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ABSTRACT .

g

~ This thesis presents and evaluates variants of the ellipsoid iq
.

algorithm for nonlinear programming. Two primary types of variants ta

are examined: different deep cut hyperplanes, and different
strategies for testing the feasibility constraints, Five of the

deep cut variants do not require 2a linesearch, while three do

O] .
at I LIS Ly

require a linesearch. Of the five constraint examination methods,
three are alternative ways of examining the full 1list of
feasibility constraints, The fourth method is am active set
strategy, while the fifth uses a record objective function value
constraint. The variants are tested on 13 gemeral and geometric
programming problems, both convex and nonconvex. The performance
of each variant is measured in combined solution error as a
function of solution time. The experimental results show that the
lowest solution error achieved is essentially unaffected by the
constraint examination strategy. However, all but one of the deep
cut variants occasionally converge to mnonmoptimal points if the

problem is noncoavex, Three of the deep cuts and three of the

constraint examinatiqé ‘strategies are shown to improve the
efficiency of the algorithm. The most efficient variant was the
active set strategy, which attained almost all of the efficiency K
improvement that is theoretically possible for any active set

strategy.
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INTRODUCTION AND HISTORICAL REVIEW

In [11], Shor describes a simple method for solving convex

programming problems, which has since become known as the ellipsoid

algorithm (EA). In [6] and elsewhere, Ecker and Kupferschmid show
that the EA can be practically applied to both convex and nonconvex
nonlinear programming problems, and that it is more robust than
some other methods in common use. On many problems the EA is also
competitive with other methods in terms of efficiency, for at least

some levels of solution error.

Consider the nonlinear programming problem

NLP: min fm+1(x)

x € Rn

subject to x €S = {x | fi(x) £0, i=1...m}.

]
Assume that there exists an optimal point x solving the

r problem NLP, that an initial n-dimensional ellipsoid Eo can be

*
found with x € Eo. and that the intersection of Eo with the

feasible region S has computationally positive volume relative to

Rn. The EA generates a sequence of successively smaller ellipsoids

E, = x| (x - xk)TQ;l(x - xk) < 1}
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*
each containing x . We use only rank 1 updates, although there are

rank 2 updates as well [5]. Given an ellipsoid Ek in this

sequence, a cut hyperplane
Hk = {x | -(gc)T(x - xk) = 0}

is constructed passing through a cut point x° with cut gradient

gc. We define one of its half-spaces
+
Hk = {x | -(gc)T(x - xk) > 0}

as the cut halfspace. We can construct cuts which, assuming
. . . + .
convexity of fl"'fm+1' ensure that the intersection of Hk with Ek
* +
contains x . We call a cut a deep cut if Hk contains less than
half of Ek' The comstruction of such cuts, and their affect on EA

convergence, is presented in Part 3,

; k+1
Given the hyperplane Hk' the center x of Ek+1 and the

positive definite matrix Qk+1 used in defining Ek+1 are determined

by the simple update formulae

xk+1 = xk + adc and

Q,, =b@ - ea®@Hh

R A

T e e Y




----------

R
; b
c c ¢, T c,.1/2 f'ﬂ
da = g /((g) (g7)) ’ -
-, o o
a=(1+na)/(n+1), =
and, for n > 1, b = n2(1 - a2)/(n2 - 1) :
’ and c = 2a/(1 + a). —
)

The depth of cut, a, is calculated as fji
c,T, k ¢y1/2 o

. e = (7G5 - /(6% e o
Geometrically, d® is a vector from the center of Ek to a point on ‘Eﬁ
the ellipsoid boundary yc (yc = xk + d°) such that yc is the ffﬂ
minimizing point of the problem L

!

K 3

Min (gc)Tx, x €E. fﬁ}

The parameter a is the ratio of the distance along dc from the fi:

centerpoint to Hk, divided by the length of d°. The convergence of

the EA depends on the depth of cut, since the ratio of consecutive

ellipsid volumes (see Bland, Goldfarb, and Todd [1]) is

((n - 1)/2)

((22(1 - a®))/ % - 1)) (a1 - @)/ (n + 1))

This ratio is less than ome for ~(1/n) ¢ a < 1.

Previous research ([12]) suggested that normalizing the ]
gradients increased the stability of the algorithm. We represent Vf

the normalized gradient as gi(x) = Vfi(x)/||Vfi(x)||. For




efficiency we use the infinity nmnorm, so that the element of g

largest in absolute value has absolute value 1.

The cut point and cut gradient are selected after determining

which function fl...f is tc be used when constructing H Part

m+1 'S
4 of this thesis will examine five strategies for determining
this function. Unless otherwise mentiomed, our method is to first
examine the m feasibility constraints, to determine whether xke' S.
If xk:e S', then a function fi has been found with fi > 0, and that
. . . k .
function is wused when constructing Hk' If x € S, then fm+1 is
used when constructing Hk'

To determine if xke S in the above process, we select an

examination order for the m feasibility constraints, Unless

otherwise specified, we use the cyclical ordering of 4.1.2.

In the EA implemented, if xk:€ S we evaluate fm+1(xk) to keep

a record of the best feasible point found so far. This best point

xr is called the record point, and the corresponding objective
- function value f° = fm+1(xr) is called the record value. Until a
record point is found, we let fr = 4o , We also define

6 = (x| fm+1(x) £ £¥}. @ is the lowest objective function level

.
* set known to contain x , and G changes whenever a new record point
is found. Thus, S N G contains all feasible points with objective

.
function values at or below f°. Therefore x € (SN G), and if a

Y R R e e T T S W T T TR T T e e et e T e T T e e TR R T e e T T Te e TR T

JERp—

]

’

.
Lo




record point x* has been found then x' € (S G). The limit point

L J
of the sequence of record points xr is the optimal point x . Ve

call S NG the golutjon-contsiping set for NLP.

When fn+1 is nused in comstructing Hk' we call the resulting
cut an optimality cut; otherwise, the cut is a feasibjlitv cut. We

refer to the point xk as a Phase 1 point or a Phase 2 point, and to
iteration k as a Phase 1 iteration or a Phase 2 iteration, based on
whether xke S’ or xke S. At each iteration, by the time that we
know which function will be wused for Hk' and before we must
determine x° and gc, the constraint selection strategy above will

have classified xk as being in S8’', or in SN G’, or in S N G.

The ellipsoid update formulae presented above ensure that

+ L
(Hk N Ek) - Ek+1' To ensure that x € E , we must select cuts

k+1

with certain properties. For each i = 1...m, let
s. ={x | £.(x) < 0}
i i
be the feasible region for the comstraint fi(x) g0,

Consider a set CC Rn. a subset of which may be contained in

E If the cut hyperplane Hk is constructed so that C CH:. then

ko

(cn Ek)C E because (H: N Ek)C E We say such a cut

k+1 k+1°

preserves the set C,
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The EA described above uses a feasibility cut if x € S8', and
an optimality cut if xk'€ S. If fl"'fm+1 are convex then these
.
cuts preserve x and we term these cuts solution-preserving. A -
[}

feasibility cut on the (violated) i-th constraint is

: +
solution-preserving if SiC: Hk because then

x € S C Si C H.

"

+
An optimality cut is also solution—-preserving if G C,Hk because

then

€ (N6 c GCB:.

Thus, our various feasibility cuts should preserve Si and our

optimality cuts should preserve G to be solution-preserving.

The center cut strategy used by Shor [15] and by Ecker and

Kupferschmid [6] uses ° = xk. and gc = g.(xk). where i is the
1

index of the function used to create Hk' These cuts can be shown
to be solution-preserving by use of the support inequality at xk.

For a feasibility cut, Hk actually supports

- k
L, = (= | fi(x) £ fi(x )},

P e e .
IR indecd ot indechodhoin s .

bt K i

]
v
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and Si C Li since fi(xk) 2 0. For an optimality cut, Hk actually
supports

_ k
L, = x| fm+1(x) < fm+1(x )1,

. k r
and G C Lm+ since fm+1(x ) > £,

1
All but two of the deep cut variants also select Hk to be a
support hyperplane to a level set which contains the level set

to be preserved.

For Part 3 where deep cuts are examined, we attempt to make
the deepest cut possible, to gain the greatest ellipsoid volume
reduction. It can be seen that for a center cut a = 0, and for a
deep cut a > 0, If a deep cut algorithm results in a < 0, we would
instead use the center cut above. The equation for a shows that
a > 0 requires that x° # xk and that the directional derivative
of fi along x° - xk must be negative.

Another consideration for deep cut variants is to emnsure that

a ¢ 1 for the ellipsoid update formulae. If x° € E_ then lal < 1;

otherwise, a may exceed these bounds. If a = 1 then Ek+1 consists

solely of the point yc. If a > 1 then (SN G)N Ek = @, indicating
.

that x does not lie in Ek' When this occurs after a record point

has been found, it is taken as evidence of numerical roundoff error

o tlt T
I WL Y 0N R
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: in the calculation of a, or that Qk is no longer positive definite,
X If & variant calculates a 2> 1, we make a center cut to allow the

! algorithm to continue.

The progress of an EA using center cuts is illustrated

PR
e

graphically, for a hypothetical problem having n = 2, in [12].
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PART 2 1

EXPERIMENTAL METHODS

Al . .

2.1 Test Problems

The test problems chosen for this study consist of 5 general

nonlinear problems and 8 geometric programming problems, of which 3

are

convex and 10 are nonconvex. Table 2.1 summarizes the 13

problems.

Table 2.1 Test Problems: General Information

| probiem | convex? | n | m |
| Colville 1 | yes | 51| 15 |
| Colville 2 | no | 15 | 20 |
| Colville 3 | no | 5] 16 | b
| Colville 4 | no | 41 8|
| Colville 8 | 1o I 31201
| Dembo 16 | yes 12| 3|
| Dembo 2 T I 51 9l
| Dembo 3 | no I 71 15|
| Dembo 4a | no | 8| 4|
| Dembo 5 | no | 81 6|
| Dembo 6 |l 1o | 13 | 18 |
| Dembo 7 | no | 16 | 25 |
| Dembo 8a | yes I 71 41
Notes:

For statements of the Colville problems, see [2]; for
statements of the Dembo problems, see [3]. The
constraints are indexed here the same as in [2] and [3].

Colville 8 involves functions for which analytical
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derivatives cannot be given, so finite differencing was
used to approximate the gradients of those functions.

% JIOON. ) S

.. The statement of Dembo 2 in [3] is imprecise and contains
some typographical errors; see [12] for a correct problem
statement.
.o In Dembo 3, Dembo 6, and Dembo 7, some of the comstraints
are explicit bounds on variables.
In order to guarantee that each strategy solves the same
problems, the data necessary to define a particular problem is

given in a single data structure accessed by each of the

strategies.

For each test problem, we use the vectors from [2] and [3]
of upper and lower bounds xh and x1 on the variables. The starting
point xo is chosen as the midpoint of these bounds. The ellipsoid

algorithm requires that an initial ellipsoid Eo be given which

contains the optimal point, and we select as E, the ellipsoid of

0

minimum volume containing

= | ¢z < xhl. Ry

- _J!:AALQ PO
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2.2 Perfo e Measurements

Given a test problem and a starting point, each EA variant is

’ allowed to run until it has obtained the best solution of which it
is capable. At each iteration, the current centerpoint xk, the
current objective function value fm+1(xk). and the computer time
used so far are written in a file. After the experiment is over,
these performance measurements are used to analyze the behavior of
the EA variant that was used.

After Eason and Fenton, [4], we use error versus effort
curves to display the convergence trajectories of the various EA
variants. The error measure that we use here is computed as
follows. First, the combined error measure

m
x k . > x
e(x) |fm+1(x ) £m+1(x W+ . li|fi(x '
i=1
is computed for each iterate xk in the solution process, where the
- xi are the Lagrange multipliers at optimality. These values are
then normalized to obtain the relative combined error measure
- . EX) = o(zF)/e(xV),

where xo denotes the common starting point of the variants. The

g
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1
1
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O
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common logs of the E(xk) are plotted versus the measure of effort
used so far, Details regarding the calculation of the optimal

Lagrange multipliers are given in [8].

The measure of effort used for the error curves here is the
problem state central processing unit (PSCPU) time used by the EA
variant. In 2.2.2 below and in [12] and [6], complete details are
given regarding the determination of PSCPU time used by a strategy
in the solution process. In summary, we turn a timer on and off so
as to measure only the effort used in performing the steps of the
algorithm, thereby excluding from the measurements any time used
for input and output operations, for other tasks performed only as
conveniences to the experimenter, and for the performance
measurement process itself., Extensive experiments, see [12], have
shown that our method of measuring PSCPU time is accurate,
reproducible, and substantially uncontaminated by system—load

effects and other influences external to the experiments.

The construction of meaningful error curves using the process
described above requires the optimal solution to be known to
considerably more precision than is nusually reported in the
literature. We therefore use very accurate solutions x' in the

construction of the error curves. These solutions are also chosen

to be strictly feasible; see [13] for exact problem statements and

the bi:st strictly feasible point known to us for each of the test




R ——

13 i

3

problems used. 4

|

]

To summarize the information contuined in the error curves, we ;

1

: provide tables showing the solution accuracy and algorithm i
Y

efficiency achieved using each EA variant, for each problem. The

4

(]

measure of accuracy is the common log of the smallest relative

k . . .
combined solution error E(x") attained using the variant.

L ﬁl.‘

As an absolute measure of efficiency, it is possible to table

the PSCPU time needed for each EA variant to reduce the solution
error to various levels. VWe instead report a measure of relative
efficiency that compares efficiency over all error levels
attained. This is possible when comparing variants of the ellipsoid
algorithm to one another because the error versus effort curves for
a given problem usually are qualitatively similar in appearance.
They differ primarily by a scale factor inm the effort values (and
occasionally in the 1lowest 1level of solution error attained).

Figures 2.1 and 2.2 are included here to demonstrate this

similarity in shape, and the derivation of our measure of relative

efficiency.

sl Aaotntibederb i Aotnlittihiinlil Mkttt i

AT AN

4

Thus, on a given problem, the times required by two EA 4
variants to attain each error level are in roughly a constant

ratio. We model the times as t.,, = st, , where t,Z is the time
jb ja ia

required by variant Q to reach error level j. The effort scale
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factor s measures the efficiency of variant B relative to A on that

problem, where lower numerical values of s are superior.

For example, on Figure 2.1 EA variant A required 6.71 seconds
of PSCPU effort to attain a log solution error of 10—8, while EA
variant B required only 4.65 seconds to attain the same error

level, That is, if this level of solution error is level j =1

then t1b = stla. where the efficiency of variant B relative to
variant A is s = (4.65/6.71) = 0.693. If error level 2 represents
an error of 10—14, then t = st, where s = (8,85/12.68) = 0.698.

2b 2a

To calculate our single measure of relative efficiency, we
first measure these efficiency scale factors at approximately 100
evenly—spaced error levels (when one variant attains lower levels
of solution error than the other, the efficiencies are only
compared for those levels they have in common). We then perform a
regression to fit the best scale factor s, which we report as the

relative efficiency of variant B with respect to variant A.

AR

i
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. Error vs Effort
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Error vs Effort
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Given error levels [log E(xk)]j’ j= 1...Jq, we estimate the

relative efficiency s by the regression

J
.g lstj -t |, where J = min (Ia’Jb)'

We use [log E(xk)]j values of 0, -1/6, -2/6.....-Jq/6, with Jq the

largest integer such that

-J /6 { min log E(xk).
4 k

For example, on Figure 2.1 variant A attained a lowest log error

level of -15.26 and variant B attained a lowest level of -16.17.

Thus J = 91 error levels from 0 to -15.17 were compared. The

best—-fit value of s calculated by the regression on this problem

was 0.69.

The error versus effort curves in Figure 2,2 again demonstrate
the similarity of shape between EA variants on a given problem,
The relative efficiencies calculated for variants B and C were 0.82
and 1.03 respectively. Figure 2.2 also shows that sometimes the
curves for different variants overlap to an extent that they are
almost indistinguishable. For this reason, the order in which the
variants are labelled from top to bottom on the page corresponds to

the curves which are the highest to the lowest on the page (arrows
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from the labels are also provided when they can be used to
eliminate confusion between nearly—overlapping curves). On Figure
2.2 the curves for variants A and C almost overlap, but variant C
is the curve which is slightly higher on the page in the -12 to -15

error range.

In each section below, the variant most similar to that
implemented in the routine EA3 of Kupferschmid, Nairn, and Ecker,
[10), is chosen as the standard variant A against which the other
variants are compared. The resulting regression problems are
solved using bisection (that is, EA with n = 1 and m = 0). Since
the repeatability of the PSCPU time measurements is about + 2%, we
consider relative efficiencies s in the range [.98,1.02] not to be
significant in the comparison of two variants, and s values
outside that range to be presumptive evidence for the superiority

of one variant over the other.

Note that this technique compares relative efficiency of the
EA variants during the majority of the convergence trajectory, when
the error 1log E(xk) is decreasing. Although some EA convergence
trajectories finally depart from this decrease, this does not much

affect the results of the relative efficiency technique.

In addition, this technique does not assume that the error

versus effort curves are nearly linear, even though this is often

S

s s -
"“"‘ pntasnds
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the case. When the error versus effort curves are nonlinear
(perhaps consisting of two near—linear segments), the model is
still appropriate because the variants still differ primarily by
the single scale factor along the effort values. Appendix D
contains the complete set of error versus effort figures for the

variants and problems considered.

TN
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( 2.3 Ex imen Software

2.3.1 Statistics Collected

o The experimental software was designed to collect a large
number of statistics which might yield further information about EA

- behavior. Much of the information desired was easily available by

;:' inserting counting or averaging statistics at apppropriate points

.t in the code path. Some primary statistics of this type that were

collected are:

oat S
P Y

1. Count of function evalnations performed.

2. Count of centerpoints xk by regions S’ versus

[ R B N =4

v .
. .
. DA T

. S, and G’ versus G.
3. History of functions fl"'f used to create

m+l
Hk'

4. Function values for violated constraints and

(I
o

Dhaint
s ¥

depths of cut achieved, for feasibility versus
optimality cuts.

5. Counts of successful and unsuccessful cuts, and
depths of cut achieved, for each deep cut

variant.

