CONCURRENCY CONTROL FOR RESILIENT NESTED TRANSACTIONS

Nancy A. Lynch

Contract NNC014-75-C-0661
NR-049-179

AD A132501

DTIC FILE COPY

S
SEP 1 6 1983

83 09 13 123
Concurrency Control for Resilient Nested Transactions*

Nancy A. Lynch
Massachusetts Institute of Technology
Cambridge, Massachusetts
February, 1983

ABSTRACT

A formal framework is developed for proving correctness of algorithms which implement nested transactions. In particular, a simple "action tree" data structure is defined, which describes the ancestor relationships among executing transactions and also describes the views which different transactions have of the data. A generalization of "serializability" to the domain of nested transactions with failures, is defined. A characterization is given for this generalization of serializability, in terms of absence of cycles in an appropriate dependency relation on transactions. A slightly simplified version of Moss' locking algorithm is presented in detail, and a careful correctness proof is given.

The style of correctness proof appears to be quite interesting in its own right. The description of the algorithm, from its initial specification to its detailed implementation, is presented as a series of "event-state algebra" levels, each of which "simulates" the previous one in a straightforward way.

Keywords: Action tree, atomicity, concurrency control, recovery, serializability, transaction, two-phase locking.

©1983 Massachusetts Institute of Technology, Cambridge, MA. 02139

*This work was supported in part by the NSF under Grant No. MCS79-24370, U.S. Army Research Office Contract DAAG29-79-C-0155, and Advanced Research Projects Agency of the Department of Defense Contract N00014-75-C-0681.
1. Introduction

In the past few years, there has been considerable research on concurrency control, including both systems design and theoretical study. The problem is roughly as follows. Data in a large (centralized or distributed) database is assumed to be accessible to users via transactions, each of which is a sequential program which can carry out many steps accessing individual data objects. It is important that the transactions appear to execute "atomically", i.e. without intervening steps of other transactions. However, it is also desirable to permit as much concurrent operation of different transactions as possible, for efficiency. Thus, it is not generally feasible to insist that transactions run completely serially. A notion of equivalence for executions is defined, where two executions are equivalent provided they "look the same" to all transactions and to all data objects. The serializable executions are just those which are equivalent to serial executions. One goal of concurrency control design is to insure that all executions of transactions be serializable.

Several characterization theorems have been proved for serializability; generally, they amount to the absence of cycles in some relation describing the dependencies among the steps of the transactions. A very large number of concurrency control algorithms have been devised. Typical algorithms are those based on two-phase locking [EGLT], and those based on timestamps [La]. Although many of these algorithms are very different from each other, they can all be shown to be correct concurrency control algorithms. The correctness proofs depend on the absence-of-cycles characterizations for serializability.

More recently, it has been suggested [Re, M, LIS] that some additional structure on transactions might be useful for programming distributed databases, and even for programming more general distributed systems. The suggested structure permits transactions to be nested. Thus, a transaction is not necessarily a sequential program, but rather can consist of (sequential or concurrent) sub-transactions. The intention is that the sub-transactions are to be serialized with respect to each other, but the order of serialization need not be completely specified by the writer of the transaction. This flexibility allows more concurrency in the implementation than would be possible with a single-level transaction structure consisting of sequential transactions. The general structure allows transactions to be nested to any depth, with only the leaves of the nesting tree actually performing accesses to data.

Transactions are often used not only as a unit of concurrency, but also as a unit of recovery. In a nested transaction structure, it is natural to try to localize the effects of failures within the closest possible level of nesting in the transaction nesting tree. One is naturally led to a style of programming which permits a transaction to create children, and to tolerate the reported failure of some of its
Concurrency Control for Resilient Nested Transactions

Nancy A. Lynch

Massachusetts Institute of Technology
Laboratory for Computer Science
545 Technology Square, Cambridge, MA 02139

Office of Naval Research (Code 433)
Information Sciences Division
800 N. Quincy St.
Arlington, VA 22217

Distribution of this document is unlimited.

Distribution is unlimited.

Action tree, atomicity, concurrency control, recovery, serializability, transaction, two-phase locking.

Key Words

- Action tree
- Atomicity
- Concurrency control
- Recovery
- Serializability
- Transaction
- Two-phase locking
INSTRUCTIONS FOR PREPARATION OF REPORT DOCUMENTATION PAGE

RESPONSIBILITY. The controlling DoD office will be responsible for completion of the Report Documentation Page, DD Form 1473, in all technical reports prepared by or for DoD organizations.

CLASSIFICATION. Since this Report Documentation Page, DD Form 1473, is used in preparing announcements, bibliographies, and data banks, it should be unclassified if possible. If a classification is required, identify the classified items on the page by the appropriate symbol.

COMPLETION GUIDE

1. General. Make Blocks 1, 4, 5, 6, 7, 11, 13, 15, and 16 agree with the corresponding information on the report cover. Leave Blocks 2 and 3 blank.

2. Block 1. Report Number. Enter the unique alphanumeric report number shown on the cover.

3. Block 2. Government Accession No. Leave Blank. This space is for use by the Defense Documentation Center.

4. Block 3. Recipient's Catalog Number. Leave blank. This space is for use of the report recipient to assist in future retrieval of the document.

5. Block 4. Title and Subtitle. Enter the title in all capital letters exactly as it appears on the publication. Titles should be unclassified whenever possible. Write out the English equivalent for Greek letters and mathematical symbols in the title (see "Abtracting Scientific and Technical Reports of Defense-sponsored RD/T/E, "AD-667 000). If the report has a subtitle, this subtitle should follow the main title, be separated by a comma or semicolon if appropriate, and be initially capitalized. If a publication has a title in a foreign language, translate the title into English and follow the English translation with the title in the original language. Make every effort to simplify the title before publication.

6. Block 5. Type of Report and Period Covered. Indicate here whether report is interim, final, etc., and, if applicable, inclusive dates of period covered, such as the life of a contract covered in a final contractor report.

7. Block 6. Performing Organization Report Number. Only numbers other than the official report number shown in Block 1, such as series numbers for in-house reports or a contractor/grantee number assigned by him, will be placed in this space. If no such numbers are used, leave this space blank.

8. Block 7. Author(s). Include corresponding information from the report cover. Give the name(s) of the author(s) in conventional order (for example, John R. Doe or, if author prefers, J. Robert Doe). In addition, list the affiliation of an author if it differs from that of the performing organization.

9. Block 8. Contract or Grant Number(s). For a contractor or grantee report, enter the complete contract or grant number(s) under which the work reported was accomplished. Leave blank in in-house reports.

10. Block 9. Performing Organization Name and Address. For in-house reports enter the name and address, including office symbol, of the performing activity. For contractor or grantee reports enter the name and address of the contractor or grantee who prepared the report and identify the appropriate corporate division, school, laboratory, etc., of the author. List city, state, and ZIP Code.

11. Block 10. Program Element, Project, Task Area, and Work Unit Numbers. Enter here the number code from the applicable Department of Defense form, such as the DD Form 1498, "Research and Technology Work Unit Summary," or the DD Form 1534, "Research and Development Planning Summary," which identifies the program element, project, task area, and work unit or equivalent under which the work was authorized.

12. Block 11. Controlling Office Name and Address. Enter the full, official name and address, including office symbol, of the controlling office. (Equates to funding/sponsoring agency. For definition see DoD Directive 5200.20, "Distribution Statements on Technical Documents.")

13. Block 12. Report Date. Enter here the day, month, and year or month and year as shown on the cover.

14. Block 13. Number of Pages. Enter the total number of pages.

15. Block 14. Monitoring Agency Name and Address (if different from Controlling Office). For use when the controlling or funding office does not directly administer a project, contract, or grant, but delegates the administrative responsibility to another organization.

19. Block 18. Supplementary Notes. Enter information not included elsewhere but useful, such as: Prepared in cooperation with Translation of (or by) Presented at conference of To be published in . . .

20. Block 19. Key Words. Select terms or short phrases that identify the principal subjects covered in the report, and are sufficiently specific and precise to be used as index entries for cataloging, conforming to standard terminology. The DoD "Thesaurus of Engineering and Scientific Terms" (TEST). AD-672 000, can be helpful.

21. Block 20. Abstract. The abstract should be a brief (not to exceed 200 words) factual summary of the most significant information contained in the report. If possible, the abstract of a classified report should be unclassified and the abstract to an unclassified report should consist of publicly-releasable information. If the report contains a significant bibliography or literature survey, mention it here. For information on preparing abstracts see "Abtracting Scientific and Technical Reports of Defense Sponsored R/D/T/E." AD-667 000.

children, using the information about the occurrence of the failures to decide on its further activity. The intention is that failed transactions are to have no effect on the data or on other transactions. This style of programming is a generalization of the "recovery block" style of [Ra] to the domain of concurrent programming. Indeed, this style seems to be especially suitable for programming distributed systems, since many types of failures of pieces of programs are likely to occur in such systems.

Reed is currently implementing a system which uses multiple versions of data to implement nested transactions which tolerate failures of sub-transactions. Moss has abstracted away from Reed's specific implementation of nested transactions, and has presented a clear intuitive description of the nested transaction model. He has also developed an alternative implementation of the nested transaction model, based on two-phase locking. This model and implementation are fundamental to the Argus distributed computing language, now under development by Liskov's group at MIT.

The basic correctness criteria for nested transactions seem to be clear enough, intuitively, to allow implementors a sufficient understanding of the requirements for their implementation. However, some subtle issues of correctness have arisen in connection with the behavior of failed sub-transactions. For example, the Argus group has decided that a pleasant property for an implementation to have is that all transactions, including even "orphans" (subtransactions of failed transactions), should see "consistent" views of the data (i.e. views that could occur during an execution in which they are not orphans). The implementation goes to considerable lengths to try to insure this property, but it is difficult for the implementors to be sure that they have succeeded.

It seems clear that some basic groundwork is needed before such properties can be proved. Namely, the theory already developed for concurrency control of single-level transaction systems without failures needs to be generalized to incorporate considerations of nesting and failures. The model needs to be formal, in order to allow careful specification of all the correctness requirements, the simple and intuitive ones, as well as the rather subtle ones.

This paper begins to develop this groundwork. First, a simple "action tree" structure is defined, which describes the ancestor relationships among executing transactions and also describes the views which different transactions have of the data. A generalization of serializability to the domain of nested transactions with failures, is defined. A characterization is given for this generalization of serializability, in terms of absence of cycles in an appropriate dependency relation on transactions. A slightly simplified version of Moss' algorithm is presented in detail, and a careful correctness proof is given.
The style of correctness proof for the algorithm appears to be quite interesting in its own right. The description of the algorithm is presented in a series of levels, each of which is an "event-state" algebra with unary operations, and each (but the first) of which "simulates" the previous one. The basic problem statement is given as the highest level algebra, and successively lower levels provide increasing amounts of implementation detail. In particular, both the problem specification and the implementation are presented as the same kind of mathematical object, an event-state algebra. At every level, we want to present algorithms with the maximum possible amount of nondeterminism consistent with correctness, not forcing any unnecessary implementation decisions. Therefore, we do not describe algorithms in the usual way, using programs with specified flow of control. Rather, we present algorithms as collections of events with corresponding preconditions.

