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sizes were done to enable fracture mechanics parameters to be calculated. Oxida-
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ture stress rupture and conventional stress rupture testing. A possible insta-
bility was found in the sintered silicon nitride at 1000°C. The hot-pressed
silicon nitride was subject to static fatigue at temperatures from 800 to 1100°c.
The two silicon carbide materials performed adequately over the same temperature
range. <
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INTRODUCTION

The work described herein was part of the program ""MM4T, High Temperature
Turbine Nozzle for 10KW Power Unit." The program was sponsored by USAMERADCOM,
Ft. Belvoir, Va., and the engine testing and development was done by Solar Turbines
International, San Diego, Calif. AMMRC supported the program by providing consult-
ing advice and by doing characterization of ceramic materials supplied by Solar.

An earlier study demonstrated the feasibility of improving component durability
in a small gas turbine engine via use of ceramic materials.! Specifically, it was
shown through rig and engine testing that hot erosion resistance was substantially
improved by use of hot-pressed silicon nitride (HPSN) vane trailing edge inserts in
the engine nozzle. The HPSN inserts, however, were produced by methods suitable
only for one-of-a-kind items. The present program was therefore initiated to devel-
op methods for low cost production of such ceramic components. Cost reduction is
expected to result from the use of lower cost materials than HPSN and/or improved
manufacturing methods.

Materials characterization is an important part of any such program. Charac-
terization data are essential to the identification of potential critical materials
problems and to define the minimum materials' properties needed to obtain acceptable
engine performance. Such data are also essential for establishing specifications
to be used in future procurement actions involving ceramic components.

ROOM-TEMPERATURE MECHANICAL PROPERTIES AND OXIDATION
Introduction

This part of the report gives various room-temperature (RT) characterization
data as well as results of high-temperature (950 to 1100°C) oxidation tests on four
vane insert candidate materials. These include hot pressed silicon nitride (HPSN),
sintered silicon nitride (SSN), sintered silicon carbide (SSC), and siliconized
silicon carbide (S1i/SiC).

Experimental Procedures

1. Materials

The four materials investigated were selected from a number of potential
material/process combinations.2 The materials were supplied to AMMRC in the form
of bend test specimens and actual vane inserts. Procurement requests specified
that the bend specimens be fabricated, insofar as possible, in a fashion identical
to that of the vane inserts, so that the properties of each would be comparable.®

NAPIER J.C. Persone! Communication.
1. NAPIER, J. C., METCALFE, A. G., snd DUFFY, T. E. Applicetion of Ceramic Nozzies to 10KW Engine, Report No. §.0.
6-4375-7, SOhr Turbines Internstionsl, Sen Diego, Celif., 1979.
2. NAPIER, J. C., RUSSELL, A. D., and GULDEN, M. E. AMenufacturing Methods for Ceramic Nozzie Section of Ges Turbine
Powersd AP, Soler Turbines internationsl, Sen Diego, Calif., U.S. Army Mobility Equipment Resserch end Development
Ceanter Interim Contract Report, Contract No. DAAK 70-78-C-0188, July, 1980.




The SSN was a commercial composition consisting of silicon nitride and a
yttria sintering aid.* In this case specimens were received in two lots (denoted
ACCI and ACCII). Each lot was formed with a different molding die. Vanes were
formed by injection molding to shape, followed by sintering to high density. Vanes
and bend specimens thus fabricated were used as-is without further machining. Some
of the bend specimens were slightly warped, i.e., bowed along their long axes.

The HPSN was a gtandard commercial grade fabricated with the use of magnesia
as a sintering aid. The vanes were made by hot pressing a billet to partial net
shape, cutting bars of approximate vane shape from the billet, slicing individual
vanes from the bars, and final grinding to the finished shape. Edge and corner
radil were created by a tumble grinding process.

The SSC was comprised of a-SiC powder and a proprietary sintering aid.? vanes
were made by slip casting and sintering. Bend specimens were cut from slabs made
by the same process.

$1/S1C vanes were made by slip casting a SiC powder mix, followed by firing in
the prese¥ce of silicon, to yield a material consisting of SiC grains bonded togeth-
er by Si. T The slip-cast green body was a bar having the vane contour shape, which
after firing, was sliced to yield individual vanes.

2. General Characterization

Routine characterization procedures that were done included visual and low-
pover optical microscopic inspection, chemical analysis via emission and atomic
absorption spectroscopy, x-ray diffraction analysis, and density measurement.

3. Mechanical Testing

The bend specimens were rectangular bars 51-mm long x 3.05-mm wide x 2.40-mm
deep. Edges were either rounded to a typical radius of 0.25 mm or chamfered 0.13
mm. The specimens were tested at RT in four-point loading with inner and outer
spans of 15.2 and 30.4 mm, respectively. The cross-head speed used was 0.05
mn/min. The specimens were long enough so that, on occasion, two breaks per spec-—
imen were possible. In such cases, care was taken to insure that the previously
stressed portion of the specimen was not re-inserted into the inner gauge length.