The information provided by these statistics was invaluable in
3 - validating the operation of the code segments, analyzing how the
- algorithm was behaving, and suggesting areas for possible

" improvements. For example, item 3 above suggested that the active

set strategy of 4.2 should be investigated.
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2.3.2 Timing Subroutine

The effort measurement process devised by Kupferschmid [12]
allows the software effort expended to be categorized as being for
algorithm purposes (such as nupdating the ellipsoid), for
convenience purposes (such as maintaining the statistics above),
and for timer purposes (the actual calls to the timing code). The
three time categories are called TALG, TOTHER, and TREC
respectively. The timer subroutine itself is called RECORD. The
process uses a global timer on and off switch to indicate whether
or not the PSCPU time should be considered as algorithm time.
However, the process did not allow algorithm time to be separated
into categories such as time for finding a violated comnstraint,
calculating the cut point, updating the ellipsoid, etc. Since we
hoped to improve the efficiency of the algorithm by reducing the
effort required to perform various steps, the knowledge of the time

spent by the algorithm in these various areas was important.

Briefly, RECORD could be <called for five purposes
(initialization, start, stop, update, and finish). Within RECORD,
every «call included omne <c¢all to the PSCPU clock counter
(4,096,000,000 counts per second). Internal to RECORD, counts were
accumulated in integer counterparts (ALGCNT,OTHCNT,RECCNT) to the

floating point time values TALG, TOTHER, and TREC.

An initialization call would initialize the storage area and
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get the current PSCPU clock count. A subsequent start call would
get the current PSCPU clock count, and accumulate the elapsed count
- from the previous call into OTHCNT. Later, a stop call would get
* the currrent PSCPU clock count, and accumulate the elapsed count
from the previous start call into ALGCNT. As desired, update calls

could be made to convert the cumulative PSCPU clock counts into

PSCPU times, and apply the correction factors. Finally, a finish

call could be made to signify the end of timing operations and to

calculate the final time statistics.

RECORD had five calibration factors which were used so that
the final time statistics did not include PSCPU time in the wrong
categories. The count difference between every pair of RECORD
calls had some PSCPU counts which would get reported as algorithm
;? or convenience counts, but really were spent within RECORD (while

RECORD was called, performed the operation it was called for, and

returned). Five different parameters were required because the
operations performed, and thus the PSCPU counts used, were

different for the various calls. Sequential or simultaneous

Bl odoteldon

T calibration of the five parameters was a very lengthy process; thus
adding the subcategorization capability to the existing RECORD

would be difficult.

Instead we designed a much simpler RECORD with improved

s

accuracy, and only a single calibration parameter. This new RECORD

.. ekt

PSR ST S S S L T .
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was then given the subcategorization capability. The simplicity of
the new RECORD is achieved by directly timing all variable length

code paths.

The new RECORD first calls the PSCPU clock counter, then
performs the variable code paths, and finally calls the PSCPU clock
counter a second time. Within RECORD, the code paths before the
first call to the PSCPU counter and after the call to the second
PSCPU counter are invariant. The count difference between the
second and the first PSCPU counts within a call to RECORD directly
measures the variable code path, and is added to RECCNT. The
difference between the first PSCPU count of a given RECORD call and
the second PSCPU count of the previous RECORD call is added to
either ALGCNT or OTHCNT, as before. A single calibration factor
CALCNT estimates the PSCPU counts in this interval which were spent
within RECORD. This calibration factor is then added to RECCNT and

subtracted from the ALGCNT or OTHCNT that was just incremented.

In addition to reducing the calibration parameters from five

L}{ . to one, the new version of RECORD also maintains the parameter as a
integer count rather than as a floating-point time constant.

Further, it eliminates the necessity for initializing, nupdating,

- and finishing calls.

The diagram below shows how the new RECORD calculates TALG,
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TOTHER, and TREC. C1 through C4 represent increasing values of the

PSCPU counter.

( A start call )( Algorithm )( A stop call )
( to RECORD )( steps being )( to RECORD )
( )( timed )( )
—(=+ +-—)( ) (= +——) >
C1 Cc2 C3 C4
Notes:

.. On the first call to RECORD, all variables are
initialized. Assuming that the timer mechanism has not
been in use, the time before C1 is ignored.

.. In the time after C2 but before returning from RECORD,
C2 - C1 is added to RECOCNT. TREC is updated from RECCNT.

.. After C3 and before C4, C3 - C2 is added to ALGCNT. CALCNT

is subtracted from ALGCNT, and CALCNT is added to RECCNT.

TALG is updated from ALGCNT.
.. After C4 but before returning from RECORD, C4 - C3 is added

to RECCNT, and TREC is updated from RECCNT.

A similar diagram explains the simple calibration process.
For the calibration, we use CALCNT = 0 so no corrections are
subtracted from ALGCNT. If we perform a a start call followed by a
stop call with no intervening operations, them C3 - C2 is reported
as ALGCNT. This value of ALGCNT represents the counts used by the

invariant entry and exit portions of the RECORD code. Thus, this

value of ALGCNT is the value desired for CALCNT.
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( A start call )( A stop call )
( to RECORD ) ( to RECORD )
— (= +——) (—+ +——) >
C1 C2 C3 C4
| |
| I
CALCNT

Although the code steps within the entry and exit portions of
RECORD are invariant, the PSCPU counts required to execute them do
vary somewhat. We repeated the start—stop pair oprocess many
thousands of times, at various times of day, times cf week, and so
on, to average out any variations with system system workload.
The correction value used for CALCNT was the average value of
(C3 - C2) over all the replications (123500 counts, or 3.015x10_5
seconds) . When this constant is used in the model and the
start—stop pair process is repeated, the ALGCNT value (the nunll)
should be near zero since no algorithm steps are performed between
C2 and C3. The nulls of the new RECORD were compared with the
old nulls. The results demonstrated that nulls of the new version
had the same degree of variability as the old nulls, approximately
10-6 seconds per pair. However, the means of the new nulls were
centered at zero, while the means of the old nulls centered near

7110-7 seconds per pair.

Also, we tested the EA using the new timer on the test
problems, to see how much TALG varied. The algorithm times were

consistently withirn 2 percent of each other, both when runs under
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the new RECORD were compared with each other, and when runs

under the new RECORD were compared with runs under the old RECORD,

During the sequence of experiments reported here, we further

attempted to minimize the effect of extranmeous factors by running

the experiments between midnight and 6 am, when the system

workload was at a minimum.

A disadvantage to using the new RECORD was that it increased

TREC for each run, and thus slightly increased the cost of each

run, TREC increased for two reasons. First, each call to RECORD

was more expensive, because the count—to-time conversion was being

done at each call., Second, in addition to the start—-stop pairs of

calls already in the code, extra calls to RECORD were required to

U0 ORI RO

organize the subcategorization of algorithm time.

The new RECORD explained above has the ability to accumulate

TALG in subtotals. A total of 21 bins are provided within RECORD;

dodicbochiedend B Binc b Bkl

20 accumulated algorithm count subtotals (ALGCNT(1)...ALGCNT(20)),

and the last accumulated OTHCNT. To use the 20 algorithm bins, a

. mechanism was needed to easily change the curremt algorithm bin and
thus redirect the algorithm counts, Three new types of calls to

RECORD allowed both permanent and temporary bin changes. The bin

i number for algorithm time can be changed only when the algorithm
timer is stopped. The new bin number specifies the bin which will

recieve future algorithm PSCPU counts. The bin number was added to
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the formal parameter list of RECORD.

For permanent changes in the desired bin number, the new bin
number can be specified either in a start call, or by using the new
set-bin call., Each of these calls causes RECORD to discard the
current algorithm bin number and start using the new number. The
difference in the calls is that the set-bin call does not turn the

algorithm timer on; this is still dome only on start calls.

Sometimes only a temporary change in the bin number is
desired. This frequently happens when a routine calls a subroutine
which may need to change the bin. We wanted to avoid having the
instrumented routines remember and reset the desired bin number
after the subroutine is finished. Instead, we maintain within
RECORD a stack of bin numbers with the current bin on top. When
the subroutine is called it performs a push-bin call to RECORD.
This call first pushes the current bin number onto the stack
one level down. Then, it puts the subroutine’s new bin number on
top of the stack as the curreant bin. Before the subroutine
exits, it performs a pop-bin call to RECORD, which bin number set
by the subroutine from the top of the stack and replaces it with

the previous bin number from below.

PP PP AP .
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The subcategories of EA steps for which algorithm time was

recorded were:

* 1. Function evaluations, i = 1,..m

m+ 1

2, Function evaluations, i
3. Selecting the order of constraint examination
4. Processing record points

5. Gradient evaluations, i = 1,..m

[
a
+
[

6. Gradient evaluations, i =
7. Gradient normalizations
8. Calculating Hk

9. Calculating the vcctor d

10, Updating xk and Qk
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PART 3
ELLIPSOID ALGORITHM CONVERGENCE USING DEEP CUTS
3.1 Deep cuts Without a Linesearch

In this section, we describe five simple methods for
constructing a deep cut hyperplane which do not require a
linesearch to be performed. We then perform computational
experiments to determine how each of these methods affects the
accuracy and efficiency of the EA. In developing the methods, we

assume that the functions fl"'f are conver. The computational

m+1
results demonstrate the extemt to which the cuts degrade algorithm

accuracy and robustmess on nonconvex problems.

3.1.1 Super-cuts Using Center Data

The first of these cut techniques, the super—cut, was outlined
by Shor in [17]. Given the current objective function value
fm+1(xk). suppose that the current reccrd value fr satisfies
“k) = fm+1(xk) - £f¥ > 0. That is, the current centerpoint xk

lies outside the record value level set G. We define the guper—cut

point

s k v k k k
x =x - (fm+1(x )/||me+1(x )||)gm+1(x ),
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v k, _ kK, _,r
where fm+1(x ) = fm+1(x ) £, and

t}: where the L-2 norm is used. We comstruct Hk by selecting the cut
o * point and cut gradient to be
.- c k
-7 x =x
c _ k
and g = gm+1(x ),
: . s . . x

The super—cut point, x , is the point along -gm+1(x ) where a
;T linear approximation to fm+1 at xk yields a function value equal to
}: that of the 1level set G. Using this definition and the support
-, +

inequality, it is easily shown that Hk contains G, and thus a
;; super—cut is solution—preserving. This cut is one of the two deep
) cuts where the cut gradient is not the gradient at the cut point.

Since the gradient at the centerpoint is used for constructing Hk'
j; we call this cut the super-cut using center data. Note that the

super—cut point may or may not be in Ek'

N For these super-cuts the depth of cut simplifies to
_ eV k k,\.T k,,1/2
a = fm+1(x )/((me+1(x )) Qk me+1(x ))

éji which is nonnegative. Computationally, for this super—cut there is

no need to actually calculate the super—cut point, since a and gc
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are calculated from data at the centerpoint x




3.1.2 Kelley—cuts Using Center Data

el When xk'e G', the super-cut of 3.1.1 creates a deep cut
:{\ ) which preserves the set G. The value f:+1(xk) > 0 represents the
difference in objective function values between the centerpoint and
the level set G which is to be preserved. We can implement an
identical cut for the feasibility constraints. If the feasibility
r" constraint fi(x) £ 0 is violated then xk is outside the associated
5;3 feasible set Si’ Here, f:(xk) = fi(xk) -0 = fi(xk) > 0 represents
the difference in the constraint function values between the

centerpoint and the feasibility set Si which is to be preserved.

The Kelley-cut point xs is the point along —gi(xk) where a
linear approximation to fi at xk yields a function value equal to

'ﬂ that of the boundary of level set Si (i.e., 0).

2t = 2F - (f‘i'(xk)/ll Vfi(xk) I )gi(xk).

where the L-2 norm is used. This Kelley-cut also uses

c k
X =X
gc = gi(xk).
: _ v .k k, T k,,1/2
re and a = fm+1(x )/((me+1(x )) Qk me+1(x ))
j%j Again, there is no need to actually calculate the super—cut point,

since a and gc are calculated from data at the centerpoint xk. We
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call such deep cuts Kellev-cuts using center data. let us refer to

the point x* in general as the super/Kelley-cut point.




3.1.3 Super/Kelley Cuts Using Local Data

Center cuts, and super/Kelley-cuts using center data are
solution—preserving if the function fi used to create Hk is
convex. Preliminary experiments indicated that super/Kelley cuts
on nonconvex problems occasionally caused the EA to converge to a

nonoptimum point, more often than did center cuts.

For center cuts, Hk is created using the support inequality to
a level set which contains the 1level set to be preserved.
Super/Kelley-cuts using center data are different in two ways,
when we consider their behavior in the nonconvex case. First, if
fi is nonconvex, we do not know whether x° is inside or outside the
level set to be preserved, since we did not evaluate fi(xs).
Second, the cut hyperplane is created using the centerpoint

gradient instead of the gradient at the cut point.

For these reasons, we considered a variant where super/Kelley
cuts are performed only if x° is outside the set to be preserved,
and where we use the gradient at the cut point instead of at the
centerpoint. We call this variant super/Kelley cuts using local

data. The algorithm is:
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1. Calculate x° as above.
2, Evaluate fz(xs) and test if x° is in the level set:
If f:(xs) ¢ 0, then go to 4.
3. Otherwise, evaluate gi(xs) and test the depth of cut:
c s
x =x
gc = gi(xs).
Calculate a
If a ¢ 0, then go to 4.
Go to §.
4. Make an alternative (center) cut:

c k
x =x

gc = gi(xk).

a =0

5. Update xk and Qk'

In step 3, we test for nonnegativity of a since even in the convex
case it is possible that the super/Kelley-cut point has a
positive directional derivative of fi along —gi(xk). In step 4,
and subsequently during this analysis, we use a center cut when the
deep cut being tested cannot support the level set with 0 ( & <1,
although other deep cuts could have been considered for use under

these circumstances.
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3.1.4 Extended-cuts
The final deep cut which does not require a linesearch is the

extended—cut. Suppose that the algorithm has found a record point

x* and that at a subsequent iteration xk € G'., Since we want to

create a deep cut hyperplane supporting G, and we know that xr
is on the boundary of G, we choose

c r
x =X

and gc

For the extended-cut, Hk is thus the support hyperplane of G at the
boundary point x5, Depending on the orientation of xk, xr, and G,
it is possible that (xk - xr)Tgm+1(xr) < 0, and thus a < 0. For
this reason, when the depth of an extended-cut is found to be
negative, the extended cut is not used on that iteration. If an
extended—cut has a > 1 then xt ¢ Ek' which implies that Qk is

no longer numerically positive definite.

A computational saving is possible when using extended cuts.
If xr is the current record point at which we would like to make an

extended cut, we need to know gc = (x"). However, x* became a

gm+1
record point at some previous iteration when it was the ellipsoid
centerpoint. On that iteration, gm+1(xr) was calculated for the

optimality cut., When extended cuts are being used, we store the

objective function gradients of record points, assuming that the

R Ak e S
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storage space and effort penalty is small compared to the effort

required to reevaluate the gradient.

~
. N -
PO P I 0 W0 DAL T W WA 1P DT ey Oy ol g Iy .g__xi




38

3.1.5 Experiments and Results

The deep cuts above can be combined with each other and with
center cuts in many combinations, based on which region xk is known
to be in. The EA outlismed in Part 1 tested xk, and classified
xk as being in 8', or in SN G’, or in S$ N G, prior to making a
cut. Both types of super—cuts and the extended-cuts above may be
used whenever we know that xke G'. The two types of Kelley—cuts

k k

can be used whenever we know that x € S8'. If x € (S NG), we

make only center cuts.

For this preliminary analysis, we tested the five deep cuts
one at a time. This avoided the excessively large number of
experiments which would be required to examine all possible
combinations of cuts. The cut being tested was attempted every
iteration that xk was in the appropriate region. Whenever the
cut being tested could not be used, we used a center cut
instead. Also, we used the same cut throughout the trajectory

from beginning to end, and did not attempt to determine how the

cuts' effects may vary if used only for part of the trajectory.

Table 3.1 summarizes how often the center cut EA trajectory
falls into each of the regions S’, S N G', and SN G for the 13
problems. These frequencies suggest how often certain cuts may be
used. For example, super— and extended-cuts may not Dbe

used often on Colville 3. For most of the problems, Kelley—cuts
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can be performed dramatically more oftem than super— or
extended—cuts. Subsequent tables will show the percentages on

iterations on which these cuts were actually made, since how often

- xk falls into a region may be affected by making deep cuts when xk

is in that region.

Table 3.1 Test Problems: Frequency of Centerpoint Region

| problem s* | sne' |l sne |
| cotvilzte 1| 67 | 23 | 10 |
| cotvitze 2 | 77 | 21 | 2 |
| colville 31 83 | 4 | 13 |
| Colville 4 | o | 8 | 11 |
| coivitie 81 52 | 35 | 13 |
| Dembo 1b | 88 | s | 4 |
| Dembo 2 | 83 | 7 | 10 |
| Dembo 3 | 82 | 11 | 7 |
| Dembo 4a | 79 | 15 | 6 |
| Dembo 5 Il 716 | 18 | 6 |
| Dembo 6 I 92 | 4 | 4 |
| Dembo 7 | 91 | 7 | 2 |
| Dembo 82 | 74 | 17 | 9 |
Ngte; H

.. The entries represent the percentage of iterations during

which the ceanterpoint xk was found to be in each region.

Figures D1.1 through D1.13 of Appendix D1 are the
error-versus—effort plots for the deep cuts which may be used when
xk € G', while Figures D1.14 through D1.26 are the plots for the

deep cuts which can be used when xk € S'. The essential accuracy

and efficiency information has been extracted from those figures

.
J T N

et P VPIPIY B g S o=

B b e A

NI B S

Al Bnededscsiotuds

.




[ AN Tets

[RT I I )

’ "l

A G ARt

) §

(4

it St S B T AT AIC Thdns MabE AR et et S, ik

DR Y- A et b d A DA BN N DGl Saeat B UMb & Sab Sirul SN ban Svnk SRR R R SN Si-ah jaeen e

40

and summarized in the tables below.