One novel aspect of the simulations we use, different from the usual notions of "abstraction" mappings, is that our simulations map single lower level states to sets of higher level states, rather than just single higher level states. (We call them "possibilities" mappings.) This extra flexibility seems quite convenient for many implementations, allowing the more "concrete" algebra sometimes to contain less information than the more "abstract" algebra. For example, it might be easy to prove correctness of an algorithm which maintains lots of auxiliary information. The correctness of an algorithm which maintains less information could be proved, in our model, by showing that it simulates the algorithm which maintains the auxiliary information.

While possibilities mappings are convenient for proving correctness of ordinary centralized algorithms, they produce their greatest payoff for distributed algorithms. Namely, a distributed algorithm is described as a special case of an event-state algebra, a "distributed algebra". In a distributed algebra, the state set is just a Cartesian product, with event preconditions and transitions defined componentwise. To show that a distributed algebra simulates some other "abstract" algebra, it suffices to define an appropriate possibilities mapping from the global states of the distributed algebra, to sets of states of the abstract algebra. It turns out to be extremely natural to describe such a mapping by first describing a possibilities mapping from the local state of each component to sets of abstract states. The image of a local state under this mapping just represents the set of possible global states consistent with the knowledge of the particular component. The possibilities for the entire distributed algebra are simply obtained by taking the intersection of the possibilities consistent with the knowledge of all the components.

It appears that this technique extends to give natural proofs of many algorithms, especially distributed algorithms, and thus warrants further investigation. Goree [G] presents a more complete (and slightly more general) development of the technique than is presented in this paper.
The definitions given in this paper express the most fundamental correctness requirements, but not subtle conditions such as correctness of orphans' views. Issues of fairness and eventual progress are not addressed, but rather only safety properties, serializability in particular. Future work involves extending the framework presented here to allow expression of these other properties, and to allow correctness proofs for the difficult algorithms which guarantee these properties. Some further work in these directions has already been carried out: Goree [G] has given a definition for correctness of orphans' views, and has given a correctness proof for a complicated algorithm used in the implementation of Argus to maintain correctness of orphans' views in the face of transaction aborts.

Other related work is that of Stark [S]. He is carrying out a very general treatment of event-state algebras, incorporating considerations of modularity to a much greater extent than is present in this paper, and handling fairness and eventuality properties as well as safety properties.

2. Event-State Algebras

In this section, we describe the event-state algebra framework.

An event-state algebra \(\mathcal{A} = \langle A, \sigma, \Pi \rangle \), consists of a set \(A \) of states, an element \(\sigma \in A \), the initial state, and a set \(\Pi \) of partial unary operations. In this paper, we will usually refer to an event-state algebra as simply an algebra.

Let \(a \) be a state, and let \(\Phi = (\pi_1, \ldots, \pi_k) \) be any finite sequence of operations chosen from \(\mathcal{O} \). Then \(\Phi \) is said to be valid from \(a \) provided \(b = \pi_k(\pi_{k-1}(\ldots(\pi_1(a))\ldots)) \) is defined; in this case, \(b \) is called the result of \(\Phi \) applied to \(a \). An infinite sequence of operations is said to be valid from \(a \) provided all its finite prefixes are valid from \(a \). We say that \(\Phi \) is valid provided it is valid from \(a \), and the result of \(\Phi \) is defined to be the result of \(\Phi \) applied to \(a \). We write \(a \vdash b \) provided there is some finite \(\Phi \), valid from \(a \), for which \(b \) is the result of \(\Phi \) applied to \(a \). \(b \) is computable provided \(a \vdash b \).

Now assume \(\mathcal{A} = \langle A, \sigma, \Pi \rangle \) and \(\mathcal{A}' = \langle A', \sigma', \Pi' \rangle \) are two algebras. An interpretation of \(\mathcal{A} \) by \(\mathcal{A}' \) is a mapping \(h: \Pi' \rightarrow \Pi \cup \{ \Lambda \} \). We extend \(h \) to map operation sequences of \(\mathcal{A}' \) to operation sequences of \(\mathcal{A} \) in the obvious way (deleting occurrences of \(\Lambda \)). An interpretation, \(h \), is a simulation of \(\mathcal{A} \) by \(\mathcal{A}' \) provided that \(h(\Phi') \) is a valid operation sequence for \(\mathcal{A} \) whenever \(\Phi' \) is a valid operation sequence for \(\mathcal{A}' \).

Lemma 1: Assume that \(\mathcal{A}, \mathcal{A}' \) and \(\mathcal{A}'' \) are algebras, that \(h \) is a simulation of \(\mathcal{A} \) by \(\mathcal{A}' \) and \(h' \) is a simulation of \(\mathcal{A}' \) by \(\mathcal{A}'' \). Then \(h \circ h' \) is a simulation of \(\mathcal{A} \) by \(\mathcal{A}'' \).

Proof: Straightforward.
Next, we give a sufficient condition for a mapping h to be a simulation. Let $h: \mathcal{A}' \cup \Pi' \rightarrow \mathcal{F}(\mathcal{A}) \cup \Pi \cup \{\Lambda\}$ be such that $h(a') \in \mathcal{F}(\mathcal{A})$ for all $a' \in \mathcal{A}$, and h restricted to Π' is an interpretation. Then h is a possibilities mapping from \mathcal{A}' to \mathcal{A} provided the following are true:

(a) $\sigma \in h(\sigma')$.

Assume $\pi' \in \Pi'$. Assume a and a' are computable in \mathcal{A} and \mathcal{A}', respectively, and $a \in h(a')$.

Assume $a' \in \text{domain}(\pi')$ and $b' = \pi'(a')$.

(b) If $h(\pi') = \pi \in \Pi$, then $a \in \text{domain}(\pi)$ and $\pi(a) \in h(b')$.

(c) If $h(\pi') = \Lambda$, then $a \in h(b')$.

Lemma 2: Let h be a possibilities mapping from \mathcal{A}' to \mathcal{A}. If Φ' is a valid operation sequence for \mathcal{A}', and $h(\Phi') = \Phi$, then Φ is a valid operation sequence for \mathcal{A}. In addition, if Φ' is finite, a' is the result of Φ' and a is the result of Φ, then $a \in h(a')$.

Proof: By induction on the length of Φ'.

Lemma 3: Any possibilities mapping from \mathcal{A}' to \mathcal{A} is a simulation of \mathcal{A} by \mathcal{A}'.

Proof: Immediate by Lemma 2.

If we think of \mathcal{A}' as a "concrete" algebra, and \mathcal{A} as a more "abstract" algebra, then we see that a possibilities mapping allows single "concrete" states to be mapped to sets of "abstract" states rather than just single abstract states.

An algebra, $\mathcal{A} = \langle A, \sigma, \Pi \rangle$, is said to be distributed over a finite index set I using d, provided that A is the Cartesian product of sets A_i, $i \in I$, d is a mapping, $d: \Pi \rightarrow I$, giving the "doer" of each operation, and the following two conditions are satisfied.

- (Local Domain) Let $i = d(\pi)$. If $a, b \in A$ and $a_i = b_i$, then $a \in \text{domain}(\pi)$ if and only if $b \in \text{domain}(\pi)$.

- (Local Changes) If $a, b \in \text{domain}(\pi)$, $a' = \pi(a), b' = \pi(b)$ and $a_i = b_i$, then $a'_i = b'_i$.

We now consider the simulation of an algebra by a distributed algebra. Namely, we define a "local mapping", from the local state of each component of the distributed algebra to a set of abstract states. The result of this mapping should be thought of as the set of possible abstract states, as far as
a particular node can tell. The mapping from a global state of the distributed algebra can then be defined to yield the intersection of the images of all the component states. The conditions we require for local mappings are just those which guarantee that the derived global mapping is a possibilities mapping.

Let \(\mathcal{A}' = \langle A', \sigma', \Pi' \rangle \) be an algebra, distributed over \(I \) using \(d \). Let \(\mathcal{A} = \langle A, \sigma, \Pi \rangle \) be any algebra. Let \(h \) be an interpretation from \(\mathcal{A}' \) to \(\mathcal{A} \). For each \(i \in I \), let \(h_i: A' \rightarrow \mathcal{F}(A) \) be such that \(h_i \) depends on \(A' \) only - i.e. if \(a_i = b_i \) then \(h_i(a) = h_i(b) \). Then we say that \(h \) and \(h_i, i \in I \), form a local mapping from \(\mathcal{A}' \) to \(\mathcal{A} \) provided the following conditions are satisfied.

(a) For all \(i \in I \), \(\sigma \in h_i(\sigma') \).

Assume \(\pi' \in \Pi', d(\pi') = i \). Assume \(a \) and \(a' \) are computable in \(\mathcal{A} \) and \(\mathcal{A}' \), respectively. Assume \(a \in h_i(a') \). Assume \(a' \in \text{domain}(\pi') \), and \(b' = \pi'(a') \).

(b) If \(h(\pi') = \pi \in \Pi \), then \(a \in \text{domain}(\pi) \).

(c) Assume \(h(\pi') = \pi \in \Pi, j \in I \) and \(a \in h_j(a') \). Then \(h(\pi) \in h_j(b') \).

(d) Assume \(h(\pi') = \Lambda, j \in I \) and \(a \in h_j(a') \). Then \(a \in h_j(b') \).

Lemma 4: Let \(\mathcal{A} \) and \(\mathcal{A}' = \langle A', \sigma', \Pi' \rangle \) be algebras, where \(\mathcal{A}' \) is distributed over \(I \). Assume that \(h \) and \(h_i, i \in I \) form a local mapping from \(\mathcal{A}' \) to \(\mathcal{A} \). Extend \(h \) to \(A' \cup \Pi' \) by defining \(h(a') = \bigcap_{i \in I} h_i(a') \). Then \(h \) is a possibilities mapping from \(\mathcal{A}' \) to \(\mathcal{A} \).

Proof: We check the three properties of the possibilities mapping definition.

(a) To see that \(\sigma \in h(\sigma') \), it suffices to show that \(\sigma \in h_i(\sigma') \) for all \(i \in I \). But this is exactly the statement of property (a) of the local mapping definition.

Now we assume the hypotheses supplied for parts (b) and (c) of the possibilities mapping definition. Assume also that \(d(\pi') = i \).

(b) Since \(a \in h(a') \), it is obvious that \(a \in h_i(a') \). Property (b) of the local mapping definition implies that \(a \in \text{domain}(\pi) \). In order to show that \(\pi(a) \in h(b') \), it suffices to fix an arbitrary \(j \in I \) and show that \(\pi(a) \in h_j(b') \). Since \(a \in h_j(a') \), the needed property follows from (c) of the local mapping definition.

(c) It suffices to show that \(a \in h_j(b') \) for any \(j \in I \). This follows as in the preceding argument from (d) of the local mapping definition.

