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A/ ABSTRACT
f "A Cauchy flux Q is a real-valued, additive, area-bounded
function whose domain is the class of all Borel subsets of the
reduced boundary of sets of finite perimeter. If the flux Q is

also volume bounded, it is shown that Q can be represented as

e

the integral of the normal component of some vector field.
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SIGNIFICANCE AND EXPLANATION

Balance laws of the form
(*) a_E _(B) = o, (8,B®)
dat t

are basic to classical physics. For example, (*) represents
balance of energy for a rigid heat conductor provided E,(B) is
the internal energy of B and Q,(B,B®) is the heat flow into
B from its exterior B®. Fundamental axioms of continuum
physics require that (*) holds for any subbody A of B and
that 0Q,(A,C) be well-defined for A and C in a suitably

large class of sets. It is shown that Q. can be represented as

a flux over the reduced boundaries of sets of finite perimeter,
thus showing that sets of finite perimeter form the suitably
large class of sets in which it is possible to establish an ;

axiomatic development of continuum physics.
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CAUCHY FLUX AND SETS OF FINITE PERIMETER

William P. Zeimer*

1. Introduction. Balance laws of the form

(1) & E,(B) = 0 (B,B%)

are basic to classical physics. For example, (1) represents
balance of energy for a rigid heat conductor provided Et(B)
is the internal energy of B and Qt(B,Be) is the heat
flow into B from its exterior B . Also, (1) represents
balance of momentum if Et(B) is the momentum of B and
Qt(B,Be) is the force exerted on B by its exterior B .
Fundamental axioms of continuum physics require that (1)
holds, not only for B , but for any subbody A of B and
that Qt(A,C) be well-defined for any pair (A,C) where A
is a body, C 1is a body or the exterior of a body, and A
and C are separate in the sense that they intersect at
most along their boundaries.

The determination of the appropriate class of sets for
the family of subbodies is fundamental in the axiomatic
development of continuum physics. 1Indeed, first considera-
tions require that the family of subbodies be closed under
intersection and union, that the concept of separate sub-
bodies be meaningful, and that the boundary of a subbody be
sufficiently regular to facilitate the basic operations of

analysis. 1In particular, the boundary must have a general

(and useful) notion of exterior normal. If domains with
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2

piece-wise smooth boundaries are considered as the family of
subbodies, inconsistencies appear in the axiomatic structure.

In work that is currently being developed by Morton E.
Gurtin, William O. Williams, and the author, it is shown that
the class generated by sets of finite perimeter (see §2

below) provides the appropriate context for the axiomatic

development of continuum physics. In that work it is shown

that there is a function g such that

(2) Q(A,C) = J qx)an™ 1 (x)
S

e oA T s S W

where S = A n C 1is the surface of contact between A and

e

C . 1In the classical context, Cauchy assumed that g in
(2) depends on S only through the normal at x . Noll [N]
has shown that Cauchy's assumption actually follows from the

general balance law (1) under reasonable assumptions. ;

In this paper we will establish Noll's theorem in the
more general framework of sets of finite perimeter. This L
result is of independent mathematical interest and is inti- E
mately related to the flat forms and cochains of Whitney,
[{W, Chapter IX]. The context for the work in this paper is
motivated primarily by the development in the paper by Gurtin,
Williams, and the author referred to above. Moreover, many
of the concepts and techniques related to the Cauchy flux in
this paper originate with [GW] and [GM].

The author is indebted to Morton Gurtin for suggesting
this investigation and would like to thank both Morton Gurtin
and William O. Williams for several helpful conversations

related to the work in this paper.




2. Notation and Preliminaries.

n

We let R denote Euclidean n-space and |A| will

denote the Lebesgue measure of a measurable set A c R" .

n-1

We denote by H the (n-1l)-dimensional Hausdorff measure

defined on R" . The open ball centered at x of radius r
is denoted by B(x,r) .

If D c R" » we will let bdry D stand for the topo-

logical boundary of D . In the development of this paper,
the topological boundary of a set plays a small role and will

be replaced by the notion of the measure-theoretic boundary

of D, denoted by oD . It is defined as

D =R n {x :d(D,x) = 0 and d(R"-D,x) = 0}

where

|A n B(x,r)!|
]B(xlr)T

d(A,x) = lim
r+0

whenever A ¢ R® is a measurable set. Clearly, 3D ¢ bdry D .