Table 3.2 displays the accuracies attained by the various
nonlinesearch deep cuts on the 13 test problems. The entries with
asterisks are significant in that these experiments converged to a

»
point other tham x . Thus, the statistics in Tables 3.3 and 3.4

for these experiments may be suspect.




P et S At SO A AR A b T

i:
e
..
.- 41
N

.
-
0]

R

Table 3.2 Accuracies of Deep Cuts Without Linesearches

ﬁ%: | Cuts made in S N G' | Cuts made in S’ |

_}5 - [ | | Super | Super | | Kelley | Kelley |

- . | problem| Center |(center)| (local)| Extend |(center)l (local)l

nl | cor 2 | -16.83 | -16.50 | -16.63 | -16.28 | -16.88 | -16.85 |

|l co1 2 | -14.36 | -15.14 | -15.39 | -14.61 | -14.11 | -13.99 |

| cor 3 | -15.11 | -14.96 | -15.22 | -14.97 | -14.89 | -15.02 |

) - | col1 4 | -16.58 | -3.61*| -16.58 | -16.58 [(-16.58)|(-16.58) |

" | cCo1 8 | -14.99 | -15.85 | -15.37 | -15.85 | -14.97 | -14.99 |

| pem 1b | -8.30 1 -8.93 | -9.61 ] -8.30 1 -8.72 | -8.96 |

s | Dem 2 | -14.48 | -14.40 | -14.39 | -14.42 | -14.42 | -14.43 |

it | Dem 3 | -14.38 | -14.41 | -14.40 | -14.35 | -14.32 | -14.28 |

- | Dem 4a | -15.55 | -15.49 | -15.68 | -15.04 | -15.33 | -15.71 |

. | Dem 5 | -15.08 | -14.74 | -14.65 | -14.67 | -14.40 | -14.42 |

| Dem 6 | -17.57 | -17.52 | ~17.41 | -17.54 | -4.05*| -3.53%|

| Dem 7 | -13.36 | -13.42 | -13.35 | -13.42 | -9.05*| -8.83%|

5 | Dem 8a | -14.64 | -15.89 | ~14.61 | -15.34 | -14.66 | -14.63 |
Notes:

.. Entries are lowest log relative combined solution error
level attained by the algorithm,
.. ¥ represents experiments which convérged to points other
than x..
- .. The entries for Kelley-cuts on Colville 4 are in

e parentheses to denote that no Kelley-cuts were made because

]
Pl

all centerpoints were feasible. Only center cuts were

|
N,

made, therefore the trajectory was identical to that of the

center cut variant in columm 1.

e 124

l?'

None of the five deep cuts offered a significant increase in

R

e X

accuracy relative to center cuts. Extended cuts were equivalent to
ceanter cuts in accuracy. Using 1local data for super—cuts did
increase accuracy on one problem (Colville 4) where using center

data caused the algorithm to converge to a non-optimum point.
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However, using local data on Kelley cuts was not sufficient to

*
obtain convergence to x on Dembo 6 and Dembo 7.

Table 3.3 displays some important statistics collected while
conducting the experiments on these five nonlinesearch cut
variants. For example, on Colville 8 super-cuts were performed 7%
of the iterations when center data (gradients) were used. When
local data were nused, super~cuts were attempted on 31% of the
iterations and passed the function value and nonnegative depth of
cut tests on 24% of the iterations. The depths of cut that are
displayed are only for the iterations on which the deep cuts were

successful. For the remaining iterations, a = 0.
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Table 3.3 Frequency and Depths of Deep Cuts Without Linesearches

"
™ Y -+

| Cuts made in S N G’ | Cuts made in S'

| | Super | Super | | Kelley | Kelley |
| probleml(center)| (local) | Extended |(center)l (1ocal) |
| cor 1 | 19 .051] 19/16 .046 | 22/ 8 .075 | 65 .019] 62747 .021 |
| col1 2 | 16 .028] 16/14 .029 | 19/ 5 .017 | 75 .005| 76/60 .005 |
| cor3 | 3 .069] 3/ 2 .071 1 3/ 3 .083 | 83 .019| 80/70 .019 |
| Col1 4 |*18 0371 71/61 .027 | 85/ 6 .032 | | |
| cor 8 | 7 .053| 31/24 .090 | 32/10 .123 | 40 .027| 48/25 .084 |
| pDem 16 | 6 .034] 6/ 6 .035 | 6/ 6 .034 | 8 .012| 86/78 .012 |
| Dem2 | 4 .126] 5/ 2 .115 | 4/ 4 .102 | 80 .019] 80/74 .019 |
| Dem3 | 6 .0471 7/ 4 049 | 6/ 4 .047 | 80 .020] 82/70 .021 |
| Dem 4a | 10 .035] 12/ 7 .031 | 10/ 7 .031 | 76 .021] 76/69 .020 |
| Dem 5 | 14 .038] 15/11 .042 | 16/ 5 .031 | 73 .016] 74/64 .018 |
| Dem 6 | 26 .044] 3/ 2 .038 | 3/ 2 .053 |*12 .099]+ l
| Dem7 | 5 .024] 6/ 2 .028 | 6/ 3 .024 |*84 .010]*83/77 .010 |
| Dem 8a | 16 .033] 16/10 .033 | 16/ 6 .030 | 71 .020] 71/69 .019 |
Avg e : | .051 .054 | .057 | .018] .024 |
Notes:

.+ The entries for super— and Kelley—cuts using center data are:
percentages of iterations on which the deep cut was made,
and average depth of cut for the deep cuts that were made.

.. The entries for all other cuts are:
percentages of iterations on which the deep cut was
attempted/successful,
and average depth of cut for the deep cuts that succeeded.

.o« ® denotes that the statistics may not be meaningful,
because the algorithm converged to a nonoptimal point.

.+ The entries for Kelley—cuts on Colville 4 are blank, No
Kelley—cuts were made because all centerpoints were
feasible,

.« No entries are given for Kelley—cuts using local data on
Dembo 6 because the depths of cut almost immediately
exceeded 1.

.« Average depths of cut are calculated excluding Colville 4,
Dembo 6, and Dembo 7, so as to include only trajectories

W .
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which converged to optimal points.

For super/Kelley—cuts wusing local data, the the frequency of
success is usually 1less than the frequency of attempts. For
nonconvex problems, ' may have been in the 1level set to be
preserved. Even on convex problems, numerical roundoff errors may
indicate that x* is not outside the boundary. Also, on all
problems, a negative depth of cut may prevent the 1local gradient
from being used. For extended-cuts, the ratio of successes to
attempts is a function of the oriemtation of xk and x* with respect
to G. The frequency statistics can be used to decide whether the
deep cuts were successful often enough to allow an adequate
evaluation of their effects. Some frequencies seem small,

especially those of extended-cuts. We discuss this further after

the efficiency results are presented in Table 3.4.

The depths of cut resulting from super— and ext:nded-cuts are
almost three times as great as for Kelley—cuts. Also, the depths
of cuts for super/Kelley cots using 1loc-i data appears to be
essentially the same as when center data is used. It is initially
difficult to evaluate the significance of the depth of cut values,

and we discuss this after the efficiency results are available,

Table 3.4 shows the relative efficiency of the five

nonlinesearch deep cuts. The center cut trajectory is taken as the

PNy WS

PRPPY ity ¥ Y G Y ST O

ey v Semiensionchiili Ao

B hcicnnn

- -‘-‘LJ a2 f '.-A;A.A.A_n [

bl aodenlodadedendadidit e




45

standard. The second entry for example, shows that on Colville 1,
super—cuts using center gradients reached each error level in an
average of only 83% of the time that it took center cuts to reach

M the same levels.

Table 3.4 Efficiencies of Deep Cuts Without Linesearches

| Cuts made in S N G’ | Cuts made in S’ |

'y

| | | Super | Super | Kelley | Kelley |

|
| problem| Center |(center)| (local)l Extend |

(center)| (local)l
l cot1 | 1.00 | 0.8 | o0.96 | o0.82 | o0.92 | 1.03 |
l cor2 | 1.00 | 0.87 | 0.90 | 0.97 | 0.93 | 1.02 |
lcor3 | 1.00 | 2,09 | 1,122 | 1.06 | 0.82 | 1.03 |
l cor 4 | 1.00 | 1.07¢# | 1.18 | 0.99 | (0.99) | (0.99) |
l Co18 | 1.00 | 0.87 | 0.93 | 0.90 | 1.01 | 0.99 |
| pDem b | 1.00 | 0.93 | 0.98 | 0.93 | 0.78 | 1.38 |
| pDem2 | 1.00 | 0.91 | 1,02 | 0.97 | 1.06 | 1.36 |
| pDem 3 | 1.00 | 0.99 | 1,00 | 0.96 | 0.88 | 1.08 |
| Dem 4a | 1.00 | 0.93 | 1.03 | o0.87 | o0.80 | 1.13 |
I Dems | 1.00 | 0.89 | 0.96 | 0.94 | o.86 | 1.15 |
| pDem6 | 1.00 | 0.96 | 0.99 | 0.90 | 0.29¢ | o0.22¢ |
I Dem7 | 1.00 | 0.93 | 0.99 | 0.90 | 0.75¢ | 1.04+ |
| Dem 8a | 1.00 | 0.92 | 1,02 | 0.93 | o0.83 | 1.18 |
Avg: | 1,00 | 0.93 | 1.010 | o0.93 | 0.8 | 1.13 |
Notes:

.« The entries for Kelley—cuts on Colville 4 are in
parentheses since no Kelley-cuts were made because all
centerpoints were feasible., Only center cuts were made,
and the trajectory was identical to that of the center cut
variant in column 1. The efficiency values are included to
demonstrate the replicability of effort measurements with
those of the center cut variant,

.. * Super—cuts using center data omn Colville 4, and both
Kelley cuts on Dembo 6 and 7 were excluded from the
efficiency averages because the optimal point was not
found.
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Table 3.4 shows that three of the deep cut variants definitely
improve the efficiency of the EA., It is interesting that extended-
and super—cuts (center data) achieve a relative efficiency of 0.93
while Kelley—cuts (center data) achieved a 0.89 relative
efficiency. In Table 3.3 we saw that these extended— and super—cuts
were usually used only 3% to 16% of the iterations, while these
Kelley—cuts were usually used 65% to 80% of the iterationms.
Evidently, the greater depth of cut of the extended— and super—cuts
must compensate for their much lower frequency of use. Also, we
can now conclude that these frequencies of use, while 1low, were

high enough to affect EA convergence.

Although depths of cut such as 0.05 do not seem very great,
they are evidently large enough to noticeably speed algorithm
convergence. To view this affect in another way, we examine
Colville 1 using super—cuts (center data). An average a = .051
occurred on 21% of the iterations, while @ = 0 occurred on the
other 79% of the iterations. The last record point was found at
iteration k = 1413, Using the formula for ellipsoid volume
reduction with n = §, the ratio of the super—cuts ellipsoid volume
to the center cuts ellipsoid volume after each had performed 1413

iterations with the appropriate depths of cut was 3.8x10_8.

To summarize, of these five deep cuts without linesearches,
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extended-cuts appear to be the only cuts which offer an improvement

in efficiency with no degradation in accuracy.

Super/Kelley—cuts using center data offer almost uniformly
better efficiency than center cuts. However, both caused a loss of
accuracy on some nonconvex problems., These deep cuts could be used
to safely improve algorithm efficiency if the problem being solved

is known to be linear or convex.

Super/Kelley—cuts using local data (checking that 1° is not in
the set to be preserved and using the gradient at x*) do not appear
to warrant further comnsideration. They do not improve accuracy
relative to center cuts, and their efficiency usually was worse

than center cuts.
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3.2 Deep Cuts Reguiring A Linesearch
When the centerpoint xk is outside the solution—containing set
S NG, a linesearch may be used to find a deep cut point where the
support inequality will ensure that (S N G) C B:. If xk € S' we
perform a linesearch in a descent direction of fi to find the
boundary of Si' where i is the index of the violated constraint.
If xkei G' we perform a linesearch in a descent direction of fm+1
to find the boundary of G.

We use the f: notation cften here, so that our algorithms will
apply to both feasibility cuts and optimality cuts. The function f:
is defined as

f.(x) for i = 1...m
v i
fi(x) =

r
fm+1(x) - f for i =m + 1

and represents the difference between the values of fi at a point

x and on the boundary of the level set to be preserved by the cut.

Searching for a point on the boundary of Si or G is a search
to find a solution of f:(x) =0, At the centerpoint xk.
f:(xk) > 0. If we know that the other endpoint of the line segment

to be searched has f:(x) ¢ 0, then a zero—finding 1linesearch

subroutine can be used to find the solution point of f:(x) =0,
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Otherwise, we first search the line segment to minimize f: until we

sicdloe A o &

find a point with fz(x) < 0 (inside the level set). Having found
an interior point, we perform a zero—-finding linesearch to find a

point where f:(x) = 0 (on the boundary of the level set).

Wy W ey e

Both the minimization and the zero—finding linesearch

subroutines search a line segment

iR bbb

x“+;.ds, 0<a A<D

0 0’

1
where l.ao.bo € R, i

and xk.dse R". ]
ds is the direction of search, and a, and bo are the left and right
endpoints of the initial interval of uncertainty, in which the
minimum or the zero of the function lies. VWhen the subroutines
terminate the search, the values a and b for the current interval
of uncertainty are returned. In addition, some of the routines
retorn a third value A € [a,b], which is the current estimate of

the minimizing point or the zero of the fumction.

TR W W IRV Y v

The minimization subroutines terminate when either of the

following criteria is satisfied:

bl o

1. The level set has been penetrated.
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2, The subroutine converged to a reasonable
approximation of the minimum point (convergence of
the interval of wuncertainty, convergence of the
approximation point, zero directional derivative, or
maximuom number of linesearch subroutine iterations),
without penetrating the level set.
WVhen a minimization routine terminates because the level set was
penetrated, xk + de is the point inside the level set. In the
minimization subroutines, the left endpoint always has a negative
directional derivative of fi along ds' The directional derivative

at the right endpoint is known or presumed to be positive. The

directional derivative at A may be positive or negative.

The zero—finding subroutines terminate when they converge to a
reasonable approximation of the boundary of the 1level set, wusing
convergence criteria similar to those in 2. above. Here,
(7G5 +ad) <0, £G5S +bd) 20, and £]G:F+ )  may be

positive or negative.

Suppose that the zero—finding subroutine has converged to the
boundary of the level set. We must select which of the two or
three points a, b, A is used to determine the deep cut point,

¢ and the cut gradient gc so that the cut

x°. We need to select x
is solution-preserving, and also so that a > 0 for the best

ellipsoid volume convergence.

To ensure the cut is solution—-preserving, we select a point on
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or outside the boundary as the cut point 5. Ve use xk + de if

f‘i’(xk + xds) > 0, otherwise we wuse xk + ads. Then, selecting

gc = si(xc) ensures that the solution—containing set is preserved
by the support inequality. Since both xk + kds and xk + ads have a

negative directional derivative of fi along ds, a > 0.

When a minimization subroutine terminates without having found
the 1level set to be supported, a cut point must still be selected.
We cut at xk + ads, the left endpoint of the remaining interval of
uncertainty. However, if f: is minimized near or at xk + ads, then
the directional derivative of f: at xk + ads may be almost O,
Thus, the depth of cut may be almost O when the 1level set to be
supported is not found. The tables below provide the frequencies

with which the level set was found versus when it was not found, to

distinguish the deep cuts from the almost—center cuts.

Since we wanted to use each deep cut as often as possible, we
perform the 1linesearch cuts for both feasibility and optimality

deep cuts.




52

W

.2.1 Search Along d
There are several ways of selecting the vector along which the
linesearch is performed. Since xk is outside the level set, the

- linesearch should be in a descent direction of fi' The vector

c)1/2

a® = - /(") T g

used in the update formulae gives rise to the point

yc = xk + d% on the ellipsoid boundary, which is the minimizing

point of the function (gc)Tx over E Similarly, the vector I

x*

oF = —ngi(xk)/((gi(xk))TQkEi(xk))ll2

can be wused to find the point yk = xk + dk on the ellipsoid

boundary which minimizes (gi(xk))Tx over Ek' The vector a¥ is a
descent direction of fi since Qk is positive definite, and not only
specifies a search direction, but also specifies how far to search 1
in that direction. We use yk as the endpoint of the search, which

ensures that x° € Ek' In [12], deep cuts are performed used this ’

search vector. The algorithm steps are: ]

1

1
ﬁ. 1. Initialize for the linesearch for a minimum: ?
:_:Zv' . Let ds = dk 1
-‘".’ = 1
% %0 " © ]
- b, =1 1

- 0
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2, Search xk + lds, A € [ao.bO], for a minimum of fz or
until the level set is penetrated. On convergence:
2.1 1If f‘.:(xk + lds) < 0 was found, go to 3.

2.2 Otherwise (the level set was not found), cut at the

VUK SR GE P v W

P

current left endpoint:
c k

x =x + ads
g€ = gi(xc)
stop

3. Initialize for the limesearch for a zero:

Let e, = ez(b0 - ao)/(b -
8, =8
bo = A

4. Search xk +Ad , A € [a,,b,], for a zero of £y,
s 0’70 i
On convergence:
4.1 1 £1G5 + M) <o,
xc = xk + ads
c _ c
g = gi(x )
stop
4.2 Otherwise,
2 =25+ Ad
c c
g gi(x )
stop

Notes:

) .. In 3, the interval convergence tolerance for the zero-

finding linesearch, L is adjusted to remain a fraction

. of the original interval of uncertainty.
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3.2.2 Search Along -g

Another descent direction of fi that can be used as a search
direction is that of the negative gradient, -gi(xk). Vhen
searching along d, the vector d gave both the direction and the
endpoint of the search. When —g is used instead, we must determine
how far along -g to search. It is difficult to determine the

intersection of the boundary of E. and the ray xk - A8, A D> 0.

k
Further, € Ek is not a necessary requirement for
solution-preserving cuts. Therefore, our method selects a search
endpoint xk + bds without testing whether it is in Ek'

The endpoint of search is selected by examining points
xk + bds with increasing values of b, until an endpoint is found
which satisfies one of two stopping criteria. If f‘i'(xk + bds) <o,
then theylevel set has been penetrated. If f; is increasing at
xk + bds' then the depth of cut is negative there, so any cut point
of interest is to the left of xk + bds. Having found the endpoint
which satisfies a stopping criterion, the algorithm wuses the

minimization/zero-finding subroutines in a manmer similar to when

searching along d.

