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Planar Embedding of Planar Graphs

Danny Dolevt Frank Thomson Leighton} Howard Trickey*

IBM Research Mathematics Dept.

San Jose Laboratory MIT

Computer Science Dept.
Stanford University

Key words: graph embedding, planar graphs, outerplanar graphs, crossover-free, NP-complete

stract

o) ("‘3;

Planar embedding with minimal area of graphs on an integer grid is an interesting problem in VLSlw
theory. Valiant ¥ gave an algorithm to construct a planar embedding for trees in linear area; he also proved

that there are planar graphs that require quadratic area.

We fill in a spectrum between Valiant’s results by showing that an N-node planar graph has a planar
embedding with area O(N F), where F is a bound on the path length from any node to the exterior face. In
particular, an outerplanar graph can be embedded without crossovers in linear area. This bound is tight, up
to constant factors: for any N and F, there exist graphs requiring {}(N F) area for planar embedding.

Also, finding a minimal embedding area is shown to be NP-colnplete for forests, and hence for more

general types of graphs.
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1. Introduction

VLSI design motivates the following class of problems: given a graph, map its vertices onto a plane and
its edges onto paths in that plane between the corresponding mapped vertices. Normally there are some
restrictions that the mappings must obey, such as a minimum distance between mapped vertices. The maps
give a layout, and the problem is to find a layout with a small cost. The mapping restrictions and the cost

function together specify a particular member of the class of layout problems.

Embedding of graphs has been extensively studied during the last few years [L80, V, FP, BK, CS, R,
RS, L81, L82]. In this paper we consider the layout problem when the layouts are rectilinear embeddings
without crossovers and the cost is the area of a box bounding the layout. To avoid complications, we assume

that graphs are restricted to have vertices of degree 4 or less.
In [V], Valiant looked at the layout problem for rectilinear embeddings (both with and without cross-

overs), using the bounding box area cost. He proved that a tree of vertices with maximum degree 4 can be

laid out without crossovers in an area that is linear in the number of edges (or vertices). He also showed how
e
to get a such an embedding for any planar graph using quadratic area, and proved that there are planar

graphs requiring quadratic area.

Definition: A planar graph has width F if there is a planar embedding of the graph such that every node
of the graph is linked to the external face of the embedding by a path of at most F vertices.

We shall show that any N-node planar graph of width F can be laid out in O(N F). area. Special cases
of this include linear area embeddings for trees and outerplanar graphs, and quadratic area embeddings for
graphs of width O(N). Furthermore, the area bound is tight up a to constant factor. This fills in a spectrum
between Valiant's results. The graph in Fig. 1.1 has N nodes and width F, and eachv component requires
0}( F?) for a planar embedding (see [V]), so the entire graph requires (N F) area.

N/4F subgraphe
4F nodes 4F nodes

Figure 1.1 Graph needing f}( N F) area

We shall also show that finding an optimal embedding for a forest is NP-complete.
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Figure 2.1 (a) good separation (b) bad separation

»

;; 2. A Planar Geaph Separater
‘3’;‘§ The layout method is basically that used by Valiant [V] and’ Betserson [L80] to get embeddings with
e crossovers allowed: the graph. is:splt into two by remeving algos, osel: subpart i# recursively laid out, and
; then the subproblem layoubmase “mesried” by: cnnbediling: the odges. thut were removed:
;,j The key to methods like these are separator theorems, which guarantee that one can always split

up a graph as needed without: having to remove too many edges: Liplon and Tarjan [LT] investigated

planar graph sepazators; and showed thiat any planar graphi of ¥ nedes can- be split into: approximately
ii divide-snd-conquer layout strategy. The edges removed by their mettiod: dividesthe graph cithior s showtr

in Pig: 2:1{a) or Fig: 2.1(b), and: caly the former can be ussdis-our layout:methiod. The follswing theorem
B
‘E Theorem 1. A plenar greph-with N > 2 vertiscs:of degres abmest | and width'F can be sepevated into
5 two subgrapha by removing O(PY edges, such that cach-subgraphins-otleast § of the vertices. Given a planar '
‘g: drawing of the- graph, the scpavetion can be made as-shown sw~Fig: 2.1{a) rother than Fig. £:1(3) (assuming.
f the given drawing actually hasasidth F or less).
:‘3 Proef: If hecessary, add dummy edges to tﬁe graph ustil the-given déawing hasw sinipit cyeh as' therouter
i face, and there are only triangles as interior faces; This can always be done, keeping the graph planar and
%’s without increasing the width. Calt this graph G.
Bt Duie the-distames of a vertamin-G 10 be the-numbes-obaedés-in the shortest path from the vestix-to
. the outer face. m:-np-nﬁng peth in G be s simplrpath-fromre vertex on the vuter face te another one,

such thet the dishmnces of the vertices on tlwpuﬂp:!ihvl,!‘,i...,b*— Lk ok k-1,...,2,10r1,2,...,