4. Fractography

All fracture surfaces of bend specimens were carefully examined visually and
by low-power optical microscopy. Scanning electron microscopy was also employed
as required to examine those surfaces in greater detail. Of major interest was the
identification of locations at which fracture initiated and of defects that initi-
ated fracture. Photomacrographs and scanning electron photomicrographs were taken
as needed. The fracture mirror radii were measured as the distance to the mirror-
mist boundary, and are averages of measurements on macrographs and scanning electron

° An experimental vintage of SSN-800, 1979, Airsssarch Casting Co., Torrance, Calif.
°* Coratioy 147A, Coradyne Inc., Senta Ana, Calf,

1 8intered (1-8ilicon Carbide, 1980, Cerborundum Co., Niegera Falls, N.Y.
1NC430 (“Crystar”) Siliconized Silicon Carbide, Norton Co., Worcester, Mess.




micrographs. The flaws were assumed to be semicircular, and the sizes reported are
the averages of measurements in several directions made on the scanning electron
micrographs.

5. Oxidation

Oxidation tests were done on small specimens (100 mg) cut from bend bars. The
specimens were placed on alumina chips in a Blatinum crucible and run in ambient
air at various temperatures from 950 to 1100 C for times up to 76 hr. Weight change
was recorded continuously as a function of time. As indicated below, however,
weight changes were so slight as to be marginally detectable.

Results and Discussion

1. General Characterization

Our work was mainly done on bend specimens and only a cursory inspection was
done on the ceramic vanes. Details of dimensional analysis (to determine whether
dimensions were within tolerances) and surface finish measurements are given else-
where.? SSC vanes were unavailable for inspection, but comments on vanes made from
the other three materials follow.

The general appearance of the HPSN vanes was good. It was noted, however, that
machining striations on their top and bottom surfaces ran in two directions. Some
chips were seen on chamfered edges and deep grooves existed along the length of the
chamfer in some instances. Miscellaneous surface scratches were evident, and
"surface spots" suggested the presence of large grains or other inhomogeneities.

The sintered Si N, vanes had obvious surface flaws, including machining marks,
pores, and metallic-%ooking deposits. Numerous molding marks were prominent, and
pores were also noted on the chamfered edges of the vanes.

The S1i/SiC vanes looked reasonably good. Numerous surface machining marks
were seen, but all were parallel to the vane length and none were very deep. Pits
of various sizes and miscellaneous scratches on the surface were present.

Results of chemical analyses of the vane materials are given in Table 1. The
high contents of Al and Y in the SSN material stem from the use of Al,03 and Y03
as sintering aids. Similarly, the HPSN has a significant content of Mg; MgO was
the sintering aid for that material. The Fe and Al in the HPSN are probably impuri-
ties. The SSC is relatively pure except for its significant content of B, suggest-
ing that a boron compound may have been used as a sintering aid. The Si/8iC con-
tains impurities generally expected for this type of material.

Table 2 gives the results of determinations of major crystalline phases by
means of x-ray diffraction analysis. As would be expected, the only major phase in
the silicon nitride materials is B—Si3N4. The silicon carbide materials are mainly
a-S1C, with the S1/SiC material also containing Si.

2. Mechanical Testing Results

Table 3 summarizes the RT mechanical testing data that were obtained on bend
specimens of the vane candidate materials. Also given in that table are density
data. Fracture sources and locations are specified whenever possible. Identifica-
tion of such features on the S1/SiC material was impossible.




Table 1. CHEMICAL ANALYSIS OF CERAMIC VANE MATERIALS

Values are all weight percent and obtained by
emission spectroscopy except as noted

Element ACC-1 ACC-1l CD CAS0 NC-430

Al 6.4 6.4 0.19 001-0.1 0.1-1.0
8 NO ND ND 05-1.0 ~0.01
Ca 0.+  0.02¢ 004 0.01-0.1 ~0.01

Co ND ND ND 0.1-05 0.1-0.5
Cr <008 <008 <08 ND 0.01-0.1
Cu 0.2 0.01 001 00101 0.01-0.1
Fe 0.2 <006 030 0.01-0.1 0.1-1.0
Mg 008 00R 067 00101 001-01
Mn <004 <004 <004 0.001-0.01 0.01-0.05
Mo ND ND ND ND 0.001-0.01
Ni <006 <005 <006 ~001 0.05-0.1
Ti <0 <0@ <004 00101 0.01-01
v ND ND ND 00101  0.01-0.1
Y 105 1.9 0.1 ND ND

Ir ND ND ND ND 0.01-0.1

ND = Not determined
*Determined by stomic absorption

Table 2. RESULTS OF X-RAY DIFFRACTION ANALYSES OF
CERAMIC VANE MATERIALS

Material Major Phases
ACC I SSN B-Si3N4
ACC II SSN B-SigN,
CD HPSN #-S1 3N4
CA 80 SSC a-SiC
NC-430 Si/SiC «=SiC, Si

Table 4 gives the results of statistical analysis of the bend test data based

on assumptions that the data conform to normal3 or Weibull’ distributions. The
latter analysis was done using the maximum likelihood estimator (MLE) technique.5
For reasons to be discussed later, the SSN data from ACC I and ACC II batches were
combined.