We wish to select appropriate points xk + bds to examine. We
use the vector ds =x® - xk. which lies along -3 (z* represents the

Kelley-cut point if i=1...m, or the super—-cut point if

i=m+1), If fi is linear, then the boundary of the level set to
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be preserved is at xk + bds with b =1, If fi is convex, then the
boundary cannot occur with b { 1, We first test f‘i'(xk + bds) with
b =1, and then with values of b that increase by a constant
multiplicative factor. When the level set is encountered or fi
starts to increase, xk + bds is the right endpoint of the interval

of uncertainty.

During this process of testing out along increasing values of
b, two other points are maintained to determine the left endpoint
of the interval of wuncertainty., Let A be the value of b on the
preceding step, and a be the value of A on the preceding step.
Initially, a = A =0. When the 1eve1 set is penetrated, the
boundary must be betweenm A and b (since f:(xk + kds) >0,

otherwise the process would have stopped on the preceding step).

When fi starts to increase, the minimum point is between a and b.

If the level set is penetrated, then a zero—-finding subroutine
is used to find the boundary of the level set, as when searching
along d. If the process of increasing b stopped because fi was
increasing, then a minimization subroutine is used to try to find a

point where f: is negative, also as when searching along d.

Thus, the 1linesearch along —g differs from that along d not
only in the search direction but also in that the (right) endpoint

of search is determined by a process which tests out along -g. The

L . . R .
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" search along —g may use different left endpoints of search as well, 3
ﬂ; because of the information generated during the testing-out :
‘} process. Once both endpoints are known, the use of the :
2 - minimization and zero—finding subroutines is then similar to that 1
i
j of searching along d. Finally, since it may be that P ¢ Ek' we )
{Q need to test whether a {1 before using the ellipsoid update g
i\ formulae. ;
The specific steps of the algorithm are: i
y
o 1, Initialize to search out along —g: :
~ Let d_ = x° - £ 1
- s ]
- i=0 :
L a8, = 0
..' =0
o
"‘~.
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2. Search out along -g until fz increases or becomes negative:
2.1 Start a new iteration:
i=i+1
. 2.2 Test the new right endpoint:
. 2.2.1 It £](<" + bd ) (= 75 + Ad), go to 2.2.2
Otherwise, the function is increasing at b:

em/(b - a)
ez/(b - a)

a, = a

b, =b

go to 3
2.2.2 It £](z° + bd)) > 0, go to 2.2.3

Otherwise, the level set has been penmetrated:

G
]

™
n

e, = sz/(b - A)
a, = A

bo =b

go to 4

2.2.3 The function may or may not be increasing at b,
see whether another iteration is allowed:
If j < 10, go to 2.2.4

Otherwise, cut at the midpoint:
x° = i+ kds

gt = gi(xc)

stop
2.2.4 Prepare for a new right endpoint:
- a = A
o A=0b
. ' b = b(2)1
A go to 2.1

/3




T AN St S oA e A Mkt Th S el i e e oM At S ot fadt Sttt At TR I S RS S W R R - v

i

| fai

R

58

3. Search x* + Mo, A€ lay,b,], for a minimum of f: or i:

until the level set is penetrated. Om convergence: s

3.1 If f:(xk + Ad_) <0 was found, initialize for the .i

linesearch for a zero: N

. e, = € (by — ag)/(b - 1) -;2

2, = a g

bg =% »

go to 4 -

3.2 Otherwise (the level set was not found), cut at —

the current left endpoint: ®

\ x° = xk + nds -
E gc = gi(xc)

stop

: 4. Search x* + AM_, 2 € [a;,b,], for a zero of f:. ;2

On convergence: j?

4.1 1 £]G:5 + M) o, n

1 = xk + ld’ '

& = Bi(!c) 5

stop .

4.2 Otherwise, "

1t = xk + Ld’ .

g° = si(xc) ZZ;:

stop

Notes:

.« In 2.2.4, preliminary experiments showed that an expansion
factor of two was excessively large (pemetration or
reversal usually occurred after only one expansion). The

expansion factor shown was selected so that three

expansions would be required before the interval had

doubled.
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oo In 2.2.1, 2.2.2, and 3.1, € is the interval convergence ;!

tolerance for the minimization linesearch, while e, is the .4

interval convergence tolerance for the zero—finding jf:f

; linesearch subroutine. These tolerances are adjusted to j
' remain a fraction of the original interval of uncertainty. ;
4
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3.2.3 § b Al r _k

If we have a record point x°, then x € (SN G)., When
k . r k . .
x & (SN G), a search of the line segment x* - x will find the
boundary of Si or G as desired. This is also a descent direction,
under convexity of fi. As when searching along d, the vector
ds =x - xk provides both the direction and the endpoint of
search. Another advantage of this search direction is that the

boundary of the level set is sure to be crossed along x - xk,

whereas it need not be crossed when searching along d or -g.

However, this is the only linesearch cut where the algorithm
differs for feasibility versus optimality cuts. There are two
extra steps required for the optimality cuts, both of which are

caused by the fact that x* is known to be on the boundary of G.

First, the extended-cut of 3.1.4 is the same as the cut that
would result if a linesearch of - xk finds a boundary minimum of
f: at x°. To increase algorithm efficiency, we first perform the
test for this boundary minimum, and perform the extended—cut (if

possible) to avoid the linesearch.

Second, when the extended-cut is not possible, the algorithm
can not proceed directly to the zero—finding linesearch because

there are two xeros of f: in the interval (the right endpoint 2t is

v
i

a zero of £f,, but has positive directional derivative of f: along
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Therefore, a minimization search must be dome to find a point

inside of G, which will be used as the right endpoint

zero—finding subroutine.

The steps of the algorithm are:

for

Test whether this is a feasibility or an objective cut:

1.1 If i (m + 1, initialize for the linesearch for a zero:

Let d = xr - xk
s
ay = 0
bo =1
go to 4.

1.2 If (2F - xk)Tsm+1(xr) > 0, go to 2.
1.3 Otherwise,
make an extended—cut

stop

Initialize for the linesearch for a minimum:
Let ds =x -x
a9 = 0
by =1
Search x* + Ads. Ae [ao,bol, for a minimum of fZ or
until the level set is penetrated. On convergence:
3.1 1f f:(xk + xds) < 0 was found, initialize for the
linesearch for a zero:
e, =¢e,(by—ay))/(b - a)
a8, = a
by = A
go to 4.
3.2 Otherwise (the level set was not found), cut at

the current left endpoint:

the
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xc = xk + ads
c _ c
g = Si(x )
stop

4. Search xk + lds, A€ [ao,bo], for a zero of fz.

On convergence:
k

4.1 If f‘;(x +ad) <0,
xc = xk + ads
sc = si(xc)
stop
4.2 Otherwise,
xc = xk + Ads
g° = g,z

stop
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3.2.4 Selecting Linesearch Subroutines and Tolerances

The three methods of constructing the linesearch interval
above form the basis for the EA variants we consider in  this
section. However, before testing the three linesearch directions
themselves, #e  must determine how the minimization and
zero—finding portion of <each search is to be performed.
There are two decisions to be made. First, which of the possible
subroutines for minimization and zero—-finding should be used.
Second, for each, what convergence tolerance should be used (i.e.,

how close to the boundary to attempt to get).

Our approach was to select onme search direction to use while
testing the various subroutine/tolerance combinations. The vector
d was chosen for this testing. Then we would investigate each of
the possible subroutines at several tolerances. The
subroutine/tolerance combination which had the highest efficiency
would subsequently be used in the primary experiments comparing the

three search directions,

There are two linesearch minimization subroutines which we
investigated. The first is EKupferschmid’s implementation of
Muller’s method (12] which wuses both gradient and function
evaluations during the minimization process. This subroutine was
used when EA deep cuts along d were examined in [12]. Those

preliminary results indicated that deep cuts using Muller's method
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did not result in increased efficiency. Therefore, part of this
analysis was to see how simpler 1linesearch subroutines would
compare with more complicated omes. For this reason, the second
minimization subroutine investigated was a modified golden section
method which uses function evaluations only. When used by our
three deep cut linesearch algorithms, the function values at the
left and right endpoints of the interval of uncertainty are often
known. The primary modification was to use this knowledge to aid in
positioning the interior points (only ome interior point is used
while the endpoints and the interior point have momotomically

decreasing function values).

There are three linesearch zero—finding subroutines which we
investigated, all of which use only function evaluations, The
first is Muller’s method [12]. The second is the bisection
method. The third method is an adaptive hybrid of the regula falsi
and bisection methods. This hybrid performs like regula falsi if
the interval of uncertainty is decreasing well, but adapts to
perform more like bisection when the interval of uncertainty is not

decreasing well. The hybrid method is explained in Appendix A.

We also needed to decide which convergence tolerances to use
for the interval of uncertainty in the minimization and in the

zero-finding subroutines, For this analysis, we selected

tolerances of 0.1, 0.01, and 0.001 of the length of ds’ We did not
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require the tolerances for the minimization subroutine to be
identical to that of the zero—finding subroutine. These tolerances
also affect the other convergence criteria mentioned in 3.2. Since
Muller’s method sometimes rapidly finds the neighborhood of the
minimizing/zero point, but is then slow to reduce the interval of
uncertainty, we exit the subroutine when the approximations to the
minimum/zero are wunchanging within the same interval tolerance.
Finally, we set the maximum number of iterations for the subroutine
to be the number of iterations that a bisection method would
require for the same interval convergence tolerance, Subroutine
termination due to reaching the maximum iteration limit seemed to

occur only at the looser comvergence tolerances.

Preliminary results demonstrated that the 13 test problems
varied greatly in how often each of thé two (minimization and
zero—-finding) subroutines was utilized. For the purpose of
deciding which the best subroutines and tolerances are, we selected
test problems which would repeatedly exercise both the minimization
and the zero—finding subroutines. This allowed a more rigorous
test of the subroutines (with a decrease in the number of

experiments required).

To determine how frequently each test problem uses the

minimization and the zero—finding subroutines, we ran the search

along d method using Muller’s subroutines for minimization and
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zero—finding with 0.01 convergence tolerances for each -

g

- subroutine. Table 3.5 shows the percentage of iterations, from the ::
j first iteration through the final record iteration, on which each ]
- - hlJ
* subroutine was used separately or together. The entries of O for ad

L}

minimization subroutine usage mean that every time yk was .

calculated, it was found to be inside the 1level set, so the

algorithm proceeded directly to the zero—finding routine,

- Table 3.5 Frequency of Linesearch Subroutine Usages by Problem

| problem | min | zero |
| Colvitle 1 + | 17 | 82 | -
| Cotville 2 | 13 | 93 | 3
| Colville 3 | o | 78 | N
| colville 4 + | 40 | 34 | :
| Colville 8 | 8 | 54 |
| Dembo 1b | 8 | 87 |
| Dembo 2 | o | 80 |
| Dembo 3 | 22 | 85 |
| Dembo 4a + | 73 | 87 |
| Dembo 5 | 19 | 9 |
| Dembo 6 | 0 | ¢ |
| Dembo 7 | 5 | 91 |
| Dembo 8a + | 87 | 81 |

Notes:
.. On Colville 8, this algorithm failed to solve NLP.

- .. On Dembo 6, this algorithm failed to solve NLP.
.+ + means this problem was selected as one of the four test

problems for evaluating linesearch subroutines/tolerances.

Due to the number and cost of the runs required, we decided

that four of the test problems was a reasonable subset to use when
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investigating which linesearch subroutine/tolerance is most

efficient. The Table 3.5 information demonstrates that the
zero—finding routine was used often on all of the solved problems.
. Thus, we chose problems which would most often use the minimization
subroutine. Of the Colville problems, numbers 1 and 4 were
therefore selected. The first Dembo problem selected was Dembo
8a. Dembo 1b is next highest in minimization subroutine usage, but
N it was not selected so as to avoid including only coanvex geometric
- NLPs. Dembo 4a was therefore selected as the fourth tesi problem
for this set of experiments. The problems selected include two
general and two geometric NLPs, two of which are convex and two of

which are nonconvex.

% Having determined the test problems to use, we tested the
subroutine/tolerance combinations. There are 6 combinations of
minimization subroutine and tolerances, and 9 combinations of
X zero—finding subroutine/tolerances. We chose Muller’s method at
“S 0.01 tolerance as the default combination for both minimization and
. zero—finding. Thus, 6 experiments were run testing the 6
j% minimization subroutine/convergence combinations, all of which used

: ) Muller'’s method and 0.01 for the zero—-finding

. subroutine/tolerance. Similarly, the various zero—finding
T subroutine/tolerance combinations were tested, all using Muller'’s

method and 0.01 tolerance when minimizations were performed.
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In Appendix D2, Figures D2.1 through D2.12 display the
error-versus—effort plots for the minimization subroutines, while
Figures D2.13 through D2.24 display plots for the zero—finding
subroutines. Table 3.6 displays the accuracy attained by each
subroutine and tolerance combination, The nonconvexity of Colville
4 caused convergence to a nonoptimal point in 8 of the 16

combinations. Otherwise, no combination appears to have a uniform

advantage if accuracy is used as the criterion,

¥ WO

Table 3.6 Accuracies for Linesearch Subroutines/Tolerances
: | Problem | ]
| Subroutine/Tolerance | Col 1 | Col 4 | Dem 4a | Dem 8a | ;
4 + + +— + + b
| Muller min 0.1 | -15.60 | -16.58 | -16.14 | -13.79 | "
| Muller min 0.01 | -15.60 | -16.58 | -15.29 | -14.41 | 4
| Muller min 0.001 | -15.60 | -16.58 | -15.26 | -14.47 | {
| Golden min 0.1 | -16.29 | -1.11 | -15.09 | -14.87 |
| Golden min 0.01 | -15.55 | -1.12 | -16.24 | -14.68 |
| Golden min 0.001 | -15.48 | -1.23 | -16.17 | -14.70 | ;
| Muller zero 0.1 | -15.94 | -2.45 | -15.15 | -14.66 |
| Muller zero 0.01 | -15.60 | -16.58 | -15.29 | -14.41 | )
| Muller zero 0.001 | -15.57 | -1.53 | -15.17 | -14.71 | g
| Bisection zero 0.1 | -16.15 | -16.32 | -15.42 | -14.60 | ]
| Bisection zero 0.01 | -15.54 | -16.58 | -15.36 | -14.79 | )
| Bisection zero 0.001 | -15.46 | -1.12 | -15.38 | -14.87 | |
| Regula zero 0.1 | -15.75 | -16.58 | -15.29 | -14.74 | :
| Regula zero 0.01 | -16.86 | -3.12 | -14.93 | -14.55 |
| Regula zero 0.001 | -16.56 | -1.92 | -15.04 | -14.36 |

Table 3.7 displays the efficiency of each subroutine and

tolerance combination, relative to center cuts. We chose between

competitive subroutines using the criteria of EA efficiency. This
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may or may not equate directly to linesearch efficiency, depending
on whether each subroutine achieves roughly comparable depths of

cut at each convergence level.

Table 3.7 Efficiencies for Linesearch Subroutines/Tolerances

i

| Problem

3
+—

Subroutine/Tolerance | Col 1

-— — 4

Col 4 | Dem 4a | Dem 8a

— — —— —— o —— ——

|
Muller min 0.1 | 1.82 | 2.26 | 2.40 | 2.84 |
Muller min 0.01 | 1.84 | 2.29 | 2.44 | 2.85 |
Muller min 0.001 | 1.87 | 2.03 | 2.37 | 2.91 |
Golden min 0.1 +1 1,56 | 3.63 | 1.62 | 1.77 |
Golden min 0.01 | 12,78 | 4.32 | 1.63 | 1.80 |
Golden min 0.001 | 1.57 | 5.00 | 1.63 | 1.8 |
| Muller zero 0.1 | 1.63 | 2.77 | 2.34 | 2.12 |
| Muller zero 0.01 | 1.84 | 2.29 | 2.44 | 2.85 |
| Muller zero 0.001 | 1.82 | 4.36 | 2.48 | 2.89 |
| Bisection zero 0.1 | 1,60 | 2.06 | 2.39 | 2.70 |
| Bisection zero 0.01 | 1.96 | 2.17 | 2.53 | 2.88 |
| Bisection zero 0.001 | 1.99 | 4.96 | 2.73 | 3.15 |
| Regula zero 0.1 +] 1.3 | 2.04 | 2.37 | 2.79 |
| Regula zero 0.01 | 1.47 | 2.46 | 2.37 | 2.715 |
| Regula zero 0.001 | 1.66 | 3.46 | 2.47 | 2.95 |

Notes:

.. + represents the optimal subroutine/tolerance combination
selected in each category.

The efficiency data of Table 3.7 was then analyzed to
determine which of the subroutimes/tolerances should be selected in
the minimization category, and in the zero—finding category.
Table 3.8 contains the efficiency statistics used to select the

optimal 1linesearch subroutine/tolerance combinations. The first
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four columns are the rank orders of the efficiency values for each -

q
problem. The fifth column has asterisks on the
subroutine/tolerance combinations with nondominated rank vectors.

