AD-A132 626 PRIMARY EYE IRRITATION POTENTIAL OF INSECT REPELLENTS
METHYL NN'-DIHEXYLE...[U] LETTERMAN ARMY INST OF
RESEARCH PRESIDIO OF SAN FRANCISCO CA
UNCLASSIFIED T P KELLNER ET AL. AUG 83 LAIR-154
F/G 6/20 NL
PRIMARY EYE IRRITATION POTENTIAL OF INSECT REPELLENTS:
Methyl N,N'-Dihexylethylene diaminemonocarbamate (CHR4),
(E)-1,2,3,4-Tetrahydro-6-Methyl-1-(2-Methyl-1-Oxo-2-Butenyl) Quinoline (CHR5) and
1,2,3,4-Tetrahydro-6-Methyl-1-(3-Methyl-1-Oxo-2-Butenyl) Quinoline (CHR6)

THOMAS P. KELLNER, BA, SP4
and
MARTHA A. HANES, DVM, CPT VC

TOXICOLOGY GROUP,
DIVISION OF RESEARCH SUPPORT

AUGUST 1983

LETTERMAN ARMY INSTITUTE OF RESEARCH
PRESIDIO OF SAN FRANCISCO, CALIFORNIA 94129

DISTRIBUTION STATEMENT A
Approved for public release;
Distribution Unlimited
Primary Eye Irritation Potential of Insect Repellents: Methyl N,N' Dihexylethyleneammonocarbamate (CHR4), (E)-1,2,3,4-Tetrahydro-6-Methyl-1-(2-Methyl-1-Oxo-2-Butenyl) Quinoline (CHR5) and 1,2,3,4-Tetrahydro-6-Methyl-1-(3-Methyl-1-Oxo-2-Butenyl) Quinoline (CHR6) (Toxicology Series 56)--Kellner and Hanes

Reproduction of this document in whole or in part is prohibited except with the permission of the Commander, Letterman Army Institute of Research, Presidio of San Francisco, California 94129. However, the Defense Technical Information Center is authorized to reproduce the document for United States Government purposes.

Destroy this report when it is no longer needed. Do not return it to the originator.

Citation of trade names in this report does not constitute an official endorsement or approval of the use of such items.

In conducting the research described in this report, the investigation adhered to the "Guide for the Care and Use of Laboratory Animals," as promulgated by the Committee on Revision of the Guide for Laboratory Animal Facilities and Care, Institute of Laboratory Animal Resources, National Research Council.

This material has been reviewed by Letterman Army Institute of Research and there is no objection to its presentation and/or publication. The opinions or assertions contained herein are the private views of the author(s) and are not to be construed as official or as reflecting the views of the Department of the Army or the Department of Defense AR 360.3

This document has been approved for public release and sale; its distribution is unlimited.
The insect repellents methyl N,N'-dihexylethlenediaminemonocarbamate (CHR4), (E)-1,2,3,4-tetrahydro-6-methyl-1-(2-methyl-1-oxo-2-butenyl) quinoline (CHR5), and 1,2,3,4-tetrahydro-6-methyl-1-(3-methyl-1-oxo-2-butenyl) quinoline (CHR6) were tested for ocular irritation potential using the Primary Eye Irritation Test on rabbits. The study was conducted in compliance with the Good Laboratory Practice regulations. Of the three repellents tested, only CHR4, 0.1 ml undiluted, applied to the eyes of rabbits resulted in readily noticeable
Item #20 (Continued)

corneal opacity, conjunctival redness, and conjunctival chemosis. CKB5 and CKB10 produced irritation of the conjunctiva early in the study, but the level of severity did not meet the criteria for positive eye irritants.
ABSTRACT

The insect repellents methyl N,N'-dihexylethlenediamine-monocarbamate (CHR4), (E)-1,2,3,4-tetrahydro-6-methyl-1-(2-methyl-1-oxo-2-butenyl) quinoline (CHR5), and 1,2,3,4-tetrahydro-6-methyl-1-(3-methyl-1-oxo-2-butenyl) quinoline (CHR6) were tested for ocular irritation potential using the Primary Eye Irritation Test on rabbits. The study was conducted in compliance with the Good Laboratory Practice regulations. Of the three repellents tested, only CHR4 was shown to be a positive ocular irritant. CHR4, 0.1 ml undiluted, applied to the eyes of rabbits resulted in readily noticeable corneal opacity, conjunctival redness, and conjunctival chemosis. CHR5 and CHR6 produced irritation of the conjunctiva early in the study, but the level of severity did not meet the criteria for positive eye irritants.
PREFACE

TYPE REPORT: Primary Eye Irritation GLP Study Report

TESTING FACILITY: US Army Medical Research and Development Command
Letterman Army Institute of Research
Division of Research Support
Presidio of San Francisco, CA 94129

SPONSOR: US Army Medical Research and Development Command
Letterman Army Institute of Research
Presidio of San Francisco, CA 94129

PROJECT/WORK UNIT/APC: Prevention of Military Disease Hazards
3M19770A871, Work Unit 201, APC FL07

GLP STUDY NUMBER: 82027

STUDY DIRECTOR: COL John T. Fruin, DVM, PhD, VC, Diplomate of
American College of Veterinary Preventive Medicine

PRINCIPAL INVESTIGATOR: Martha A. Hanes, DVM, CPT VC

CO-PRINCIPAL INVESTIGATOR: Thomas P. Kellner, SP4, BA

REPORT AND DATA MANAGEMENT: A copy of the final report, study protocols,
raw data, retired SOPs and an aliquot of each
test compound will be retained in the LAIR
Archives.