\(\square \)
If the definitions in this section are to be used in correctness proofs for the widest possible class of algorithms, they will probably need to be generalized. In particular, it seems appropriate to permit single operations of a more concrete algebra to be interpreted by sequences of operations of a more abstract algebra. (See Goree [G] for definitions and uses for this generalization.) Also, sets of initial states rather than single initial states are probably useful.

3. Action Trees

In this section, basic definitions are given for action trees and serializability.

Let \(\text{obj} \) be a universal set of data objects. For each \(x \in \text{obj} \), let \(\text{values}(x) \) denote the set of values \(x \) can assume, including a distinguished initial value \(\text{init}(x) \). A value assignment is a total mapping \(f \) from \(\text{obj} \) to \(\text{values}(\text{obj}) \), having the property that \(f(x) \in \text{values}(x) \) for all \(x \in \text{obj} \).

Let \(\text{act} \) be a universal set of actions (i.e. transactions). Let \(U \) be a distinguished action. We assume that the actions are configured a priori into a tree, representing their nesting relationship, with \(U \) as the root. For every \(A \in \text{act} \setminus \{U\} \), let \(\text{parent}(A) \) denote a unique parent action for \(A \). Let \(\text{siblings} \) denote \(\{ (A,B) \in \text{act}^2 : \text{parent}(A) = \text{parent}(B) \} \). If \(A \in \text{act} \), let \(\text{children}(A) \) denote \(\{ B \in \text{act} : \text{parent}(B) = A \} \). If \(A, B \in \text{act} \), let \(\text{lca}(A,B) \) denote the least common ancestor of \(A \) and \(B \). If \(A \in \text{act} \), let \(\text{desc}(A) \) (resp. \(\text{anc}(A) \)) be the set of descendants (resp. ancestors) of \(A \). Let \(\text{proper-desc}(A) \) (resp. \(\text{proper-anc}(A) \)) be the set of proper descendants (resp. ancestors) of \(A \).

It might be convenient for the reader to think of this a priori configuration of all possible actions into a tree as a preassigned "naming scheme" for actions. That is, the "name" of any action is assumed to carry within it information which locates that action in this universal tree of actions. In any particular execution, only some of these possible actions will be "activated". The (virtual) action \(U \), the parent of all top-level actions, has been added for the sake of uniformity.

Let \(\text{seq} \subseteq \text{siblings} \) be any fixed partial order, representing sequential dependency. If \((A,B) \in \text{seq} \), it means that \(A \) is constrained to run before \(B \). For the sake of notational simplicity, we are assuming this relation is also fixed a priori; this amount to assuming that the "name" of any action carries within it information about which siblings the action can assume have completed. The use of an arbitrary partial order is a generalization of both the total order usually specified for the steps which occur within a single-level transaction, and the unconstrained order usually specified among the transactions themselves. We also assume a priori determination of which actions actually access data, which objects they access and the functions they perform on those objects: let \(\text{accesses} \) denote the leaves of the tree described above. (We assume that \(U \notin \text{accesses} \), so that the set of actions is
nontrivial.) Let \(\text{object}: \text{accesses} \rightarrow \text{obj} \) be a fixed function. If \(\text{object}(A) = x \), we say that \(A \) is an access to \(x \). For \(A \in \text{accesses} \), let \(\text{update}(A): \text{values}(\text{object}(A)) \rightarrow \text{values}(\text{object}(A)) \) be a fixed function. Let \(\text{sameobject} \) denote \(\{(A,B) \in \text{accesses}^2 : \text{object}(A) = \text{object}(B)\} \).

I am departing from the usual approach in serializability theory by including a particular function (rather than an uninterpreted function) in the definition of an action which accesses data. This is because I want to state correctness conditions in terms of preserving certain relationships among the data values seen and written. This "semantic" style of correctness condition seems to me to be more basic than the usual correctness definitions in serializability theory, in that it says less to constrain the implementation.

Note that the usual read and write operations of serializability theory can be regarded as special cases of my accesses. Namely, "read accesses" have the identity function as their associated update function, while "write accesses" have an associated update function which is a constant function.

Next, I give a way of describing a "snapshot" of a particular execution, using a structure called an "action tree". An action tree can be regarded as the generalization of the log from ordinary serializability theory.

An action tree \(T \) has components \(\text{vertices}_T, \text{active}_T, \text{committed}_T, \text{aborted}_T \), and \(\text{label}_T \), where

- \(\text{vertices}_T \) is a finite subset of \(\text{act} \), closed under the parent operation: if \(A \in \text{vertices}_T \cdot \{U\} \), then \(\text{parent}(A) \in \text{vertices}_T \). (These represent the actions which have ever been created during the current execution.)

- \(\text{active}_T, \text{committed}_T \) and \(\text{aborted}_T \) comprise a partition of \(\text{vertices}_T \). (These classifications indicate the current status of each action that has ever been created. When a non-access action is first created, it is classified as active. At some later time, its classification can be changed to either committed or aborted. By "committed", we mean that the action is committed relative to its parent, but not necessarily committed permanently. Permanent commit of an action would be represented by classification of all ancestors of the action, except for \(U \), as committed.)

- \(\text{label}_T: \text{datasteps}_T \rightarrow \text{values}(obj) \), (where \(\text{datasteps}_T = \text{committed}_T \cap \text{accesses} \)), with \(\text{label}_T(A) \in \text{values}(\text{object}(A)) \). (The label of an access to an object is intended to represent the value read by that access. Since the access has an associated function, the value which the access writes into the object is deducible from the value read, and therefore need not be explicitly represented.)

Let \(\text{done}_T \) denote \(\text{committed}_T \cup \text{aborted}_T \). Let \(\text{status}_T \) be defined by \(\text{status}_T(A) = \text{'active'} \) (resp.
'committed', 'aborted') provided \(A \in \text{active}_T \) (resp. \(\text{committed}_T, \text{aborted}_T \)). Let \(\text{accesses}_T = \text{vertices}_T \cap \text{accesses} \), \(\text{accesses}_T(x) = \{ B \in \text{accesses}_T : \text{object}(B) = x \} \), and \(\text{datasteps}_T(x) = \{ B \in \text{datasteps}_T : \text{object}(B) = x \} \). Let \(\text{seq}_T \) denote \(\text{seq} \cap (\text{vertices}_T)^2 \).

Next, we describe actions whose existence is intended to be known to other actions (i.e. not masked from those other actions by intervening failures or active actions). For \(A \in \text{vertices}_T \), let \(\text{visible}_T(A) \) denote \(\{ B \in \text{vertices}_T : \text{anc}(B) \cap \text{proper-desc}(\text{lca}(A,B)) \subseteq \text{committed}_T \} \). That is, \(\text{visible}_T(A) \) is just the set of actions whose existence is known to action \(A \), because they and all their ancestors, up to and not including some ancestor of \(A \), have committed. For \(A \in \text{vertices}_T, x \in \text{obj} \), let \(\text{visible}_T(A,x) \) denote \(\text{visible}_T(A) \cap \text{datasteps}_T(x) \). The following lemma describes elementary properties of "visibility".

Lemma 5: Let \(T \) be an action tree, \(A, B, C \in \text{vertices}_T \).

a. If \(A \in \text{desc}(B) \), then \(B \in \text{visible}_T(A) \).

b. \(A \in \text{visible}_T(B) \) if and only if \(A \in \text{visible}_T(\text{lca}(A,B)) \).

c. If \(A \in \text{visible}_T(B) \) and \(B \in \text{visible}_T(C) \), then \(A \in \text{visible}_T(C) \).

d. If \(A \in \text{desc}(B) \) and \(C \in \text{visible}_T(B) \), then \(C \in \text{visible}_T(A) \).

e. If \(A \in \text{desc}(B) \) and \(A \in \text{visible}_T(C) \), then \(B \in \text{visible}_T(C) \).

Proof:

a. Immediate.

b. Immediate from the fact that \(\text{lca}(A,B) = \text{lca}(A,\text{lca}(A,B)) \).

c. Let \(D \in \text{anc}(A) \cap \text{proper-desc}(\text{lca}(A,C)) \). We must show that \(D \in \text{committed}_T \). If \(D \in \text{proper-desc}(\text{lca}(A,B)) \), then the fact that \(A \in \text{visible}_T(B) \) implies the result. So assume that \(D \not\in \text{proper-desc}(\text{lca}(A,B)) \). It must be the case that \(D \in \text{anc}(\text{lca}(A,B)) \), and that \(\text{lca}(B,C) = \text{lca}(A,C) \). Thus, \(D \in \text{anc}(B) \cap \text{proper-desc}(\text{lca}(B,C)) \), so the fact that \(B \in \text{visible}_T(C) \) implies the result.

d. Immediate from parts a and c.

e. Immediate from parts a and c.
If \(A \in \text{vertices}_T \), then we say \(A \) is **live** in \(T \) provided \(\text{anc}(A) \cap \text{aborted}_T = \emptyset \), and we say \(A \) is **dead** in \(T \) otherwise.

Lemma 6: If \(A, B \in \text{vertices}_T \), \(A \) is live in \(T \), and \(B \in \text{visible}_T(A) \), then \(B \) is live in \(T \).

Proof: If \(B \) is dead in \(T \), then there exists \(C \in \text{anc}(B) \cap \text{aborted}_T \). We know \(C \notin \text{proper-desc}(\text{lca}(A,B)) \), since \(B \in \text{visible}_T(A) \). Thus, \(C \notin \text{anc}(\text{lca}(A,B)) \subseteq \text{anc}(A) \), so \(A \) is dead in \(T \), a contradiction.

\[\square\]

If \(x \in \text{obj} \) and \(s \) is a finite sequence of datasteps, then we define \(\text{result}(x,s) \) as follows. If \(s \) is the empty sequence, then \(\text{result}(x,s) = \text{init}(x) \). Otherwise, let \(s = s'A \). Then \(\text{result}(x,s) = \text{update}(A)(\text{result}(x,s')) \) if \(A \) involves \(x \), and \(\text{result}(x,s') \) otherwise.

If \(S \) is a set, and \(\leq \) is a total order on the elements of \(S \), then we let \(\langle \langle S; \leq \rangle \rangle \) denote the sequence consisting of the elements of \(S \) in the order given by \(\leq \).

Let \(T \) be an action tree. A partial order \(p \subseteq \text{siblings} \) is **linearizing** for \(T \) provided \(p \) totally orders all siblings in \(T \). A linearizing partial order \(p \) induces a total order, \(\text{induced}_{T,p} \), on datasteps of \(T \), in the obvious way. If \(A \in \text{datasteps}_T(x) \) and \(p \) is a linearizing partial order for \(T \), let \(\text{preds}_{T,p}(A) \) denote \(\langle\langle B \in \text{visible}_T(A,x) \mid (B,A) \in \text{induced}_{T,p} \text{ and } B \neq A \rangle\rangle \).