. From these nondominated combinations, we selected those with the i
lowest values of sums of ranks, and sums of efficiencies (the sixth
and seventh columns), Asterisks in these last two columns mark
those values which are near-minimum, ;
- Among the minimization subroutines/tolerances, the golden .
i section with 0.1 tolerance is clearly superior to the other :
¥ alternatives, and was therefore chosen for the linesearch direction
: experiments to follow. Among the zero—finding linesearch
.
subroutines/tolerances, the hybrid regula falsi with 0.1 tolerance .
was chosen, although the bisection with 0.1 tolerance was almost as
efficient. -
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( Table 3.8 Analysis of Optimal Linesearch Subroutines/Tolerances ;
- + + + + 1
- I | Efficiency rank I sum | )
L | + ! + + T + of | :
e | Subroutine/Tolerance | C1 | ¢4 | D4 | D8 | | Sum | Effic’s]| )
. | Muller min 0.1 | 41 21 51 411 15 | 9.32 | 3
- | Muller min 0.01 I s1 31 61 51 | 19 | 9.42 | ]
B | Muller min 0.001 I 61 11 41 611 17 | 9.16 | 1
- | Golden min 0.1 +1 1] 41 1 21+ %] 8.58¢ | :
- - | Golden min 0.01 I 31 51 2101 21 | 12 | 9.53 |
1 | Golden min 0.001 l 21 61 31 31 | 14 | 10.03 |

o | Muller zero 0.1 | 41 61 11 211 13 | 9.46 |

o | Muller zero 0.01 71 41 51 s1 | 21 | 9.42 | ;
- | Muller zero 0,001 | 61 81 71 71 | 28 | 11,55 | :
' | Bisection zeroa 0.1 | 3| 2| 4| 1]+ | 10| 8.76¢ | Y

- | Bisection zero 0.01 | 81 31| 81 6! | 25 | 9.54 |

% | Bisection zero 0.001 | 91 91 91 91 | 36 | 12,83 |

= | Regula zero 0.1 +1 21 11 3] 4=+ 10| 8.,73% |

= | Regula zero 0.01 l 11 51 21 31| 11| 9.06 |

;; | Regula zero 0.001 I s1 71 61 81 | 26 | 10.54 |
{: Notes:

i: .. The columns Cl1l, C4, D4, and D8 represent the problems

}f Colville 1, Colville 4, Dembo 4a, and Dembo 8a,

- respectively.

.. The * in the column after the four problem rank columns
A denotes those algorithms with an undominated rank vector
: on the four problems.
.s + represents the optimal subroutine/tolerance
combination selected in each category.
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3.2.5 Experiments and Results

Having determined the best minimization subroutine/tolerance
and the best zero—finding subroutine/tolerance, the three search
direction algorithms were tested on all 13 test problems. Figures
D3.1 through D3.13 of Appendix D3 display the error—versus—effort

plots for the deep cuts using linesearches.

Table 3.9 displays the accuracies attained by the linesearch
cuts on the test problems. As previously seen with the
nonlinesearch deep cuts, the algorithms sometimes converge to

nonoptimal points, on nonconvex problems.
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(. Table 3.9 Accuracies for Deep Cuts Using Linesearches
f ! I | Search | Search | Search |
R r k
- | problem| Center | d | -g | =5 -x |
- + + + + 4
- . | cor1 | -16.83 | -16.66 | -16.38 | -15.55 |
- | Cor2 | -14.36 | -2.99¢ | -14.81 | -15.09 |
- | cCot 3 | -15.11 | -15.16 | -15.01 | -14.92 |
“ |l Co1 4 | -16.58 | -15.72 | -16.58 | -16.58 |
O | Co1 8 | -14.99 | -14.86 | -1.44¢ | -14.71 |
- . | pDem 1 | -8.30 | -9.06 | -8.82 | -9.04 |
T | Dem 2 | -14.48 | -14.43 | -14.45 | -14.42 |
a | Dem 3 | -14.38 | -14.31 | -14.20 | -14.15 |
o | Dem 4a | -15.55 | -15.26 | -16.27 | -15.16 |
: | Dem 5 | -15.08 | -14.49 | -4.32¢ | -3.80% |
- | pem6 | -17.57 | -17.53 | -2.74¢ | -17.56 |
L | Dem7 | -13.36 | -10.62 | -6.99¢ | -13.25 |
| Dem 8a | -14.64 | -14.8 | -14.61 | -14.53 |
f;‘ } + t + +
=%
:3 otes:
N .. * denotes those problems on which the algorithm did not
‘ converge to the optimum point.
i
;{ Table 3.10 shows how often each of the three linesearch cuts ;
were made, how often the 1level set was actually found and J
o supported, and the average depth of cut for those iterations on ’
{f which the level set was supported. For example, on Dembo 3§, 3
searches along d were attempted 92% of the iterations. 41% of the 3
s iterations resulted in a deep cut where the level set was found and ’
?j ) . supported. The remaining 51% resulted in a near—center cut because X
53 the level set was not found. The column for searching i - xk has i
fﬂ_ in parentheses the percent of iterations on which an extended cut %
e . 1
I was performed to avoid the linesearch. )
N .
X ;
< i
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Table 3.10 Frequency and Depths for Deep Cuts Using Linesearches

N
T -+

IS PPN 4 NN

| | Search | Search | Searck |
| probleml d | -g | ™t -x I
. | cor1 | 82/41 .024 | 82/82 .021 | 71/68 .021 ( 2) |
| co1 2 | 93/71 .014%| 95/95 .008 | 93/92 .009 ( 3) |
| cor 3 | 81/68 .021 | 80/80 .018 | 79/75 .018 ( 0) |
| cor 4 |90/ 5 .124 | 79/51 .042 | 72/57 .044 ( 1) |
| co1 8 | 55/46 .018 | s| 57/52 .036 ( 2) |
- | Dem 1b | 96/ 1 .030 | 62/62 .014 | 88/75 .015 ( 7) |
| Dem 2 | 85/26 .033 | 80/80 .019 | 80/67 .021 ( 1) |
| pem 3 | 90/21 .027 | 85/85 .023 | 83/72 .021 ( 3) |
| Dem 4a | 94/ 5 .024 | 89/89 .025 | 82/66 .022 ( 8) |
| Dem 5 | 92/41 .016 | 34/34 .019%| 35/32 .019 ( 1)#|
| Dem 6 | 94/31 .009 | > 1%| 88/76 .009 ( 2) |
| Dem 7 | 93/39 .008 | 86/86 .013%| 85/76 .009 ( 3) |
| Dem 8a | 91/ 0 .110 | 89/89 .023 | 86/70 .023 ( 4) |
Avg a: +| .049 | .023 | .023 |
Notes:

.. The entries for searches along d and along —g are:
) percentages of iterations on which the deep cut was tried,/
. percentages of iterations on which the deep cut found and
) supported the level set, and
average depth of cut for the cuts that did support the
level set.

A .. The first three entries for searching along xt - xk are the
- same as those above. The entries in parentheses are the

N percentage of iterations on which an extended cut was made,
- and thus no linesearch was performed.
«« ® denotes those problems on which the algorithm did not
. converge to the optimum point.

) .. The average depth of cut figures do not include Colville 2,
Colville 8, Dembo 5, Dembo 6, or Dgmbo 7, because of the

searches which did not converge to x .
o * «e + notes that the average depth of cut for searching along d
{: " is biased, because several problems which had the 1lowest

frequency of deep cuts (e.g., 0% to two digits) had the
greatest a.
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Note that the level set is found and supported most often by

the searches along -g and - xk, and least often by searches on

d. The frequencies and depths of cut for searching xf - xk and

. searching —g are very similar. The depths of cut for searching
along d appear somewhat deeper than along —g or along ©f - xk. but
the 0.051 average a for searches along d is biased upward by

several problems with unusually deep cuts on a very small number of

w
i

iterations.

The depths of cut attained here can be compared with those of
Table 3.3 for nonlinesearch deep cuts. For example, both the

super— and Kelley—cuts position the cut point along -g, as does the

search along -g technique. The algorithus here performed
» linesearches for both feasibility and optimality deep cuts. We
could weight the super- and the Kelley-cut depths of cut from

Table 3.3 (0.051 and 0.018) to approximate the depth of cut if

}%: super/Kelley cuts were both used. The result appears to be the
.i: same depth of cut that is achieved here (0.023) only after
; considerable linesearch effort.
iz i Table 3.11 shows the relative efficiencies for each of the
o three search direction algorithms, on the 13 test problems. After
b, A

;fg‘ > Table 3.7 above was presented, we chose to combine the golden
\(4', -

'yi section minimization at 0.1, and the hybrid regula falsi at 0.1,
)

2} although the two had not been tested together. When we compare the
.‘_:\

3
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search along d efficiencies here with those of the same four
problems in Table 3.7, we see that using these
subroutines/tolerances .ogether was indeed better than using either

- of them by itself,

PP
AR
LD ’A..l.

a2

Table 3.11 Efficiencies for Deep Cuts Using Linesearches

PULng AL S

A
N

i
T

Search | Search | Searchkl
problem| Center

d -8 x -x

| |
| | | I I
lcor1 | 1,00 | 1.46 | 1.23 | 1.13 |
lcor2 | 1.00 | 1.42 ¢ 0.96 | 0.97 |
l cor3 | 1,00 | 1.45 | 1,113 | 1.15 |
l cCor4 | 1,00 | 1.45 | 1,73 | 1.35 |
| cor8 | 1,00 | 1.22 | 1.18 ¢|] 1.02 |
| Dem 16 | 1,00 | 1.37 | 1.46 | o0.97 |
| Dem2 | 1.00 | 1.47 | 1.67 | 1.41 |
| Dem3 | 1,00 | 1.26 | 1.27 | 1.05 |
| Dem 42 | 1.00 | 1.39 | 1.29 | 1.00 |
| Dem5 | 1.00 | 1.45 | 1.57 s| 1.31 s|
| Dem6 | 1.00 | 1.26 | 1.39 ¢] 1.01 |
| Dem?7 | 1,00 | 1.30 | 1.06 *| o.86 |
| Dem 8a | 1.00 | 1.48 | 1.36 | 1.14 |
Avg: | 1,00 | 1.42 | 1.39 | 1.15 |
Notes:

«o ® denotes those problems on which the algorithm did not
converge to the optimum point.

.. The average efficioency figures do not include Colville 2,
Colville 8, Dembo 5, Dembo 6, or Dempo 7, because of the
searches which did not comverge to x .

The deep 1linesearch cuts tested do not increase algorithm

accuracy in any systematic way. In fact, they occasionally cause

convergence to a mnomnoptimal point if the problem is nonconvex.
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Further, they almost uniformly degrade algorithm efficiency
relative to center cuts. The best of the deep linesearches appears
to be the search along T - xk method. However, a percentage of
- the deep cuts dome by this algorithm are extended-cuts where the
linesearch is not performed, and where efficiency is better than
center cuts. Thus it is possible that the relative efficiency of
this algorithm on the iterations where linesearches were required
was worse than that reflected above, to yield the above efficiency

when extended—cut and linesearch iterations are averaged.
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PART 4
CONSTRAINT EXAMINATION STRATEGIES

In previous sections we have stated that we determine whether
or not xX € S and find a violated constraint if xX & S, without
giving an explicit way of doing so. Since the update is of rank
one, only one violated constraint is needed. We could examine all
m constraints and select the one with the greatest violation (or
some similar criterion). Instead, to reduce the number of functionm
evaluations required, we use the first constraint that is found to
be violated. Note that this choice does not produce a monotonic
decrease in the objective functiom values, because of the
feasibility cuts. In fact, near x., every feasibility cut moves xk

in a direction of increasing objective function values.

Since we cut using the first constraint found violated, the
order in which we examine the constraints in search of a violated
one affects the behavior of the algorithm, We examine several
possible orders of search in terms of their affects on the

robustness, accuracy, efficiency, and simplicity of the EA.

One general consideration motivating the work reported below
is that it is desirable to prevent the ellipsoids Ek from becoming

highly aspheric. It has been reported that in problems where the
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cutting hyperplanes Bk can take on only certain orientatiomns, as
when the fi are linear (for example, see [9]), the Ek sometimes do
become highly aspheric. Numerically, this effect manifests itself
in ill-conditioning of the matrices Qk' and it can prevent the EA
from obtaining an accurate solution. Also, it has been
conjectured, see [7], that the robustness of the EA may be due to
the ability of the xk to sample widely-separated regions of the
problem space early in the solution process. This explanation for
the observed robustness of the EA is consistent with the annealing
theory of mathematical programming algorithm robustness suggested
in [11]. If the Ek become highly aspheric, the ellipsoid centers
xk may not be well distributed throughout the problem space,
resulting in a loss of robustness. Thus it seems plausible that
constraint selection strategies that cause the hyperplanes Hk to be
parallel or to take on a limited number of different orientations

may decrease the accuracy and robustness of the EA, This argues

against repeatedly cutting on a few constraints,

A second general consideration is that it is inefficient to
examine constraints that are mnot active. This argues for a
strategy that identifies the active constraints and examines onmnly
those. However, an active set strategy which introduces
significant complications in the algorithm would be objectiomable

in view of the inherent simplicity of the remainder of the EA.
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Table 4.1 is included here because the set of constraints
which are active at optimality would be expected to affect the

efficiency of various constraint examination options.

Table 4.1 Test Problems: Active Set of Constraints

®
Lo d
L]

| problem la | m | ot | (il fi(x.) = 0} |
| colvilze 1| 5| 15| 4] 3,5,6,9 I
| Colvilie 2 1 15| 20| 11| 1...7,9,12,13,15 |
| colvitle 3| 51161 51 1,3,8,12,15 I
| Colville 4 | 41 8| o | |
| colvilie 8 | 3|20 21 3,18 |
| Dembo 16 [ 12| 3] 31 1,2,3 I
| Dembo 2 Il s1 91 51 2,5,7,8,9 |
| Dembo 3 Il 71151 61 1,3,6,7,9,15 |
| Dembo 4a | 8| 4| 41 1,2,3,4 I
| Dembo 5 | 81 61 61 1,2,3,4,5,6 |
| Dembo 6 |13 ) 18 | 14 | 1...9,12,13,15,17,18 |
| Dembo 7 | 16 | 25 | 22 | 1...12,14,15,18...25 |
| Dembo 82 | 71 41 21 2,3 |
Notes:

.e m+ is the number of constraints active at optimality.

Throughout Part 4, we use only the center cuts explained in
Part 1, where x° = xk and gc = gi(xk). These cuts select Hk to be
the support hyperplame to L, = {x | fi(x) £ fi(xk)l (the level set
of fi which passes through xk). The statements in Part 4
concerning the solution—preserving properties of certain algorithms

are based on the fact that these are the cuts that are used.
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4.1 Comparison of Three Simple Strategies

In this section we consider three rules for deciding the order
in which to examine the m coastraint functions of NLP in search of
a violated constraint, namely top—down order, cyclical order, and

random order.

4.1.1 Top-down Order

The simplest approach is to always examine the constraint
functions in top—down order. Thus, at each iteration Kk, fl(xk) is
evaluated first. If fl(xk) > 0 we stop the search and use f1 in
constructing Hk; otherwise, f2(xk) is checked, and so on. The
first index i {( m for which fi(xk) > 0 is the index used in
constructing Hk‘ Of course, it may turn out that fi(xk) 20 for
i=1,..m, and then Hk is constructed using fn+1(xk). If the
selected constraint i is near the top of the 1list, it is more
likely to be selected again on subsequent iterations whem it is
again violated., The disadvantage of the top—down strategy lies in
the nossibility that constraints near the top of the list will be
used over and over to the exclusion of other comstraints that may
also be violated, perhaps decreasing the robustness or accuracy of
the algorithm. This constraint examination strtategy was used in

the EA implementation of [12].
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4.1.2 Cyclical Order

The next strategy we consider, cyclical examination, attempts
to insure that violated constraints near the bottom of the list are
not repeatedly ignored in favor of those near the top. Let ik be
the index of the last constraint function examined om iteration k.
The first iteration of the cyclical strategy is identical to that
of the top—down strategy. On subsequent iterations however, the
first constraint to be examined has index p = ik-1+ 1, or p =1 if
ik-1= m. If fp(xk) > 0, we stop the search; otherwise the search
continues with index p +1 (or 1 if p = m), and so on. If a
violated constraint is not found within m constraint function
examinations, then xk;€ S and a Phase 2 cut is made. The cyclical
strategy requires essentially no increase in algorithm complexity
over the top—down strategy. In view of the genmeral considerations
outlined in Part 4, the cyclical strategy might be expected to
increase algorithm robustness and accuracy. The ellipsoid
algorithm implementation EA3 uses a cyclical strategy that is
identical to the ome described above, except that the first

constraint examined on iteration k + 1 has index 1 if Hk is

constructed using fm+1.

4.1.3 Random Ogder
The third strategy we consider, random constraint examination,

is also intended to prevent the ordering of the constraints in the

list from causing some constraints to be used to the exclusion of

. ' .
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others. Before the first iteration we generate a set of m
pseudo—random numbers, index them 1 to m, and then list the indices
in increasing order of the associated random numbers. This list of
randomly—ordered indices is wused 1like the 1list 1,..m in the
cyclical method above. A new randomized list is constructed at the
end of each iteration in which the last index on the current list
was examined. An increase in algorithm complexity and
computational effort is required to accomplish the randomization,
but algorithm robustness and accuracy might be improved over even
the cyclical approach, because of a further decrease in the
sensitivity of the algorithm to the initial ordering of the

constraint indices.
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4.1.4 Experiments and Results

Figures D4.1 through D4.13 of Appendix D4 show the performance
of the cyclical, top~down, and random constraint selection
strategies when they are applied to the 13 test problems, and

Table 4.2 summarizes the accuracy and efficiency results,

Table 4.2 Experimental Results for the 2 Simple Strategies

| accuracy | efficiency [
| prob | Cyclic | Top—dn | Random | Cyclic | Top-dn | Random |
l cor1 | -16.83 | -16.85 | -16.87 | 1.00 | 0.99 | 1.09 |
| co12 | -14.36 | -14.04 | -14.31 | 1,00 | 1.07 | 1.09 |
| Co1 3 | -15.12 | -15.07 | -15.05 | 1.00 | 1.09 | 1.11 |
| cor4 | -16.58 | -16.58 | -16.58 | 1.00 | 0.98 | 1.25 |
|l Co18 | -14.99 | -15.85 | -14.99 | 1.00 | 1.03 | 1.08 |
| pem 1b | -8.30 | -8.95 ] -8.92 | 1.00 | 1.00 | 0.99 |
| Dem 2 | -14.48 | -14.36 | -14.51 | 1,00 | 1.44 | 1.02 |
| pDem 3 | -14.38 | -14.28 | -14.29 | 1.00 | 1.13 | 1.10 |
| Dem 4a | -15.55 | -15.40 | -15.48 | 1.00 | 1.04 | 1.01 |
| pDem 5 | -15.08 | -14.82 | -14.96 | 1.00 | 1.07 | 1.00 |
| pem 6 | -17.57 | -17.52 | -17.50 | 1.00 | 1.14 | 1.03 |
| pem 7 | -13.36 | -13.18 | -13.312 | 1.00 | 1.21 | 1.07 |
| Dem 8a | ~14.64 | -14.90 | -14.84 | 1,00 | o0.98 | 1.00 |
average efficiency: | 1.00 | 1.09 | 1.06 |

Notes:

.. The solution accuracy reported is the log of the lowest E(xk)
attained.