TEST SUBSTANCES: A. Methyl N, N'-Dihexylethlenediaminemonocarbamate
(CHR4)

B. (E)-1,2,3,4-Tetrahydro-6-Methyl-1-(2-Methyl-1-
Oxo-2-Butenyl) Quinoline (CHR5)

C. 1,2,3,4-Tetrahydro-6-Methyl-1-(3-Methyl-1
Oxo-2-Butenyl) Quinoline (CHR6)

INCLUSIVE STUDY DATES: 27 September - 12 October 1982

OBJECTIVE: To evaluate the primary ocular irritation potential of
insect repellents CHR4, CHR5, and CHR6.
ACKNOWLEDGMENT

The authors wish to thank Carolyn M. Lewis, MS, for her assistance during the study.
SIGNATURES OF PRINCIPAL SCIENTISTS AND MANAGERS INVOLVED IN THE STUDY:

We, the undersigned, believe the study number 82027 described in this report to be scientifically sound and the results in this report and interpretation to be valid. The study was conducted to comply, to the best of our ability, with the Good Laboratory Practice Regulations for Medical Laboratory Studies, outlined by the Food and Drug Administration.

John T. Fruin / Date
COL, VC
Study Director

Thomas P. Kellner, BA / Date
SP4, USA
Co-Principal Investigator

Martha A. Hanes / Date
CPT, VC
Principal Investigator
MEMORANDUM FOR RECORD

SUBJECT: Report of GLP Compliance

I hereby certify that in relation to LAIR GLP study 82027 the following inspections were made:

28 Sep 82
1 Oct 82
12 Oct 82

The report and raw data for this study were audited on 8 Jun 83.

Routine inspections with no adverse findings are reported quarterly, thus these inspections are also included in the Oct 82 and Jan 83 report to management and the Study Director.

NELSON R. POWERS, Ph.D.
CPT, MSC
Quality Assurance Officer
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>i</td>
</tr>
<tr>
<td>Preface</td>
<td>iii</td>
</tr>
<tr>
<td>Acknowledgment</td>
<td>iv</td>
</tr>
<tr>
<td>Signature of Principal Scientists</td>
<td>v</td>
</tr>
<tr>
<td>Report of Quality Assurance Unit</td>
<td>vi</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>vii</td>
</tr>
<tr>
<td>BODY OF REPORT</td>
<td></td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>Objective of Study</td>
<td>1</td>
</tr>
<tr>
<td>METHODS</td>
<td></td>
</tr>
<tr>
<td>Test Substances</td>
<td>2</td>
</tr>
<tr>
<td>Animal Data</td>
<td>3</td>
</tr>
<tr>
<td>Environmental Conditions</td>
<td>3</td>
</tr>
<tr>
<td>Dosing</td>
<td>3</td>
</tr>
<tr>
<td>Rationale for Using the Test</td>
<td>5</td>
</tr>
<tr>
<td>Duration of Study</td>
<td>5</td>
</tr>
<tr>
<td>Deviation from Original Protocol</td>
<td>5</td>
</tr>
<tr>
<td>RESULTS</td>
<td></td>
</tr>
<tr>
<td>CHR4</td>
<td>6</td>
</tr>
<tr>
<td>CHR5</td>
<td>6</td>
</tr>
<tr>
<td>CHR6</td>
<td>6</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>7</td>
</tr>
<tr>
<td>CONCLUSION</td>
<td>7</td>
</tr>
<tr>
<td>RECOMMENDATION</td>
<td>7</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>8</td>
</tr>
</tbody>
</table>
Table of Contents (Continued)

APPENDICES

<table>
<thead>
<tr>
<th>Appendix A, Chemical Data</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix B, Animal Data</td>
<td>11</td>
</tr>
<tr>
<td>Appendix C, Environmental Data</td>
<td>15</td>
</tr>
<tr>
<td>Appendix D, Historical Listing</td>
<td>17</td>
</tr>
<tr>
<td>Appendix E, Tabular Scoring Data (Tables 1-12)</td>
<td>19</td>
</tr>
<tr>
<td>OFFICIAL DISTRIBUTION LIST</td>
<td>21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
</tr>
</tbody>
</table>
Letterman Army Institute of Research (LAIR) has been directed to participate in the development of better insect repellents for the protection of soldiers from insects and insect-borne diseases in the field. In the last several years, investigators in the Division of Cutaneous Hazards at LAIR have tested a large number of chemical compounds, submitted by SRI-International; the U.S. Department of Agriculture (USDA); and private industry, against a variety of mosquitoes, sand flies, fleas, bugs, ticks, and mites in animal and in vitro test systems. Several of these materials have shown sufficient repellent activity and persistence on the skin of animals to warrant consideration for use in lieu of, or in conjunction with, the current troop-issue repellent, 71.25% diethyl-toluamide (m-DEET) in ethanol. The investigators have also evaluated a number of new formulations of m-DEET prepared at LAIR or submitted by private industry. Several of these new formulations have been more persistent on the skin in tests on animals than the current troop-issue repellent.