A bounded measurable set D c R" is called a set of finite

perimeter if H"l(ap) < » . Notice that a set D of finite
perimeter may be altered by a set of Lebesgue measure 0 and
still determine the same measure-theoretic boundary 5D .
To eliminate this ambiguity, whenever a set D of finite

perimeter is designated, it will be understood that D

ey e,

denotes the set {x : d(D,x) = 1} v 3D . A complete investi-

gation of these sets is presented in [F, Chapter 4}. We

!
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recall here some of the basic properties of sets of finite

perimeter that will be used in the sequel.
Let D ¢ R® be a measurable set. Then D has the

unit vector v (D,x) as the measure theoretic exterior normal

at x if, letting

B (x,r) = B(x,r) o {y : (y-x) + v(D,x) z O}
B (x,r) = B(x,r) n {y ¢ (y-x) + v(D,x) < 0}
we have
+
lim [B (x.x) 0 D] _ 4
r+0 IB+(x,r)|
and
- ¥
1im iB (x,x) n D] _,
r+0 |B™ (x,r) |
r
1
If 3*D denotes the set of points at which the exterior
normal to D at x exists, then clearly 3*D < 3D . How-
ever, if D is a set of finite perimeter then ’
(3) u"liap-a%p) =0 , I
and !
' ;
5
. - n-1 :
(4) divv(x) = V(x) « v(D,x)dH (x)
D 3*D




whenever V : R® - R® is a Lipschitzian vector field with
compact support, c.f. [F, Theorem 4.5.6]. We also recall

from the same reference that

H" L (a*D) o B(x,r)]

(5) lim = =1
r+0 a(n-l)rn 1
for Hn.1 - a.e. X € 3*D . Here a(n-l) denotes the volume

of the unit ball in Rn-l . Further regularity of 3*D is

provided by the following result: If D is a set of finite

perimeter, then there exists a countable number of (n-1)
1

dimensional C manifolds Mi such that

-1 ®
(6) H “(a*D - v M.,] =0 ,

[F, Theorem 3.2.29].

A useful tool in geometric measure theory is the co-area

n

formula. It states that if f : R -~ Rl is a Lipschitzian

function, then

(7 I | V£ (x) |dx = J B e (e) o Aldt
A

Rl

whenever A < R" is a measurable set, [F, Theorem 3.2.11].
Later in the paper, we will apply (7) in the following form.

Let Xq € R® and let f(x) = | %= If AcR'" is mea-

ol -
surable, then f'l(t) naA= BB(xo,t) n A and because

[VE(x)| = 1 for all x = Xy + it follows from (7) that




(8) la| = J H“'l[aa(xo,t) n Aldt .

Rl

An oriented surface is a pair (S,v) where S c R® is

n .
» R® is a Borel measurable vector

a Borel set and v : R
field that are related in the following manner. There is a

(bounded) set D of finite perimeter such that

S ¢ 3*D and

(9)
vi(x) = v(D,X)xS(X)

where is the characteristic function of the set S .

Xs
For simplicity of notation we will denote by S the pair
(S,v) , it being understood that S 1is oriented by the

exterior normal of some set D of finite perimeter. We

define
(10) =S = (8,-v)

Note that this is meaningful because there is a bounded set
E of finite perimeter such that S ¢ 3*E and =-u(x) =
v(E,x)xs(x) . Indeed, the set R® - D has the property
that 3*(R"-D) = 3*D . However, in our definition of finite
perimeter, we require the set to be bounded. Therefore, if
we let B be an open ball that contains D u (bdry D) , and

define




ther clearly E is of finite perimeter, S < 3*E , and

-v(x) = v(E.X)xS(x) .
We say that S1 = (Sl,vl) and 82 = (Sz,vz) are com-

patible if there is a set D of finite perimeter such that

Sl c 3*D ., 52 c 3*D , vl(x) = v(D,x)xsl(x) . and vz(x) =
v(D,x)xsz(x) . We define sl u 52 as (S1 u 82 ¢, v) Wwhere
v(ix) = v(D,x)xslusz(x) and S1 ns, is defined similarly.

A cauchy flux is a function Q that assigns to each

oriented surface S = (S,v) a real number and has the fol-

lowing properties:

(11) (i) there is a number K > 0 such that
lQ(s) | < KHn-l(S) whenever S is an

oriented surface,

(ii) Q(S1 u Sz) = Q(Sl) + Q(Sz) whenever S1 and

S are disjoint, compatible oriented surfaces.