-2

L JNE TP
ot




a*.‘)“k’."“

s ns e

e

Wk e

Y

Rt &

2 IO 2 %
32 DTN ST

ERE Xttt |

*

R, Lhe

Bal L Bl L A S e e o g i A A R e e A e N e T e R R R R

Figure 2.2 Cases for Separator Theorem

k—1,k k—1,...,2, 1. We will find a separating path with k < F such that no more than two thirds of G’s
vertices are on either side of it (where “side” refers to one of the two regions that the path divides the plane
into if line are drawn from the path ends to infinity). Then G can be separated as required in the theorem
statement by removing at most 4 X 2k edges from the vertices in the separating path. The vertices on the
path itself can be divided between the two sides so that neither side ends up with more than two thirds of G.

Start out with any outer-face edge as the separating path. Assume, in general, that we have a situation
with A vertices on one side of the path, B vertices on the other, and N — A — B vertices on the path itself.
If A<§N and B S }N then we are done, 50 assume that B > §N.

The cases that arise are shown in Fig. 2.2 (where vertex distances are shown after colons). Figures 2.2(i)
and 2.2(ii) are degenerate cases that are handled by using the right b—c path instead of the left one. The
process continues with the new path.

In Fig. 2.2(ili), vertex f is not the same as b or d. By the definition of distance of a vertex, there is an
exit path, g—- - - -h, with vertices of distances 5,5 —-1,...,10rj,5+1,...., m—1, m,m—1,..., 1 where
j S k+2and m < F. This exit path may coincide wholely or in part with d----~¢ or b~ - - -a, but it never
M cross over them because it can merge with the rest of whichever path it touches. Also, the path should
not go back through £; this can always be avoided in a triangulated graph.

Most of the B vertices that were on the right side of the original separating path are now divided into
pieces of sises C and D. Assuming D > C, the new scparating path is a— .. - —b-c-f—g—- - .—h. Clearly, this
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¢ Figure 8.1 Marrying two embeddings R
‘:ﬁ new path is of the required form. If D < } N then we are done, otherwise repeat the process. The vertices
% J and g are part of the B vertices that were on one side of the the old separating path, so we must have
- D < B. This means that progress has been made towards the stapping condition, since we have decreased
the number of vertices ca the big side of the path, a process that eanmot go on forever. Note that the
:. new separating path may have a bigger maximum distance, but this is irrelevant as far as progress towards
stopping is concerned. |

é The situstion of Fig. 2.2(iv), where the path has two vertices of maximum distance in the middle, is
j bandled just like case (iii). i D > C, the new separsting puth o----—b-f—---—g in of the required form.
* Progress towards the stopping condition has been made, because we will have lest vertex c at the very least.
e The shove operations can be repeated until » separating path has been found with no mare than § N

vertices on cither side, proving the theorem. |

3. Planar Embedding Algerithm ,
X The Iayout methed usod in [V] and [L80] for embedding with cressevers allowed aknast works for planar
embeddings. The difference is in the marrying step.
In order for the layout method to work recursively, it has to Be able to embed a graph so that it
is topologically equivalent to a given planar drawing. Suppose G is scparated into G; and Gy using the
separator theorem of the previous seetion, and then the subpaste are embedded, respecting topolegy. Then

N the removed adiges can be drawn in the plane without cressovers, becawse they are sttached to vertices that
¢ are abill on the cuter faces of G, aad G, in the same esdus. For example, sec Fig. 3.1, where the separating
edges are shown dotted.
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To turn such a drawing into a grid embedding, insert a new grid line for cvery dotted straight line
segment. For the diagonal lines making the connections, at most two new horizontal and two new vertical
grid lines may be needed. (The existing edges may have to be shifted so they make their final approach from
a different direction.) Let K be the number of “kinks”, i.e., horizontal and vertical grid lines that need to be
added to connect any exterior face vertex of a given embedding to somewhere completely outside. It is easy
to see that K increases only by O(1) at each marrying step, because the added cdges needn’t wrap around
the layout more than once. Thus, if { is the maximum of the number of marrying stages involved in laying
out G, and Gy, then they can be married by added O(iF) horizontal and vertical grid lines to embed the
O(F) separating edges.

Theorem 2. Any planar graph G with N vertices of degree at most {, and width at most F, has a planar
embedding in a grid of area A(N) = O(FN).

Proof: Other than the separation and marrying methods, the layout algorithm is the same as the one in
[V]- It has to be able to produce an embedding in an H x W grid, as long as } < H/W < 3, and HW is
sufficiently large. Suppose by induction that A(N) is sufficient area for an N-vertex graph. Also, suppose
that K(N) is a bound on the number of kinks.