A linearizing partial order \(p \) for \(T \) is said to be a **serializing** partial order for \(T \) provided \(p \) is consistent with \(\text{seq} \), and \(\text{label}_T(A) = \text{result}(x,\text{preds}_{T,p}(A)) \), for all \(A \in \text{datasteps}_T(x) \). \(T \) is said to be **serializable** provided there exists some serializing partial order for \(T \).

Stating the simplest correctness requirements only requires consideration of actions whose effects become "permanent". Therefore, we restrict attention to a portion of \(T \), as follows. A new action tree \(\text{perm}(T) \) is defined as follows.

- \(\text{vertices}_{\text{perm}(T)} = \text{visible}_T(U) \). (Lemma 5e shows that \(\text{perm}(T) \) is a tree.)

- If \(A \in \text{vertices}_{\text{perm}(T)} \), then \(\text{status}_{\text{perm}(T)}(A) = \text{status}_T(A) \).

- If \(A \in \text{datasteps}_{\text{perm}(T)} \), then \(\text{label}_{\text{perm}(T)}(A) = \text{label}_T(A) \).

Lemma 7: If \(T \) is an action tree and \(A, B \in \text{vertices}_{\text{perm}(T)} \), then \(B \in \text{visible}_{\text{perm}(T)}(A) \).

Proof: Since \(B \in \text{vertices}_{\text{perm}(T)} = \text{visible}_T(U) \), Lemma 5d implies that \(B \in \text{visible}_T(A) \). Then \(B \in \text{visible}_{\text{perm}(T)}(A) \), since the status of each vertex is the same in \(T \) and \(\text{perm}(T) \).

\[\square\]
We will require that any tree T created by our algorithm have $\text{perm}(T)$ serializable.

Note that the style in which serializability is defined here constrains the implementation less than the type of definition used in "traditional" concurrency control theory. The earlier definitions regard the data as external to the concurrency control algorithm; the algorithm is to take requests for data accesses and translate them into actual accesses, observing appropriate rules. Generally, the accesses performed by the concurrency control algorithm simply obtain the latest version of the data object. A clue that the earlier definitions are too constraining is that they do not apply unchanged to algorithms such as Reed's, which use sophisticated management of versions of the data. The earlier definitions require extensions [KP, BG] to handle algorithms such as Reed's. These extensions still regard the data as external to the concurrency control algorithm, and so the modified correctness conditions contain explicit information about particular "versions" of the data objects. It seems to me, however, that the appearance of serializability, in terms of the values seen by the accesses, is really all that matters - it is possible that this appearance could be preserved by some algorithm which does not operate in terms of versions at all.

The less constraining approach which is taken here is to regard the data as internal to the concurrency control algorithm, at least for the purpose of stating the basic correctness conditions. Thus, the definitions introduced in this paper are intended to be applicable to algorithms which use single versions of data objects, algorithms that use multiple versions of data objects, as well as to other implementations as yet unforeseen.

4. An Algebra Based on Action Trees

We now define a set of operations on action trees. That is, we define an algebra $A = \langle A, \sigma, \Pi \rangle$, where A is the set of action trees, σ is the trivial action tree with the single vertex U, with status 'active', and Π contains the four kinds of operations described in (a)-(d) below. We define the operations as follows. First, we let C denote the set of all action trees, T, for which $\text{perm}(T)$ is serializable. (In particular, $\sigma \in C$.) We constrain the ranges of all of the operations to be subsets of C. Within this constraint, we define the domain by giving a precondition on action trees T, and use assignment notation to describe the effect of the operation on T.

In all operations, we assume that $A \subseteq \text{act} \cdot \{U\}$.

(a) create_A

(a1) Precondition
(a11) $A \in \text{vertices}_T$.

(a12) parent(A) ∈ vertices \(T \) \(\cdot \) committed \(T \).
(a13) If (B, A) ∈ seq and B ≠ A, then B ∈ done \(T \).

(a2) Effect
(a21) vertices \(T \) ← vertices \(T \) \(\cup \) \{A\}.
(a22) status \(T \)(A) ← 'active'.

(b) commit \(A \), A ∈ accesses

(b1) Precondition
(b11) A ∈ active \(T \).
(b12) children(A) \(\cap \) vertices \(T \) \(\subseteq \) done \(T \).

(b2) Effect
(b21) status \(T \)(A) ← 'committed'.

(c) abort \(A \)

(c1) Precondition
(c11) A ∈ active \(T \).

(c2) Effect
(c21) status \(T \)(A) ← 'aborted'.

(d) perform \(A, u \), A ∈ accesses, x = object(A), u ∈ values(x)

(d1) Precondition
(d11) A ∈ active \(T \).

(d2) Effect
(d21) status \(T \)(A) ← 'committed'.
(d22) label \(T \)(A) ← u.

5. Augmented Action Trees

The definitions which make specific reference to versions are still useful in conjunction with the approach of this paper. Their role is in supplying sufficient conditions for serializability, and thereby helping to organize correctness proofs.

In this section, a new structure called an "augmented action tree" is defined. Augmented action trees are just action trees with a little additional information. Namely, in the spirit of the earlier definitions, some information is added which describes a sequence of versions for each data object. Serializability is defined for augmented action trees. It is seen that serializability for augmented action trees implies serializability for corresponding action trees. Moreover, serializability for augmented action trees has a cycle-free characterization similar to those in usual concurrency control theory.
Thus, this structure can be useful in proofs of serializability for action trees.

An augmented action tree (AAT), T, is a pair (S,D), where S is an action tree and $D \subseteq \text{sameobject}_S$ is a partial order on datasteps$_S$ which totally orders the datasteps for each object. In this case, we write data$_T$ for D. We extend action tree notation to T; for example, we write datasteps$_T$ to denote datasteps$_S$. If T is an AAT, then let sibling-data$_T$ denote $\{(A,B) \in \text{siblings}: (C,D) \in \text{data}_T \text{ for some } C \in \text{desc}(A), D \in \text{desc}(B)\}$. If $A \in$ datasteps$_T(x)$, then let v-data$_T(A)$ denote $\{B \in \text{visible}_T(A,x): (B,A) \in \text{data}_T \text{ and } B \neq A\}$.

The following is a technical lemma needed for the characterization theorem.

Lemma 8: Let T be an AAT. If there is a cycle of length greater than one in seq U sibling-data$_T$, then there is a cycle of length greater than one in seq U sibling-data$_T$.

Proof: Assume not. Choose a cycle, C, of minimum length greater than one, in seq U sibling-data$_T$. There must be an action, A, on C with $A \notin \text{vertices}_T$. Let (B,A) and (A,C) be the two pairs on C involving A. Then both pairs are elements of seq. Thus, $(B,C) \in$ seq and $B \neq C$, since seq is a partial order. Removing A from C leaves a cycle with at least two elements (B and C), having one fewer element than C. This contradicts the minimality of C.

If $T = (S,D)$ is an AAT, then erase(T) is just the action tree S. We extend the definitions of visible, live, dead, linearizing, induced, preds and serializable to an AAT, T, by applying them to erase(T). An AAT, T, is data-serializable provided there exists p, a serializing partial order for T, with the additional property that induced$_T$, p is consistent with data$_T$. Data-serializability for AAT's provides a sufficient condition for correctness.

Lemma 9: Let T be an AAT. Let p be a linearizing partial order for T, $x \in \text{obj}$, and $A \in$ datasteps$_T(x)$. Assume that induced$_T$, p is consistent with data$_T$. Then preds$_T$, p $(A) = \langle \langle v$-data$_T(A)$; data$_T \rangle \rangle$.

Proof: Straightforward.

Data-serializability for AAT's has a cyclic tree characterization. First, we give a definition which says that the label of each access describes the correct object value which the access should see, if the versions of objects are ordered according to the data$_T$ order. Formally, an AAT is version-compatible provided for every $x \in \text{obj}$, and every $A \in$ datasteps$_T(x)$, it is the case that label$_T(A) = \text{result}(x,s)$, where $s = \langle \langle v$-data$_T(A)$; data$_T \rangle \rangle$.

Theorem 10: An AAT, T, is data-serializable if and only if both of the following are
true:

a. T is version-compatible.

b. There are no cycles of length greater than one in $\text{seq}_T \cup \text{sibling-data}_T$.

Proof: Assume T is data-serializable, and obtain p, a serializing partial order for T for which $\text{induced}_{T,p}$ is consistent with data_T.

a. Let $A \in \text{data-steps}_T(x)$. $s = \langle \langle v\cdot \text{data}_T(A); \text{data}_T \rangle \rangle$. Then $\text{label}_T(A) = \text{result}(x, \text{preds}_{T,p}(A))$, by the definition of serializability, = result(x,s), by Lemma 9.

b. $\text{seq}_T \cup \text{sibling-data}_T \subseteq p$. Thus, there are no cycles of length greater than one in $\text{seq}_T \cup \text{sibling-data}_T$.

Now assume a. and b. Lemma 8 implies that there are no cycles of length greater than one in $\text{seq} \cup \text{sibling-data}_T$. Let p be any partial order which totally orders all siblings and is consistent with $\text{seq} \cup \text{sibling-data}_T$. Then p is linearizing for T. and $\text{induced}_{T,p}$ is consistent with data_T. We will show that p is a serializing partial order for T. Let $x \in \text{obj}$, $A \in \text{data-steps}_T(x)$. We must show that $\text{label}_T(A) = \text{result}(x, \text{preds}_{T,p}(A))$. Since T is version-compatible, we know that $\text{label}_T(A) = \text{result}(x,s)$, where $s = \langle \langle v\cdot \text{data}_T; \text{data}_T \rangle \rangle$. Then Lemma 9 implies that $s = \text{preds}_{T,p}(A)$, as needed.

6. An Algebra Based on Augmented Action Trees

In order to prove that an algorithm generates only correct operation sequences, it is helpful to include the additional information present in AAT's. Thus, we define operations on AAT's, analogously to the definitions for action trees. Once again, we carry out the definitions within the algebra framework defined earlier. We define a new algebra $\mathcal{A}' = \langle A', \sigma', \Pi' \rangle$, where A' is the set of AAT's, σ' is the trivial AAT which has a single vertex U with status 'active', and the operations in Π' correspond closely to the operations of \mathcal{A}, and are designated by the same names. (We will rely on context to distinguish the two cases.) The only differences are that there is no global constraint corresponding to C, and $\text{perform}_{A,u}$ introduces two additional preconditions and an additional change. These new conditions can be thought of as capturing the abstract effect of a variant of Moss' locking algorithm.

(d1) Precondition
Let $B \in \text{dataStep}_T(x)$, B live in T. Then $B \in \text{visible}_T(A,x)$.

(d13) If A is live in T, then $u = \text{result}(x,s)$, where $s = \langle \langle \text{visible}_T(A,x); \text{data}_T \rangle \rangle$.

(d2) Effect

(d23) data$_T \leftarrow$ data$_T$ \cup \{(B,A) : B \in dataStep$_T(x)\} \cup \{(A,A)\}$.