2
Observe that if D is a set of finite perimeter, it follows
from (i) and (ii) that Q is countably additive on all com-
patible oriented surfaces S < 3*D .

A Cauchy flux Q is said to be weakly balanced if there

exists a number M > 0 such that

|Q(3*D) | < M|D]




whenever D is a set of finite perimeter. Here, in keeping
with our convention, the symbol 3*D that appears in (13)
denotes the oriented surface (3*D,v) where v(x) =
V(D,X) X ap (X)

Notice that (12) conceivably allows the possibility of
3*D being the oriented boundary of some other (bounded) set
of finite perimeter, say E . That is, (3*D,v) = (3*E,v1)
where vl(x) = v(E,x)xa*E(x) . This can only happen if the
symmetric difference of D and E had Lebesgue measure
zero, for in the language of geometric measure theory, no
non-trivial n-dimensional integral current (in our case

D-E or E-D) can have zero boundary, vide [F,54.5.2].

I




3. The Existence Of A Normal-Dependent Density.

In this section it will be shown that a weakly balanced
Cauchy flux can be essentially described in terms of a field.
If S8 1is an oriented surface, a point x ¢ R? is called

a point of density of Q on S if the following limit exists:

QIS n B(x,r)]
n-1

(13) lim
r+0 a(n-1)r

Because S 1is an oriented surface, there is a set D of
finite perimeter such that S c 3*D . Hence, referring to

(5), we see that

QIS n B(x,r)] Q[S n B(x,r)]

lim = lim

£40  a(n-1)r®t r+0 HY1{s o B(x,r)]
n-1 .
at H - a.e. X ¢ S . We define qs(x) by
(14) qs(x) = lim QIS n B(XCZ?]
r+0 m(n-l)rn

If D is a set of finite perimeter, then by virtue of

(11) and the Radon-Nikodym theorem, there is Borel function

: 3D ~» Rl property that

95p

(15) a(s) = ] q,p(x)an" !

]

(x)

whenever S c 3*D 1is an oriented surface. Using again the
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fact that Q is countably additive on compatible elements of

3*D , it follows from the general theory of differentiation

[F, §2.9] that

(16) g (x) = q,(x)

for H - a.e. Xx ¢ § .

We now proceed to extend a result of Noll [N] to our

context of sets of finite perimeter.

3.1 Lemma. If E and B are sets of finite perimeter,

then

(1) 9(E a B) > [GE) n BJU[E n (asil—[(ar»:) n (aB)]
(ii) 3(E n B) C[(BE) n B]U[E n (BB)} u[(aE) n (aB)]

Proof. We prove (i) first. Choose x ¢ (3E) n B -
(3E) n (3B) . Then clearly, d(B,x) =1 and d4*(E,x) > 0

where

- I |E n B(x,r)]|
d* (E,x) itg sup TB (s, 1) ] .

Hence, there is a number a > 0 and a sequence {ri} + 0

such that

1'2,.-0

lE n B(x,ri)| > aIB(x,ri)I , i

A
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and
| (R™-B) n B(x,r;))|
lim =0
i o IB(x'ri)'
But
|E 0 B(x,r;)| = |[E n B nB(x,r)| + [E n (R™-B) n B(x,r,)|

and therefore

d*(E n B, x) > 0 .

If also d,(E n B, x) < 1 where

oy |E n B n B(x,r)]|
d,(E n B, x) = lim inf TB(x o) |

r+0

then it would follow that x ¢ 3(E n B) . If it were not
true that 4,(En B, x) <1, then d(En B, x) =1 or
what is the same, d[(R®-E) v (R®-B) , x] = 0 . This implies
that d(E,x) = 1 which contradicts the fact that x ¢ JE .
Hence x ¢ 3(E n B) . The same conclusion would be reached
if we had taken x ¢ E n (3B) - BBE) n (aBﬂ and therefore
(i) is established.

In order to establish (ii), let x ¢ 3(E n B) . Let

1} and

B = {x : d(B,x)

o} .

d(B,x)

m
(U
]

™ ey
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e

0 v BS U 3B . Note that x & B , for otherwise

Then Rn = B

d(E n B, X) = 0 which contradicts the fact that x ¢ 3(E n B) .
Thus, X ¢ B0 v 2B and similarly, x ¢ Eo v 3E . Hence

0

3(E n B) ¢ (Bo nEBE) u (BO n 3E) u (Eo n aB) u [(3E) n (3B)] .

