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SIGNIFICANCE AND EXPLANATION

This paper studies the existence of spatially periodic solutions of a
singqular perturbation problem for a family of elliptic equations. A simple
one dimensional example is
(*) =u” + u = € f(x,u,u',u",u'"'"’')
where f is 2m periodic in x and a 2 periodic solution u is
sought. Assuming only that f is smooth, there exists a one parameter family
of periodic solutions u(x,€) of (*) with u(x,e) + 0 as € + 0. The most
natural approach to (*) using the method of successive approximations fails
because of a loss of derivatives problem. However a Newton type or rapid

convergence method due to Moser is shown to be applicable to (*).
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A RAPID CONVERGENCE METHOD FOR A
SINGULAR PERTURBATION PROBLEM

Paul H. Rablnowltz.
Introduction
Consider the equation

(x)ux ; +u=¢€ f(x,u,Du,Dzu,Dau) .

n
(0.1) Lu - |
3 j i

(aij
In (0.1), x = (xq,ee0,% ) € R’, L is uniformly elliptic with coefficients
‘1j which are periodic in XyroossXps and € € R, The function £ depends
on u and its derivatives up to order three and is also periodic in
XqrooosXy with the same periods as the coefficients ‘ij‘ Our goal is to
establish the existence of periodic solutions of (0.1) for small values of
{e]. This is a singular perturbation problem since the £ term is of third
order vhile L is merely of order two. We will show (0.1) possesses a one
parameter family of periodic solutions depending continuously on € for small
|e| provided that the coefficients a;y and f are sufficiently smooth.
Surprisingly other then this differentiability requirement, no hypotheses are
needed concerning the dependence of f on u and its derivatives.

We assume the functions £ and the ‘ij have the same period, say 2v,
in each of XqreoosXpe The analysis is unchanged if they have different

periods T,,...,Tn with respect to XqreoosXpo For notational convenience we

further set

¥(x,u) = f(X,u,Dll,Dzu,D3u) .
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Note that when € = 0, (0.1) has a unique solution u £ 0. A natural

way in which to attempt to solve (0.1) for small |e| is via the iteration

scheme: uy = 0 and for j >0,
341 = € F(x,uj) .

For various choices of function spaces, L can be inverted with a gain of two

(0.2) Lu

derivatives. However since F depends on u and its derivatives up to order
three, in passing from uy to “j+1' we have a net loss of one derivative.
Thus if f € Cm, we can only iterate for a finite number of steps and even {if
fe ca, convergence of this scheme is unlikely due to the above loss of
derivatives phenomenon.

Methods have been developed by several authors to treat "loss of
derivatives" and "small divisor”" problems. See e.g. Nash [1], Moser [2],
Schwartz (3], Sergeraert {4], Zehnder [5], HBrmander (6], and Hamilton (7].

We shall show how the approach of Moser can be applied to (0.1). The main
difficulty in doing so is in finding approximate solutions of the

(0.3) Lv S Lv = € z Ao(u)Dov =g .
lo|<3

of
In (0.3), the usual multiindex notation is being employed, Ao = p for

corresponding linearized equation i
l

H

|

'

aD u i

lo| € 3, and the dependence of Ao on x has been suppressed. Approximate i
solutions of (0.3) will be obtained as exact solutions of an elliptic %
regularization of (0.3):

(0.4) D"y AN =g
where A denotes the usual Laplacian.

In §1, we will state Moser's result from [2] and show how it can be used

to solve (0.1). With the exception of the technicalities associated with

(0.3) - (0.4), this is not a difficult process. The technicalities of




R

treating (0.3) - (0.4) are carried out in §2. 1In §3, a local uniqueness

result will be obtained. Our approach to (0.1) relies in part on ideas from
[8]. See also [9]. QH

In [10], the written version of a talk delivered at the University of
Alabama in Birmingham International Conference on Differential Equations, a

one dimensional version of (0.1) was discussed. As an outgrowth of that

lecture, Tosio Kato has found another approach to the problem using the

stationary version of his theory of quasilinear evolution equations.




§1. Moser's Theorem and its application to (0.1).

