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SECTION 1

INTRODUCTION

Active detection and tracking of underwater targets
requires knowledge of how they reflect sound waves. For this
reason, the Navy has a continuing interest in acoustic
scattering. Acoustic or sound wave scattering refers to the
way a pressure wave bounces off obstacles in its path. We
consider a source, a scatterer, and a receiver which monitor
the direct signal and the signal scattered from the obstacle.
There are two types of scattering depending on where the
sound waves are observed. If the source and the observation
points are one and the same, the problem is one of monostatic
scattering. Radars (in the electromagnetic case) and active
sonars usually operate this way. When the source and the
observation points are not coincident, we call it bistatic
scattering (see Figure 1). Monostatic scattering is simply a
special case of the bistatic problem. When the target lies
close to the line Zoining the source and the observation
points, the probl~-- is one of forward scattering. 1In this
report we will co-=ider the general case of bistatic
scattering and in certain sections emphasize forward
scattering.

Unlike electromagnetic waves, the acoustic pressure
waves are scalar and their study is somewhat simpler than
that of their electromagnetic counterpart. The exact
solution to the problem of scattering of a scalar wave from a
sphere was obtained as early as 1863 by Clebsch. By 1890, the
scattering from ellipsoids was solved as well. These shapes
were tractable because they are amenable to the technique of
separation of variables which involves using a coordinate
frame where the field can be expressed as a product of
functions that depend on individual coordinates. However, no
other bounded shape allows the use of this technique. All
subsequent sclution techniques rely on approximations and
series expansions of various kinds.

The approximations are based on the interrelationship of
the parameters of the scattering problem: the wavelength of
the sound wave, the maximum physical dimension of the
scatterer and the distances of the source and observation
points from the scatterer. Typically, the source and
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observation points are assumed to be located far (compared to
the wavelength) from the scatterer.

We will next describe the experimental setup used to
obtain the measurements of scattered field. We will then
explain the validation of the measurements by using the
sphere as an example. We will also present theoretical as
well as measured results for scattering from several
interesting bodies.

The theoretical derivations appear in two appendices.
In Appendix A, we derive the exact solution to the problem of
acoustic scattering from a liquid sphere. Appendix B
contains the derivation of Kirchhoff approximation applied to
bistatic scattering of scalar waves. Using the sphere as an
example, we have elaborated the conditions under which the
Kirchhoff approximation holds well.
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SECTION 2

EXPERIMENTAL SETUP

The experiment was conducted in the Naval Surface
Warfare Center (NSWC) Hydroacoustic Facility which uses a
tank 20-feet deep and 30-feet in diameter. The source,
scatterer, and receiver were placed at a depth of 10 feet.
Two E27 transducers were used as the source and the receiver.
The actual geometry of the experiment is shown in Figure 2.
The source emits a long pulse with a duration of 1 to 2 msec,
i.e., 5 to 10 feet in length. A time gate was used to
observe both direct and scattered pulses. This, in effect,
gives a continuous wave system but without reflections from
the walls of the tank.

The experiment was done on two styrofoam objects: a
frustum of a cone with its axis oriented vertically and a
sphere. The styrofoam sphere was 4 inches in diameter. The
frustum of the cone was 6-inches high, with diameters of 0.75
inch at one end and 2.5 inches at the other. The
measurements were made at two frequencies: 50 kHz and 125
kHz.

Validati £ M !

The experiment was validated by comparing the
measurements for scattering from the soft styrofoam sphere
with the exact solution for this problem. As shown in
Figures 3 and 4, the experimental results match well with the
theoretical values.

3/4
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SECTION 3

RESULTS

The measurements’ from the NSWC Hydroacoustic Facility,
shown in Figures 3, 4, and 6, display the total received
power (in dB) in a polar plot. The total received power is
the magnitude of the complex sum of the direct and scattered
waves at the receiver. 1In the polar plots, the angle
corresponds to the angular location of the receiver relative
to the line joining the source and the scatterer.

Figure 3 shows the scattering at 50 kHz from a styrofoam
sphere with a diameter of 4 inches. Figure 4 shows
measurements for the same sphere at 125 kHz. At 125 kHz, the
transducer generates a very narrow beam so the pattern drops

off rapidly as we move out of the -30° to +30° zone in

azimuth. However, within this zone the experimental results
agree well with the theory. Figure 5 displays the predicted
results for the sphere from both the exact solution and the
Kirchhhoff approximation. Note that the discrepancy in the
forward direction is exaggerated because of an approximation

we used when evaluating the field predicted by the Kirchhoff
approach.