Weibull distribution." The strength and Weibull modulus data reported here agree

arw

Figure 1 shows the four sets of fracture stress data plotted according to the

STEEL, R. G. D., snd TORRIE, J. H. Principles and Procedures of Statistics, McGraw-Hill, New York, 1980.

WEIBULL, W. A. Statistical Distribution Function of Wide Applicsbility, J. Appl. Mech., v. 18, 1951, pp. 293-287.
MASON, D., NEAL, D., and LENOE, E. Statisticsl Dats Evalustion Procedures, MIL-H-DK-17, Composite Maeterisls for
Aircraft and Aerospace Applications, Interim Report No. 1, U.S. Army Materisis and Mechanics Research Center, Enginesring
Standeardizetion Division, Dacember, 19680.



Table 3. ROOM TEMPERATURE MECHANICAL TEST DATA ON VANE CANDIDATE MATERIALS

Material (r:l;a) Source Location | Material (A;’P'a) Source Location | Material (r:;a) Source Location| Material Uzga) Source Location
| 361 P2 S 495 U S 260 U S 141 (L] (L]
ACC 3 P | co 504 PIN(3) S .CASO 218 u S NC'430 183
Si;‘i‘:';:" e [P s ene 0 [T a0 e s SRR 4y
p 3200 36 PO S SigNg 59 PNGY 1| 3,0 ar PNGL S| gy 190
kg/m: 405 P2 S p =3110 521 PING) S kg/m 42 NIP(3) S kglm3 195
wm o s |9 s oy ¢ 4 PN S 19
21 U@ S 539 PING) S 438 NIP(3) [ 19
26 P2 S 555  PIN(3) [ 459 N | 200
a3 U@ c 55 PIN(3) S 506 PIN() S 201
54 PR S 561  PIN(3) S 535  NIP(3) | 206
458 P2 S PING) S 540 NIP(3) i 207
41 U@ S 600 PING) CHI 547 U S 208
493 PR S U S 611 U S 210
91 PR S 621 PIN3) | 215
516 PR S 666 PING) | 218
123 1] c 29
" 39 PR S
333 P |
P(1} I
P(1} 1
P@) S
a3 P I
55  P(L |

Key to symbols: C, corner:.l, interior; N, material defect; P, pore; S, surface; U, unknown.

(1) Large internal voids which appear to have resulted from laminations which opened up during sintering.
2) Pores much smaller than (1). Also appear to have resulted from processing.

(3) Material defects are volume-distributed porosity.

(4 Nature of fracture surface made identification of sources and locations impossible.

well with values obtained by Larsen® in an independent study of the same materials.
Such agreement is encouraging for design purposes; materials properties should be
consistent and reproducible from batch to batch over extended periods of time.

3. Fractography

The major defects in the injection-molded SSN were pores that almost certainly
stemmed from processing. In the first lot of material (ACC I in Table 3), these
consisted of small surface pores such as are shown in Figure 2. In addition, many
such pores contained metallic-looking inclusions. Although EDAX analysis of these
inclusions showed the presence of (in descending orier of quantity) Si, Ni, Fe, and

6. LARSEN, D. C. Property Scresning and Eveluation of Ceramic Tv ine Engine Materisls, Ait Force Meterials Laboratory
Contract Report No. AFML-TR-79-4188, IITRI, Chicego, iil., 18 -




Table 4. STATISTICAL PARAMETERS OF FRACTURE ANALYSIS
ON CERAMIC VANE MATERIALS

Distribution Parameter ACC (o] CA80 NC-430
Normal Number of Samples, n 2 16 B3 16
RMS Error 00437 0.0645 0.0664 0.0655
Mean Fracture 416 569 41 199

Stress (MPa)
90% Confidence Limits 392-440 540-597 384-498 190-208
Standard Deviation (MPa) 64 63 110 20

90% Confidence Limits 52-88 51-94 87-174 16-29
Weibull RMS Error 0.042 00761 0.0604  0.0466
(MLE
Technique) Weibull Slope, m 6.6 8.0 44 128
90% Confidence Limits 46-82 52-103 2.7-58 8.4-16.6
Characteristic Vatue A48 598 482 200
{(MPa)
90% Confidence Limits 418-472 563-636 426-546 199-215
Fracture Stress (MPa) Fracture Stress (MPa)
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Figure 1. Ceramic vane materials bend test data plotted according to the
Weibull distribution.
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(@ (b

Figure 2. Failure from “small pore’ defect in ACC sintered SigNg4: (b) is a scanning electron
photomicrograph of the right-hand part of the area encircled in (a).

Al, that technique cannot distinguish between the presence of Si in the form of
Si4N, or as a constituent in a metallic alloy. The shape and location of the surface
pores suggests that they formed during the injection molding process.

The second lot of SSN (ACC II) contained defects consisting of large internal
voids such as shown in Figure 2. It is likely that these also resulted from proces-
sing, probably from laminations ihat occurred during injection molding. The voids
in the second lot were approximately five times as large as the surface pores in the
first lot. Despite this, the difference between the average strengths of the two
lots is statistically insignifican+; a single tailed t-test showed that the dif-
ference is significant only at a low level (90 to 95%). The reason for this is
apparently that large voids exist within the interiors of the bend specimens,
whereas fractures initiate at surfaces where the tensile stress is highest. If the
testing had been done in pure tension, the specimens with the large voids would
surely have had lower strengths than the others.

