

Now combining (2.41) - (2.50) yields

n
Ig9 I  > ) > ID'vI - a*[ 1 Ia I lvi

(2.51) q1 0=q+1 q ij.I iicq q

+ ICI(IA(u)lI lIVIq+1 + IVi 3 IA(U)lq-1 ]

Multiplying (2.51) by a where a a* I laiil < adding it to
q q q 1 Cq1 C

(2.40), and choosing Idl 4 e where 6 a QaIA(u)l 1 4 min(w,1) yields
q-2 q-2 qq 1 2

(2.40) with q replaced by q+1. In particular we have (2.40) for q k+2

if I ej 4 k" By (1.15) and (2.31),

-19-
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m
YEA vIk_ 1 = ILv - C A(u)v - k_ 1

(2.52)
<q [(lVlk+ + Igl k-1 + ICI(IA(U)l kllVic3 + IA(U)ll Vk+2

Using e.g. Fourier series, it is easily seen that
(2,53) |AIyAk1 + lvi 0 ) cIvi2m+k- •

Hence combining (2.40), (2.52), and (2.53) gives (2.37).

Lastly suppose u and g satisfy (1.2) with A - I- 1. Set q - p-I
4

in (2.40). Recalling (1.11), by Proposition 1.12 and the Sobolev inequality

we have

YIVIc3 IV_ p-i Cp l(l*p-3 + le IVic 3 IA(u)Ip 3

(2.54)
4 C0 _(IgIp-3 + ICl IviC3 c(p-3,R)(lul + 1))

(with lul < 1). By (1.2) and (1.19),

I- e-3  Z7 273
S k lgk k 16

(2.55) Ig p-3 f clgI0  k g' kCcM K

with 6 = 1 + 41 (P-3-k). The restrictions imposed on p and

k (p 4 5 + 2, k > 28 + 2n) show 6 < 0. By choosing £- (4cp;(p-3,R))-1
2 -

and IeI 4 ", we find

k(2.56) y/ kv 6*c
c3

C

and further choosing K ) K where 2 c M k i < I gives (2.38). The

proof is complete.

Now finally Proposition 2.18 and 2.37 imply Proposition 1.14 and complete

the proof of Theorem 1.35.



13. Uniqueness

In this section we will prove that u(x;c), the solution of (0.1)

obtained in 11 - 2, Is the only small solution of (0.1).

Theorem 3.1: Suppose ulU 2 e C4 n H0  and satisfy (0.1) for the same value

of C. If luIl14 I R, i - 1,2, and li 4 lu then u I  u 2 .

Proof: Let v - u1 - u 2 . Then

(3.2) F(u) - F(u2 ) = 0 - Lv - e(F(x,u1) - F(x,u2))

= Lv - C fl d F(xu 2 + e(u -U ))de
01 2 1u2

W Lv - C u + Ov)v dO

Forming

(3.3) (F(u 1 ) - F(u2 ), V - 02 Av)

with 02 as In the proof of Proposition 2.1 and arguing as in that proof

shows

(3.4) 0- UF(u 1 ) - F(u2 )10 ) Cdv 2

for lei C I Hence v = 0 and ul u2,

-20-
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