Figures 6 and 7, respectively, show measurements from
the frustum of a cone and the values predicted by the
Kirchhoff approximation. The computation of the field
predicted by the Kirchhoff approximation was handled properly
in this case. Hence, the discrepancy is reduced in the
forward direction between the measured and predicted fields.

The next two figures show polar plots for calculated
bistatic scattering from spheres of radii 2 and 4
wavelengths., Figure 8 is for soft spheres and Figure 9 for
rigid spheres. Figures 10 and 11 show calculated bistatic
scattering from liquid spheres containing a fluid whose
density is the same as that of the fluid outside. 1In Figure
10, the speed of sound inside the sphere is slightly 1less
than that in the surrounding medium. In Figure 11, the
density as well as the speed of sound are the same inside and
out, but the interior fluid has a small loss (a black
sphere) .
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Figure 12 shows the calculated results of bistatic
scattering from a cylinder with hemispherical end caps as
calculated by the Kirchhoff method. The cylinder is 12-
wavelengths long by 2- wavelengths in diameter. The
concentric circles represent 10db steps. The¢ forward peak is
normalized with respect to the outer circle. Note that the
specular reflection (at 30°) is about 10db down from the
forward scattered power. Calculations were also made for
bistatic scattering from cylindrical and spherical metal
shells. It is well known that these structures show
resoriances in the backscattered amplitude. However, these
resonances are much less pronounced in the forward scattered
field. 1In fact, the forward scatter for spheres and
cylinders with thin shells is very similar to that for a soft
scatterer. Figure 13 shows the calculated results of
scattering from a spherical shell of aluminum with thickness
0.01 times the radius at the resonant frequecy. On the same
figure, we also show the scattering from a soft sphere to
emphasize the similarity in forward scatter from the two
scatterers. Figures 14 and 15 displays the calculated results
for the same pusoblem at fregquencies 10 percent higher and 10
percent lower than the resonant frequency. Figure 16 shows
the backscatter amplitude versus frequency for the same
spherical shell of aluminum.
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SECTION 4

CONCLUSIONS

In this report, we described the use of the Kirchhoff
approximation technique to solve for the forward acoustic
scattering from several shapes. We found that regardless of
the composition of the scatterer, soft, rigid, or resonant
shell, there is always a strong forward scatter signal. 1In
the *30°azimuthal zone, the shape of this forward scatter
pattern can be computed, with good accuracy, by using the
Kirchhoff approximation to solve the Helmholtz integral
equation subject to the appropriate boundary conditions. We
also found that the backward scattering can be reduced at
some frequencies; however, the forward scatter energy also
exists at all frequency.

7/¢
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FIGURE 6. MEASUREMENT OF SCATTERING FROM
A CONE AT 50HZ
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FIGURE 8. EXACT SOLUTION FOR SOFT SPHERES OF
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FIGURE 7. PREDICATED MEASUREMENT FROM THE
KIRCHHOFF APPROXIMATION FOR THE
CONE AT 50HZ
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FIGURE 12. SCATTERING FROM A CYLINDER WITH FIGURE 13. SCATTERING FROM A SOFT SPHERE AND
HEMISPHERICAL END CAPS BY THE A SPHERICAL SHELL OF ALUMINUM AT
KIRCHHOFF METHOD RESONANT FREQUECY

FIGURE 14. SCATTERING FROM A SOFT SPHERE AND A  FIGURE 15. SCATTERING FROM A SOFT SPHERE AND

SPHERICAL SHELL OF ALUMINUM AT A SPHERICAL SHELL OF ALUMINUM AT
FREQUENCY 10% HIGHER THAN ITS FREQUENCY 10% LOWER THANITS
RESONANT FREQUENCY RESONANT FREQUENCY

12
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APPENDIX A

EXACT SOLUTION FOR SCATTERING FROM A LIQUID SPHERE

Consider a plane wave propagating along the z-axis.

Suppose this wave impinges on a liquid sphere of radius a at
the origin. Let the point of observation be at (R,6)in
spherical coordinates. Let Y, Y7 and Yg be the total field,

the incident field and the scattered field, respectively.
Thus, we have

V=Y + VYg

Since the incident plane wave is propagating along the
z-axis, we get (see Reference A-1)

— oikz _ .ikrcosb
yr=e e

(- -

= Ya 3, (k)P (cosa) (A-1)
n=0

. ’n
where j,(x) = E;Uq(x), q= n+%y Jg(x) is the Bessel
function, and P,(cos®) is the Legendre polynomial.

A-1
Stratton, J. A., Electromagnetic Theory, McGraw-Hill Book Co.,
Inc., New York, NY, 1941, pp. 408-409.