Lemma 11: If T is computable in \mathcal{A}, then the following are true.

a. If $A \in \text{vertices}_T$ and parent(A) $\in \text{committed}_T$, then $A \in \text{done}_T$.

b. If $A \in \text{vertices}_T$ and (B,A) \in seq and $B \neq A$, then $B \in \text{done}_T$.

c. $U \in \text{active}_T$.

d. If (B,A) \in data$_T$, then either B is dead in T, or else $B \in \text{visible}_T(A)$.

e. If $A \in \text{committed}_T$ and $B \in \text{desc}(A) \cap \text{vertices}_T$, then either B is dead in T or else $B \in \text{visible}_T(A)$.

Proof: Most of the arguments are straightforward. We argue cases d. and e.

d. If $B = A$, the result is immediate. If $B \neq A$, then the only way we get (B,A) \in data$_T$ is by virtue of some perform$_{A,U}$ event. That is, there exists T' such that $T' \vdash T$, such that the precondition for some step perform$_{A,U}$ is satisfied in T'. Thus, B is dead in T' or $B \in \text{visible}_T(A)$. Therefore, B is dead in T or $B \in \text{visible}_T(A)$.

e. If $B = A$, the result is immediate. So assume $A \neq B$. Let $A \in \text{committed}_T$, $B \in \text{desc}(A) \cap \text{vertices}_T$, B live in T, and $B \notin \text{visible}_T(A)$. Then there exist $C, D \in \text{desc}(A) \cap \text{anc}(B)$, for which $C = \text{parent}(D), C \in \text{committed}_T$ and $D \in \text{active}_T$. But this contradicts part a.

\[\square\]

Lemma 12: Let T and T' be computable in \mathcal{A}, and assume that $T \vdash T'$.

a. vertices$_T \subseteq$ vertices$_{T'}$, committed$_T \subseteq$ committed$_{T'}$, aborted$_T \subseteq$ aborted$_{T'}$, and data$_T \subseteq$ data$_{T'}$.

b. If $A \in \text{datasteps}_T$ then label$_T(A) = \text{label}_{T'}(A)$.

c. If $A \in \text{datasteps}_T$ and (B,A) \in data$_T$, then (B,A) \in data$_{T'}$.

d. If $A \in \text{vertices}_T$, then visible$_T(A) \subseteq$ visible$_{T'}(A)$.
e. If \(A \in \text{vertices}_T \) and \(A \) is live in \(T' \), then \(A \) is live in \(T \).

f. If \(A = \text{parent}(B) \) and \(A \in \text{committed}_T \) and \(B \in \text{vertices}_T \), then \(B \in \text{done}_T \).

Proof: The only case that takes some arguing is f. Let \(A = \text{parent}(B) \), \(A \in \text{committed}_T \) and \(B \in \text{vertices}_T \). Let \(T' \) be the result of \(\Phi \) applied to \(T \), and let \(T \) be the result of \(\Psi \). Then \(\Psi \) contains a step \(\pi \) of the form \(\text{commit}_A \), and \(\Psi \Phi \) contains a step \(\rho \) of the form \(\text{create}_B \). \(\pi \) cannot precede \(\rho \), since the precondition for \(\rho \) would be violated. So \(\rho \) precedes \(\pi \). Then the precondition for \(\pi \) implies that \(B \in \text{done}_T \).

\(\square \)

Note that there is no correctness condition for AAT's explicitly mentioning serializability. This is because for AAT's, computability alone is sufficient to guarantee serializability of \(\text{perm}(T) \), as we show in the next theorem.

Lemma 13: If \(T \) is computable in \(\mathcal{J} \), then \(\text{perm}(T) \) is version-compatible.

Proof: Let \(A \in \text{data}(\text{perm}(T))(x) \). We must show that \(u = \text{label}_{\text{perm}(T)}(A) = \text{result}(x,s) \), where \(s = \langle \langle \text{data}_{\text{perm}(T)}(B); \text{data}_\text{perm}(T) \rangle \rangle \). \(A \) is inserted into the tree by a \(\text{perform}_{A,u} \) step \(\pi \), so let the operation sequence producing \(T \) be written as \(\Phi \pi \Psi \). Let \(T' \) denote the result of \(\Phi \), and \(T'' \) the result of \(\Phi \pi \Phi \Psi \). The preconditions for \(\pi \) show that \(\text{label}_{\text{perm}(T)}(A) = \text{result}(x,s') \), where \(s' = \langle \langle \text{data}_{\text{perm}(T)}(A,x); \text{data}_\text{perm}(T) \rangle \rangle \). By Lemma 12b and the definition of \(\text{perm}(T) \), it follows that \(\text{label}_{\text{perm}(T)}(A) = \text{result}(x,s') \). Thus, it suffices to show that \(s = s' \). Since both \(\text{data}_{\text{perm}(T)} \) and \(\text{data}_\text{perm}(T) \) are consistent with \(\text{data}_{\text{perm}(T)} \) it suffices to show that \(s \) and \(s' \) contain the same elements.

First, let \(B \in s \). Then \((B,A) \in \text{data}_{\text{perm}(T)} \) and so by Lemma 12c, \(B \in \text{data}_\text{perm}(T)(x) \). Since \(A \) is the only element in \(T'' \) which is not in \(T' \), \(B \in \text{data}_\text{perm}(T)(x) \). Since \(A \in \text{vertices}_{\text{perm}(T)} = \text{visible}_{\text{perm}(T)}(U) \), and \(U \in \text{aborted}_{\text{perm}(T)} \) (by Lemma 11), it follows that \(A \) is live in \(T \). Since \(B \in \text{visible}_{\text{perm}(T)}(A) \), Lemma 6 shows that \(B \) is live in \(T \). Thus, \(B \) is live in \(T' \), by Lemma 12e. The precondition for \(\pi \) implies that \(B \in \text{visible}_{\text{perm}(T)}(A,x) \), so \(B \in s' \).

Conversely, suppose \(B \in s' \). Then \(B \neq A \) since \(A \in \text{vertices}_{\text{perm}(T)} \). Then \((B,A) \in \text{data}_{\text{perm}(T)} \), so by Lemma 12a, \((B,A) \in \text{data}_{\text{perm}(T)} \). By Lemma 12d, \(B \in \text{visible}_{\text{perm}(T)}(A,x) \). By Lemma 7, it suffices to show that \(B \in \text{vertices}_{\text{perm}(T)} = \text{visible}_{\text{perm}(T)}(U) \). But \(B \in \text{visible}_{\text{perm}(T)}(A) \) and \(A \in \text{visible}_{\text{perm}(T)}(U) \), so Lemma 5c suffices.

\(\square \)

Lemma 14: If \(T \) is computable in \(\mathcal{J} \), then there are no nontrivial cycles in \(\text{seq}_{\text{perm}(T)} \cup \text{sibling-data}_{\text{perm}(T)} \).

Proof: Assume the contrary: let \((\sigma; A_1, \ldots, A_k = \sigma), k \geq 2 \), be a minimum length cycle.
such that \((A_i, A_{i+1}) \in \text{seq}_{\text{per} \text{m}}(T) \cup \text{sibling-data}_{\text{per} \text{m}}(T)\) for all \(i, 0 \leq i \leq k-1\). Let a sequence \(\Phi\) of operations be defined so that \(T\) is the result of \(\Phi\). We will show that for each \(i, 0 \leq i \leq k-1\), there exists a prefix \(\Psi_i\) of \(\Phi\) such that if \(T'\) is the result of \(\Psi_i\), then \(A_i \in \text{done}_{T'}\), and \(A_{i+1} \in \text{done}_{T'}\). If we fix \(i\) for which \(\Psi_i\) is of maximum length, and let \(T'\) be the result of this \(\Psi_i\), then we see that \(A_{i+1} \in \text{done}_{T'}\). But \(\Psi_i\) is no longer than \(\Psi\), so Lemma 12a implies that \(A_{i+1} \in \text{done}_{T'}\), which is a contradiction.

Fix \(i\). If \((A_i, A_{i+1}) \in \text{seq}_{\text{per} \text{m}}(T)\), then \(\Phi\) has a prefix \(\Psi\), where \(\Psi\) is a create \(A_{i+1}\) operation. Let \(T'\) be the result of \(\Psi\). The preconditions for \(\Psi\) imply that \(A_i \in \text{done}_{T'}\). Thus, \(\Psi_i = \Psi\) suffices.

Now assume that \((A_i, A_{i+1}) \in \text{sibling-data}_{\text{per} \text{m}}(T)\). Then there exist \(B \in \text{desc}(A_i), C \in \text{desc}(A_{i+1})\) with \((B, C) \in \text{data}_{\text{per} \text{m}}(T)\). Since \(B, C \in \text{vertices}_{\text{per} \text{m}}(T)\), it follows that \((\text{anc}(B) \cup \text{anc}(C)) \cap \text{proper-desc}(U) \subseteq \text{committed}_{T}\). Now, \(\Phi\) has a prefix \(\Psi\), where \(\Psi\) is a perform \(C_u\) step. Let \(T'\) be the result of \(\Psi\), and \(T''\) the result of \(\Psi\). Lemma 12c implies that \((B, C) \in \text{data}_{T''}\), so that \(B \in \text{datasteps}_{T''}\). Since \(B\) is live in \(T\) (using Lemma 11c), Lemma 12e implies that \(B\) is live in \(T'\). Then the precondition for \(\Psi\) implies that \(B \in \text{visible}_{T'}(C)\), which means that \(A_i \in \text{anc}(B) \cap \text{proper-desc}(\text{lca}(B, C)) \subseteq \text{committed}_{T'}\) \(\subseteq \text{done}_{T'}\). We must show that \(A_{i+1} \in \text{done}_{T'}\); if we can do this, then \(\Psi = \Psi\) yields the result. Assume \(A_{i+1} \in \text{done}_{T'}\). Then let \(D\) be the lowest ancestor of \(C\) for which \(D \in \text{done}_{T'}\); it must be the case that \(D \in \text{anc}(C) \cap \text{proper-desc}(\text{lca}(B, C)) \subseteq \text{committed}_{T'}\) \(\subseteq \text{ Done}_{T'}\). Since \(C \in \text{vertices}_{T'}\), we know that \(D \neq C\). Let \(E\) be the single element of \(\text{children}(D) \cap \text{anc}(C)\). Then \(E \in \text{done}_{T'}\). Then \(E \in \text{vertices}_{T'}\) by Lemma 12f. This means \(C \in \text{vertices}_{T'}\). This is a contradiction.

\(\square\)

Theorem 15: If \(T\) is computable in \(\mathcal{A}'\), then \(\text{per} \text{m}(T)\) is data-serializable.

Proof: Immediate from Lemma 13, Lemma 14 and Theorem 10.

\(\square\)

Next, we show that it is sufficient to restrict attention to correctness of operation sequences for AAT's. We define a mapping \(h\) from \(\mathcal{A}\) to \(\mathcal{A}'\) as follows. If \(T\) is an AAT, then \(h(T) = \{\text{erase}(T)\}\). If \(\pi\) is in \(\Pi\), then \(h(\pi)\) is just the operation in \(\Pi\) with the same name.