Note that [Bo n Eol n 3(E n B) =0 for if x ¢ Bo n Eo ¢

then d(E n B, x) =1 and therefore, x & 3(E n B) . This

completes the proof of the lemma.

3.2 Remark. If E 1is a set of finite perimeter and x ¢ R,

observe that

#" 1 (3E) n 9B(x,r)] = O

for all but countably many r , because Hn-l(aE) < = and

IB(x,r) n 3B(x,t) =0 if r = t . To see this, let

-l} 1

’

A, = {r : Y (E) a 3B(x,r)] > i

If A were uncountable, then some Ai would be uncountable . 1

which would imply that HP 1(3E) = = .

3.3 Theorem. To every weakly balanced Cauchy flux Q

: R" « Sn-l R1

>

corresponds a density function gq




such that for every oriented surface S = (S,v) ,

n-l(x)

Q(s) = I g(x,v(x))dH
S

Proof. Choose (x,v ¢« R" « s™1  and consider all

o)
oriented surfaces S = (S,v) with the property that x ¢ §

and v(x) = Vo * If x 1is not a point of density for Q on

any such S , define q(x,uo) =0 . If x is a point of

density of Q for some Sl = (Sl,vl) with vl(x) = Vg # set 4
(17) q(x.vl(x)) = qsl(x)

We now show that if x 1is also a point of density of Q on

S2 = (sz,vz) with vz(x) = vy ¢ then qsl(x) = qsz(x) . i
To this end, let D1 and 02 be sets of finite peri-

meter such that Sl c J*Dl R S2 c B*D2 , and v(Dl,x) i

v(D,,x) = v, . From Lemma 3.1 we have é

!

(18) 2(D, n B) a[(anl) n Br]u[(Dl - D,) n (aBr)] |

u[(Dl n D,) n aBr]- [(aDl) N (aBr)] , 4
2(D, n B) < [(302) n Br] u [(Dz - D)) o (aBr)]

U[(Dl n Dy n 8Br]u [(anz) n (aBr)]

where, for convenience, we have set Br = B(x,r) . It
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follows from Remark 3.2 that
1) 0 (0B)1 = HA(D,) o (3B )] = 0
1 r 2 c !

and therefore that

It

QL(D) n (9B) ) Q[ (dD,) n (3B_)] = 0

for all but countably many r > 0 . Therefore, it follows

from (18) that
10y 0 B =[00g) 0 8] [(Dl - p,) 0 8]
u[(Dl n D) n (aarﬂ v N (D),
3(D, n B) =[(aoz) n Br]u[(oz - b)) 0 (aarﬂ
u[(D1 n D,) 0 (aar{]u N, (r)

where Q[Nl(r)] = Q[Nz(r)] = 0 for all but countably many

r > 0. Therefore, for all but countably many

r >0,
(19) Q[(BDl) n Brl - Q[(DDz) n Br]

= Q[H(Dl n Br)] - Q[n(D2 n Br)]

+ Q[(Dl - Dy) 0 BBr] - Ql(p, - D) n °B.] .
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A similar equality holds with the subscripts 1 and 2 inter-

changed. In order to prove that dg (x) = dg (x) , it is
1 2

sufficient to show that for every ¢ > 0 , there exists a
sequence {ri} + 0 such that
(20) |QI(3D,) n B_ ] = Q[(3D,) n B_ 1| < ex™ "}

1 r, 2 r; i
for i=1,2,... . Because of property (12) and (19), it is
sufficient to show that for every ¢ > 0 there is a sequence

{ri} + 0 such that

-1
(21) |Q((Dl-02) n (BBri)ll < er? and
lat(p,~p;) (aBri)]| < exft

for i=1,2,... . Because v(Dl,x) v(Dz,x) it follows

that there is R* > 0 such that for 0 < r < R* ,

- n € n
(22) |B_ n (R Di)l <gaf

+ .
'BrnDil<ﬁ‘r ’ 1=l'2.

Now let

n-l}

{r [}

—~
N
w
ar
™
-~
™
S
n

H" L (0B)) o (D;-D,)] < ¢/2 x

n-1

} .