Some functional analytic preliminaries are required before Moser's result

can be stated. Let H® denote the closure of the set of C“ functions on
R® which are 2n periodic in KysooosX, with respect to

(1.1) s ( §f Ip%ul2ax V2 .

|t1€m
In (1.1) and elsewhere in this paper, integration is over the set
{xe® [ x e[02n], 1<i<n} .
Let 0 <p < r and uy € HY. Sset

U={ues® | tluu < 1)

0'0
and Ur = U n HY. Suppose F: Ur + H® where 8 < r. The equation

F(u) = ¢ is said to have an approximate solution of order A (>0) in U if

for all large K, there exists u = Uy < Ur such that

Po(a) - 91 < k™ ana tul <K .

For ue U, let F*(u) denote the Frechet derivative of F at u. The

equation F'(u)v = g is said to have an approximate sgolution of order ~p(>0)

if there exists a constant ¢ > 0 and a function (M) such that whenever

wevu, gewu®, and H

) u ’ M rl g.o K

then for all large Q, there is a v = Yo e u® satisfying

(1.3) Wt (u)v - 9'0 < 1'(M)1<Q'u '
(1.4) Ivlr < Y(MKQ ,

and

(1.5) lF'(u)vl0 > clvlo .

For ueuU_  and ve HY, let

(1.6) Q(u,v) = Flutv) = F(u) - F'{uw)v .




Theorem 1.7 (Mcser (2)): Let F: H + #® and suppose there are constants

c,0,A\,u,B, and M and a function VY(M) such that
1° recltw,,m
° - -
2° 1f uevu, then tF(u) $o1p <M and 1t F(u) bl <=
3° Por all large K, IF(u)Is < MK whenever u € U, and Iulr <K
4° The equation F'(u)v = g admits approximate solutions of order u.
2-f

o 8 r
5 lQ_(u,v)l0 < Hlvlo Ivlr for all u e Ur' veeHx

6° (i) B e (0,1)

A
(ii) o/r < 2

(111) 0 < A+t <% (u+1)

Ap pial
(iv) 0 < B < "1 p+l (1 - 2 u+1) o

Then there exists a constant Kq (depending on M, ¢, B8, u, A) > 0 such that

if
Y I
(1.8) (1) M-8 1, < X }
(ii) '“Ulr < Ko
and (11i) Mol < MK

hold, the equation F(u) = ¢ possesses a sequence of approximate solutions of

p

order ) in Ur' Moreover the sequence is a Cauchy sequence in H  with

w +u,€U and F(u)) = ¢.

<

Remark 1.9. Moser states the result somewhat less formally in {2]. The proof
of Theorem 1.7 shows that if F depends continuously on a parameter €, then
8o does u_.

We will demonstrate how Theorem 1.7 yields a solution of (0.1). Before
doing so it is convenient to make a technical modification of £. When

€= 0, u=0 is the unique solution of (0.1). Therefore we expect a small




solution in 11 for amall € so the behavior of f only when e.q.

3
c
tul 3 ¢ % should be of importance. Therefore we can multiply f£(x,§) (where
C
+n+n’ +
Ee R ™ ) 1y a smooth function x(E) with x(E) = 1 if g, < % for

all i and x(E) =0 if any IEiI » 1. Thus we can and will assume f£(x,£)
has compact support with respect to £. Of course it must be shown later that

for the solution we find.

N

tlu(e)l <
c3

To apply Theorem 1.7 to (0.1), set xr = k+3 and 8 = k where k is
free for the moment. We will determine lower bounds on k later when 5° is
verified. Choose p to be the smallest integer that exeeds 4 + f. The
Sobolev inequality then implies u € c4 whenever u € U. Define
(1.10) F(u) = Lu - € F(x,u) .

Further set u, = 0, ¢o = F(0) = -¢ F(x,0), and ¢ = 0. Our choice of »p
shows there is a constant R > 0 such that

(1.11) tul 4 < R

for all u € U. Moreover F e C1(C3(\ Ho,co) and a fortiori Fe C'(Ur,ﬂo)
so 1° of Theorem 1.7 holds.
The following "composition of functions"™ inequality from (2] is useful in

verifying 2° and 3° of Theorem 1.7 for (0.1).

2 3
1+n+n +n

Proposition 1.12: Suppose G(x,§) e M x R ,R) and G is 2w

periodic in xy,e.e,x,. If ue ®*3n 2 with lul 3 < R, then
c —
G(x,u,Du,Dzu,D3u) e H™. Moreover there is a constant ¢ = c(m,R) such that

2 3 -
IG(x,u,Du,D u,D u)lm < ¢(m,R) (|u|m+3 + 1) .