We now plan to test on human volunteers the most promising of the new compounds and formulations to confirm the results that have been obtained in the in vitro and animal tests to evaluate the performance of these agents under conditions of actual use. Before this can be done, it is necessary to obtain certain toxicity data on each compound or formulation to insure that it is safe for application to the skin. The basic toxicity tests required for experimental use of the new compounds and formulations on human volunteers are prescribed by the LAIR and U.S. Army Medical Research and Development Command (USAMRDC) Human Use Committees. If adverse toxicity data are obtained in these tests, the material(s) will be eliminated from consideration, and the prospective tests on human volunteers will not be conducted. The toxicity testing program thereby serves both as a safety factor and a secondary screen in the repellent development scheme.
Objective of the Study

The objective of the study is to evaluate the primary ocular irritation potential of insect repellents:

Methyl N,N'-dihexylethylenediaminemonocarbamate (CHR4)

(E)-1,2,3,4-tetrahydro-6-methyl-1-(2-methyl-1-oxo-2-butenyl) quinoline (CHR5)

1,2,3,4-tetrahydro-6-methyl-1-(3-methyl-1-oxo-2-butenyl) quinoline (CHR6)

METHODS

Test Substances

1. Chemical name: Methyl-N,N'-Dihexylethylenediamine-Monocarbamate (CHR4)

 Chemical Abstract Service Registry No.: None

 Structural formula: \[\text{CH}_3(\text{CH}_2)_{25}\text{NH}(\text{CH}_2)_{22}\text{N}(\text{CH}_2)_{25}\text{CH}_3 \]

 Empirical formula: \[\text{C}_{16}\text{H}_{34}\text{N}_2\text{O}_2 \]

2. Chemical name: 1,2,3,4-Tetrahydro-6-Methyl-1-(2-Methyl-1-Oxo-2-Butenyl) Quinoline (CHR5)

 Chemical Abstract Service Registry No.: None

 Structural formula: \[\text{CH}_3

 Empirical formula: \[\text{C}_{15}\text{H}_{19}\text{NO} \]
3. Chemical Name: 1,2,3,4-Tetrahydro-6-Methyl-1-(3-Methyl-
1-Oxo-2-Butenyl) Quinoline (CHR6)

Chemical Abstract Service Registry No.: None

Structural formula:

\[
\begin{align*}
\text{CH}_3 & \quad \text{O} & \quad \text{C} & \quad \text{C} & \quad \text{CH}_3 \\
\text{CH}_3 & \quad \text{N} & \quad \text{CH}_3
\end{align*}
\]

Empirical formula: \(\text{C}_{15}\text{H}_{19}\text{NO}\)

Appendix A provides additional chemical data.

Animal Data

Animal data appear in Appendix B.

Environmental Conditions

Environmental conditions are stated in Appendix C.

Dosing

The nine rabbits were weighed, randomized, and examined. Fluorescein dye and ultraviolet light was used to determine any pre-existing corneal damage 24 hours before the application of the test chemical. No eye lesions were observed.

Three rabbits were assigned to a group for each test chemical. Each rabbit was secured in a restraint cage and the test substance was placed in the right eye of each animal by gently pulling the lower lid away from the eyeball (conjunctival cul-de-sac) to form a cup into which 0.1 ml of liquid (or solid, as in the case of CHR5) was placed. The eyelids were then held together gently to prevent immediate loss of the chemical. The other eye, remaining untreated, served as the negative control. The animals were observed at 1 hour, 24 hours,

48 hours, 72 hours, 4 days, 7 days, 10 days, and 14 days after exposure. The scale for scoring appears in Table 1.
TABLE 1
GRADES FOR OCULAR LESIONS

CORNEA

Opacity: degree of density (area dense taken for reading)

No ulceration or opacity ... 0

Scattered or diffuse areas of opacity (other than slight dulling of normal luster, details of iris clearly visible) 1

Easily discernible translucent areas, details of iris slightly obscured ... 2

Macerous areas, no details of iris visible, size of pupil barely discernible ... 3

Opaque cornea, iris not discernible through opacity 4

IRIS

Normal ... 0

Markedly deepened rugae, congestion, swelling, moderate circumcorneal hyperemia or injection, any of these or any combination thereof, iris still reacting to light (sluggish reaction is positive) ... 1

No reaction to light, hemorrhage, gross destruction (any or all of these) ... 2

CONJUNCTIVAE

Redness (refers to palpebral and bulbular conjunctivae excluding cornea and iris)