- . yh-1 - - <
= {r ¢« H [(aBr) n (Di Dj)] e/2 r

P

,w—J!Mu—I-lIIl--lIIIlIl-'-l.lIIlIIl!I-Il!!-l-!l-—I-l-'-"“‘!
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Set
Ale) = AIZ(C) n ASI(C) n Azz(e) n AEI(E) J -T
and suppose
(24) |A(e) o (O,R]] = O
for some R < R* ., Then
(25) R < ,ZIZ v X;I u KIZ u X;ll
where, for example, we set KIZ = [0,R] -~ AIZ . It follows

from (8) and (23) that

v

(26)  |Bp n (R"=D;)| = |Bp n (D,-Dy)|

v

et S

R

n-1.,. .-
J H [(aBr) n (D2-Dl)]dr
0

1%
——

n-1 -
H [(aBr) n (Dz-Dl)]dr

AlanO,R]




e
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e e e

Similar inequalities hold for each of the sets B; n (Rn—Dz) '
+ +

BR n D1 . and BR n D2 . Obviously, from (25),
n-1 n-1
(27) e/2 r dr + e/2 r dr
~— ~+
Alzﬂ[o,R] AlznlolR]
+ I €/2 P lar 4+ J €/2 P lar
~- ~+
Azln[O,R] A21n[0,R]
R
_ n-1 _ € -.n
= J /2 r dr = v R .
0

Thus, one of the integrals in (27), say the first, has the

property that

n-1 € n
J e/2 r dr = in R .

A ,n[0,R]

Therefore, (26) implies that

Rty

- n_ € on
|Bg » (R°-D))| > &= R

which contradicts (22). Therefore (24) must be false for ‘

r all R such that 0 < R < R* , Consequently, there is a

sequence {ri} + 0 such that r e A(e) for i=1,2,... .

This implies that
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n-1 ~ _n-1
H [(DBri) n (Dl-DZ)] < ery and

W) o D,-D) < e 21, for i=1,2,... .

1

In view of property (11(i)), this is sufficient to establish

the validity of (21) and therefore, the proof of the theorem

is complete.

Following the proof of Theorem 1 in [GM], it is easy to

conclude that
(28) Q(S) = -Q(-S)

whenever S s an oriented surface such that S 1is contained
in some hyperplane and the topological boundary of S rela-
tive to the hyperplane has fintie Hn-2 measure. To see this,
assume that the hyperplane is defined by x, = 0 , and that

S = (S,v) where v(x) = (0,0,...,1) for x ¢ S . For

every ¢ > 0 , let

s x {0,¢]

o
!

S x [~¢,0) .

O
i

Since the topological boundary of S relative to the hyper-

plane x_ = 0 has finite H""2 measure, it follows that

#" l(bary 0*) < = and " (bary D]) < = . Therefore, both

D: and D: are sets of finite perimeter and letting




In view of (12) the left side of (29) tends to 0 as ¢ -+ 0
and therefore (28) is established.

It is in fact possible to prove (28) for any arbitrary
oriented surface S , but this additional information is not
needed in this paper.

We now can employ the results of [GM], particularly
Theorems 3 and 6, to conclude that the density gq(x,v) cor-
responding to Q in Theorem 3.3 is linear at a.e. X «¢ R" '

We state this as

3.4 Theorem. Let Q be a weakly balanced Cauchy flux

with associated density function q : R" «x s"! L Rl . fThen

n

there exists a measurable vector field g* : R - R"

such

that for a.e. x ¢ R©

g(x,v) = g*(x) - v

whenever v ¢ sh71

We now proceed to investigate the divergence (in some
suitable weak sense) of the vector field gq* . It easily

follows from (11(i)) that there is a constant K such that

o

B UMW apn piliynye b
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(30) lg*(x)| < K

n
for a.e. X € R~ .

We say that a set I is an n~dimensional closed interval

if I is of the form
I=({x:a, <x, <b, ,i=1,2,...,n} .
The closed interval I 1is called admissible if the integral

(31) ] a*(x) - v(x)dE® 1 (x)
oI

exists. Note that almost all intervals I are admissible.
For each admissible interval I , set u(I) equal to the
integral in (31) and defined for x ¢ rR" ’

(32) div*q*(x) = lim sup ﬁ%ﬁl

where the lim sup is taken over a regular family of admissible
intervals I containing x , [(SA, p. 106]. Define div, g*(x}
as the corresponding lim inf and if div,q*(x) = div*q*(x) ,

this common value will be called div g*(x) . Note from (30)

that |div g*(x)| s K when it exists.