With the aid of Proposition 1.12 and our choice of p, 2° of Theorem 1.7

follows trivially. For 3°, by (1.10), (1.11), and Proposition 1.12, we have

+ lel ¥
le} l-‘(x,u)lk

|F(u)lk < a1lulk+2

(1.13) -
< a,lulk+2 + |e| c(x,R) (lulk+3 + 1) <MK




+2 ¢(k,R) € M. In (1.13), a, depends

provided that |e| € 1< X and « 3

1

on AS max
1<1, j<n

la . 1
+
i3 ck 1

To verify 4°, some notational preliminaries are needed. Let

] T
AT(u) 2 3%‘ (x,u) where Et corresponds to the D u argument of F. Define
T
Aluv = ] At(u)Dtv .
lel<3

Set

In §2, we will prove
k+1

o

Proposition 1.14: If Y > 0, a,,, f €C s uée Ur‘ and g é€ Hk, then there

i3

is an € > 0 such that for |[e| <€ the equation

k k'
(1.15) Wz (- A+ Fllav=g
possesses a unique solution v e Hzm+k. Moreover there is a E(M) such that

if u,g satisfy (1.2), K> K, and Y € 1, then

(1.16) Yivl + Ivlk+2 < h.k(lglk + elA(u)lk)

2m+k-1
where b depends on k, the ellipticity constant of L, and A.

Proposition 1.14 impljes {(1.3) - (1.4). 1Indeed by (1.16), (1.2) and

Proposition 1.12,

. < + c + f
(1.17) tel, ., € b (MK + €] Glk,R)(K+1)) < 2 b MK :
for |e] < 1 <K and 2 c(k,R) < M. Also by (1.16) and (1.17), :

-1 :
(1.18) .v'2m+k-1 <y Zbkux o ;

A standard interpolation inequality - see e.g. [2] - asserts if 0 < p < q,
(1.19) Il < ohwt [P/ 4, P/a J
P 0 q 1

A

for all w e HY where ¢ is a constant depending only on p and q. Let

w = Dtv where |t| = x+2. By ('.19),

2m=-4 1 }
2m-3 2m—-3
(1.20) ,w|1 < u,lwlo lwl2 3 °




Hence combining (1.17), (1.18), and (1.20) yields
1

2m-3

(1.21) Ivlk+3 < 203 Y bkMK .
R

Set Q = Y 2m=3 so (1.21) becomes

(1.22) Ivlk+3 < 203hkMK 0 <€ Y(MRQ

where

(1.23) Y{M) = 2(1 + 63)(1 + 04)bk M

and the constant 04 is defined in (1.24). Thus (1.4) holds.

Next note that from (1.15) we get

-(2m-3)c Ivt
4 2m °

Choose m so that 2m = x+2 if Xk 1s even and 2m = kx+3 if k is odd.

(1.24) IF' (w)v - gl = Ylevlo <Q

the first case, (1.17) and (1.24) show

-(k=1)
(1.25) IF'(ulv - gty € (Q a) 2 b MK .
In the second case, (1.22) and (1.24) imply

(1.26) IF' (w)v - gl < (Q-kc4) 2 ab MOK .
Hence in either case we have
1F' (wv = gl < YOORQ™
vhere ¥ = k-1, Thus (1.3) is satisfied.
At this point 4° of Theorem 1.7 has been verified except for (1.5). 1In
§2 we shall show that (1.5) holds with ¢ depending on the ellipticity
constant of L provided that |e| is sufficiently small.

Next let u € Ur and v e Hk+3. Then u, v € C3 and by Taylor’s

Theorem we have

(1.27) Qu,v) = 5
lol,IT]1<3 "P¢ >t

T
where ET again corresponds to the D u argument of F. 1In (1.27), F is

evaluated at (x,u(x) + 8(x)v(x)) where 6(x) € (0,1) via Taylor's

e

In
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Theorem. By earlier remarks about truncating £, there is a constant a

S
such that
T ,2
(1.28) 12€u,v)] < 1€} ag I Ipwvl® .
|t1<3

Consequently
(1.29) IQ(u,v)lo < |e| ae |v|C3|v|3 .
Applying (1.19) gives

X 3

k+3 k+3
(1.30) lvl3 < a7lvl° lvlk+3 .