Blood vessels normal ... 0

Some blood vessels definitely hyperemic (injected) 1

Diffuse, crimson color, individual vessels not easily discernible ... 2

Diffuse beefy red ... 3

Chemosis: lids and/or nictitating membranes

No swelling ... 0

Any swelling above normal (including nictitating membranes) 1

Obvious swelling with partial eversion of lids 2

Swelling with lids about half-closed .. 3

Swelling with lids more than half-closed 4

*Indicates minimum level for a positive response *(3)
Rationale for Using the Test

The use of animal eyes as test subjects for both pharmacological and toxicological examination has been a well-established procedure for a number of years (1). According to earlier techniques, six to nine albino rabbits per test chemical were used (2). The U.S. Interagency Regulatory Liaison Group suggests that a trial test be conducted on three rabbits per test substance, and if the substance produces a positive reaction (corrosion, severe irritation) or a negative reaction (slight or no irritation), then no further testing is necessary (3). If equivocal results occur, three more rabbits are tested.

Before and after chemical exposure, ocular reactions are scored with the unaided eye (4). Observations and scoring are conducted according to Table 1 (3). The eyes of all rabbits are further examined after applying fluorescein stain. After flushing out the excess fluorescein with physiological saline, injured areas of the cornea appear green under ultraviolet light.

Any additional observations, such as pannus, phlyctena, rupture of the globe, and vascularization of the cornea, are reported. The grades of ocular reaction are recorded at each examination.

Method of Analysis: Ulceration of the cornea (other than fine stippling), opacity of the cornea (beyond just slight dulling), inflammation of the iris (other than a slight deepening of the rugae or light hyperemia of circumcorneal blood vessels), or obvious swelling of the eyelids were considered to be signs of positive eye irritation (4).

Duration of Study

A list of historical events appears in Appendix D.

Deviations From Original Protocol

None.
RESULTS

Tabular scoring data appear in Appendix E.

CHR4

All three of the rabbits receiving 0.1 ml of CHR4 showed signs of corneal opacity at a level of severity of 2 (easily discernible translucent areas with details of the iris slightly obscured). For animal 82F141, this level of opacity persisted throughout the study, and by day 14 vascularization of the cornea and hair loss around the eye were observed. In animals 82F139 and 82F143, level 2 opacity persisted to day 4 after dosing, and then decreased to a score of 1. Slight vascularization of the cornea was observed in animal 82F139 by day 10 (Table 1).

Only one rabbit in this group, 82F141, showed signs of inflammation of the iris. This observation, recorded at 48 hours after dosing, showed heavy hyperemia of the circumcorneal blood vessels. No other rabbit in this group showed signs of serious iridal inflammation during the study (Table 2).

Serious conjunctival reactions were seen in animals dosed with CHR4. Level 2 conjunctival redness was seen in rabbit 82F143 through day 4, while 82F141 and 82F139 remained at level 1 (Table 3). In terms of conjunctival chemosis, all rabbits showed level 2 reactions at some point in the study, with 82F143 again showing the most severe reaction. The level of chemosis seen in the bulbar and palpebral conjunctiva for this animal resulted in a score of 4 (swelling with eyelids more than half-closed) at the 48-hour observation (Table 4).

CHR5

Of the three animals tested in this group, none showed any signs of corneal opacity or iritis (Tables 5 and 6). Slight redness (score of 1) was seen in rabbits 82F145 and 82F138 at the 24-hour and 48-hour observation. This same degree of redness was seen in rabbit 82F150 at the 24, 48, and 72-hour observation (Table 7). Slight chemosis was observed in the eyes of animals 82F145 and 82F150 at the 24-hour observation, and in the eye of animal 82F138 at the 24-hour and 48-hour observation (Table 8).

CHR6

Of the three animals tested in this group, none showed signs of corneal opacity or iritis (Tables 9 and 10). Slight redness was seen in the eye of rabbit 82F142 up to the 72-hour observation, in 82F147 up to the 48-hour observation and in 82F146 up to the 24-hour observation (Table 11). Only rabbit 82F142 showed signs of conjunctival chemosis, and scores of 1 were recorded for this animal at the 24 and 48-hour observation periods (Table 12).
DISCUSSION

In this study, a positive reaction is defined as an animal exhibiting one or more of the following signs (above a given level of severity): ulceration of the cornea, opacity of the cornea, inflammation of the iris, and an obvious swelling of the conjunctiva (accompanied by redness).

Based on these criteria, only CHR4 qualifies as a positive ocular irritant. CHR4 applied to the eyes of three rabbits resulted in readily noticeable corneal opacity, conjunctival redness, and severe conjunctival chemosis. In addition to these signs, other serious symptoms such as vascularization of cornea, heavy hyperemia of circumcorneal blood vessels, and hair loss around the eye were noted. Irritation in the form of conjunctival redness and chemosis was noted in early observations of animals doses with CHR5 and CHR6, but the level of severity did not meet the criteria set forth for positive ocular irritants.