3.5 Lemma. For each admissible interval 1I ,

=3

P I Erre——




J div*g* > u(I) =2 J div, qg*
I I

Proof. Suppose for some admissible I0 and ¢ > 0 ,

that

I div*q* (x)dx < w(Ijy) - €|Iol

I

Let Q@ be an open bounded set and let f be a lower semi-

continuous function such that f(x) > div*q*(x) for x ¢ R"

and
(33) J £(x) - div*g*(x) < e‘I°| .
2 &
For each admissible I < @ , let !
l
(34) 8(I) = I f(x)dx - u(I) ‘

I

and observe that, in view of the lower semicontinuity of f ,
By (x) 2 £(x) - div*q*(x) for every x ¢ 2 . Here, 6,(x)

is defined in a manner similar to that in (32), with lim sup

replaced by lim inf. Thus, it easily follows that o(I) = 0

for every admissible I < @ , [(SA, p. 190]. Therefore from

(33) and (34),

u(l,) s [ f(x)dx s [ div*q* (x)dx + clIol < u(Io) '

Ty I




a contradiction. Thus

[ div*qg* (x)dx > u(I)
1

for each admissible I and similar reasoning yields the
remaining inequality of the lemma.

We now show that div g*(x) exists for a.e. X ¢ R" .
To this end, let A be the family of all half-open intervals
J = {x : a; < X; < bi , 1 =1,2,...,n} , and let F denote

the field of all finite unions of intervals J ¢ A and note

that F generates the Borel sets in R" . If we define
v(J) = u(I)

where I is the closure of J , then ¢ is finitely addi-
tive and a theorem of B. Fuglede is now applicable, [FU,
Theorem III]:

In order that there exists an integrable function f

such that

v(J) = [ f (x)dx
J

for every J ¢ A, the following two conditions are necessary

and, when combined, sufficient:

(i) For every ¢ > 0 there is a & > 0 such that

4
) ]w(Jk)| < ¢ for every finite number of
k=1
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intervals Jl P J2,...,JQ from A for which

I
) J,_l < 8
k=1 "
L
(ii) There is a constant C such that § lw(Jk)| < C
k=1

for every finite system of disjoint intervals

J, , J

l ,o--,J

from A .

2 L

Lemma 3.5 implies that conditions (i) and (ii) are satisfied

and therefore

uw(I) = I f(x)dx
I

for each admissible I ¢ © . However, standard differen-

tiation theory shows that

div g*(x) = f(x)

for a.e. x . Thus, we have proved

3.6 Lemma., For a.e. X € rR® , div g*(x) exists and

J div g*(x)dx = { q*(x) - v(X)dHn-l(x) i
I

oI ’

for almost every interval I .

We will conclude by showing that the divergence of q*

in the sense of distributions is equal to the bounded func-

tion, div g*
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3.7 Theorem. For every test function ¢ ¢ C;(Q) '

I g*(x) -« ve(x)dx = J div g*(x)¢(x)dx .

Proof. Let (' be an open set whose closure is con-
tained in @ and choose an arbitrary interval I < Q' .,
For each ¢ «¢ C;(Q) with I ¢ =1 and t > 0 let

Rn

0, (x) = £t b (x/t) ,

it being understood that only those t > 0 for which t |is

less than the distance from Q' ¢to R? - ¢ will be con-

sidered. Define

. . _ . .
(div q )t (div gq )*¢t

and q; will denote the vector field whose coordinate func-

tions are those of g* convolved with ¢t .
With the help of Lemma 3.6 and Fubini's theorem, we

have

J (div q*)t(x)dx [ J div q*(x-y)¢t(y)dy dx
I I

Rn

J J div q* (x) ¢, (y)dx dy

nlil
R™ 7y
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_ x n-1l
= g*(x) - v(X)¢t(y)dH (x)dy
Rn 3Iy
where I =1 -y . From (4) and Fubini's theorem, we have
J div q¥ = I qz(x) v(x)a™ 1 (x)
I U §
_ * n-1
= q*(x) - v(x)e, (y)dH (x)dy .
rR" aIY
Thus, for every I ¢ ' we have shown that
. * = : *
(35) j div ag J (div g )t
I 1
from which it follows that div qz = (div q*)t a.e. in Q'

Now let ¢ ¢ C;(Q) and let ' be as above that con-

tains the support of ¢ . From (35) and Lebesgue's dominated

convergence theorem, we have

J div q*¢ lim (div Q*)t¢

ty0

lim div q{@
ti0

(
lim q; .« V¢
t+vo

e e
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