A-1
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Multiplying both sides of Equation (A-1l) by Pj (cosa)sina

and integrating with respect to a , we get

b1

N = ikrcos® p, c i
21+l ajjj (kr) (Je rcost p; (cost) sina da (a-2)

If we let x = kr , we can show that
d™3, (x) 20 (nn?
ax® g © (2n +1)!

and hence,

n
20 (nH?2 _2n +1

@n S} ap = > i Jcosna Pn(cosa)sina da (A-3)

0

b1

Let I, = Jﬁosna Pp(cosa)sin da. Then, integrating I,

by parts, we get

nl -(n+l)In + nl

n n-1

In = zmFr 'n-1

Substituting the value of Iy ,I; ,I, ..., and using

induction we get

20+l (n1y2
n = (2n +1)!

Therefore,

an = (2n+1) 10
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(- -]

v = 2iM(2n+1) j, (kr) P, (cos®) (A-4)
n=0

Since the scattered field outside the sphere consists of

outgoing waves at distances far from the sphere, we write

o0

Ws = Ycphy ) (k) Py (cosa) (A-5)
n=0

where hn(l) jpt iy, Inside the sphere, the field is

(- =]

¥ =Yg = b3, (kr) P (cosa)
n=0

At the boundary of the sphere, the pressure inside must
be equal to the pressure outside. Therefore,

Y [iP(2n+1) 3, (ka)+ e hy (1) (ka) ) P, (cosa)
n=0

= Yb,i, (ka) Py (cosa) (R-6)
n=0 :
or,
[iD(2n+1) jp (ka)) + cphy (2D (ka) ) = b j, (ka) (A-7)

Let p; and k;, respectively, be the density and the
propagation constant inside the sphere. Let pp and kj; be the

corresponding guantities outside the sphere. Let v(r) (1) and
V(r)(z), respectively, be the radial velocities inside and
outside the sphere. Applying the boundary conditions for the

radial velocities, we obtain
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9
iwp or

va) (1) = v(a) (2 and v(r) =

Hence,

k % '
_L b_3,' (ka) = =% [iP(2n+1)3," (ka))+ cyhy () (ka) ]
Pi P2

or,

_ i%(2n+1) (273" [ (X7) I (%2) =20F 0 (%9) I ' n (%x5) ]
n 7 223in (x1)h'n (x2) =213 "f (%) Dy (x3)

where 24 'S klpZ' 200 = kzpl, SR kla, and Rg = kza. Note

that the propagation constant need not be real inside the
sphere. When the propagation constant, kl' is complex, we

that the sphere is lossy.

For a soft sphere, pp, = 1 and p; = 0. 1In this case,

get
= _'n + et e
e i*(2n+1) h, ()
2l P2 )
For a rigid sphere, - — 0. In this case,
1 .
jn' (XZ)
S o} e i
Cp = 17 (2n+1) hy ' (x5)

(A-8)

say

we

(A=-9)

(A-10)
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APPENDIX B

THE KIRCHHOFF SCATTERING APPROXIMATION

In this section we will apply the Kirchhoff
approximation to acoustic scattering. First, we will derive
the integral form of the wave equation by using the
divergence theorem. Then we will show how to obtain an
approximate solution of the integral equation by using the
Kirchhoff approximation.

The divergence theorem states that

_[de.f. = jdaf_.ﬂ (B-1)

v S

provided £ has no singularies within v. Here, V is the
divergence of a vector and n is the outward normal to the

surface.

Now consider a system with a unity source at a, a
scatterer bounded by surface Sg, and a point of observation

L. The source may be described by

eiklx - al

iz -al

We wish to find ¢(x) where V2¢ + k2¢ = 0 and appropriate
boundary conditions are satisfied on Sg,
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eiklx' - xl
JFa=d]
and £=GV@ - @VG. Note that G satisfies the wave equation

Let us define an auxilary function G =

except at r' = r.
We will now apply the divergence theorem on f

V. = VG.Vg + GV2¢ — Vo.VG - ¢V2G (B-2)
= -x%Go + k26 =0

Therefore,

[avwws=0= [ dazn (B-3)
v s

Since V must be a volume free of singularities, we must
exclude the singularities at the source position a and the

observation position r from the volume. Let V be the
interior to surface Se, a sphere whose radius is indefinitely

large and exterior to Sg, Sz , Sy, where Sy and S, are

spheres of indefinitely small radius, centered at the source
a and the observation point x, respectively.