CONCLUSION

The test compound methyl N,N'-dihexylethylenediamine monocarbamate (CHR4) was judged a positive ocular irritant according to the Primary Eye Irritation test. CHR5 and CHR6 were slightly irritating to ocular tissues, but are classified as a negative ocular irritants.

RECOMMENDATION

At its present concentration CHR4 should not be considered a safe chemical to use around the face and eyes. Concentrations that are encountered in normal use may demonstrate reduced risk and should be tested. CHR5 and CHR6 should be cleared in the pure state as low risk chemicals, and should undergo further toxicologic testing.
REFERENCES

4. Editorial Committee of Food and Drug Officials of the United States. Appraisal of the safety of chemicals in foods, drugs, and cosmetics. 1959. Association of Food and Drug Officials of the U.S.
Appendix A, Chemical Data...11
Appendix B, Animal Data...15
Appendix C, Environmental Data....................................17
Appendix D, Historical Listing.......................................19
Appendix E, Tabular Scoring Data (Tables 1-12)....................21
1. Chemical name: Methyl N,N'-Dihexylethylene-Diaminemonocarbomate

Chemical Abstract Service Registry No.: None

Structural formula:

\[
\text{CH}_3(\text{CH}_2)_5\text{NH}(\text{CH}_2)_2\text{N}(\text{CH}_2)_5\text{CH}_3
\]

Empirical formula: \(\text{C}_{16}\text{H}_{34}\text{N}_2\text{O}_2\)

Molecular weight: 286.461

pH: N/A nonaqueous

Physical state: Liquid

Boiling point: 146°C/286.461

Compound density: 0.87 g/ml

Compound refractory index: Unknown

Stability: Stable at room temperature

Names of contaminants and percentages: Unknown

Manufacturer: SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025

Manufacturer Lot No: 3K38075
2. Chemical name: (E) 1,2,3,4-tetrahydro-6-Methyl-1-(2-Methyl-1-Oxo-2-Butenyl)Quinoline

Chemical Abstracts Service Registry No.: None

Structural formula:

Empirical formula: C_{15}H_{19}NO
Molecular weight: 229
pH: N/A nonaqueous
Physical state: Liquid
Boiling point: Unknown
Compound density: Unknown
Compound refractory index: Unknown
Stability: Unknown
Names of contaminants and percentages: Unknown

Manufacturer: SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025

APPENDIX A (Cont)
Manufacturer Lot No.: 4214H31

CHR6

3. Chemical Name: 1,2,3,4-Tetrahydro-6-Methyl-1-(3-Methyl-1-Oxo-2-Butenyl)Quinoline

Chemical Abstracts Service Registry No.: None

Molecular structure:

Empirical formula: \(\text{C}_{15}\text{H}_{19}\text{NO} \)

Molecular weight: 229

pH: N/A nonaqueous

Physical state: Liquid

Boiling range: Unknown

Compound density: Unknown

Compound refractory index: Unknown

Stability: Unknown

Names of contaminants and percentages: Unknown

Manufacturer: SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025

Manufacturer Lot No.: 3905H3

APPENDIX A (Concluded)
ANIMAL DATA

Species: Rabbit
Strain: New Zealand White (albino)
Source: Elkhorn Rabbitry
5265 Starr Way
Watsonville, CA 95076

Sex: Male
Age: Young adults

Method of randomization: RANDOM Program on eclipse C330 computer (SOP OP-ISG-21).

Animals in dose group: 3 (3 groups)

Condition of animals at start of study: Normal

Body weight range: 2405–2977 g; $\bar{x} = 2669; s = 197$

Identification procedures: Ear tattoo (SOP-OP-ARG-1)

Pretest conditioning:

1. Quarantine from 10 February–24 February 1983

2. Animal eyes were examined 24 hours before dosing using fluorescein dye and ultraviolet light.

Justification: Rabbits are a proven sensitive animal model for this test
ENVIRONMENTAL CONDITIONS

Caging: Number/cage = 1; type of cage = stainless steel, wire mesh bottom, battery type, no bedding, automatic flush.

Diet: Purina Certified Rabbit Chow No. 5322, approximately 110 g/day
Lot No. JUL09821C and JAN28822A

Water: Central line to cage battery with automatic lick dispensers

Temperature: \(76 \pm 3^\circ F\) \((24 \pm 1^\circ C)\)

Humidity: \(42 \pm 5\%\)