Lemma 16: \(h\) is a simulation of \(\mathcal{A}\) by \(\mathcal{A}'\).

Proof: (a) and (c) are immediate. To see (b), the first conclusion follows immediately from the fact that \(a' \in \text{domain}(\pi')\) (since only additional constraints are added for \(\mathcal{A}'\)); note that Theorem 15 implies that the C-constraint is always satisfied. The second conclusion is then straightforward. Thus, \(h\) is a possibilities mapping. Lemma 3 shows that \(h\) is a
7. An Algebra Based on Version Maps

In this section, we introduce another data structure. This one records, for each object and action, the sequence of accesses to the object whose result is available to the action.

A version map is a partial mapping V from $obj \times act$ to sequences of accesses, such that the following properties are satisfied:

- $V(x, U)$ is defined for all x,
- each $V(x, A)$ consists of accesses to x,
- for each x, if $V(x, A)$ and $V(x, B)$ are both defined, then either $A \in desc(B)$ or $B \in desc(A)$,
- if $V(x, A)$ and $V(x, B)$ are both defined and $B \in desc(A)$, then $V(x, B)$ is an extension of $V(x, A)$.

If A is the least action for which $V(x, A)$ is defined, then we call A the principal action for x in V; in this case, if $result(x, V(x, A)) = u$, we say that u is the principal value of x in V.

We define another algebra, $\mathcal{A}'' = \langle A'', \sigma'', \Pi'' \rangle$, as follows. A'' is the set of pairs (T, V), where T is an AAT and V is a version map. σ'' consists of the trivial AAT consisting of a single node U with status 'active', and the version map which has $V(x, U)$ equal to the empty sequence, for all x, and is otherwise undefined. Π'' consists of the six operations defined below in (a)-(f).

In all the operations to follow, we assume that $A \in act - \{U\}$. Operations (a)-(c) are identical to (a)-(c) of \mathcal{A}'.

(d) perform$_{A,u}$ $A \in accesses$, $x = object(A)$, $u \in values(x)$

(d1) Precondition

(d11) $A \in active$.
(d12) $\{B : V(x, B) \text{ is defined} \} \subseteq proper-anc(A)$.
(d13) u is the principal value of x in V.

(d2) Effect

(d21) status$_{T}(A) \leftarrow \text{'committed'}$.
(d22) label$_{T}(A) \leftarrow u$.
(d23) data$_{T} \leftarrow data_{T} \cup \{(B, A) : B \in accesses_{T}(x)\} \cup \{(A, A)\}$.
(d24) $V(x, A) \leftarrow V(x, B) \circ (A)$.
(e) release-lock_{A, x}, x ∈ obj

(e1) Precondition
(e11) V(x,A) is defined.
(e12) A ∈ committed_T.

(e2) Effect
(e21) V(x, parent(A)) ← V(x,A).
(e22) V(x,A) ← undefined.

(f) lose-lock_{A, x}, x ∈ obj

(f1) Precondition
(f11) V(x,A) is defined.
(f12) A is dead in T.

(f2) Effect
(f21) V(x,A) ← undefined.

Lemma 17: If (T,V) is computable in Λ'', then the following are true.

a. If V(x,A) is defined, then A ∈ vertices_T.

b. If B ∈ datasteps_{T}(x) and B is live in T, then there exists A ∈ anc(B) with V(x,A) defined and B an element of V(x,A).

c. If V(x,A) is defined, then each element of V(x,A) is in visible_T(A).

d. If V(x,A) is defined, then the elements of V(x,A) are in data_T order.

Proof: Straightforward. We argue b., for example. Immediately after an operation perform_{B,u} occurs, we see that V(x,B) is defined, and B ∈ V(x,B). Assume inductively that there is some ancestor, C, of B with V(x,C) defined and B ∈ V(x,C). Since B remains live, there are no steps of the form lose-lock_{C,x}. Thus, if V(x,C) is ever changed, it must be because of a release-lock step. There are two possibilities. First, the change could occur because of a release-lock_{C,x} step. But such a step causes V(x, parent(C)) to take on the old value of V(x,C), thereby preserving the needed property. Second, the change could occur because V(x,C) gets redefined to be the previous value of V(x,D), where D ∈ children(C). But because the successive sequences are extensions of each other, B is an element of V(x,D) as well. Thus, the needed property is preserved in this case also.

Define a mapping h' from Λ'' to Λ' as follows. h' maps (T,V) to {T}, and maps operations (a)-(d) to operations of the same name, and operations (e) and (f) to Λ.
Lemma 18: h' is a simulation of \mathcal{A}' by \mathcal{A}''.

Proof: It suffices to show that h' is a possibilities mapping. The first and last properties are easy to check. We consider the second property. Let $\pi' \in \Pi''$, where $h'(\pi') = \pi \in \Pi'$. Then π' is either of the form $\text{create}_{A'}, \text{commit}_{A'}, \text{abort}_{A'}$ or $\text{perform}_{A',u}$. In the first three cases, the second property is easy to check. So assume that π' is of the form $\text{perform}_{A',u}$.

Assume (T,V) is computable in \mathcal{A}'' and π' is defined on (T,V), yielding (T',V'). We must show that $\text{perform}_{A',u}$ (i.e. the operation of A') is defined on T. Let $x = \text{object}(A)$.

Condition (d11) for \mathcal{A}' follow immediately from the corresponding condition for \mathcal{A}''. We consider (d12). Let $B \in \text{datasteps}_T(x)$, and assume that B is live in T. Since (T,V) is computable in \mathcal{A}'', Lemma 17 implies that there is some $C \in \text{anc}(B)$ for which $V(x,C)$ is defined and for which B is an element of $V(x,C)$. Then Lemma 17 implies that $B \in \text{visible}_T(C)$. Since π' is defined on (T,V), (d12) for \mathcal{A}'' implies that $C \in \text{anc}(A)$. Since $A \in \text{vertices}_T$ Lemma 5 implies that $B \in \text{visible}_T(A)$, as needed.

Next, we consider (d13). Assume A is live in T, and let $s = \left\langle \text{visible}_T(A,x); \text{data}_T \right\rangle$. We must show that $u = \text{result}(x,s)$. Let B be the principal action for x in V. Condition (d13) for \mathcal{A}'' implies that $u = \text{result}(x,V(x,B))$. It suffices to show that s and $V(x,B)$ are identical. Since the elements of $V(x,B)$ are in data_T order (by Lemma 17), it suffices to show that s and $V(x,B)$ contain the same set of elements.

First assume C is in s, i.e. $C \in \text{visible}_T(A,x)$. Since A is live in T, Lemma 6 implies that C is live in T. Then Lemma 17 implies that there exists $D \in \text{anc}(C)$ for which $V(x,D)$ is defined and C is an element of $V(x,D)$. Since B is the principal element for x in V, the sequence extension property of the definition of version maps implies that C is also an element of $V(x,B)$.

Conversely, assume that C is an element of $V(x,B)$. Lemma 17 implies that $C \in \text{visible}_T(B)$. Condition (d12) for \mathcal{A}'' implies that $B \in \text{anc}(A)$. Thus, $C \in \text{visible}_T(A)$.

It is easy to check that the changes correspond correctly, once we know that the definability conditions correspond. Therefore, h' is a possibilities mapping.

\hspace{1cm} \square

Theorem 19: $h \circ h'$ is a simulation of \mathcal{A} by \mathcal{A}''.

Proof: Immediate from Lemmas 16, 18 and 1.

\square
8. An Algebra Based on Value Maps

In this section, we introduce another data structure. This one records, for each object and action, the latest value of the object which is available to the action.

A value map is a partial mapping V from $\text{obj} \times \text{act}$ to values(obj), such that the following properties are satisfied:

- $V(x,U)$ is defined for all x,
- each $V(x,A) \in \text{values}(x)$, and
- for each x, if $V(x,A)$ and $V(x,B)$ are both defined, then either $A \in \text{desc}(B)$ or $B \in \text{desc}(A)$.

If A is the least action for which $V(x,A)$ is defined, then we call A the principal action for x in V; in this case, if $V(x,A) = u$, we call u the principal value of x in V.

We define another algebra, $\mathcal{A}'' = \langle A'', \sigma'', \Pi'' \rangle$, as follows. A'' is the set of pairs (T, V), where T is an AAT and V is a value map. σ'' consists of the trivial AAT consisting of a single node U with status 'active', and the value map which has $V(x,U)$ equal to $\text{init}(x)$, for all x, and is otherwise undefined. Π'' consists of the six operations defined below in (a)-(f).

In all the operations to follow, we assume that $A \in \text{act} \setminus \{U\}$. Operations (a)-(c), (e) and (f) are identical to the corresponding operations of \mathcal{A}''. Operation (d) is also identical, except for the change indicated below.

(d2) Effect
 (d24) $V(x,A) \leftarrow \text{update}(A)(u)$.

If V is a version map, then let $\text{eval}(V)$ be the value map defined on exactly the same domain, so that $\text{eval}(V)(x,A) = \text{result}(x, V(x,A))$.

Lemma 20: Let V be a version map, $x \in \text{obj}$. Then the principal action for x in V is the same as the principal action for x in $\text{eval}(V)$, and the principal value of x in V is the same as the principal value of x in $\text{eval}(V)$.

Proof: Straightforward.

Define a mapping h'' from \mathcal{A}'' to \mathcal{A}'' as follows. Let $h''(T,V) = \{(T,W) \in \mathcal{A}'' : \text{eval}(W) = V\}$. h'' maps all operations to operations of the same name.

Lemma 21: h'' is a simulation of \mathcal{A}'' by \mathcal{A}''.
Proof: It suffices to show that h'' is a possibilities mapping. The first and last properties are easy to check. We consider the second property. Let $\pi' \in \Pi'$. If π' is one of (a)-(c), (e) or (f), then the second property is obvious.

Assume π' is $\text{perform}_{A,U}$. Assume (T,V) is computable in \mathcal{A}', $(T,W) \in h'''(T,V)$, (T,W) is computable in \mathcal{A}', π' is defined for (T,V) and $(T',V') = \pi'(T,V)$. Lemma 20 implies that the definability condition holds, i.e. that $\pi = \text{perform}_{A,U}$ is defined on (T,W). It follows from the effects of the two operations that $\pi(T,W) = (T',W')$ for some version map W'. It suffices to show that $\text{eval}(W') = V'$. Since $\text{eval}(W) = V$, we only need to consider the values which change because of the present operation, i.e. we need to show that $\text{result}(x,W'(x,A)) = V'(x,A)$. But $\text{result}(x,W'(x,A)) = \text{result}(x,W(x,B) \circ (A))$, where B is the principal action for x in W. $\text{eval}(W) = V$. Therefore, the latest term in the extended equality is equal to $\text{update}(A)(u)$, which is equal to $V'(x,A)$ by definition.