As shown in Figure 4, the predominant type of flaw observed in the HPSN was a
material defect consisting of porosity that was associated with abnormally large
grains. These defects appeared as white spots on specimen surfaces. Although it
seems reasonable tc assume that such regions would result from inhomogeneous dis-
tribution of the Mg0 sintering aid, EDAX showed no detectable Mg in them. At pres-
ent, therefore, no explanation can be given for their presence.

Porosity also was the most common flaw in the SSC material. Figure 5 shows an
example of a specimen that failed from such a defect.

As already mentioned, and illustrated in Figure 6, the fracture surfaces of the
S1/51iC material showed no features clearly identifiable as fracture origins. Loca-
tions where fracture initiated and defects that caused fracture could therefore not
be determined.

Measurements of flaw sizes and fracture mirror radii were used to calculate
several fracture mechanics parameters of interest. The results of the amalysis fol-
low.




(@ (b)

Figure 3. Two examples of ““large pore” defects in ACC s

intered SigN4.

{c

Figure 4, Failure from volume distributed porosity in CD hot-pressed Si
{c) is a scanning electron photomicrograph of the right-hand part of

8

Ng: (a) surface appearance,
:ine‘area encircled mp.ig).
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Figure 5. Failure from volume distributed porosity in CA80 sintered SiC: (a) is a scanning electron
photomicrogra;:h near the fracture origin of the surface shown in the left-hand part of the area
encircled in (b). The area indicated by the arrow is the same in both pictures.

@ ™

Figure 6. Fracture surfaces of NC-430 siliconized SiC bend specimen: (a) shows the generally
featureless appearance of the surface. A few pores are visible in (b).

The critical stress intensity factor, KIc’ is a measure of the resistance of a
material to brittle fracture.’ This factor i{s related to the fracture stress, Ogs
and flaw size, c, as follows:

- b
KIC YO'f [ ’

7. LAWN, B. R., and WILSHAW, T. R. Fracture of Brittle Solids, Cambridge University Press, Cambridge, U.K., 1975.
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where Y is a geometric constant related to the flaw shape and loading mode. For

the case of a shallow, semicircular surface crack in a beam in bending, Y will vary
along the crack periphery, ranging in value from Y = ]1.35 at the surface to Y = 1,16
at the deepest interior point.8® The choice of a value of Y to use in calculating
Ki. must allow for the fact that our flaw size values are averages of measurements
taken in several directions. In view of this, it was decided to use the mean value
of Y = 1.26 in our calculations, as did Mecholsky, et al.%*

Figure 7 is a plot of strength vs flaw size for the three materials for which
flaw size could be measured. For each material, a least-squares line has been
fitted according to Equation (1). Equation (1) indicates the slope of the line is
Ki./Y. The values of K1, listed in Figure 7 were obtained from this slope with the
assumption that all flaws were semicircular surface defects for which Y = 1.26. 1In
truth, the flaws had a variety of shapes and the assumption of a semicircular shape
is a crude approximation. Therefore the values of Ky, are only approximations.

Flaw Size (m)
10075 4030 20 15
LI T'TV v Y
700
"l
~ 500
<
= I
£ ool
@
&
3
R
&
200f
———o0 CASD K - 321 MNm3R
!
o ACC Kj¢ * 3.28 MNm-3R
100}
csecamt €D Kj¢ - 5.60 MNm 3R
0 L - L

i
50 100 150 200 250 300
12 (m-1)

Figure 7. Strength vs flaw size for ceramic
vane materials.

.It should be pointed out, however, thaet Mecholsky, et al.9 defined their geometric constant somewhat differently than we did.
SMITH, F. W., EMERY, A. F., and KOBAYASHI, A. S. Stress Intensity Factors for Semicirculer Cracks, Trans ASME,

8.
Series E, v. 89, 1967, pp. 953-969.
9. MECHOLSKY, J. J., FREIMAN, S. W., and RICE, R. W. Fracture Surface Analysis of Ceramics, J. Mater. Sci., v. 11, 1976,

pp. 1310-1319.
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The fracture stress, Ofs is empirically related to the fracture mirror radius,
r , by
m

g, = Ar - . )

where A is a constant for a given material. 3,10 Figure 8 shows the data for the
three materials on which mirror measurements were possible, plotted according to
Equation (2). Also shown are values of A calculated from least-squares fits of the
data.

Radius (zm)
400 200 100 75
T Y —
+
00 |
+
m -
- 500
I
g a3
£ aolf
Z
®
2w} °
200
— =0 CAS0 A - 539 MNm-3R
——— 0 ACC A =581 MNm3R
08 cce s D A - 78 MNP
0 1 1 L 1
25 50 75 100 125 150

1R (m-1i2)

Figure 8. Strength vs fracture mirror radius
for ceramic vane materials.