G is separated into G; and G3 by removing O(F) edges, with |G| = z|G|, $ < z < § Then an
(H — cFK(N)) x (W — cFK(N)) grid is divided in two by a cut parallel to the shorter side in the ratio
z : (1 — z). By a theorem in [V], the aspect ratios of the two pieces will be in the range (§,§]. If G, and G,
can be laid out in these pieces, then the embedding can be completed as described above, inserting at most

¢FK(N) horisontal and vertical grid lines, for some constant c. So the theorem is true if (assuming H < W)
(H — FK(N)aW — zcFK(N)) > AN), Vs,

Using HW > A(N) and (H + W)/ /A[N) < 4/+/3, this will be true if
{A(N) — 7‘_5\/,TN) cFK(N) 2 AlzN), ¥z, 3<z<3.

After logy 3 N /F separation steps the graph pieces ».e no larger than F, so if we stop the recursion at
that point we have K(N) = O(log N/F). It is easily verified by substitution that

A(N)=aNF - ﬁN*i“log%

satisfies the recurrence, for some a and 8 independent of N and F. In the base case, with N = F, an O(N?)
embedding (sec [V]) can be used. One has to be careful to get an embedding that preserves the topology of

a given planar drawing, but it is casy to sce how to do this.
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4. NP-Completeness of Optimal Forest Embedding

Given a forést and an iateger A, the forest layout probhah B 18 8nd whether or not thiere is a planar
rectilinear embedding with aes less than or equal to A. In this seetion we will show that the forest layout
problem in NP-complete. Thin will be dome by transforming (he S-pardition preblem to it.

In the Spartition probinm thitve b & 6t of NSRS ), ..., Eym VaEh Ltk

T Sm
Y o =mB
[}
ad B/t < s < Bfshor 1 <7 £ Im. The qyowsion b whther the set esn be partitioned inw m disjoint
sets sovh that enth 960 sume 98 B. This problem i kmown to be nrongly NP-eomphére [G4).

Consider the tree in Fig. 4.1(a). Call it the frame tree. There ave vérticés st evety grid point extept for
m = 3n hoics of sise B. (The rase for m odd will be onsidered hber; i s just & wivisl modification.)

Lomane 8.  The only embouhiings of the frame tree with o Souwmtbiny boe aves of (4n + 3) x (2B + 3) or less and
Naving mB free grid pointe are elier eiactly We ot shown n Piy. 4.1} {poswibly dftcr potnt reisbeliing),
or modkfieatione of thut dagrems where some of the toyy of the vertical spines-wre ehsnyed vs in Fig. .1(b) and
ils various refleetione.
Proof: The wee lnw (40 + 8) x (3B + 3) — mB vertites, 8d the einbedding is reqtired to use evety grid poitit
for & vertex ur clse leave it 0. This meane that 0o edge of the tree ount be streveied o » puth of 2 whits,
for that would take up & grid point in the middle thes is #O% wwed for erabedding & graph vertex.

| Auty layout wing only 1-unit edges must have all of the degree-4 vertices of a vertical spine onic on top
of thw othiey, m in v fingram. Por otherwise thiere would have 1o be two dugreed verticss st opposite

cormerw of o-1anll- squae, whish i imipuusible (ome of the ofter corners would have to be shxred bétween
two veviieay).

S
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4% Therefore, the only possible changes to the given diagram, other than point renaming, are ones at the
3 degree-2 vertices, such as in Fig. 4.1(b). &
Notice that if the frame tree is embedded using an allowed folding near the top of a spine, this cuts a

'%i hole into two pieces of sizes 2 and B — 2. There cannot be more than one fold into a hole. From now on,
?; use to term “hole” to mean either a B-point vertical slot or one of these 2 + (B — 2)-point aggregates.

Theorem 4. The forest layout problem is NP-complete.

f‘t Proof: Given an instance of the 3-partition problem, construct the frame tree and add 3m other pieces,
I
sl unconnected 15 that tree: for each z; there is a piece consisting of z; vertices joined into a line by z; — 1

edges. If m is odd, use the frame graph for the next higher even number and fill in one of the vertical holes.

Now we claim that the 3-partition problem instance has a solution iff there is an embedding of this

be used, this gives a solution to the 3-partitio;1 problem, because the size restrictions on the z’s imply that

f‘fé ) forest with a bounding box area of (4n+3) x (2B +3). For, by the lemma, if there is such an embedding then
2] it must be as shown in Fig. 4.1(a) with the extra pieces filling up the holes. Since all the grid points are to
L

there must be exactly three pieces in each hole. Conversely, given a solution to the 3-partition problem, a
1 suitable embedding can be found by filling the holes in the frame tree with the pieces corresponding to the
: partitioned sets. |

A This is not a polynomial reduction, since the frame tree has a number of vertices of the order of the
numbers involved in the 3-partition problem, rather than the number of bits required to represent those
: ’ numbers. This does not matter, however, since the 3-partition problem is strongly NP-complete. The layout

protlem is in NP because one can simply guess a mapping of all the vertices to grid points and then verify
that the edges can all be put along the connecting lines. Therefore, the forest layout problem is NP-complete.

A
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