The Gagliardo-Nirenberg inequality [11) further implies

n n
k- 2 3+ >
k+3 k+3
(1.31) Ivlc3 < ag lvl0 lvlk+3 .

Thus for |€] <1 and M > as(a7+ae), 5 of Theorem 1.7 obtains with
B = (6 + 2)/(k#3),
We turn now to the verification of 5°, determining k in the process.

If k>3 +2

Y (i) holds and (iii) is satisfied via getting X = % - 1.

(Recall u = k~1.) To get (ii), we need

£ k4
(1.32) 3 < -

Since p < s + 2, it is easy to check that (1.32) holds for e.g. k > 12 + n.
Lastly (iv) requires that

6+
k+3

L]

< k=4 k=1
2 'k k

(1.33)
and k > 28+2n is sufficient for (1.33). Thus if k » 2842n and

le] € € all of the hypothesis of Theorem 1.7 are satisfied and there is

28+2n’
a xo(u,c,B,x,u) > 1 such that if (i) = (iii) of (1.8) holds, (0.1) has a

solutlon. But by our choices of ¢°, ¢, and uy, (ii) and (iii) are

trivially true and (i) also obtains if |e| is so small that

-
o °

(1.34) lel lf(x,O)lo < K




With this further restriction on |e}, by Theorem 1.7 and Remark 1.9, (0.1)
with the modified f possesses a curve of solutions u(x;e) e c3 with
u(x;0) = 0 and u continuous in €. Therefore for small |¢],

1
lu(xze)l 3 < 2 and (0.1) is satisfied with the original f. Thus we have
C

shown:

Theorem 1.35: If f and the coefficients of L are sufficiently smooth

there is an €* > 0 such that for all |e| < €%, (0.1) has a solution

u(x;€) which is 03 in x and continuous in € with u(x;0) = 0.

i
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§2. The modified problem

The goal of this section is to find approximate solutions of F'(u)v =g
in the sense of (1.2) - (1.5). This will be accomplished via Propositions
2,1, 2.18, and 2.36 below. The inequality (1.5) happens to be valid for all

ve Hk+3. To make this precise a few notational preliminaries are needed.

Set
~ - t -
AMu)v 2 ] A(wDv and Ajlwiv:E ] A (uv
|t1<2 |ti=3
80
A{u)v = ;(u)v + A3(u)v R
Set
W = 7 1l LAl o= T 1 (w
c1 jt)<2 T c1 3 c1 |t]=3 T c'
and
1Au)l | = 1A(wWN , + 1A (u)! .
o! ! 3T

The u° inner product will be denoted by (¢,°). Pinally note that F'(u)v =

Lv = € A(u)v.

Proposition 2.1: There are constants 51 and ¢ depending on the

n
ellipticity constant of L and on 2 laijl 1 such that if |e]| < 81,
c

ué Ur' and v e Ha,

(2.2) lF'(u)vIo > ¢ lvl2 .
Proof: To establish (2.2), we will estimate (a) (F'(u)v,v) and (b)

(F*(u)v,- Av). The first quantity is easy to treat:

IF'(u)vlo Ivlo ? (F'(u)v,v) » (Lv,v) -

(2.3) .
Since L is unlformly elliptic, there is an > 0 such that

n -~ _ 2
I a  (x) EE, >ulE]
i,3=1

i3 173
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for all x, £ e Rn. Therefore

(Lv,v) » wlvlf

where w = min(1,;). Expanding the last term in (2.3) gives >

(2.4) (As(u)v,v) = f 2 A_(u) (DTv)v dax .
Itf=3 °

T
Writing D v = vx x.x * a typical term in (2.4) can be integrated by parts:
i m

[ A (wv vax =-[[(A_(u))_ v v
T X, X X T X, XX

i73"m i T9m
(2.5)
+ AT(u)vx < Vx Jax .
Im i
Thus (2.4) - (2.5) and crude estimates yield
(2.6) |(Aa(u)v,v)| < |A3(u)lc1 vl vl . f
Combining (2.3) and (2.6) then gives "
' - ;
(2.7) IF (vl > wivl, |e|mu)|c1 e, .

The estimate for (b) requires more care. As in (2.3) we have '

I v > (F'(ulv, - Av) = !