.. The algorithm efficiency reported is the relative efficiency
8 defined in Part 2, computed using the cyclical strategy as
variant A,

None of the strategies shows a clear superiority in accuracy,

and the three strategies are equally robust in the sense that none
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of them fail to solve any of the problems. However, the relative
efficiency of the cyclical strategy is clearly superior to that of
the random strategy, and the relative efficiency of the random
strategy is in turn somewhat better than that of the top—down

strategy.

In view of the general considerations discussed in 4.1, it is
counter—intuitive that the strategies turn out not to differ much
in terms of accuracy or robustness; we expected that robustness and
ultimate accuracy would both be improved by the elimination of
regular patterns in the order of constraint examination. The
superior efficiency of the random strategy relative to the top—down
strategy is also counter—intuitive, in view of the computatiomal
effort that is required to randomize the constraint indices. Also,
it is surprising that the top—down strategy is mnot better than the
cyclical strategy for Colville 2, since 8 of the active constraints
in that problem appear in the top half of the list of indices.
Finally, we expected that the top-down and cyclical strategies
would be about equally efficient én Dembo 5, since that problem
(like Dembo 1b and Dembo 4) has all constraints active at
optimality, These discrepancies between the experimental evidence
and our intuitive preconceptions serve to underscore the importance
of computational testing in the evaluation and comparison of the

methods.
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Because of its superior efficiency, the cyclical strategy is
used in the remainder of this paper whenever a subset of

|
|
constraints is to be examined. ‘

4.1.5 Cyclical Examipatjon Strategy Statistjcs 1

As described in 2.3.1, the experimental software collected
;JT numerous statistics in addition to the performance measurements of

error and effort. Since the <cyclical constraint examination

*J% strategy will be used now as the standard for comparing other EA
variants, Table 4.3 display several statistics for the cyclical
strategy. The statistics are the percentage of iterations where xk
is infeasible, the percentage of effort used to determine whether

xk is feasible, and the percentage of iterations that found new

record points.

‘n
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Table 4.3 Cyclical Strategy Algorithm Behavior Statistics

'y

% of iterates | % of PSCPU time

\j

% of iterates

| | | |
| | fgr which | used to check | that were new |
| prob | x° € 8’ | feasibility | record points |
| co11 | 67 | 41 | 10 |
| co12 | 17 | 12 | 2 |
| co13 | 83 | 48 | 13 |
| co14 | 0 | 39 | 11 |
| co18 | 52 | 75 | 13 |
| Demib | 88 | 12 | 4 |
| Dem2 | 83 | 40 | 10 |
| pem3 | 82 | 40 | 7 |
| pDemda | 79 | 17 | 6 |
| pem5 | 76 | 22 | 6 |
| Demé | 92 | 20 | 4 |
| Dem7 | 91 | 19 | 2 |
| Dem8s | 14 | 24 | 9 |

Note the high percentage of effort spent evaluating the feasibility
constraints., This was the motivating factor for developing the

alternative constraint examination strategies of 4.2 and 4.3.
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'( 4.2 Using An Actjve Set Strategy

i In addition to the algorithm behavior statistics reported in
- Table 4.3, we also counted, for each problem, the number of times
that the cyclical constraint examination strategy causes each

function to be used in constructing Hk' Tables 4.4 and 4.5 show

P,

y K . "
tau! Stont A tee e e
+
-t

these statistics for the test problems Dembo 8a and Dembo 3.

<

-

e
o
:ﬁ: Table 4.4 Use of Functions in Constructing Hk for Dembo 8a
e I | number of times function f. was used |
s | | in constructing H 1 I
- | interval of + 4 +
. = iterations | Feasibility constraints | |
| li=11li=21i=3|li=41i=5]|
e I 1-100 | 6 | 32 | 36 | 1 | 25 |
X | 101-200 | 3 | 32 | 37 | | 28 |
) | 201~ 300 | | 36 | 38 | | 26 |
e | 301~ 400 | | 34 | 38 | | 28 |
| 401- 500 | | 36 | 39 | | 25 |
. | 501- 600 | | 35 | 39 | | 26 |
N | 601~ 700 | | 37 | 36 | l 27 |
o | 701~ 800 | | 35 | 38 | I 27 |
S | 801- 900 | | 36 | 38 | | 26 |
N | 901-1000 | | 33 | 40 | | 27 |
| 1001-1100 | | 36 | 371 | I 27 |
| 1101-1200 | | 33 | &1 | I 26 |
| 1201-1300 | | 3¢ | 37 | | 27 |
" | 1301-1400 | | 35 | 39 | | 26 |
N | 1401-1500 | I 37 1| 37 | | 26 |
| 1s501-1600 | | 35 | 38 | | 27 |
| 1601-1700 | | 35 | 38 | I 27 |
| 1701-1800 | | 35 | 39 | | 26 |
‘. | 1801-1900 | | 36 | 38 | I 26 |

BT S O T . T o P
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et al of =

For Dembo 8a, m =4, thus the indices 1 through 4 are the

—

2 feasibility constraints, and the last column is for the objective
o function. The best solution found for this problem occurred at
- iteration k = 1890, with constraints 2 and 3 active at optimality.

Note that after about 200 iterations, these are the only

constraints ever used for making feasibility cuts.
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Table 4.5 Use of Functions in Constructing Hk for Dembo 3

5
-

| number of times function i was used

| in constructing nk
interval of + +—
iterations | Feasibility constraints |

— — S —— — Tb

i=1 2 3 4 5 6 7 8 91011 12 13 14 15 16

—

|
I
I
|
X I 1-100 | 2217 9 512 9 6 3 2 1 113 |
o - | 101-200 | 10 213 14 13 14 8 1115 |
b | 201-300 | 11 13 13 13 14 8 1315 |
- | 301- 400 | 13 13 13 13 14 6 14 14 |
= | 401-500 | 16 14 13 13 13 4 13 14 |
N | s01-600 | 16 13 1313 13 4 1315 |
3 | 601-700 | 16 15 14 13 13 2 13 14 |
3 | 701-800 | 15 15 15 13 13 13 16 |
< | 801-90 | 16 14 13 13 13 13 18 |
- | 901-1000 | 17 15 15 13 13 13 14 |
o | 1001-1100 | 16 15 14 12 12 13 18 |
e | 1101-1200 | 16 15 15 13 13 13 15 |
N | 1201-1300 | 16 16 14 13 13 12 16 |
N | 1301-1400 | 17 15 13 13 13 13 16 |
| 1401-1500 | 16 16 14 13 13 13 15 |
. | 1s01-1600 | 17 14 1512 13 13 16 |
% | 1601-1700 | 15 15 14 14 13 13 16 |
s | 1701-1800 | 16 15 14 12 13 13 17 |
N 1801-19%00 | 16 16 15 13 12 12 16 |
.7 1901-2000 | 16 14 14 13 13 13 17 |
| 2001-2100 | 15 16 14 13 13 12 17 |
- 2101-2200 | 16 15 14 13 13 13 16 |
») 2201-2300 | 16 15 14 13 13 13 16 |
¥ | 2301-2400 | 16 15 14 12 12 13 18 |
s | 2401-2500 | 16 15 15 13 13 13 15 |
P 2501-2600 | 16 16 14 13 13 13 15 |
2601-2700 | 15 13 14 13 12 11 22 |
a | 2701-2800 | 15 11 14 14 12 10 24 |
o | 2801-2900 | 6 6 5 6 5 567 |
o
- The best solution found for this problem occurred at iteration
=0 . k = 2845, with constraints 1, 3, 6, 7, 9, and 15 active at
“
%ﬁ optimality. Note that after about 100 iterations only ome other
#: i constraint (i = 13) plays a role, and after about 700 iterations
2
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the only constraints ever used in constructing Hk are those that

are active at optimality.
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{ 4.2.1 The Active Set Strategy 'J
.% The statistics reported in Tables 4.4 and 4.5 show that as the .
e ‘4
s E
-3 EA follows its convergence trajectory it gemerates, essentially for :
* - free, information that can be used to predict which constraints E
5 will be active at optimality. In this section we develop an active ~
’: set strategy based on this predictive capability, and show that it
can sometimes dramatically improve the efficiency of the EA. ;
jj Recall that the EA examines constraints at each iteration to ;
= determine whether or not xk:€ S. If xk d S, one violated constraint ;
L: has been found (there may be other violated constraints as well, ;
) y
:f but these are not found because the examination stops at the first ;
one). Suppose the algorithm marks each constraint that is found to i
"
be violated, and let I+ be the set of constraints that have been ]
.. y
: marked after some iterations, The set I+ is the current actjve set I
of constraints, and at some point we could begin to examine its ;
‘3 elements before those in the inactive set I = {1...m) \I*. This ]
< b
:1 idea is the basis for our active set strategy. We define the A
-'J . N
feasible regions for I+ and I as a
"l’ - ;
DI . [ (x| £ g0, i I, I 48 :
o X = )
Rn, I+ = 0 4
v _ (x| £,(x) <0, i I}, Y #69 p
.ﬁ X = a _ g
:e R » I = o. :
S {
L
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When examining constraints to determine if xk:€ S so that the
correct feasibility or optimality cut can be made, we
examine the constraints in I+ first. If a violated constraint is
found in I+. so that xk ¢ X+. then xk ¢S and we make a

feasibility cut, If xk € X+. bhowever, then xk € S8 if and only

if xk € X_. so whether a feasibility cut or an optimality cut is

required depends on vwhether xk € X. When xk'€ X+. we can
assume either that there are constraints in I that will be
violated during future iterations, or that there are not. If we
suspect that there are constraints in I that will be violated, we
should test whether xk € X, but if we believe that I* contains
all the constraints that will ever be found violated, we merely
assume that xk € S  without testing whether xk € X. Ve now

consider the consequences of adopting each of these policies when

their underlying assumptions are wrong.

The first policy assumes that some constraints in I may be
violated, and so tests whether xk € X . If the assumption is wrong
and I contains no violated conmstraints, performing the test shows
xk € X and some computational effort is wasted on unnecessary
constraint examinations. However, the policy guarantees that the
cuts made will be solution-preserving and that any record points
that may be found will be S-feasible. When the active set is

changing rapidly, it is reasonable to assume that sometimes

xk ¢ X, so we use the policy of checking 1~ when xk € X+.
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The second policy assumes that I contains no constraints that

will be violated, and avoids needless work by not testing whether

xk € X'. When I+ is essentially unchanging, it seems reasonable to

assume that if xk € X+ then xk'e S, so we make an optimality cut

if xk € X+ and a feasibility cut if xk ¢ X+. Further, we declare

xk to be a record point if xk

we are not certain that xk € S.

+ k b 4
€ X and fm+1(x ) < £7, even though

If the assumption xk € X is wrong (I” contains a violated
constraint), thea under this policy an optimality cut will be made
when a feasibility cut is required, and such a cut may
not be solution—-preserving. If xk is declared to be a new
record point bdut xk ¢x, then the new record point is
S-infeasible and the record value f- is incorrect. To distinguish
between record points that are known to be S—feasible and those
that are not known to be S—feasible, we call the former true record

points and the latter maybe-record points. Thus a record

point can be either a true record point or a maybe-record point.

In Section 1 we showed that, without an active set strategy,

.
the EA always preserves x (if the fi are convex). An active set
strategy using the policy of not testing whether xk € X genmerates

cuts that may or may not be solution-preserving. If xk ¢ X+ then

xk ¢S, and the resulting feasibility cut is solution-preserving
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for the reasons given in Section 1. If xk € x* and fm+1(xk) > £5,

.
the optimality cut also preserves x (and G and x*) for the
reasons given in Section 1, In fact, an optimality cut
when xk € X' and fm+1(xk) > £5 is solution—preserving even if

- ‘ *
xk ¢ X, because the cut preserves G (and thus preserves x ).

When xk € X* and fm+1(xk) < £¥ so that xk is a maybe—record

point, what the optimality cut preserves is

+ _ k
¢ = {x | fe1(x) £ £, (x )}

k k

and the presumed solution set SN G+. If x* € X, then xk € S, x
is a8 true record point, and the cut is the same solution—-preserving
optimality cut described in Section 1. However, if xk ¢ X, then
xk is neither feasible nor a true record point and xk d (sN G+).
In fact (SNG') =@ if £ (z) (£, (x), and in that case the
cut is not solution-preserving. In general, of course, we do not
know the value of fm+1(x‘). so if we are not checking whether
xk'€ X we have no way of knowing for sure whether (S N G+) =@,
Thus, if I contains active constraints, the policy of not

checking whether xk € X ocan produce cuts that are not

solution—preserving when xk'e X+. fm+1(xk) C£f%, and I” # 0.

To detect the occurrence of mnon-solution-preserving cuts

whenever it is possible that one has been made, we periodically
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T

check the 1latest new maybe-record point x~ for S—feasibility. If

€ X then x* is a true record point. Further,

.
x € (SNG) CE,, since any cuts made after finding x* are sure to

k

have been solution-preserving.

If x" € X~ then we backtrack to the last ellipsoid known to
contain a nonempty solution—containing set. If a true record point
has been found, all subsequent cuts are solution-preserving until
the next maybe-record point x* is found. We save the ellipsoid Er
then, prior to the cut which might discard x‘. If a backtrack is
later required, restoring the saved ellipsoid Er ensures that
x. € (8NE)C Er' Having backtracked to this earlier point in the
trajectory, we move the offending constraint from I to I+ and
start on a mnew trajectory. Backtracking incurs a computational

+ -
penalty, but it will never occur if I and I have been correctly

identified.

The performance of the algorithm is affected by when and how

often the active set strategy checks whether 1* € X°. We make the

check only at points xk that are maybe-record points, because if xk

is to be checked, iterations after xk will only add to the length

of the backtrack if xk ¢ X*. Further, we check xk before updating

x* and fr, so that the previous record point is also available for

testing. If xk € X  we let x¥ = xk (because we know that xk is a

true record point and (S N 6')# 9), and we continue with an

s, A R T T TP T T
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optimality cut. If x* € X, we test whether x* € X and if it is
then no backtrack is required and a feasibility cut continues at
xk. Otherwise, we backtrack to the saved ellipsoid. Since the
ellipsoid was saved at an I+-feasib1e point, we test for
I —feasibility and make a feasibility or optimality cut as

required.

We have now developed the primary elements of our active set
strategy. Given an initial or current estimate of the active set
i + k +
of constraints I, we test whether x € X . We make

+
feasibility or optimality cuts according to whether xk ¢ X° or

f € X* (instead of according to whether £ és or xX

€ 8) in
order to avoid examining the constraints in I, which we think
are inactive. Because constraints may drop out of the
active. set as the ellipsoids shrink, we periodically revise I+ on
the basis of the violation history of the comstraints in I+.

If a constraint was mnever found to be violated since the previous

revision of I+. it is dropped from I+.

As the algorithm progresses, it may generate maybe-record
points that are I+—feasible. Some of these record points are
checked as they are found, to see whether they are I -feasible as
well. Others are not tested, to avoid constraint function

evaluations, Since cuts at maybe-record points can fail to

r

]
preserve x , we periodically test the current maybe—record point x
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to see if xT e X . If x* is not feasible, the algorithm must
backtrack to a point where it was previously determined that
(SN G+ P, When the inactive set I is tested and onme of its
constraints is found to be violated, that constraint is added to

.

We start with I+ empty, and add a constraint to o only when
all of the current set of active constraints are satisfied. This
process does not add to I+ any constraint which is redundant in the
sense that it is not needed to show infeasibility. Thus the active
set I+ we construct is minimally sufficient in that constraints are
added only when the existing set does mnot suffice to show
infeasibility. This increases the efficiency of the active set
algorithm because if redundant constraints were added they would

+
have to be examined when I is tested on every iteration.

The two processes of dropping from and adding to I+ proceed
simultaneously. Checking for inactive constraints to drop does not
increase the complexity of the algorithm very much, and requires
only a small amount of extra computational effort. Checking the
constraints in I and reassigning violated ones to I+ is also
simple if all maybe-record points are tested for I —feasibility.
Otherwise, the need to save ellipsoid data and backtrack when

necessary adds significantly to the complexity of the algorithm;

however, large gains in efficiency might be realized by avoiding
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some of the tests.

How often we check whether constraints can be dropped from I+
(a drop—check), and how often we check whether constraints must be
added to I' (an add-check), are parameters that can be varied to

control the behavior of the algorithm.

Consider the influence on algorithm behavior of the drop-check
interval, which we name Ak ., If Ak  is too small, a truly active
constraint may appear to be inactive. Only omne violated constraint
can be identified per Phase 1 iteration, and therefore if too few
iterations occur between drop-—checks some violated constraints may
be overlooked. On the other hand, if Ak is overly large, then
constraints that are truly inactive may be retained in I+ longer
than ‘necessary, causing effort to be wasted in needless function

+
evaluations whenever it is necessary to test whether xk € X .

To set a plausible lower bound on Ak, we treat the
algorithm’s discovery of violated constraints as a random process.
We model the discovery of constraint violations by a multinomial
distribution, assuming that, on each Phase 1 iteration, each active
constraint is equally likely to be found violated. Then, assuming
that all of the constraints in I+ are active, we calculate Ak as
the smallest number of Phase 1 iterations sufficient to make the

probability ) .99 that each active constraint ..s been found to be
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violated at least once. Further details about this probability
model and its use in setting a minimum value for Ak are given in

Apperdix B.

The lower bound for Ak is used when I+ is changing, such as
on initialization and when a constraint has just been dropped from
or added to I+. Vhen I+ is unchanging, we increase Ak~ to reduce
the frequency of drop—checks and thus the computational effort
expended in examining and reinitializing the vector of comstraint
violation histories. This increasing of Ak~ is accomplished
automutically, by doubling Ak whenever a drop—check finds that all

+
of the constraints in I are still active.