Then from Equation (B-3), we get

I daf.n + I daf.n + I daf.n + I daf.n=0 (B-4)
S| Sa Sr Ss
00 G :
£n = GVo.n - ¢VG.n = G-a? - 0 S (B-5)

Over the spheres S; and S, the positive normal is directed

radially towards the center, or, out of the volume V.

Therefore
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% _ 9
on  Or
Hence,

.1’1 = 2 . - t B-6
La N0 or dn { lz'- } e
Now consider
eikix' - rl 96 d eiklz' - xl
j daf.-ﬂ = - [} 3 - a t }
3 lx'- x| or n ==
a
!
(B=7)

~
J
—

where G and 35, are bounded over Sy, and ¢ is the sum of

the scattered field and the source field. The scattered

0
field is also bounded. The source is of the order %'and‘gg
is of the order J? . The surface area of Sz is anr?. BAs r,

r
the radius of Sz, is allowed to vanish, the contribution of

the sphere to right hand side of Egquation (B-7) is

5 eiklx - al ek v =
daf.n = 4nr B e Ve 4T
S, |62 o Eul] r e =nEe
r—0

0
Similarly with I daf.n, ¢ and 52' are bounded over S,. G is
oG

Sr

1 dG
of the order < and is of the order J? . Hence,
r dn F
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[ ¢azn =-4m0 (2)
Sy

On Se, let the radius R 5o, The area of Sw is 4mR? p

Ga—(b d 9 b '
R an ¢'a—n can be written as
dé o b
YE =
0G a L
= a1 +
lan 2 & r3
Hence,

J.daf.-D_ — 0 as R = oo,

Soo

Thus, collecting terms, we obtain

eiklx - al
j daf.n = 0 = 4 ————— 47 (1) + J daf.n
SeetS +S,+Sg = -al Ss
(B-8)
eiklx - al 9
¢ (o) = + = [ qazn (B-9)
=4l 4 Sg

Here n is the inward normal. 1If we replace this with the

usual outward normal, we get
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csifunig] o ¢—aG (B-10)
= e ———————— o SS— aGm™ - —_
) lr-al an dn dn

Sg

This is referred to as Helmholtz's second theorem. While
formally correct, it is an integral equation for ¢ and not

useful for computation without certain approximations.

The Kirchhoff approximation to the Helmholtz integral
assumes that the radius of curvature at every point on the
surface is large compared to the wavelength. The scatterer
itself can be either soft or rigid. To apply the Kirchhoff

approximation, we rave to derive the boundary conditions for

¢ and 52 when the radius of curvature of the surface
n

becomes large compared “o the wavelength. This is the same
as the boundary conditions for scattering from the half

plane. We derive these boundary conditions next.

Let ¢7 ,9g and ¢r be the incident, reflected and

transmitted fields (see Figure B-1l), respectively, given by

o; = eikl(xcose + ysin®)

aeikl(-xcos® + ysin®)

Or
op = Beikz(xcosn + ysinm)

At x = 0 we have
01 + ¢g = Op (B-11)

Hence,

(y+a)eik1ysin9 % Beikzysinn
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Or,
B = (1+a) and k1sin@ = kpsinm

The velocity also has to match at the boundary,»=0, thus,

1 007 _ 1 097 , L ddg

B-12
iwp, ox iwpr 0x iwp; Ox ( )
o 3 ;
??l = iBkycosneik2ysinn (B-13)
X
o d ; ;
??l + ?%& = iklcose(l—a)elklyslne (B-14)
X 3

Combining Equations (B-11), (B-12), and (B-13), we get

x 3
=1 cose(l-a)elklySlne el Beosne tkavsinn
P1
or,
B = (El) P1) cos6@ s
K P2/ cosm
k 8
(kJB) ( ) cos 1155,
P2 -\jk2 -k1251n29
or,

2sin29

n pok1cosB-p1Vkp?-k;
P2k10059+P1\/k22-k1

2sin29

B-6
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At x = 0, ¢p = (1+0)¢7. Since
for soft scatterer, P, 20, ¢ - -1, and
for rigid scatterer, pp — e, — 1.

Hence,
¢r = 0 for an infinitely soft scatterer, and
¢r = 2 ¢; for an infinitely rigid scatterer.
30 90,
A - - = (l-0) —=
E a2 O okl
Hence,
06 0
- - 2 —L for soft scatterer
on on
90
?;— = 0 for rigid scatterer
n

These boundary conditions, when used on the Helmholtz

equation, constitute the Kirchhoff approximation.
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Reflected @

i 1

Incident (I)I

FIGURE B-1. INCIDENT, REFLECTED AND TRANSMITTED WAVES IN SCATTERING
FROM A HALF-PLANE
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