Photoperiod: 0530-2000 hours per day (light 14-1/2 hours)
<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 Sep 82</td>
<td>Rabbits arrived at LAIR. They were weighed, tattooed (SOP-ARG-1), or labelled, checked for illness, and quarantined by Animal Resources Group for 2-3 weeks.</td>
</tr>
<tr>
<td>27 Sep 82</td>
<td>Rabbits were removed from quarantine, separated into test groups, and weighed.</td>
</tr>
<tr>
<td>28 Sep 82</td>
<td>Rabbits were dosed according to test chemical group and weighed. 1-hour after dosing the eyes were observed and scored.</td>
</tr>
<tr>
<td>29 Sep 82</td>
<td>24 hours after dosing the eyes were observed and scored.</td>
</tr>
<tr>
<td>30 Sep 82</td>
<td>48 hours after dosing the eyes were observed and scored.</td>
</tr>
<tr>
<td>1 Oct 82</td>
<td>Animals were weighed. 72 hours after dosing the eyes were observed and scored.</td>
</tr>
<tr>
<td>2 Oct 82</td>
<td>4 days after dosing the eyes were observed and scored.</td>
</tr>
<tr>
<td>5 Oct 82</td>
<td>7 days after dosing the eyes were observed and scored.</td>
</tr>
<tr>
<td>3-12 Oct 82</td>
<td>Rabbits were observed daily if scores were not performed.</td>
</tr>
<tr>
<td>8 Oct 82</td>
<td>Animals were weighed. 10 days after dosing the eyes were observed and scored.</td>
</tr>
<tr>
<td>12 Oct 82</td>
<td>Animals were weighed. 14 days after dosing the eyes were observed and scored.</td>
</tr>
<tr>
<td>12 Oct 82</td>
<td>Animals were taken off study because recovery or irreversibility was indicated.</td>
</tr>
</tbody>
</table>
TABULAR SCORING DATA
ON ACUTE EYE IRRITATION SUMMARY FORMS

Table 1 CHR4 Cornea Scores.........................23
Table 2 CHR4 Iris Scores.........................24
Table 3 CHR4 Conjunctiva Redness Scores.........25
Table 4 CHR4 Conjunctiva Chemosis Scores........26
Table 5 CHR5 Cornea Scores.......................27
Table 6 CHR5 Iris Scores.........................28
Table 7 CHR5 Conjunctiva Redness Scores.........29
Table 8 CHR5 Conjunctiva Chemosis Scores........30
Table 9 CHR6 Cornea Scores.......................31
Table 10 CHR6 Iris Scores.........................32
Table 11 CHR6 Conjunctiva Redness Scores.........33
Table 12 CHR6 Conjunctiva Chemosis Scores........34
Table 1
Acute Eye Irritation Summary
Rabbits

<table>
<thead>
<tr>
<th>Area Summarized</th>
<th>Cornea</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLP Study No.</td>
<td>82027</td>
</tr>
<tr>
<td>Chemical Name</td>
<td>CHR4</td>
</tr>
<tr>
<td>Principal Investigator</td>
<td>Hanes/Kellner</td>
</tr>
<tr>
<td>Physical State</td>
<td>Liquid</td>
</tr>
<tr>
<td>Date Started</td>
<td>28 Sep 82</td>
</tr>
<tr>
<td>Amount Applied</td>
<td>0.1 ml</td>
</tr>
</tbody>
</table>

Score by Animal

<table>
<thead>
<tr>
<th>Rabbit No.</th>
<th>1 hr</th>
<th>24 hr</th>
<th>48 hr</th>
<th>72 hr</th>
<th>4 d</th>
<th>7 d</th>
<th>10 d</th>
<th>14 d</th>
</tr>
</thead>
<tbody>
<tr>
<td>82F141</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>82F139</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>82F143</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Table 2
Acute Eye Irritation Summary
Rabbits
Area Summarized: Iris

GLP Study No. 82027 Chemical Name: CHR4
Principal Investigator: Hanes/Kellner Physical State: Liquid
Date Started: 28Sep82 Amount Applied: 0.1 ml

<table>
<thead>
<tr>
<th>Score by Animal</th>
<th>Rabbit No.</th>
<th>1 hr</th>
<th>24 hr</th>
<th>48 hr</th>
<th>72 hr</th>
<th>4 d</th>
<th>7 d</th>
<th>10 d</th>
<th>14 d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>82F141</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>82F139</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>82F143</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 3
Acute Eye Irritation Summary
Rabbits

Area Summarized: Conjunctiva - redness

<table>
<thead>
<tr>
<th>GLP Study No.</th>
<th>Chemical Name</th>
<th>Principal Investigator</th>
<th>Physical State</th>
<th>Amount Applied</th>
</tr>
</thead>
<tbody>
<tr>
<td>82027</td>
<td>CHR4</td>
<td>Hanes/Kellner</td>
<td>Liquid</td>
<td>0.1 ml</td>
</tr>
</tbody>
</table>

Date Started: 28 Sep 82

Score by Animal

<table>
<thead>
<tr>
<th>Rabbit No.</th>
<th>1 hr</th>
<th>24 hr</th>
<th>48 hr</th>
<th>72 hr</th>
<th>4 d</th>
<th>7 d</th>
<th>10 d</th>
<th>14 d</th>
</tr>
</thead>
<tbody>
<tr>
<td>82F141</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>82F139</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>82F143</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 4
Acute Eye Irritation Summary
Rabbits
Area Summarized: Conjunctiva - chemosis

<table>
<thead>
<tr>
<th>GLP Study No.</th>
<th>Chemical Name</th>
<th>Physical State</th>
<th>Date Started</th>
<th>Amount Applied</th>
</tr>
</thead>
<tbody>
<tr>
<td>82027</td>
<td>CHR4</td>
<td>Liquid</td>
<td>28Sep82</td>
<td>0.1 ml</td>
</tr>
</tbody>
</table>