\square

Theorem 22: $h \circ h' \circ h''$ is a simulation of \mathcal{A} by \mathcal{A}'.
Proof: Immediate from Lemmas 19, 21 and 1.

\square

9. The Algorithm

A slightly simplified version (which doesn’t distinguish read and write steps) of Moss’ algorithm is described using a distributed algebra.

Let $[k]$ denote $\{1, \ldots, k\}$.

We fix a particular k, as the number of nodes. For convenience, we designate the nodes by identifiers in $[k]$.

Let home: $(\text{act} \cdot \{U\}) \cup \text{obj} \to [k]$, with $\text{home}(A) = \text{home}($object$(A))$ for all $A \in \text{accesses}$. Thus, home partitions the actions and objects among the nodes. Let origin: $(\text{act} \cdot \{U\}) \to [k]$ be defined so that $\text{origin}(A) = \text{home}(A)$ if $\text{parent}(A) = U$, and $= \text{home}(\text{parent}(A))$ otherwise.

In order to describe the local state of each node, it is convenient to define a generalization of action trees. Thus, we define an action summary T to consist of components vertices$_T$, active$_T$, committed$_T$, and aborted$_T$, where vertices$_T$ is any finite subset of act (not necessarily closed under
the parent operation), and the remaining three components form a partition of \(\text{vertices}_T \). The notation \(\text{done}_T \) and \(\text{status}_T \) is also extended in the obvious way. If \(T \) and \(T' \) are action summaries or action trees, we say that \(T \subseteq T' \) provided \(\text{vertices}_T \subseteq \text{vertices}_{T'} \), and correspondingly for \(\text{committed}_T \) and \(\text{aborted}_T \). We also define \(T' = T \cup T' \) so that \(\text{vertices}_{T'} = \text{vertices}_T \cup \text{vertices}_{T'} \), and similarly for \(\text{committed}_{T'} \) and \(\text{aborted}_{T'} \).

We describe the algorithm as yet another algebra, \(\mathcal{B} = \langle B, \tau, P \rangle \), which is distributed over \(I = [k] \cup \{\text{'buffer'}\} \). The components are defined as follows. \(B \) is the Cartesian product of \(B_i \), where \(i \in I \). If \(i \in [k] \), then \(B_i \) consists of the values of variables \(i.T \) which can contain an action summary, and \(i.V \), which can contain a value map defined only for pairs \((x,A)\) having \(\text{home}(x) = i \). If \(i = \text{'buffer'} \), then \(B_i \) consists of the values of variables \(M_j, j \in [k] \), each of which can contain an action summary. (The contents of \(M_j \) are intended to denote information which has been sent to node \(j \).

\(\tau \) is a vector of initial states for all the components. If \(i \in [k] \), then \(\tau_i \) has \(i.T \) initialized as the trivial action summary, having no vertices, and \(i.V \) initialized so that \(i.V(x,U) = \text{init}(x) \) for all \(x \) with \(\text{home}(x) = i \), and otherwise undefined. If \(i = \text{'buffer'} \), then \(\tau_i \) has each \(M_j \) equal to the trivial action summary.

The algorithm has eight kinds of operations. Six correspond closely to the six operations of \(\mathcal{A}' \):
- four record the creation, commit and abort of actions and the performance of data accesses and two manipulate locks. The other two correspond to the sending and receiving of messages. The operations are listed below. As usual, we present them by listing a precondition and the effect on the state. In addition, we define \(d(\pi) \), the doer of each step.

In all cases, we assume that \(A \in \text{act} - \{U\} \);

(a) \text{create}_{i,A}, \text{origin}(A) = i

(\text{a1) Precondition}
\text{(a11) } A \in i.\text{vertices}_T,
\text{(a12) If parent}(A) \neq U, \text{then parent}(A) \in i.\text{vertices}_T \cup i.\text{committed}_T.
\text{(a13) If } (B,A) \in \text{seq} \text{ and } B \neq A, \text{then } B \in i.\text{done}_T.

(\text{a2) Effect}
\text{(a21) } i.\text{vertices}_T \leftarrow i.\text{vertices}_T \cup \{A\}.
\text{(a22) } i.\text{status}_T(A) \leftarrow \text{'active'}.

(\text{a3) Doer: } i

(b) \text{commit}_{i,A}, A \in \text{accesses}, \text{home}(A) = i

(\text{b1) Precondition}
\text{(b11) } A \in i.\text{active}_T,
\text{(b12) children}(A) \cap i.\text{vertices}_T \subseteq i.\text{done}_T.
Proof: It suffices to show that h' is a possibilities mapping. The first and last properties are easy to check. We consider the second property. Let $\pi' \in \Pi'$. If π' is one of (a)-(c), (e) or (f), then the second property is obvious.

Assume π' is $\text{perform}_{A,U}$. Assume (T,V) is computable in \mathcal{A}'. $(T,W) \in h''(T,V)$, (T,W) is computable in \mathcal{A}'. π' is defined for (T,V) and $(T',V') = \pi'(T,V)$. Lemma 20 implies that the definability condition holds, i.e. that $\pi = \text{perform}_{A,U}$ is defined on (T,W). It follows from the effects of the two operations that $\pi(T,W) = (T',W')$ for some version map W'. It suffices to show that $\text{eval}(W') = V'$. Since $\text{eval}(W) = V$, we only need to consider the values which change because of the present operation, i.e. we need to show that $\text{result}(x,W'(x,A)) = V(x,A)$. But $\text{result}(x,W'(x,A)) = \text{result}(x,W(x,B) \circ (A))$, where B is the principal action for x in W. $\text{update}(A)(\text{result}(x,W(x,B))) = \text{update}(A)(V(x,B))$ since $\text{eval}(W) = V$. But B is the principal action for x in V, by Lemma 20, so $u = V(x,B)$. Therefore, the latest term in the extended equality is equal to $\text{update}(A)(u)$, which is equal to $V'(x,A)$ by definition.

\[\square\]

Theorem 22: $h \circ h' \circ h''$ is a simulation of \mathcal{A} by \mathcal{A}'.

Proof: Immediate from Lemmas 19, 21 and 1.

\[\square\]

9. The Algorithm

A slightly simplified version (which doesn’t distinguish read and write steps) of Moss’ algorithm is described using a distributed algebra.

Let $[k]$ denote $\{1,...,k\}$.

We fix a particular k, as the number of nodes. For convenience, we designate the nodes by identifiers in $[k]$.

Let home: $(\text{act} \cdot \{U\}) \cup \text{obj} \rightarrow [k]$, with $\text{home}(A) = \text{home}(\text{object}(A))$ for all $A \in \text{accesses}$. Thus, home partitions the actions and objects among the nodes. Let origin: $(\text{act} \cdot \{U\}) \rightarrow [k]$ be defined so that $\text{origin}(A) = \text{home}(A)$ if $\text{parent}(A) = U$, and $= \text{home}(\text{parent}(A))$ otherwise.

In order to describe the local state of each node, it is convenient to define a generalization of action trees. Thus, we define an action summary T to consist of components vertices_T, active_T, committed_T, and aborted_T, where vertices_T is any finite subset of act (not necessarily closed under
(b2) Effect
 (b21) i.status\(_T\)(A) ← 'committed'.

(b3) Doer: i

(c) abort\(_i,A\), A ∈ accesses, home(A) = i

(c1) Precondition
 (c11) A ∈ i.active\(_T\).

(c2) Effect
 (c21) i.status\(_T\)(A) ← 'aborted'.

(c3) Doer: i

(d) perform\(_i,A,u\), A ∈ accesses, x = object(A), u ∈ values(x), home(A) = i, home(x) = i

(d1) Precondition
 (d11) A ∈ i.active\(_T\).
 (d12) \{B : i.V(x,B)\} is defined \(\subseteq\) proper-anc(A).
 (d13) u is the principal value of x in i.V.

(d2) Effect
 (d21) i.status\(_T\)(A) ← 'committed'.
 (d22) i.V(x,A) ← update(A)(u).

(d3) Doer: i

(e) release-lock\(_i,A,x\), home(x) = i

(e1) Precondition
 (e11) i.V(x,A) is defined.
 (e12) A ∈ i.committed\(_T\).

(e2) Effect
 (e21) i.V(x,parent(A)) ← i.V(x,A).
 (e22) i.V(x,A) ← undefined.

(e3) Doer: i

(f) lose-lock\(_i,A,x\), home(x) = i

(f1) Precondition
 (f11) i.V(x,A) is defined.
 (f12) anc(A) ∩ i.aborted\(_T\) ≠ ∅.

(f2) Effect
 (f21) i.V(x,A) ← undefined.
(f3) Doer: i

(g) send\textsubscript{i,j,T'}, T' an action summary

(g1) Precondition
 (g11) T' \leq i.T.

(g2) Effect
 (g21) M_i \leftarrow M_i \cup T'.

(g3) Doer: i

(h) receive\textsubscript{i,T'}, T' an action summary

(h1) Precondition
 (h11) T' \leq M_i.

(h2) Effect
 (h21) i.T \leftarrow i.T \cup T'.

(h3) Doer: buffer

That is, any communication is allowed at any time, which sends any of the action summary information from i to j.

Lemma 23: \mathcal{B} is an algebra, which is distributed over I using d.

Proof: Straightforward.

Now define an interpretation \textasciitilde from \mathcal{B} to \mathcal{A}'' by mapping the first six types of operations to the operations of the same name, suppressing the index in \textsubscript{k}, and the other two types of operations to \Lambda.

If b \in B, then we add \textquoteleft\textquoteleft[b]\textquoteright\textquoteright to the end of a variable name to denote the value of that variable in state b.

For each i \in I, we define a mapping h\textsubscript{i} from B to \mathcal{P}(\mathcal{A}'') as follows. If i \in \textsubscript{k}, then (T,V) \in h\textsubscript{i}(b) exactly if (T,V) is computable in \mathcal{A}'' and the following are true:

- vertices\textsubscript{i} \cap \{A: origin(A) = i\} \subseteq i.vertices\textsubscript{i}[b] \subseteq vertices\textsubscript{i}.

- committed\textsubscript{i} \cap \{A: home(A) = i\} \subseteq i.committed\textsubscript{i}[b] \subseteq committed\textsubscript{i}.

- aborted\textsubscript{i} \cap \{A: home(A) = i\} \subseteq i.aborted\textsubscript{i}[b] \subseteq aborted\textsubscript{i}.
i.V[b] is the restriction of V to \{(x,A): \text{home}(x) = i\}.

If i = 'buffer', then \((T,V) \in h_i(b)\) exactly if \((T,V)\) is computable in \(\mathcal{A}''\) and \(M_j[b] \leq T\) for each \(j \in [k]\).

If \((T,V) \in h_i(b)\), then we also say that \((T,V)\) is \(i\)-consistent with \(b\).

Lemma 24: For all \(i \in I\), \(a'' \in h_i(\gamma)\).

Proof: Immediate from the definitions.