1F' (u)vl
lo|=2 0

0
(2.8)

= (Lv, - Av) + e(A(u)v,Av) + e(a,(u)v,8v) .

The terms on the right hand side of (2.8) will be estimated separately. First

n n
(2.9)  (Lv,-bv) 2w ] v 13- 1 ta, 1, v, ] 'l .
T i,3=1 c la|=2
Next ;
!
(2.10) HRwv,An] < IRtwt v, T % i
0
c lof=2
A typical term in (Aa(u)v,Av) is
(2.11) I1=[Av v ax .
T xX,x.X X X
i'jm pp

This must be handled carefully. Integrating by parts,

-12-




I=[(~(A_(u)) v v + (A () v v
¢ X X.X X X T x X X X.X
i "3'm Tpp p Jm "i'p
(2.12)
M At(u)vx xx Ux x Jax .
j'm’p i'p

Interchanging the roles of i and j and adding the resulting expression to

(2.12) yielas

21 = j{-[(AT(u))x v, ta v v

1 %3"m 3 *"m *p'p
(2.13) * (At(“))xp[vxjxmvxlxp + vxixmvxjxp]
+ A (u)(vx A )x }ax .
b) i m
Thus one final integration by parts shows
5 S
(2.14) 171 < 3 1A (w)l ivl, I wmw v, .
c |o|=2
Consequently
Sn G
(2.15) 1A (u)v,Av)] € S= 1A (Wl ivi, ] ID vi
3 2 3 1 2 0
c lo]=2
and combining (2.15) with (2.8) - (2.10) shows
) )
(2.16) 1F'(u)vl_ > w v 1_- fa, ! _Mvl_ = le| B 1A(u)t _ivl .
0 121 Xt g5a A3 10 1 o2
Adding 82 times (2.16) to (2.7) yields
)
(148_) 1F'(u)vl, > (w-B fa . 1 )ivl, +
2 0 2 1,31 37,1 1
(2.17)
)
+ w v bV, = (148_8_) lelfa(u)l ivi .
2 1=1 xi 1 172 C‘ 2
Choosing
E -1 1 w
B8, = w(2 fa, I ) ¢ e Ia(u)f (148 .8.) = = min(3,wd,)
2 13m0 43¢0 1 vy 2 22

and €| < €, gives (2.2).




It remains to prove Proposition 1.14. Its existence and uniqueness
assertions follow from the next result and the estimates follow from
Proposition 2.36 below.

Proposition 2.18: Suppose f e ck*', ue Ur' ge Hk, m> 1, and e} < 51.

2mtk satisfying (1.15).

Then there exists a unique v e H

Proof: First we will establish the existence and uniqueness of a weak

solution of (1.15). Regularity will then follow easily from elliptic theory.
For [ e Hzm, let AL = ¢ - 52AC- The estimates of (2.3) - (2.17) ghow

for |e] < e1,

=l 12 2
(2.19) (Lz,At) >y § 1o gy +ocleny
{tl=m
Let H ° denote the negative norm dual of H® with respect to Ho. (Recall
- (G W)
(2,20) lcl_s sup T
Opwer®  ©

0
see e.g. lax (11]).) Let ¢ e cof\ H . Using e.g. Fourier series, it is easy

to see that there is a unique w € C’tﬁ Ho such that Aw = ¢. Let ¢ = L%

where L* denotes the formal adjoint of L. Then by (2.19) and (2.20),

> (w,¥) = (w,L%) = (Lw,$)

fwl 1l0

m+ '-(m+1)

(2.21)

= (Lw,Aw) > Y1lwl:H

where Y1 depends on Y and c¢. Moreover

(2.22) 190 _ = gup Bl o Uwez) o, <y, twt

-2 1zt 1zl Yaiwigy mt1

O#zeﬂ2 2 Oa‘zeﬂ2 2
Consequently by (2.21) - (2.22),
(2.23) l0l_2 < Y3lvl-(m+1)
- 0
for all ¢ecCc NH.
-14-




e
-

Now for fixed g @ Hz, define a linear functional on c'«w Ho via

(2.24) Li¢) = (4,90 .
Setting V¥ = [*¢, (2.24) can be used to define a new linear functional:
(2.25) L*(Y) = L(¢)
for ve [*(c N a’). By (2.23) - (2.25),
(2.26) fex(y)f < Y3lql2l0l_(-+1) .
- 0 -(m+1)
Thus £* 1is continuous on [*(C N H )C H « Therefore by the Hahn-
Banach Theorem it can be continuously extended to all of H ‘™1) yien

preservation of norm. It then follows from a lesma of Lax [11] that there

exists v @ “m+1 satisfying

(2.27) L*(y) = (y,v)
for all ¢ € H-('+1) and
(2.28) lvl-+‘ < 13lgl2 .