A relationship between the flaw size and fracture mirror radius may be obtained
by combining Equations (1) and (2), i.e.,

K, = YA (c/rm)!i . 3)

10. KIRCHNER, H. P., and KIRCHNER, J. W. Fracture Mechanics of Fracture Mirrors, J. Am. Ceram. Soc., v. 62 No. 34, 1979,
pp. 198-202.

11




which shows that (c/r_) should be constant for a given material and given flaw
shape. Figure 9 shows plots of ry v8 ¢, as well as values of (rm/c) obtained by
least-squares analysis of the data. Two of the values thus obtained are approx-
imately in the range of 4 to 8 reported to be common for polycrystalline ceramic
materials,!l while the value of 2.7 for HPSN is somewhat lower. In view of the
difficulty of such measurements, as evidenced by the scatter in the data in Figure
9, such a discrepancy is not surprising.

400
—ememy CAB0  ric - 373
o ACC ric = 4.01
------ + CD ric = 2.12
0l
E
=N
g o a + + ‘f
3
[+ 4 'v
& 200} &’
s o ¥
@ / ‘f' + +
=] o '+I
k3 * +
.
100
o 1 L L
0 25 50 » 100

Flaw Size {zm)

Figure 9. Fracture mirror radius vs flaw
size for ceramic vane materials.

4. Oxidation Behavior

The data summarized in Table 5 were obtained to evaluate resistance of the
vane candidate materials to oxidation over a temperature range similar to that in
the engine. As shown in the table, oxidation weight gains over periods from 48 to

76 hr were negligible in all cases. The weight losses noted in a few instances are
insignificant; the values given merely reflect the fact that changes were so slight
as to be less than the precision of the measurement. No undesirable side reactions

were noted, and it must be concluded that the oxidation resistance of all of the
materials is adequate for the proposed application.

11. RICE, R. W. The Difference in Mirror-to-Flaw Size Ratios Between Dense Glasses and Polycrystais, J. Am. Ceram. Soc., v. 62
No. 8-10, 1979, pp. 533-635.

12
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sintered silicon nitride, sintered sflicon carbide, and siliconized silicon carbide,
being considered for use in a small turbine engine. Chemistry, phase content, and room-
temperature mechanical strength were in the ranges expected for such materials. Fracture
locations and origins were identified whenever possible, and measurements of fracture
mirror radii and flaw sizes were done to enable fracture mechanics parameters to be cal-
culated. Oxidation resistance of all materials was excellent at 950 to 11000C. High
temperature (800-1200°C) mechanical behavior was characterized via stepped temperature
stress rupture and conventional stress rupture testing. A possible instability was
found in the sintered silicon nitride at 1000°C. The hot-pressed silicon nitride was
subject to static fatigue at temperatures from 800 to 11 The two silicon carbide
materials performed adequately over the same temperature range.
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Table 5. RESULTS OF OXIDATION TESTS IN AIR
ON CERAMIC VANE MATERIALS

Estimated
Weight Oxide
Temperature Time Ch Thickness
Materiat ©c) thr)  (mgicme) (am Remarks
ACC-I 950 4 - - .
ACC-I 1000 515  +0295 13
ACC-1i 1000 & +0.208 09
ACC-11 1100 T +0.121 0.5
NC-430 950 4 -0.027 - .
NC-430 1000 16 +0.077 03
%)) 1000 R +0.281 12
co 1100 50 +0.039 02
CAS80 1000 2 -0.282 - .
CA80 1100 10 -0.750 - .

*Slight weight loss occurred

HIGH-TEMPERATURE MECHANICAL TESTING
Introduction

The high-temperature load carrying ability of the vane candidate materials was
evaluated via the stepped temperature stress rupture (STSR) test.12,13 Although
the temperature history of a STSR specimen is more complex than one tested in a
conventional test, the advantage of STSR testing is that it quickly identifies any
unusual temperature sensitivity with a minimum of effort. The purpose of this part
of the work was to screen the high-temperature mechanical behavior of the vane
candidate materials as well as possible, given the limited number of specimens that
were available.

Experimental Procedures

The STSR cycle employed is illustrated in Figure 10. At the start of a test,
a specimen was loaded into a furnace fitted with a four-point bend fixture with
inner and outer spans of 19 and 38 mm, respectively (see References 14 and 15 for
details). The furnace was then heated to 800°C in air whereupon a deadweight load
was applied to the specimen. The same load remained on the sample for the entire
testing sequence. The furnace was held at 800°C until theosample broke or 24 hr
passed. In the latter event the furnace was heated to 900 C (which took a few

12 QUINN, G. D., snd KATZ, R. N. Stepped Tempersture Stress Rupture Testing of Silicon Based Ceramics, Army Mesterials and
Mechenics Research Canter, Watertown, Mass., Technical Report No. TR 80-28, Mey, 1980.

13 QUINN, G. D., and KATZ, R. N. Stepped Temperature Stress Rupture Testing of Silicon 8ssed Ceramics, Am. Ceram. Soc.
Bull. v. 67, No. 11, 1978, pp. 1057-1058.

14, QUINN, G. D. Guids to the Construction of a Simple wod’c Test Furnace, Army Materials and Mechenics Ressarch Center,
Watertown, Mass., Technicsl Report No. TR 83-1, Januery 1983.