\(\square\)

Lemma 25: Assume \(i \in I\). Assume \(\pi' \in P\), \(d(\pi) = i\), \(\pi = h''(\pi') \in \Pi''\), a and a' are computable in \(\mathcal{A}''\) and \(\exists\), respectively, \(a \in h_i(a')\) and \(a' \in \text{domain}(\pi').\) Then \(a \in \text{domain}(\pi)\).

Proof: Let \(a = (T,V)\).

First, assume that \(\pi'\) is create\(_i\), so that \(\pi\) is create\(_A\). Then origin(A) = i. Since a' \(\in\) \text{domain}(\pi'), \(A \in i.\text{vertices}_T[a']\). Since \((T,V)\) is i-consistent with a', \(A \in \text{vertices}_T\), thus showing (a11). If parent(A) = U, then the fact that \((T,V)\) is computable and Lemma 17 imply that parent(A) \(\in\) \text{active}_T, thus showing (a12) for this case. On the other hand, if parent(A) \(\neq\) U, then the preconditions for \(\pi'\) shows that parent(A) \(\in\) i.\text{vertices}_T[a'] \(\cdot\) i.\text{committed}_T[a']. The fact that \((T,V)\) is i-consistent with a' implies that parent(A) \(\in\) \text{vertices}_T \(\cdot\) committed_T. Thus, (a12) holds. If (B,A) \(\in\) seq and B \(\neq\) A, then the preconditions for \(\pi'\) shows that B \(\in\) i.done_T[a']. The fact that \((T,V)\) is i-consistent with a' implies that B \(\in\) done_T, thus showing (a13).

Second, consider \(\pi'\) = commit\(_i\), so that \(\pi\) is commit\(_A\). The preconditions for \(\pi'\) shows that A \(\in\) i.\text{active}_T[a']. The fact that\((T,V)\) is i-consistent with a' implies that A \(\in\) active_T, thus showing (b11). The preconditions for \(\pi'\) shows that children(A) intersect i.\text{vertices}_T[a'] \(\subseteq\) i.done_T[a']. The fact that \((T,V)\) is i-consistent with a' implies that children(A) intersect vertices_T \(\subseteq\) done_T, thus showing (b12).

Third, assume \(\pi'\) = abort\(_i\), so that \(\pi\) is abort\(_A\). This case is similar to the first half of the previous case.

Fourth, assume \(\pi'\) = perform\(_i\), so that \(\pi\) is perform\(_A\). Then home(A) = i. Assume object(A) = x, so that home(x) = i. (d11) is argued as in the preceding two cases. We show (d12). Choose B so that V(x,B) is defined. Since \((T,V)\) is i-consistent with a' and home(x) = i, i.V(x,B)[a'] is also defined. The preconditions for \(\pi'\) implies that B \(\in\) proper-anc(A), as needed. Next, we show (d13). The preconditions for \(\pi'\) implies that u is the principal value for x in i.V[a']. Since \((T,V)\) is i-consistent with a', u is also the principal value for x in V, as needed.
If \(\pi' \) is one of (e) or (f), then \(\pi' \) involves some \(x \) with \(\text{home}(x) = i \). Assume that \(\pi' \) involves \(A \). The precondition for \(\pi' \) implies that \(i.V(x,A)[a'] \) is defined. Since \((T,V)\) is \(i \)-consistent with \(a' \), it follows that \(V(x,A) \) is defined, thus showing both (e11) and (f11).

If \(\pi' \) is a release-lock \(i,A,x \) step, then the precondition for \(\pi' \) implies that \(A \in \text{i.committed}_T[a'] \). Since \((T,V)\) is \(i \)-consistent with \(a' \), \(A \) is committed, thus showing (e12).

Finally, if \(\pi' \) is a lose-lock \(i,A,x \) step, the precondition for \(\pi' \) implies that \(\text{anc}(A) \cap \text{i.aborted}_T[a'] \neq \emptyset \). Since \((T,V)\) is \(i \)-consistent with \(a' \), it follows that \(A \) is dead in \(T \), thus showing (f12).

\(\square \)

Lemma 26: Assume \(i, j \in I \). Assume \(\pi' \in P \), \(d(\pi') = i, \pi = h''(\pi') \in \text{OP}'', a \) and \(a' \) are computable in \(A'' \) and \(B \), respectively. \(a \in h_i(a') \cap h_j(a') \), and \(a' \in \text{domain}(\pi') \). If \(b' = \pi'(a') \), then \(\pi(a) \in h_i(b') \).

Proof: Let \(a = (T,V) \) and \(\pi(a) = (T',V') \). Lemma 25 implies that \(a \in \text{domain}(\pi) \).

If \(j \neq i \), then it is easy to see that all the containments are preserved, since the sets of actions on the right sides are only increased, while the sets on the left sides are unchanged. The property involving \(V \) is also easily seen to be preserved. So assume \(j = i \). We consider the six kinds of operations in turn.

First, assume \(\pi' \) is of the form create \(_i,A \), commit \(_i,A \), or abort \(_i,A \). Then \(V' = V \), and \(T' \) is exactly like \(T \) except that \(A \) is added to \(\text{vertices}_T, \text{committed}_T \) or \(\text{aborted}_T \) as appropriate. Also, \(b' \) is just like \(a' \) except that \(A \) is added to \(\text{vertices}_T, \text{i.committed}_T \), or \(\text{i.aborted}_T \), as appropriate. Since \((T,V)\) is \(i \)-consistent with \(a' \), it is easy to see that all the containments change in such a way as to insure that \((T',V')\) is \(i \)-consistent with \(b' \).

If \(\pi' \) is of the form perform \(_i,A,u, \) then \(\text{home}(A) = i \). Let \(x = \text{object}(A) \). Then \(\text{home}(x) = i \). \(T' \) is just like \(T \) except that \(A \) is added to \(\text{committed}_T \) and is given label \(u \), and \(\text{data}_T \) is augmented with all pairs in \(\{(B,A): B \in \text{datasteps}_T(x) \} \cup (A,A) \). \(V' \) is just like \(V \) except that \(V'(x,A) \) is defined to be \(\text{update}(A)(u) \). \(b' \) is just like \(a' \) except that \(A \) is added to \(\text{i.committed}_T \), and \(i.V(x,A) \) is defined to be \(\text{update}(A)(u) \). Since \((T,V)\) is \(i \)-consistent with \(a' \), it is easy to see that \((T',V')\) is \(i \)-consistent with \(b' \): most of the properties are immediate. We just check the last property; the only change involves \(A \). We have already noted that \(i.V(x,A)[b'] = \text{update}(A)(u) = V'(x,A) \). This is as needed.

If \(\pi' \) is one of the forms (e) or (f), then \(T' = T \) and \(i.T[b'] = i.T[a'] \). Thus, it is clear that the containments are all preserved. It is also easy to check that the final property is
preserved.

Lemma 27: Assume $i, j \in I$. Assume $\pi' \in P$, $d(\pi') = i$, $h(\pi') = \Lambda$, and a and a' are computable in \mathcal{A}'' and \mathcal{B}, respectively, $a \in h_i(a') \cap h_j(a')$, and $a' \in \text{domain}(\pi')$. If $b' = \pi'(a')$, then $a \in h_j(b')$.

Proof: Let $a = (T,V)$.

First, assume that π' is send$_{i',i,T'}$. If $j \neq \text{"buffer"}$, then $b'_j = a'_j$, and the conclusion is immediate. So assume that $j = \text{"buffer"}$. Since (T,V) is j-consistent with a', each action summary $M_j[a'] \leq T$. The precondition for π' implies that $T' \leq i.T[a']$. Since (T,V) is i-consistent with a', it follows that $i.T[a'] \leq T$, and hence $T' \leq T$. Now, each $M_j[b'] \leq M_i[a'] \cup T'$. Therefore, each $M_j[b'] \leq T$, as needed.

Next, assume that π' is of the form receive$_{i',T'}$, so that $i = \text{"buffer"}$. The only nontrivial case is $j = i'$. We must show that $j.T[b'] \leq T$. But $j.T[b'] = j.T[a'] \cup T'$. The j-consistency of (T,V) with a' shows that $j.T[a'] \leq T$. The precondition for π' shows that $T' \leq M_j[a']$. Since (T,V) is i-consistent with a', $M_j[a'] \leq T$. Thus, $T' \leq T$. Therefore, $j.T[b'] \leq T$, as needed.

Lemma 28: h'''' and $h_i, i \in I$, form a local mapping from \mathcal{B} to \mathcal{A}''.

Proof: Immediate from Lemmas 24, 25, 26, and 27.

Now extend h'''' to $B \cup P$, by defining $h''''(b) = \bigcap_{i \in I} h_i(b)$.

Lemma 29: h'''' is a simulation of \mathcal{A}'' by \mathcal{B}.

We are now ready to prove the main correctness theorem.

Theorem 30: The mapping $h \circ h' \circ h'' \circ h''''$ is a simulation of \mathcal{A} by \mathcal{B}.

Proof: Immediate from Lemma 29, Lemma 1 and Theorem 22.
10. Acknowledgements

Many other people have contributed their ideas and efforts to this work. Barbara Liskov suggested formal treatment of this area, and monitored proposed formalizations for their faithfulness in representing the behavior of the Argus system. John Goree used a much earlier draft of the current paper as a starting point for the work in his Master's thesis; in the process of writing his thesis, he discovered several major ways of clarifying the ideas of this paper. Many of the ideas Gene Stark is developing for his thesis have found their way into the present paper. Mike Fischer discussed some of the early attempts at formalization, and contributed several insightful suggestions. Bill Weihl and Gene Stark contributed helpful criticisms of early drafts.
References:

[BG] Bernstein, P. and Goodman, N.
Concurrency Control Algorithms for Multiversion Database Systems
1982 ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing,

and Traiger, I. L.
The Notions of Consistency and Predicate Locks in a Database System,

[G] Goree, John
Internal Consistency of A Distributed Transaction System with Orphan Detection

[KP] Kanellakis, P. and Papadimitriou, C.
On Concurrency Control by Multiple Versions
Proceedings of the ACM Symposium on Principles of Database Systems

[La] Lamport, L.
Time, Clocks and the Ordering of Events in a Distributed System,

[LiS] Liskov, B. and Scheifler, R.
Guardians and Actions: Linguistic Support for Robust Distributed Programs,

[M] Moss, J.E.B.
Nested Transactions: An Approach to Reliable Distributed Computing, Ph.D Thesis,
Technical Report MIT/LCS/TR-260,

[Ra] Randell, B.
System Structures for Software Fault Tolerance.
Proc. Int. Conf. on Reliable Softw. (April 1975),
SIGPLAN Notices Vol. 10 Nr. 6, pp. 437-457.
Also in IEEE Trans. Softw.

[Re] Reed, D. P.
Naming and Synchronization in a Decentralized
Computer System, Ph.D Thesis,
MIT Laboratory for Computer Science,

[S] Stark, E.
Foundations of a Theory of Specification for
Distributed Systems, Ph.D Thesis, MIT
Laboratory for Computer Science,
Cambridge, MA. 1982 in progress.