In particular for ¥ = (% with ¢ @ C n B°, by (2.24) - (2.25), (2.27),

(2.29) 2(¢) = (4,9) = L%(§) = (L*%,v) .
Hence v is & weak solution of (1.15). The uniqueness of v follows from
(2.28).

It remains to establish the regularity of v. The following lesma is
helpful for that purpose as well as in the sequel.
Lemma 2.30: If ¢,y @ BFn C and |o| = r, then ¢V € u" and

g
(2.31) D" (4, < °r""L-'*': P e

1
If further ¢ @€ C , then

(2.32) 1% (e9) - ¢ o°vlo < c (101 190 __ 4 19l 141 )
c L

where c¢_ depends only on r.

r

Proof: We argue in a similar fashion to related results in (2] or (8]. By

the H8lder inequality

-15=

e




'l!llll.lll"l."'.'llllllllll-"-U-."-""-ll'l'-""""""'-""-"""""-'-I"w——

(2.33) finewicax = f ¢ § % pdwlax <
T+0=0

< const ) let¢|2 |DeW|2dx
1+6=0

< 1 aowh et
ltl+]8|=x — T

It LTel

By the Gagliardo-Nirenberg inequality [11}, if a € ' O L' and

0< |v|] €1,

L1 R LT}
(2.34) 10"at <ctlal © 1t T

2y L r

™ L

L

Employing (2.34) in (2.33) and using Young’'s inequality then gives (2.31).

Inequality (2.32) is proved in a similar fashion.

Completion of proof of Proposition 2.18: Set

= (-1)" ya™p + Lo .

Standard elliptic results [12, 13] imply if h e H® there is a unigue

such that Ew = h. Suppose f € Ck+1, ua e Ur' and v e Hm+1. By

we H2m+s

Proposition 1.12, the coefficients of A(u) belong to Hk. Hence lemma 2.30

shows A(u)v e B® where t = min(k,m1). (For our application to Theorem

3
1.35, me [% + 1, g + 5] in which case ¢t = m+1.) Then by our above remarks
about E, there is a unique w @ H2m+s such that
(2.35) Iw =g+ € A(WvV .

A fortiori w is a weak solution of (2.35). But we already have obtained

v as a unique weak solution. Hence v = w @ H2m+s. In particular if

’ gent, ve H2™t, A standard bootstrap argument shows v €& 12X, The proof
of Proposition 2.18 is complete.

The estimate (1.16) requires a more delicate analysis.

bl o

3
3




Proposition 2.36: Under the hypotheses of Proposition 2.18, there are

1 constants ek. ;k depending on k, w, and A such that for le| < ek, the
solution v of (1.15) satisfies
(2.37) nin(Y.1)lvl2m+k_1 + lvlk+2 < bn(lqlk + |el 'A(u)lk'VlCB) .

If further u and g satisfy (1.2) with A = % =1 and Y < 1, then there
exists a K = K(M) and € such that for K > K and le] € E,

Proof: by (2.19) we have
(2.39) lglo > <:Ivl2 .
Suppose we have shown

) .

(2.40) vl < ¢ {i1gl
q a9 q-2

+ |el |v|c3mu)|q_2

By (2.39), (2.40) holds for q = 2. We will then establish (2.40) for q + 1.
Consider
(2.41) (Lv,a%) = (g,0%) .

On the one hand,

I .

(2.42) (g,0%) <1g1 _ 0
T lol=gt

1
On the other hand,
(2.43XLv,A%) > (Lv,A%) - e(A(u)v,a%) - € (ulv,v) = I, ~ €(I,41,) .

Integration by parts and crude estimates show

w2 - %
(2.44) 1,20 § wivlg-~a ] ta 0 iyl I win,
lol=q T §,3=1 c? T jg)mgt .

where ;q depends only on q. (A more careful estimate could be made using

i Lemma 2.30.)