15. QUINN, G. D. Cherscterization of Turbine Ceramics after Long-Term Environmental Exposure, Army Maeterisis and Mechanics
Research Center, Watertown, Mass., Technical Report No. TR 80-18, April, 1980.
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100 MPa applied stress

<«— Time (hours) —»

Figure 10. The STSR sequence employed in this study.

minutes) and again held for g4 hr. This procedure was repeated with additional
24-hr holds at 1000 and 1100 C. When a specimen broke, the furnace was cooled and
unloaded. The time of failure was denoted by an arrow on the STSR plot. As
detailed in the next section, a number of STSR tests were done at appropriate stress
levels for each material. The load corresponding to a given stress level was
calculated from the elastic beam formula.

In several instances, conventional stress rupture measurements were done to
augment the STSR data. In such cases, the test procedure was the same except that
the test temperature remained constant and the specimen was run as long as neces-
sary (up to several hundred hours) for failure to occur,

Fracture surfaces of all specimens were examined visually and with a binocular
microscope at magnifications to 100X. In cases in which creep occurred, creep

strain was determined from the curvature of the inner gauge length of the flexural
sample.

Results and Discussion
1. Sintered Silicon Nitride (SSN)

STSR trials were conducted with eight specimens from the first lot of SSN
(ACC 1), and two from the second lot (ACC II). As shown in Figure 11, three spec-
imens failed upon loading, and seven others failed in a time dependent mode. Of
the latter, one specimen failed after 0.4 hr at 800°C from a defect similar to
those described in ROOM-TEMPERATURE MECHANICAL PROPERTIES AND OXIDATION, i.e., a
pore containing a metallic deposit. No evidence of slow crack growth was seen on
this particular specimen. On the other hand, zones of slow crack growth were
clearly apparent on fracture surfaces of five of the six specimens that failed at
or near 1000°C. The remaining specimen (from lot ACC II), was loaded at 100 MPa
and lasted for 4.2 hr at 1000°C. It failed from a large internal void similar to

14

4

- - ipany




8
T
4w
350
a0
300
200
100

24 hours

o |-
& 24 hours
g wol
g 24 hours
S ol =
~ 800~ - 450
-— 350 24 hours

Time thours) —e

Figure 11 STSR results for ACC sintered silicon nitride.

those noted in ROOM-TEMPERATURE MECHANICAL PROPERTIES AND OXIDATION. The irregular
nature of the surface of this defect apparently obscured any slow crack growth
evidence that may have existed in this case. It should be noted that no creep
deformation was observable in any of the specimens.

The STSR tests for SSN show that 1000°C is a critical temperature. Supplemen-
tal conventional stress rupture tests were conducted at 1100 and 1200°C. A sample
loaded to 100 MPa survived 1300 hr at 1100°C with negligible creep deformation.

Its retained strength was 383 MPa, a value similar to the RT reference strength.
Another sample, loaded to 100 MPa at 1200°C survived 97 hr intact, whereupon the
test was suspended due to excessive creep deformation (> 1.5% strain). Both
samples survived much longer than similarly loaded samples at the critical temper-
ature of 1000°C. This behavior may be related to other 1nstabilities in yttria-
containing silicon nitrides that have been reported previously.12,13,15,16-19

2. Hot-Pressed Silicon Nitride (HPSN)

Figure 12 summarizes the results of STSR tests on HPSN. Of the 16 specimens
tested, three failed immediately upon loading, two survived the entire sequence
intact, and the remaining 11 failed in a time-dependent manner. The behavior of
specimens that failed upon loading or shortly thereafter at 800 C suggests that

fast fracture strength at that temperature is of the order of 400 MPa, a value

16. GAZZA, G. E., KNOCH, H., and QUINN, G. D. Hot Pressed SigNg with improved Thermel Swability, Am. Cersm. Soc. Bull.,
v. 67, No. 11, 1978, pp. 1069-1060.

17. KNOCH, H., and GAZZA, G. E. Effect of Carbon Impurity on the Thermel Degradation of a SigNg-Y203 Cersmic, J. Am.
Ceram. Soc. v. 62, No. 11-12, 1979, pp. 634-636.

18. WEAVER, G. Q., and LUCEK, J. W. Optimization of Hot Pressed SigNg-Y203 Meaterisls, Am. Ceram. Soc. Bull,, v. 57, No. 12,
1978, pp. 1131-1134, 1138.

19, LANGE, F. F., SINGHAL, S. C., and KUZNICK!, R. C. Phese Relations and Stability Studies in the Si3gN¢-Si02-Y203
Pyeudoternary System, J. Am. Ceram. Soc. v. 80, No. 6-8, 1977, pp. 240-262.

15

-




.