Now consider the add-check interval, Ak+. the number of
maybe—record points that must occur before the most recent omne is
checked for I —feasibility. The minimum value of Ak’ is 1, when
every maybe-record point is to be checked. Every other maybe-record
point is checked if Ak+ =2, and so on. If Ak+ is too small, then

I—-fensibility is checked frequently, so that effort is wasted if

I has been properly identified. On the other hand, if I contains

s
(Y A I

a constraint that will be active, an overly large Ak+ increases

D
A% 00N

both the likelihood that backtracking will be needed and the length

. of the backtrack if ome is needed.

When there is reason to suspect that I+ has not yet been

caca sl o
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correctly identified, we use the minimum value of Ak+ =1 to avoid
backtracking. When I+ is nunchanging, so that add-checks are
probably unnecessary, we increase Ak+ to save the computational
. effort that they would require. As in the case of the drop—check
interval, the tradeoff is between the computational effort to be
saved by lengthening the interval (here the effort required to
evaluate the constraints in I ) and the penalty incurred if the

interval is made overly 1long (here the effort required for

backtracking). In this case, however, the tradeoff depemnds on how

well the active set has been identified. Therefore, the growth

5. JRs

factor we use for Ak+ is not 2 (as it was for Ak ) but instead

depends on the apparent stability of I+. Details about this

ety
L N Y

dependency and the adaptation of the Ak+ growth factor are given in ’1

Appendix C.

We now formalize our active set strategy as follows:

1.) ipitislization:
set I' = ¢
set I = {1...m}
set Ak+ =1

. set Ak at its lower bound (see Appendix B)
set k+ =0 =k =0

oL

e o

4!'4-‘41'4 .
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(ﬁ” 2.) v :
> if ¥ < Ak
AL - -
et them k =k +1
\‘.7!
i} : go to 3
i -

i else set kx =0
N check constraint violations in last Ak iterationms
LA
:{q if all constraints in I+ were found to be violated
e . then Ak = 2Ak
(" go to 3
:ﬁf if any coastraints in I+ were never found violated
:% then drop those comstraints from I
:i set AK® =1
N -
" set Ak at its lower bound
‘?j set k' =0
AN
i 3.) if z* is e-re nt:
o if £ ¢ x*

then let i be the index of the violated constraint

e go to 5
-..::. k r
o else if fm+1(x ) ¢ £
o then go to 4

else let i = m + 1

go to §




....................
....................................................

4.) xk i - int:

if ¥ ax’ :
then save Ek if required
let i =m + 1
. go to §
else if xk € X
then set k+ = 0
. increase Ak® (see Appendix C)
let i =m + 1
go to §
else backtrack if required

add violated I —constraints to I+

set Ak+ =1
set Ak at its lower bound
set k- =0

5.) :i - l Ilo Ea -I l. o
make the cut using fi to create Hk

update Q and x
if convergence has not occurred
then go to 2
else if x" ¢ X~
then backtrack

else stop
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4,2,2 Experiments and Results

Figures D5.1 - D5.13 of Appendix D5 contain error versus
effort curves comparing the active set strategy to the cyclical
constraint examination strategy of 4.2.1 on each of the 13 test

problems, and the results are summarized in Table 4.6.

Table 4.6 Experimental Results for the Active Set Strategy

T

| accuracy | efficiency | % of iters |
| + + ~+— + to find, |
| prob I Cyeclic | Active | Cyclic | Active | stable I |
l cor1 | -16.83 | -16.120 | 1.00 | 0.73 | 4.5 |
| co12 | -14.36 | -24.33 | 1,00 | 0.98 | 71.1 I
l Co13 | -15.11 ] -14,92 | 1.00 | 0.75 | 1.5 I
| cor4 | -16.58 | -16.58 | 1.00 | o0.66 | ()} I
| cor8 | -14,99 | -15.85 | 1,00 | 0.43 | 5.8 |
| pDem b | -8.30 | -8.87 | 1.00 | 1,01 | 3.3 I
| Dem 2 | -14.48 | -14.53 | 1.00 | o0.83 | 1.4 |
| Dem3 | -14.38 | -14.41 | 1.00 | 0.83 | 38.9 |
| Dem 4a | -15.55 | -15.70 | 1.00 | 1.01 | 0.4 |
| Dem 5 | -15.08 | -14.63 | 1.00 | 1.00 | 1.9 |
| Dem6 | -17.57 | -17.57 | 1.00 | 1,00 | 25.7 |
| PDem7 | -13.36 | -12.35 | 1.00 | 1.04 | 75.7 |
| Dem 8a | -14.64 | -14.72 | 1.00 | o0.91 | 21.7 |
average efficiency: | 1.00 | 0.86 I
Notes:

.. The solution accuracy reported is the log of the lowest E(xk)
attained.

.. The algorithm efficiency reported is the relative efficiency
s defined in 2.2, computed using the cyclical strategy as
variant A,

Using the active set strategy causes essentially no change in

algorithm sccuracy. o /m is the ratio of the number of constraints
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active at optimality to the total number of constraints. We
expected the active set strategy to improve the efficiency of the
algorithm most on problems for which m+/m is small, little on
problems for which m+/m is close to 1, and not at all omn problems

for which all the constraints are active at optimality.

Table 4.7 repeats the efficiency results given above, with the
problems rearranged in increasing order of m+/m. A column is added
to show the best possible efficiencies the active set strategy
could have achieved. This value is the efficiency that would
result if the active set strategy used omly 100(m+/m)% of the
cyclical feasibility—checking effort from Table 4.3. For example,
Colville 1 has m+/m = ,27 and the cyclical strategy speant 41% of
its effort evaluating the feasibility constraints. The best
possible effort expenditure then has two components. All the other
algorithm steps except feasibility checks still use 59% of the
original algorithm time. Feasibility checks could be reduced to

.27(41%) = 11% of the original algorithm time, Thus, the active

set strategy could use as little as 59% + 11% = 70% of the cyclical

strategy effort.




106

Table 4.7 Active Set Efficiency vs n /m

.
v

| | + | Actual | Possible |
| prob | m/m | Efficiency | Efficiency |
l cot14 | .00 | .66 | .61 |
l cor8 | .10 | .43 | .33 |
lcor1 | .27 | .13 | .70 I
l co13 | .31 | .15 I .67 I
| Dem3 | .40 | .83 | .16 |
| Dem 8a | .50 | .91 | .88 |
lcor2 | .55 | .98 | .95 |
| Dem2 | .56 | .83 I .82 |
| Deomé | .78 | 1.00 | .96 |
| Dem7 | .88 | 1.04 | .98 |
| Dem5s | 1.00 | 1.00 | 1.00 |
| Dem 10 | 1.00 | 1.01 | 1.00 |
| Dem 4a | 1.00 | 1.01 | 1.00 |

T

It is encouraging to note that the efficiency of the active
set strategy was uniformly close to the best possible value. The
differences are attributable to several factors. First, the best
possible efficiency figure assumes that the inactive constraints
are never evaluated. The active set strategy though must actually
check these constraints when testing new maybe-record points.
Second, constraints which are inactive at optimality may be in the
active set early in the trajectory before being dropped from I+.
Finally, there is a slightly increased overhead for the active set

strategy algorithm.

The experimental results thus confirm our expectations, and
imply that the active set strategy is not much help on problems

where more than about 3/4 of the constraints are active at

..................
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optimality. Of course, the strategy might work very well even
where only one or a few constraint functions were inactive at
optimality but were also dramatically more difficult to evaluate

than the others.

'Qf As the iterations of the algorithm progress, the active set

strategy’s current estimate of n+, which we call E+, starts at zero
and is then adjusted repeatedly until a sufficient active set has
been identified. On problems for which more constraints are active

s
at optimality than are required to uniquely determine x , the

R active set strategy typically omits the extra, unneeded constraints
}ﬁ: from I+. This phenomenon is illustrated on test problem Dembo 6,

for which ;+/m = .67, and on test problem Dembo 7, for which

;+/m = ,76 .

Figures 4.1 through 4.13 show the variation of ;+/m with
-; iteration number for each of the problems. Dashed horizontal lines
are drawn on the graphs for Dembo 6 and Dembo 7 at ordinate values

corresponding to m+/m for those problems. On Colville 4 no

e
e
]

constraints are ever found to be violated, so ;+ = 0 for the emtire

a
1]

. solution process.

e Yt
de 3722
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(m+)/m vs k
Colville 4
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(m+)/m vs k
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Table 4.4 displayed the function indices used to create Hk for
g: Dembo 8a, using the cyclical constraint examination strategy.
:¥£ Table 4.8 displays the same information, using the active set
g - strategy.
f Table 4.8 Use of Functions in Constructing Hk for Dembo 8a
- - When Active Set Strategy is Used
{ t + +
XX | | number of times function fi was used |
| | in constructing Hk |
= | interval of + ' +
. l iterations Feasibility constraints | I
2 | li=1li=21li=31li=4]i=5]|
- I 1-100 | 1 | 32 | 39 | o | 21 |
Dy | 1201-200 | 5 | 34 | 3 | o | 18 |
’ | 201-300 | o | 34 | 38 | o | 18 |
- | 301-400 | o | 35 | 38 | o | 18 |
| 401-500 | o | 37 | 37 | o | 14 |
¥ | 501-600 | o | 35 | 39 | o | 15 |
| e601-700 | o | 37 | 37 | o | 18 |
| 701-80 | o | 33 | 39 | o | 15 |
| 81-900 | o | 34 | 40 | o | 18 |
| 901-1000 | o | 36 | 38 | o | 17 |
2 | 1001-1200 | o | 36 | 37 | o | 16 |
' | 1101-1200 | o | 37 | 37 | o | 14 |
| 1201-1300 | o | 36 | 37 | o | 17 |
| 1301-14900 | o | 36 | 38 | o | 15 |
| 1401-1500 | o | 36 | 36 | o | 17 |
| 1s01-1600 | o | 35 | 40 | o | 21 |
- | 1601-1700 | o | 34 | 39 | o | 21 |
i | 1702-1800 | o | 35 | 38 | o | 21 |
oo | 1801-1900 | o | 36 | 38 | o | 18 |
s Note that the active set did not need to cut on the fourth

found wviolated once

constraint, which the cyclical strategy had

during the first 100 iterations.
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4
.1
It is interesting to mnote when the final active set was ':
identified in terms of cuts being made, for the active set strategy ;
- versus the cyclical strategy. Table 4.6 stated that the active set i
S strategy did not have I+ stable until 22% of the iterations had
z i passed, although the cyclical strategy information of Table 4.4
; indicates that constraints were not needed after the first 200 ;
iterations (perhaps, 10%). N
Table 4.8 demonstrates that the active set strategy is no a

slower than the cyclical strategy im ceasing to make cuts on
:: inactive constraints. However, the active set strategy did keep

the first constraint on the active 1list until iteration 400,

because of its arrangement of the drop—check intervals.
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4.3 Examining a Record Constraint

In Part 1 we defined a solution-preserving cut as one which
*
ensures that x € Ek+1' under the hypotheses of NLP and convexity

of fl...f Ve demonstrated that feasibility cuts are

m+1°

solution-preserving if Si C H: and that optimality cuts are
solution—preserving if G C H;. For center cuts, this means that
feasibility cuts when xk ¢ S and optimality cuts when xk € S are
solution-preserving. All cuts discussed here are center cuts where

= xk and gc = gi(xk).

In 4.2 we demonstrated that it is sometimes possible for an
optimality cut to be solution—preserving even when xk € S’, In this

section, we specify when such cuts are solution—preserving and

analyze a constraint examination strategy using such cuts.

In general, an optimality cut is solution-preserving if

G C H:. For center cuts, Hk supports
L, ={x!£f (x) ¢f . (x5)
m+1 m+1 = "m+l )

Thus, (center) optimality cuts are solution-preserving if G C Lm+1,

that is, if xk € G', Optimality cuts when xk € G’ are solution-

preserving regardless of whether xke S.
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To determine whether xk € G we test whether fm+1(xk) < £f, In
effect, the record value gives rise to a new constraint,
fm+1(x) < £%, which we call the record constraint.

This record constraint has a desirable property. As new
record values are found, the record constraint becomes more
restrictive and is therefore always in the active set of
constraints. Because the record constraint is always active, it
seems plausible that examining it before examining the feasibility
constraints may speed EA convergence. Below, we analyze a strategy

which tests the record constraint first.

In this strategy, we first test fm+1 to see whether xk € G, If

xk € G', we make an optimality cut. If not, we test fl...fm to see

if x* €8, If xX€ S’, we make a feasibility cut. If xX € (SN G),
a new record point, then we update fr and make an optimality cut.

We call this the gecord-first strategy.

We call the EA presented in Part 1 a feasibility—-first
strategy since it first determines whether xk€ S. If xke S, it
then evaluates fm+1(xk) to determine whether xk is a record point.

The feasibility-first strategy thus categorizes xk as being in §',

or in SN G', or in S N G,
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In Table 4.9, note that xk is a member of ome of the regions
$'N G', SN G, SN G’, or SN G. Depending on which region xk is
in, the two strategies vary as to which set xk is classified as
being in, which cut is made, and how many function evaluations are
required to make the classification and cut. Suppose, for example,
that £ € (SN G'). The feasibility—first strategy would first
test whether xk'€ S, and evaluate all m functions doing so since xk

is feasible. Thean, f is evaluated, SO m+1 function

m+1
evaluations were required before the feasibility—first strategy
makes its cut. On the other hand, the record-first strategy would

first evaluate fm+ Since the record constraint is violated here,

1.
the cut can be made after only 1 function evaluation. Entries such
as 1...m mean that a violated feasibility constraint may be found

as the first function evaluated, or not until the 1last ome is

checked.
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Table 4.9 Comparison of Feasibility— and Record-First Strategics

If xk is a member of...

n e

required to cut

Feasibility—first: Istne Ils*ne | sne' | snNne |
| xF classified in Il s* | s | sne | sne |
: | | I | I
| cut made | Feas. | Feas. | Optim. | Optim. |
| I I | I [
| + t +— + +
| function evaluations | 1...m | 1...m | m+1 | m+1 |
| required to cut | I | |

k.
If x is a member of...

Record—first: Is'ne' Is'neg | sne'l sne |
| xF classified in | ¢ Is'ne |l 6 | sne |
| | | I I I
| cut made | Optim, | Feas. | Optim. | Optim. |
| | | I [ I
I function evaluations : 1 | 2...m#v1 | 1 | m+1 :

I i |

Note that the strategies differ in whether a feasibility or an
optimality cut is made only if xk € ($'N G'). VWe do not know
whether one cut is better than the other, when both can be made.
Our policy of cutting on the first violated constraint does not

permit strategies where both record- and feasibility-constraints

can be simultaneously found to be violated.

There are considerable differences between strategies in the

number of function evaluations required before a cut is made. The
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record-first strategy saves up tom — 1 evaluations if xk is in
S’ N G', saves exactly m evaluations when xk is in S NG’, and
requires only one more evaluation when xk is in S’ N G. How this
affects our experimental results will depend on the percentage of
centerpoints in each region, and on how early a violated constraint

is found when searching the m feasibility comstraints.
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4.3.2 Experiments and Results

Ve do not incorporate an active set strategy for the
feasibility constraints so that we can more easily isolate the
improvement due solely to use of the record constraint, The
feasibility—first strategy used for comparison purposes will be the

cyclical method of 4.1,

Figures D6.1 throngh D6.13 of Appendix D6 display the
error—-versus—effort curves for the 13 test problems, comparing the
record-first strategy to the feasibility—first strategy.

Table 4.10 summarizes the accuracy and efficiency findings.

Table 4.10 Experimental Results for the Record-First Strategy

re

: I accuracy | efficiency I
I prob | Feas | Record | Feas | Record |
| cor1 | -16.83 | -16.60 | 1.00 | o0.89 |
l cor2 | -14.36 | -14.33 | 1,00 | 0.97 |
l cCo13 | -15,11 | -14.98 | 1,00 | 1.01 |
|l cor 4 | -16.58 | -16.58 | 1.00 | o0.66 |
| cor8 | -14.99 | -15.85 | 1.00 | 0.76 |
| pem 1b | -8.30 | -9.28 | 1.00 | 0.99 |
| Dem2 | -14.48 | -14.43 | 1,00 | 1.01 |
| pem 3 | -14.38 | -14.46 | 1.00 | 1.00 |
| Dem 4a | -15.55 | -15.40 | 1.00 | 1.07 |
| Dem s | -15.08 | -14.5¢ | 1.00 | 0.96 |
| pDem 6 | -17.57 | -17.50 | 1.00 | o0.98 |
| Dem 7 | -13.36 | -13.31 | 1.00 | 1.05 |
| Dem 8a | -14.64 | -15.24 | 1.00 | 1.01 |

Averaged efficiency: 1.00 0.95 |




Notes:

.« The measure of accuracy wused is the lowest 1log
relative combined solution error attained.

.. The measure of efficiency used is PSCPU time
relative to PSCPU time nused by the feasibility—first
(cyclical) strategy.

The new strategy does not degrade the accuracy of

algorithm, The efficiency is slightly degraded on Dembo 4a

129

the

and

Dembo 7. The most mnoticeable improvements in efficiency are on

Colville 4, Colville 8, and Colville 1.
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PART 5

DISCUSSION AND CONCLUSIONS

Previously, the ellipsoid algorithm had been shown to
correctly solve a large number of nomlinear programming problems
(both convex and nonconvex) and to do so with effort which is
competitive to other solution techniques. In this study, we
analyzed variants of the EA to determine whether we could improve
the accuracy or efficiency with which it solved a set of 13 test
problems, There were two main types of variants, those which
created deep cut hyperplanes, and those which determined the order

in which the feasibility constraints were examined.

Five deep cut EA variants were tested which did not require
using a linesearch to create Hk. and three deep cut variants were
tested which did require & 1linesearch. Before conducting the
linesearch experiments, various linesearch subroutines and
tolerances were tested so that the deep cut variants used the most
efficient combinations. None of the deep cut variants increase the
accuracy of the algorithm in a systematic way. Therefore, the
merit of each will be based on the efficiency relative to center
f5 ’ cuts, and the number of problems on which it did not converge to
the optimal point. Using these measures of merit, two of the

nonlinesearch and all of the 1linesearch deep cuts are not
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competitive with center cuts. These cuts, super—cuts using local
data, Kelley—-cuts using local data, and the searches along d, -g,
and x° - xk, degrade algorithm efficiency and sometimes converge to

nonoptimal points.