To estimate I, and I,, we will make use of Lemma 2.30. A typical

term in Iz has the form

T R e AT W ARt

At 2 caas ey Tan o




o,~ o
(2.45) (D (A(u)v), D Ve x )

PP
where Jo| = q-1. Therefore (2.31) implies

L T

111 < ¥a(u)vi
0
2 lo|=q+1

q-1
(2.46)

< aq(lh(u)l A + v 2lA(u)l 0

A c TV g =gt

A typical term in I3 has the form

g ¢}
(2.47) [ o (A fwv DV ax
ijm PP
' = f At(u)wx x x " x dx + (R,wx x )
} i"3m "pp PP
= I4 + I5

! where w = Dav. Comparing I, to (2.11), we have

* 5 o
(2.48) jT.] € = 1a_(u)l _ivl T v .
4 2 1 ot at Lol =g ()}
Next
(2.49) Il < R1g  § m"vlo
lo|=qt+t
and by (2.32),
(2.50) 1R < aq(IAT(u)l 1lvlq+1 + vl 3IAT(n)lq_1 .
c c
Now combining (2.41) - (2,50) yields
1w )
gl > w iDvl, - a* fa, 0 vl
q-1 - q - 1 a a
(2.51) lol=g+1t i,9=1 c
+ lejf(1a(u)) 1lvlq""| + vl 3IA(u)Fq_'] .
c c
2 1
Multiplying (2.51) by a_ where a_a* ) fa d <<=, adding it to
! q q;,5=1 T 2 )
i . Ll
4 (2.40), and choosing |g]| < eq_z where eq_zaqaqln(u)lc1 < 2 min(w,1) yields

(2.40) with q replaced by qg+1. 1In particular we have (2.40) for q = k+2

if Je) < €. By (1.15) and (2,31),




m
YiA vlk_1 = Ly -~ ¢ A(u)v - glk_1

{2.52)
< Bq[(lvlk+1 + Iglk_1 + IE|(IA(u)lk_1lvlc3 + lA(u)lﬁ_lvlk+2)] .

Using e.g., Fourier series, it is easily seen that

m ~
(2.53) 1A vlk_1 + lvlo ? clvl2.+k_1

Hence combining (2.40), (2.52), and (2.53) gives (2.37).
Lastly suppose u and g satisfy (1.2) with A = f -1, Set q = p-1

in (2.40). Recalling (1.11), by Proposition 1.12 and the Sobolev inequality

we have

Y < <

vivi 3 lvlp_1 c‘,_.’(lglp_3 + |e| Rvl 3lh(u)lp_3)
(o} (o}
(2.54) -
< cp-i(.g.p-3 + lef lvlC3 c(p-3,R)(lulp + 1))

(with lulp < 1). By (1.2) and (1.19),

-8R SR
~ k "~
0-3 < clqlo lglk <cM K

with 6 = 1 + 4-1(0-3-k). The restrictions imposed on p and

(2.55) 19t

Xk (p €5 + %, k » 28 + 2n) show & < 0. By choosing €= (tlc:‘,_1-<:.(¢>--3,n)).1

and |e| < E, we find
e=3
- * o x _8
(2.56) v/2 Iv 3 <cM K
(o]

=3
1° k

and further choosing K > K where 2y ' cM~° K <1 gives (2.38). The

proof is complete.

Now finally Proposition 2.18 and 2.37 imply Proposition 1.14 and complete

the proof of Theorem 1.35.




§3. Uniqueness
In this section we will prove that u(x;€), the solution of (0.1)
obtained in §1 - 2, is the only small solution of (0.1).

4 0

Theorem 3.1: Suppose u4,U, € C° N H  and satisfy (0.1) for the same value

of €. If Ifu l €R,i=1,2, and |e| € €,, then uy = u,.

L}
i c‘ 1
Proof: Let v = uq = us. Then
(3.2) Ftuy) = Hu,) = 0 = Lv = e(F(x,u,) = F(x,u,))
14
= Lv -~ € IO 3 Fixouy, + 8(u,~u,))ab
1
=Lv-€!oa(u2+9v)vd9 .
Forming
(3.3) (F(u1) - F(uz). v - szv)
with 82 as in the proof of Proposition 2.1 and arguing as in that proof

shows

(3.4) 0 = lF(u,) - F(\:l.",)lo > clvlz

for Je) < 81. Hence v =0 and ugy ™ uy.
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