300 250 300 20

250 200
1o = 350 350 24 hours
1 ¥
g 1000 = 00 - 24 hours
g 400
T oo
-4 350 400 24 hours
13
= -— 534
800 1= gg 24 hours

Time (hours) —

Figure 12, STSR results for CD hot-pressed silicon nitride.

significantly less than the average RT reference strength (569 MPa). Although
time-dependent failures occurred over the entire temperature range of testing,
there appeared to be no particular sensitivity to a given temperature. Stresses
that caused delayed failure ranged from 250 to 400 MPa and the wide variations in
times to failure observed for this material are similar to those observed previous-
ly for other ceramic materials.lS

Fracture surfaces of the STSR specimens that failed at 800 to 1000°C resembled
those of specimens that failed at RT. In all cases, well-defined fracture mirrors
were evident. In contrast, evidence of slow crack growth was found on fracture
surfaces of specimens that failed at 1100°C. Those latter specimens also had
permanent creep deformation. Both surviving specimens had noticeable curvature
with permanent tensile strains of 0.2%. Creep cracks were present that eventually
would have grown to failure. RT retained strengths were 558 and 396 MPa for sur-
viving specimens loaded at 200 and 250 MPa, respectively. The specimen loaded at
250 MPa showed evidence of slow crack growth while the other did not.

Although STSR testing indicated that slow crack growth contributed to failure
at 1100°C, the failure mechanism at the lower temperatures was uncertain. Two
conventional stress rupture tests were therefore done at 900°C to invessigate this
point further. A specimen loaded to 350 MPa failed after 307 hr at 900 C and sub-
sequent examination revealed a small irregularity on the fracture mirror indicating
that slow crack growth had occurred. The specimen showed no evidence of creep,
however. A second specimen survived intact after 2000 hr at 300 MPa, and had only
a small creep curvature (v 0.05% strain). The RT retained strength of that speci-
men was 711 MPa, a value substantially above the reference strength. A final test
was done at 1100°C to determine whether a stress rupture limit may exist at that
temperature. The specimen showed modest curvature (0.6% tensile strain) after
surviving 2000 hr at 200 MPa, and its RT retained strength was 393 MPa, well below
the reference strength. In this case, the fracture origin was identified as a
large inclusion and there was no evidence of slow crack growth.

16




In summary, the STSR results showed the HPSN to be susceptible to static
fatigue at all temperatures between 800 and 1100°C at stress levels from 250 to
400 MPa. The fast fracture strength of the material at 800°C is well below the RT
reference strength. Slow crack growth occurs at 1100° C, and probably at lower
temperatures as well, although fractographic evidence of such behavior is difficult
to detect at the lower temperatures. Careful scanning electron microscopy would be
useful in resolving this point. Creep deformation became significant at 1100°¢.

3. Sintered Silicon Carbide (SSC)

Figure 13 shows the results of the 11 STSR tests that were done on SSC. Four
specimens failed on loading, three failed in a time-dependent manner at 800 C, and
four others survived the entire cycle. The fast fracture strength at 800°C for
this material does not differ appreciable ftom the RT reference value of 441 MPa.
The specimens that failed after reaching 800°C did so quickly; times to failure
were 7, 158, and 220 sec for specimens loaded at 300, 450, and 400 MPa, respective-
ly. A large processing crack caused failure in the specimen that failed most
rapidly. Fracture origins were found via fracture mirrors in the other two spec-
imens, but any critical defects that were present were too small to see by low-
power optical microscopy. As shown in Figure 14, however, examination by scanning
electron microscopy revealed that fracture in the specimen that failed after 220
sec initlated at a surface-connected pore.

Excellent creep resistance was indicated by the fact that the four surviving
specimens had negligible deformation. Their retained strengths of 453, 465, 466,
and 469 MPa were remarkably similar and comparable to the RT reference strength of
441 MPa.

300
350
400
400
1100 - -
! ﬂ
o
<
g 100 24 hours
X 0 300
g | 450
E %0 ﬁ 400 24 hours
wk R
24 hours

Time (hours) —»

Figure 13. STSR results for CABO sintered silicon carbide.
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Figure 14. Carborundum sintered alpha silicon
carbide sample that failed in the STSR sequence
at 800°C.

The low scatter in the retained strength values after STSR testing indicated
that further experiments should be done to see whether the effect was real and, if
so, whether it was due to heat treatment alone or a combination of heat and stress.
Therefore, four additional specimens were subjected to the STSR temperature se-—
quence with no applied load. Their retained strengths were 215, 458, 477, and 519
MPa. The low strength specimen failed from an obvious processing crack, and that
value should be ignored. While there is some difference in the scatter between
specimens tested with and without stress at high temperature, there is insufficient
data to draw any firm conclusions.

A series of conventional stress rupture tests at 1200°C was done on SSC to
determine whether the present lot of material had properties similar to those re-
ported previously for the same material.!5»20,21 The results of the present test-
ing appear in Table 6. There are insufficient data to present in graphical form,
but the results are entirely consistent with those obtained previously.

In summary, SSC exhibits good resistance to creep deformation and static
fatigue failure in the temperature range from 800 to 1100°c. As previously
fouud,ls'zo’21 the most likely source of time dependent failure is surface-
connected porosity, and such failures occur only at stresses greater than 70% of
the fast fracture strength of the material.