Score by Animal

<table>
<thead>
<tr>
<th>Rabbit No.</th>
<th>1 hr</th>
<th>24 hr</th>
<th>48 hr</th>
<th>72 hr</th>
<th>4 d</th>
<th>7 d</th>
<th>10 d</th>
<th>14 d</th>
</tr>
</thead>
<tbody>
<tr>
<td>82F141</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>82F139</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>82F143</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

APPENDIX E (cont.)
Table 5
Acute Eye Irritation Summary
Rabbits
Area Summarized: Cornea

GLP Study No. 82027 Chemical Name: CHR5
Principal Investigator: Hanes/Kellner Physical State: Solid
Date Started: 28Sep82 Amount Applied: 0.1 ml (less than 0.1 g)

Score by Animal

<table>
<thead>
<tr>
<th>Rabbit No.</th>
<th>1 hr</th>
<th>24 hr</th>
<th>48 hr</th>
<th>72 hr</th>
<th>4 d</th>
<th>7 d</th>
<th>10 d</th>
<th>14 d</th>
</tr>
</thead>
<tbody>
<tr>
<td>82F145</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>82F138</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>82F150</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

APPENDIX E (cont.)
Table 6

Acute Eye Irritation Summary

Rabbits

Area Summarized: Iris

<table>
<thead>
<tr>
<th>GLP Study No.</th>
<th>Chemical Name</th>
<th>Principal Investigator</th>
<th>Physical State</th>
<th>Amount Applied</th>
</tr>
</thead>
<tbody>
<tr>
<td>82027</td>
<td>CHR5</td>
<td>Hanes/Kellner</td>
<td>Solid</td>
<td>0.1 ml (less than 0.1 g)</td>
</tr>
</tbody>
</table>

Date Started: 28Sep82

Score by Animal

<table>
<thead>
<tr>
<th>Rabbit No.</th>
<th>1 hr</th>
<th>24 hr</th>
<th>48 hr</th>
<th>72 hr</th>
<th>4 d</th>
<th>7 d</th>
<th>10 d</th>
<th>14 d</th>
</tr>
</thead>
<tbody>
<tr>
<td>82F145</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>82F138</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>82F150</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 7

Acute Eye Irritation Summary

Rabbits

Area Summarized: Conjunctiva - redness

<table>
<thead>
<tr>
<th>GLP Study No.</th>
<th>Chemical Name</th>
<th>Physical State</th>
<th>Date Started</th>
<th>Amount Applied</th>
</tr>
</thead>
<tbody>
<tr>
<td>82027</td>
<td>CHR5</td>
<td>Solid</td>
<td>28 Sep 82</td>
<td>0.1 ml (less than 0.1 g)</td>
</tr>
</tbody>
</table>

Score by Animal

<table>
<thead>
<tr>
<th>Rabbit No.</th>
<th>1 hr</th>
<th>24 hr</th>
<th>48 hr</th>
<th>72 hr</th>
<th>4 d</th>
<th>7 d</th>
<th>10 d</th>
<th>14 d</th>
</tr>
</thead>
<tbody>
<tr>
<td>82F145</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>82F138</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>82F150</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 8
Acute Eye Irritation Summary
Rabbits
Area Summarized: Conjunctiva - chemosis

<table>
<thead>
<tr>
<th>GLP Study No.</th>
<th>Chemical Name</th>
<th>Physical State</th>
</tr>
</thead>
<tbody>
<tr>
<td>82027</td>
<td>CHR5</td>
<td>Solid</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Principal Investigator</th>
<th>Physical State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hanes/Kellner</td>
<td>Solid</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date Started</th>
<th>Amount Applied</th>
</tr>
</thead>
<tbody>
<tr>
<td>28Sep82</td>
<td>0.1 ml (less than 0.1 g)</td>
</tr>
</tbody>
</table>

Score by Animal

<table>
<thead>
<tr>
<th>Rabbit No.</th>
<th>1 hr</th>
<th>24 hr</th>
<th>48 hr</th>
<th>72 hr</th>
<th>4 d</th>
<th>7 d</th>
<th>10 d</th>
<th>14 d</th>
</tr>
</thead>
<tbody>
<tr>
<td>82F145</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>82F138</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>82F150</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

APPENDIX E (cont.)
Table 9
Acute Eye Irritation Summary
Rabbits

Area Summarized: Cornea

<table>
<thead>
<tr>
<th>GLP Study No.</th>
<th>Chemical Name</th>
<th>Principal Investigator</th>
<th>Date Started</th>
<th>Amount Applied</th>
</tr>
</thead>
<tbody>
<tr>
<td>82027</td>
<td>CHR6</td>
<td>Hanes/Kellner</td>
<td>23Sep82</td>
<td>0.1 ml</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rabbit No.</th>
<th>1 hr</th>
<th>24 hr</th>
<th>48 hr</th>
<th>72 hr</th>
<th>4 d</th>
<th>7 d</th>
<th>10 d</th>
<th>14 d</th>
</tr>
</thead>
<tbody>
<tr>
<td>82F142</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>82F147</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>82F146</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 10
Acute Eye Irritation Summary