Five EA variants were tested which examine the feasibility
constraints in different ways. Three variants involve different
ways to examine the entire set of feasibility constraints. One
variant uses an active set strategy to minimize function
evaluations. The final variant here uses the record objective
function value to impose a constraint which can be examined before
examining the feasibility constraints. Determining merit among
these five variants is easy, since accuracy can be eliminated as a
criterion (all five examination strategies attained essentially
identical accuracies). Thus, the only measure of merit remaining
is efficiency. The cyclical strategy was found to be more
efficient than the top—down strategy of [12] or the random
strategy. Both the active set and the record-first strategies had

better efficiencies than the cyclical (feasibility—-first) strategy.

Thus, three deep cut and two constraint examination variants
improved the EA efficiency. Table 5.1 compares the accuracies of
these five improved variants on the test problems, and Table 5.2
compares the efficiencies relative to the «cyclical, feasibility-

first strategy using center cuts.

A S . L T L L e G T

e

PV w TR T

N S S I Y

el ke A bid




........................

T e T, s s ahOfant Aafiinin St hat i o SRS D et el PR A R e

( ]
132 2
]
.-
Table 5.1 Summary of Accuracies for the Improved EA Variants -4
| | Center | Super | | Kelley | | | f:
N | probleml Cyclic |(center)| Extend |(center)| Active | Record | ;1
|l Cor1 | -16.83 | -16.50 | -16.28 | -16.88 | -16.10 | -16.60 | :
| cCo1 2 | -14.36 | -15.14 | -14.61 | -14.11 | -14.35 | -14.35 |
| co1 3 | -15.11 | -14.96 | -14.97 | -14.89 | -14.92 | -14.98 |
| cCo1 4 | -16.58 | -3.61¢| -16.58 |(-16.58)| -16.58 | -16.58 | :
|l Co18 | -14.99 | -15.85 | -15.85 | -14.97 | -15.85 | -15.85 | —~
| Dem 16 | -8.30 | -8.93 | -8.30 | -8.72 | -8.87 | -9.28 | 2
| Dem 2 | -14.48 | -14.40 | -14.42 | -14.42 | -14.53 | -14.43 | .
| Dem 3 | -14.38 | -14.41 | -14.35 | -14.32 | -14.41 | -14.46 | ]
| Dem 4a | -15.55 | -15.49 | -15.04 | -15.33 | -15.81 | -15.45 | .
| Dem 5 | -15.08 | -14.74 | -14.67 | -14.40 | -14.63 | -14.56 | -
| Dem 6 | -17.57 | -17.52 | -17.54 | -4.05¢| -17.57 | -17.50 | -
| Dem 7 | -13.36 | -13.42 | -13.42 | -9.05¢| -12.35 | -13.31 | ”
| Dem 8a | -14.64 | -15.89 | -15.34 | -14.66 | -14.71 | -15.24 | -
Notes:
.. The measure of accuracy used is the lowest log relative !?
combined solution error attained. ?i
) .

.o ¥ denotes those problems which did not converge to x . ';
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p
B
E‘ Table 5.2 Summary of Efficiencies for the Improved EA Variants .-‘
~ 1
- + + 4 + : + + 1
: | | Center | Super | | Kelley | | |
| problem| Cyclic l|(center)| Extend |(center)| Active | Record |
. l Cor1 | 1.00 [ 0.83 | 0.82 [ 0.92 | o0.71 | o.8 | <
| cor2 | 1,00 | 0.87 | 0.97 | o0.93 | o0.98 | o0.96 | )
l] co13 | 1,00 | 1,09 | 1,06 | 0.82 | 0.73 | o0.98 |
l cor4 | 1,00 | 1.07* | 0.99 | (0.99) | o0.67 | 0.65 |
l co18 | 1.00 | 0.87 | 0.90 | 1.01 | 0.63 | 0.79 |
| Dem 16 | 1.00 | 0.93 | 0.93 | 0.78 | 0.97 | 0.95 |
| pem2 | 1.00 | 0.91 | 0.97 | 1.06 | 0.85 | 0.98 | -
| pem 3 | 1.00 | 0.99 | 0.96 | 0.88 | 0.83 | 0.99 | 1
| Dem 4a | 1.00 | 0.93 | 0.87 | 0.80 | 1,00 | 1.06 | g
| Dems | 12.00 | 0.89 | 0.94 | 0.8 | 0.98 | 0.95 | 3
| Dem6 | 1.00 | 0.96 | 0.90 | 0.29* | 0.99 | o0.98 | 8
IDem7 | 1.00 | 0.93 | 0.90 | 0.75¢« | 1.04 | 1.05 | 1
| pDem 8a | 1.00 | 0.92 | 0.93 | 0.8 | 0.93 | 1.00 | i
Avg: | 1,00 | 0.93 | 0,93 | o0.89 | o0.87 | 0.95 |
Notes: )

.. The measure of efficiency used is PSCPU time relative to
PSCPU time used by the cyclical strategy using center cuts,

.
.. ® denotes those problems which did not converge to x .

When examining these tables to determine which EA variant to
implement, the first question is whether the problem or subproblem
is known to be convex or linear. If not, perhaps center cuts
should be used in preference to super— and Kelley-cuts. The

. remaining discussion assumes that super— and Kelley—cuts have not

been eliminated from consideration.

The five improved variants do not have to be compared against

one another because they are not mutually exclusive to use. It is
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true that either an extended—cut or a super-cut must be chosen when
an optimality cut is desired. Extended cuts might be the first
preference because they have equal efficiency with no accuracy
degradation., Recall that extended-cuts often have an orientation
which would cause a negative depth of cut, and so an alternative
optimality cut must be chosen. We selected center cuts for this
analysis, but super—cuts could be used instead to gain the benefits

of using both improved optimality cuts,

A single EA variant can thus combine all of the five variants
which improve efficiency. In particular, the record-constraint is
examined first. If the =record comstraint is satisfied, then the
feasibility constraints are checked using an active set strategy.

. . . r ) SW ¥ r
Optimality cuts are extended-cuts if (x° - x) gm+1(x ) <0, and
super—cuts using the centerpoint gradient if not. Feasibility

cuts are Kelley—cuts using the centerpoint gradient.

Some of the individual components of this strategy might not
be expected to combine their improvements in an additive manner.
For example, the efficiency gains shown here for both the active
set strategy and the record-first strategy seem to come from
reducing the feasibility—checking effort of Table 4.3. We note
that on Colville 4, which has no active feasibility constraints,

the active set strategy saves about 33% of the cyclical effort, and

the record—first strategy saves about 35% of the same effort, Thus
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both strategies appear to have saved almost all of the 39% of
effort which the cyclical strategy expended on feasibility
constraint examinations. Colville 8 &and Colville 1 were the
problems on which both of these variants had the next best

efficiencies.

On the other hand, some of the individual compomnents of this
proposed strategy may well have a synergistic effect when used
together. For example, we saw what a marked efficiency improvement
super—~ and extended—cuts achieved with a very low utilization
frequency. The record-first constraint examination strategy
classifies more of the centerpoints as being in G', so more super-—

and extended—cuts cuts will be made.

The significance of this is in the efficiency improvement
which is possible in each case. We demonstrated that the active set
strategy achieved almost all of the possible efficiency improvement
that it could, and that its improvements were linear in m+/m. On
the other hand, doubling the percentage of iterations on which
deep cuts are made results in squaring the volume reduction

relative to center cuts.

In addition to suggesting algorithms which combine the five
efficiency-improving variants, there are several other extensions

of the present work which deserve further investigation,
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First, the success of the active set strategy presented here

suggests that it might be worthwhile to study whether comparable
improvements in efficiency could be obtained with a simpler version

in which every maybe—record point is checked for S—feasibility.

Second, we have treated the constraints in NLP as general
nonlinear constraints. The active set strategy could be slightly
improved if some constraints were linear, since it can be
analytically determined whether a linear comnstraint is inactive
over Ek‘ If the functions fi are linear for i = 1,.,.m+1 (i.e.,
if NLP is a linear programming problem) then when the active set
has been identified the corresponding system of linear equations

3
could be solved to find x .

Finally, the record-first strategy developed here uses the
record value to impose a constraint on the objective function
value, and tests this constraint before the feasibility
constraints, We used the record value to impose the objective
function constraint since our formulation of NLP assumed that no

*
other knowledge of f (x ) is known, On some problems, a

m+1

.
reasonably tight upper bound on fm+1(x ) can be predetermined

(perhaps from a physical problem being modeled). If the upper bound

is fn. then our record-first strategy could be generalized imnto

an objective—first strategy where the objective function constraint




137

imposed is

£ .1(x) & Min (£, £51.

.
Also, imposing an upper bound on f (x ) can be used even

m+1
when no upper bound is known from the nature of the problem or from
a record value that was found. For example, a branch~and—-bound

. .
strategy could be devised to find fm+1(x ) and x , using a sequence

{f?} of trial upper bounds.
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Appendix A. An Adaptive Hybrid of Regula Falsi and Bisection

Let x(a) = xk + ad be the left endpoint of a line segment,
with £(x(a)) > 0, Similarly, 1let x(b) = x* + bd be the right
endpoint of the line segment, with f(x(b)) < 0, We want to find A

such that x(A) is an approximation to the zero of the function.
The bisection method uses the approximation
Lb =a+ (b - a)/2,
while the regula falsi method uses the approximation
kr =a + f(x(a))(b - a)/(£(x(a)) - £(x(b))).
We use a hybrid of these two, attempting to achieve the faster
convergence of regula falsi on well-behaved functions, while
retaining the faster convergence of the bisection method on less

well-behaved functions.

The approximation we use is a convex combination of the two

approximations above

A= akr + (1 - a)lb
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where o is the robustness parameter. If the robustness parameter
is at its maximum value of 1, then the regula falsi approximation
is used; at the minimum value of 0, the bisection approximation is
used. The initial value of the robustmness parameter is an input to

the subroutine; we set it at 1.

The algorithm compares its actual comvergence with that of the
bisection method, and uses an adaptation parameter Tt to control the
value of o. If on an iteration the algorithm reduces the interval
of uncertainty by at least half, the algorithm increases the
robustness parameter toward 1. Conversely, on iterations when the
interval of uncertainty is not halved, o is decreased toward O.
The new value of ¢ is a convex combination of the present value and

the desired endpoint value. The control algorithm is

1. Initialize a and b.
2. Let ¢ =b - a.
3. Perform an iteration, and update a and b.

4. If (b - a)/e > .5, let ¢ =t0 + (1 - v)o = (1 - 7)o,
Otherwise, let 0 = t1 + (1 - T)o =1 + (1 - 7)o,

5. Go to 2.

The adaptation parameter is also an input to the subroutine;
we use a value of 0.5. A further advantage to the hybrid algorithm
is that it also can be used as a simple regula falsi or bisection

algorithm, if the adaptation parameter is set to O, and the
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Appendix B. Probability Analysis for Drop-check Intervals

Assume that we are starting a new drop—check interval and that
the number of constraints in I+ is m+. Let us temporarily assume
that m+ > 1. Each nupcoming Phase 1 iteration will increment the
violation count for ome constraint in I+. To calculate the minimum
length of the drop—check interval, we model the probability
distribution of violated constraints as a multinomial distribution
with an equal probability that each truly active comstraint is

found to be violated on a Phase 1 iteration.

We define success of the drop—check to be when all truly
active constraints in I+ are kept in I+; that is, no active
constraint is dropped from I+ because it had a zero violation count
when checked. Under the hypothesis that all m+ constraints in I+
are truly active, we calculate the drop—check interval as the
number of Phase 1 iterations required to achieve at least a 0.99
probability of a successful drop—check. After k = Ak Phase 1
iterations in this drop—check interval, let v be the m+-dimensiona1

vector of violation counts for the constraints in I+. A drop—check

is successful if and only if all elements of v are positive,
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The probability of success is then the ratio of the number of
+
e permutations of v where all m elements are positive, to the number

of permutations of v. That is

22..2 -

Ly ' v, V v+ (v 1)(va!).. . (v +1)
" Pr {Success} = 1 2 = 1 X 2 2
(m )

G- where: v € {1...} for i =1...mn"

This probability is more easily calculated in a recursive

manner. Let us define p(k,m+) as the above probability of

i: success. . The event of failure for this drop—check can be
partitioned into failure when only one element of v is positive,
failure when exactly two elements of v are positive, and so om up
to failure when exactly (m+ — 1) elements of v are positive. The
probability that exactly j elements of v are positive is the number

of permutations of v having exactly j positive elements divided by

the number of permutations of v. The number of permutations of v

having exactly j positive elements is the number of ways of

+

- choosing different sets of j positive elements from the m

- available, times the number of permutations of j elements where all
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j elements are positive. Recall that p(k,j) is the number of
permutations of j elements where all j elements are positive,

divided by all permutations of j elements, We therefore have

p(k,m+) = Pr {Success}
= 1 - Pr {Failure)
m+-1
=1- } Pr {Failure with exactly j positive}

i=1

o -1 <m+> jk p(k,j)
j (m+)k

i
[
|
nINA

1

We define p(k,1) = 1 since that single constraint surely has all k

violation counts and thus it can not be dropped erroneously.

Define k(m') as the least k such that p(k,m’) > 0.99. The
results of these recursive calculations for m+ = 2...50 showed the
relationship between m+ and k(n+) plotted in Figure B.1. To avoid

having to store a tabulation of the exact results, we approximated
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the relationship with a quadratic function. The approximation used

was k'(m+) = pl(n+)2 + p2m+ +p,. Using the EA, we solved the
nonlinear program
50
min ) [k’ (") - k(n"))?
m =2

subject to k' (m") 2 k(n"), m 2...50

and found the optimal point to be:
Py = +0.02493343705355995
P, = +7.385572218142679
Py = -6.869633070032582

The approximating function is also shown in Figure B.1l.

The discussion above assumed that m+ > 1, and did not specify
the effect of Phase 2 iteratiomns. If m =0 then there is mno
active set from which to drop comstraints, and drop—checks are not

used.

If the proportion of Phase 2 iterations during a drop—interval
is small, we ignore these iterations as not contributing any
: - information about which constraints are active. However, if a
sufficiently long interval contains only Phase 2 iteratiomns, the

algorithm should eventually drop all constraints in I+ as
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inactive, We therefore perform the drop—check when either the

Phase 1 or the Phase 2 iteration count exceeds k’(m+).

If m+ = 1, then the single active constraint is found violated
on every Phase 1 iteration, so a single Phase 1 iteration during
the interval means a successful drop—check. The single constraint
will be dropped only if all k iterations are Phase 2 iterationms,

Since k(1) is undefined in the above, we use k = k’(2) if m+ =1,
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k and k' vs m+ )
m
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— = k'(m+) §

400.00 480.00
]
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Figure B.1 k and k' vs m+
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Appendix C. Analysis for Add-check Intervals

Again, let m+ be the number of constraints in I+. If m+ =m,

- then all record points found are true record points, and the
active set strategy does not need to perform add-checks or save
ellipsoid data for possible backtracks. The discussion below

. +
considers m < m,

The initial add—-check interval is taken as Ak+ = 1, meaning
that every maybe—record point is tested to see if it is also
I -feasible. When we feel that I also has constraints that might
be violated, this value is appropriate since all cuts are then
solution-preserving, However, as I+ grows more stable, we would
like the algorithm to proceed towazd a computationally more
efficient interval. There is a tradeoff in the computational

factors involved.

Lengthening Ak+ decreases the effort spent checking I . The
amount of effort saved varies with the number of constraints in I
versus I+. When m' = m, there is no effort associated with
checking 1 , and the add-check interval should not grow. That is,
a multiplicative growth factor of 1 should always be used when
m+ = m, VWVhen m+ = 0, an add-check is highest in effort since

checking I requires all m constraint functions to be evaluated.

To minimize this high cost, we would permit the growth factor

. o e e
.....
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{ to approach the upper bound of 2 when m+ = 0.

{; The other computational effort to consider when lengthening

e - Ak+ is the penalty incurred performing iterations after a

:3 backtrack. The effort required for the EA update formulae is of

?é order n2. For these reasons, we use a growth factor which is only
; permitted to double the add-check interval whem n =1, and

Li decreases toward 1 with n>.

.? We set r = m+/m and define the growth factor u as

2 1
- w=1(1) +(1-1)(1+n2). 3
A .:
|
‘: This yields the desired values at the endpoints, u =1 and u = 2, g
E An adaptive method is used which adjusts intermediate values of u :
" closer to 1 or 2 as appropriate, to control algorithm behavior. l;
.3 The mapping uses a control factor =z, and produces an adjusted ﬂ
SQ growth factor w by .i
Iy i
2 '==1+(u_1)(z-1)/(2-z) I?

A value z =1.5 causes w =32z; z =1 causes w =1; and z = 2 is

defined as w = 2 unless u = 1 (where we use w 1 to ensure no
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growth when r = 1),
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The growth factor is adjusted closer to 2 when the algorithm k

is stable and performing well, and closer to 1 when the contrary is
true. The control factor z is initially 1.5 to have w = z, 1If a
. drop—check does drop a constraint from I+, then z is allowed to be
no greater tham 1.5, since I+ must be changing. If an add-check
causes a backtrack we reduce the control facto: to help avoid this

in the mnear future. If the algorithm had bypassed checking a

maybe—record point, and an add—check later finds that we still have
(S N G)# B, then we increase the control factor z since bypassing

po’nts seems safe.
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The specifics of how we use these parameters are:

a) On _initialization:

r=90
z =1.5
At =1
b) ¥hen a drop-check does drop & comstraint from I':
r = m+lm
z = min(z,1.5)
At =1
c) - k X
r = m+/m
z =1+ ((z - 1)/2), if this causes a backtrack
A’ =1
d) When an add-check finds x~ € X :
Akt = axtw

z=2-((2 - 2)/2), if there was a maybe—-record point

which we avoided testing

The Ak+ vglue is stored as a floating point number to allow
the interval to grow under growth factors less than two. We use
[Ak+ﬂ when determining whether or not to test a record point. For
example, if the current interval is 2.6 them every second record

point will be tested.
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