20. QUINN, G.D., snd KAT2, R.N. Time Dependent MHigh Temperature Strength of Sintered . -SiC, J. Am. Cersm. Soc. v. 83,
No. 1-2, 1980, pp. 117-119,

21. SRINIVASAN, M. Eleveted Tempersturs Stress Rupture Response of Sintered Alphe Siiicon Carbide, Presentation at 81st
Annusl Mesting of Am. Ceram. Soc., Cincinneti, Ohio, April 27, 1979, menuscript availsbie from The Carborundum Company,
Nisgers Falls, N.Y,
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Table 6. RESULTS OF STRESS RUPTURE TESTS ON SINTERED
SILICON CARBIDE (CA 80) AT 12090C

Applied Stress Time to Failure
(MPa) (hr)
500 Failed on Loading
500 Failed on Loading
400 Failed on Loading
400 0.04
400 13.7
400 138.3
400 321.3
400 399.2
300 28.9
300 112.8

4. Siliconized Silicon Carbide (Si/8iC)

The results of STSR tests done on this material are shown in Figure 15. Of
the 12 specimens tested, five failed during loading, four survived intact, and
three failed in a time-dependent manner. Specimens loaded to 200 MPa broke on
loading while most loaded to 180 MPa did not, indicating that fast fracture
strength at 800°¢C is only slightly below that at RT (199 MPa). The three specimens
that failed in a time-dependent manner did so at low temperatures and failure
origins could not be identified in any of them. The four surviving specimens had
only slight permanent creep strains of the order of 0.05%. The RT retained
strengths of the survivors were 229, 243, 245, and 259 MPa, which are all well
above the reference strength. Such results suggest that flaw healing may have
occurred during heat treatment. No correlation was apparent between retained
strength and stress applied during STSR testing.

Four conventional stress-rupture tests were done to decermine whether such
failures would occur at 700 C. All specimens were loaded to 180 MPa, and results
were mixed: two failed on loading, one broke after 52 hr, and the final one
survived 2000 hr. The latter specimen had no creep deformation and its retained
strength was 280 MPa.

The above results indicate that S1/SiC has good resistance to static fagigne
failure and to creep deformation over the temperature range from 700 to 1100 C.
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Figure 15. STSR results for NC430 silicon carbide.

SUMMARY

The results of characterization tests on four ceramic vane candidate materials:
sintered silicon nitride (SSN), hot-pressed silicon nitride (HPSN), sintered silicon
carbide (SSC), and siliconized silicon carbide (Si/SiC), may be summarized as
follows:

General Characterization

Inspection of surfaces of vanes and bend bars showed them to be in acceptable

condition. Chemical and x-ray analyses indicated that compositions were as expected
for these materials.

Room-temperature Mechanical Testing

1. SSN

The average strength of this 416 + 64 MPa; the principal defects observed were
voids (gross in gsome cases), apparently from processing.

2. HPSN

Average strength was found to be 569 + 63 MPa; defects were inclusions consist-
ing of porosity assoclated with abnormally large grains.

3. §SsC

The average strength of this material was 441 ¢+ 110 MPa; defects were internal
pores.

4, si/sic

The average strength was 199 + 20 MPa; its relatively coarse microstructure
made identification of critical defects impossible.
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Fracture Mechanics Parameters

Values of the critical stress intensity factor, Kj. were calculated for all of
the materials except Si/SiC. All values appear reasonable. Ratios of fracture
mirror radius to flaw size were slightly lower than expected.

Oxidation

All of the materials ghowed excellent resistance to oxidation in air at tem-
peratures from 950 to 1100 C for times up to 76 hr.

High-temperature Mechanical Testing

1. SSN

This material showed a possible temperature-related instability at 1000°cC.
Creep was minimal from 800 to 1100°C. A number of failures resulted from gross
voids related to processing.

2. HPSN

This material showed evidence of static fatigue over the entire temperature
range of testing, 800 to 1100° C, at 1oads ranging from 250 to 400 MPa. Estimated
safe stress limits are 300 MPa at 900°C and 200 MPa at 1100°C. Significant creep
deformation occurred at 1100°C.

3. SSC

Sintered silicon carbide showed excellent resistance to creep and static
fatigue from 800 to 1100°C. Fast fracture strength at 800°C was close to that at
RT. Time-dependent failure occurred at stresses of 70% or more of the fast frac-
ture value, suggesting that a safe stress level would be 300 MPa over the tempera-
ture range of 800 to 1100°C. Principal defects were surface-connected pores and,
occasionally, cracks. Evidence suggests that heat treatment may reduce scatter in
strength.

4, si/sic

This material had good resistance to creep and static fatigue from 800 to
1100° C, and it is estimated that it could be safely used at stresses of 150 MPa or
less under these conditions. Microstructures of fracture surfaces were difficult
to interpret, making identification of critical defects impossible.

CONCLUSIONS

The present work was performed to evaluate four candidate materials for use in
a small, radial gas turbine. Chemistry, phase content, and room temperature mechan-
ical strength were in the ranges expected for such materials. High-temperature
stress rupture behavior was different for the four materials. The two silicon
carbides were less prone to static fatigue failure than were the nitrides. It,
nevertheless, remains to be demonstrated whether the properties measured on labora-
tory scale samples are representative of larger scale components or production
quantities.
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