Rabbits

Area Summarized: Iris

GLP Study No. 82027
Chemical Name: CHR6

Principal Investigator: Hanes/Kellner
Physical State: liquid

Date Started: 23Sep82
Amount Applied: 0.1 ml

Score by Animal

<table>
<thead>
<tr>
<th>Rabbit No.</th>
<th>1 hr</th>
<th>24 hr</th>
<th>48 hr</th>
<th>72 hr</th>
<th>4 d</th>
<th>7 d</th>
<th>10 d</th>
<th>14 d</th>
</tr>
</thead>
<tbody>
<tr>
<td>82F142</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>82F147</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>82F146</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

APPENDIX E (cont.)
Table 11

Acute Eye Irritation Summary

Rabbits

<table>
<thead>
<tr>
<th>Area Summarized</th>
<th>Conjunctiva - redness</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLP Study No.</td>
<td>B2027</td>
</tr>
<tr>
<td>Chemical Name</td>
<td>CHR6</td>
</tr>
<tr>
<td>Principal Investigator</td>
<td>Hanes/Kellner</td>
</tr>
<tr>
<td>Physical State</td>
<td>liquid</td>
</tr>
<tr>
<td>Date Started</td>
<td>23Sep82</td>
</tr>
<tr>
<td>Amount Applied</td>
<td>0.1 ml</td>
</tr>
</tbody>
</table>

Score by Animal

<table>
<thead>
<tr>
<th>Rabbit No.</th>
<th>1 hr</th>
<th>24 hr</th>
<th>48 hr</th>
<th>72 hr</th>
<th>4 d</th>
<th>7 d</th>
<th>10 d</th>
<th>14 d</th>
</tr>
</thead>
<tbody>
<tr>
<td>82F142</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>82F147</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>82F146</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 12
Acute Eye Irritation Summary
Rabbits
Area Summarized: Conjunctiva – chemosis

<table>
<thead>
<tr>
<th>GLP Study No.</th>
<th>Chemical Name</th>
<th>Physical State</th>
<th>Date Started</th>
<th>Amount Applied</th>
</tr>
</thead>
<tbody>
<tr>
<td>82027</td>
<td>CHR6</td>
<td>liquid</td>
<td>23Sep82</td>
<td>0.1 ml</td>
</tr>
</tbody>
</table>

Score by Animal

<table>
<thead>
<tr>
<th>Rabbit No.</th>
<th>1 hr</th>
<th>24 hr</th>
<th>48 hr</th>
<th>72 hr</th>
<th>4 d</th>
<th>7 d</th>
<th>10 d</th>
<th>14 d</th>
</tr>
</thead>
<tbody>
<tr>
<td>82F142</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>82F147</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>82F146</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

APPENDIX E (concluded)
OFFICIAL DISTRIBUTION LIST

Commander
US Army Medical Research and Development Command
ATTN: SGRD-RMS/Mrs. Madigan
Fort Detrick, Frederick MD 21701

Defense Technical Information Center
ATTN: DTIC-DDA (12 copies)
Cameron Station
Alexandria VA 22314

Director of Defense Research and Engineering
ATTN: Assistant Director, Environmental and Life Sciences
Washington DC 20301

The Surgeon General
ATTN: DASG-TLO
Washington DC 20314

HQ DA (DASG-ZXA)
WASH DC 20310

Commandant
Academy of Health Sciences
ATTN: HSHA-CDM
Fort Sam Houston TX 78234

Assistant Dean
Institute and Research Support
Uniformed Services University of Health Sciences
6917 Arlington Road
Bethesda MD 20014

Commander
US Army Environmental Hygiene Agency
Aberdeen Proving Ground MD 21070

US Army Research Office
ATTN: Chemical and Biological Sciences Division
P.O. Box 1221
Research Triangle Park NC 27709

Biological Sciences Division
Office of Naval Research
Arlington VA 22217

Director of Life Sciences
USAF Office of Scientific Research (AFSC)
Bolling AFB
Washington DC 20312

Director
Walter Reed Army Institute of Research
Washington DC 20307

Commander
US Army Medical Research Institute of Infectious Diseases
Fort Detrick, Frederick MD 21701

Commander
US Army Research Institute of Environmental Medicine
Natick MA 01760

Commander
US Army Institute of Surgical Research
Brooke Army Medical Center
Fort Sam Houston TX 78234

Commander
US Army Medical Bioengineering Research and Development Laboratory
Fort Detrick, Frederick MD 21701

Commander
US Army Aeromedical Research Laboratory
Fort Rucker AL 36362

Commander
US Army Research Institute of Chemical Defense
Aberdeen Proving Ground
Edgewood Arsenal MD 21010

Commander
Naval Medical Research Institute
National Naval Medical Center
Bethesda MD 20014

Commander
USAF School of Aerospace Medicine
Aerospace Medical Division
Brooks Air Force Base TX 78235
DATE:
ILM