THE OCTREE ENCODING _METHOD FUR EFFILIENT SULIL' NUDELING 1/
(U} RENSSELAER FOLYTECHNIC INST TROY NY AGE

PROCESSING LAE D J MERGHER AUG 82 IPL- TR‘ @Jc
N88B14-32-K-0301 B

: KL

N L T A T T T O N A O T T O T S e T T T T T T T T T T T I AN TR T T

o

FEEEEEE
EEEE
EE

—
.
—
er
£

e

=
o

)

O

[N
==

B

YO

»
ata .ty oty

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

N N g
AN

A At T

-

r

ADA13247%2

IPL-TR-032

The Octree Encoding Method for
Efficient Solid Modelipg

Donald J. R. Meagher
August 1982

A
Approved fnr public relesss; ‘
' Dmstribuilon Unlimted

Image Processing Laboratory

Rensselaer Polytechnic Institute

Troy, New York 12181

el d 2

L WTTTWT D W, W e ™ w TTE T T T T R W e T Al AN e T aTT e TLT Y. TR TAT N Y TEe T Ty TeT T e
M Y AR T TR TR R TN I TS TaT TR TR AR TR S e ST) R AT

5 TR S AT RTINS T AT T TR AT AT TR, RERES Pl BRI

(N
i

IPL-TR-032

The Octree Encoding Method for
Efficient Solid Modeling

Donald J. R. Meagher

S - August 1982

Y,

'

RN . § R APSINTCINE . § TGN

. “Approved for public releass: i
- \ App;.mbution Untimited q

Image Processing Laboratory

Electrical and Systems Engineering Department
Rensselaer Polytechnic Institute, Troy, New York 12181

r

v,

el

S o
S

--

ABSTRACT

et \
Y — So0lid modeling is the subject of representing solid

objects in a computer - to permit their analysis,

Seg:2

manipulation and display. This thesis describes the

development of a new solid modeling method called octree

;Sggggigg, in which arbitrary objects are represented to a

4
7 specified resolution in 8-ary hierarchical trees or
i ¥ A*octrees.” The number of nodes in an object's octree is
used as a measure of object complexity. This number is

2 shown to be on the order of the product of object surface

[g
(Y'Y
PP T U T S D T S PR

= ' area and the inverse of the square of the resolution.

A dual data-base approach is proposed. A
general-purpose solid-modeling system based on octree
encoding would interactively perform geometric, analytical

ﬁ S and display operations in conjunction with specialized
: - application data bases. (=TT
. Efficient algorithms =~ are presented for the
determination of mass proberties (volume, surface area,
center of mass and moment of inertia, etc.) for the
— formation of new objects via the use of set operations
A (union, intersection, difference and negation), for 1linear
‘ transformations (including translation, scaling and
L rotation), for interference detection, for swept-volume

definition, and for display from any point in space (with

surface texture, anti-aliasing and hidden surface removal).

The complexity of the processing required to display an !
object is related to the visual complexity of the scene]
rather than the complexity of all objects involved. j

"

Interference detection requires computation related to the
separation distance between the objects.

The above algorithms require only simple integer

b 4§ YTIRN

arithmetic (addition, subtraction, magnitude comparison, and
shift) in order to facilitate implementation in VLSI

processors.

5 IRy,

The new method is compared to existing solid modeling
methods in 21 problem areas.
Results are presented which show the application of the

technique in the verification of NC (Numerical Control)

* _— » N . . .
BPRARLY . § OB

machine programming and in the display of 3-D medical
objects derived from multiple CT (Computed Tomogr aphy)

images.

et e emm
-x'—.‘l'_...

Accession For

[NT1S ARiel
DY T
Crra
Just i o

Bv. . .
Dictc'" /

iii &

M DI DR SAEI I YOUP N0 WO W) T VRS Y W GNP W NP PP I R e U ORI JH S X a CRC I Y CHR Py AP Sy

-
'ﬁ')
4
NN
PR
.
—
-
N
3

Table of Contents

ABSTRACT ccceceoscscccsccccsossvsacssscsosssessosscsosscconcocsosesil
LIST OF TABLEScecccecocccocsccooscscccsssscsosscssssascscsecsssssVi
LIST OF FIGURES.cccccccccccvsocccocscssscssscsosssccssvseseVil
ACKNOWLEDGMENT . ccoceevsscccoscccoccsssoscosscssscsscscscassasselX

1. INTRODUCTION AND HISTORICAL REVIEWe.ecceccoeccccsessaccsal
1.1 Existing So0lid Modeling SchemeS.ccccecccesccocccsesel

-1.2 Historical RevieWeeeceececcesoscocessscossaonscnesll

1.3 AppProa@cCheccccccecocccccsccsccscccacacanscccsscseld

2. THE OCTREE METHOD.eceeseccossesscsscsasssssnssssascnsseld
Definitions........'......Q.....O........O.‘..O.lg
Object RepresentatioNicececccceccsossccsccccceseall
Node RequirementSeccccececccscecoscsccocscncrscsccassl’d
Complexity MetriCeececceceosoccccecccesessoscansoseld
Storage RequirementSc.ceecccccscocccecsnccesccseeldb
Expected PerfOIMANCeecccceccssscsssccscsscsansecseael8

DNDNONNNNDN
e o o o o o

Algorithm ConsiderationSeccececececccccococcecesd8
Octree GeneratOrSceccceccessessccoscscsccscsosssssdl
Orthogonal BlOCKSeeeeecececscscscoscosscssscsnanceedd
Convex ObjeCtSeceescscccsoccccscosccssoscsscsssansedd

WwwwA

&
B

SIS AND MANJIPULATIONccesooccccccnccccscssscssccnsesb3
Object Ptoperties......'......l....l............63
4.1.1 volume..........‘..l..I................l..63

sutface Area........‘.0.................0.64

Center Of MaSS.cecceccscscccscscsscssccccseabd

Moment of Inertiadcecccecceescecccccacoccesb

Segmentation of Disjoint PartSecceceecesecs66

Interior VoldsSeccecececenecceccecnceaneeeasb6

Cortelation.l.........'0......O.l.......loss
stoperations..l........l.....C...Q.IC‘..’..".‘67
overlays.l.......l...;‘.....0.0.'...‘....0.......69
Geometric OperationNSececccescecsccsnvsescscccsseeall

4.4.1 Translation‘.0..0..0..'0.0......0..0......72

4.4.2 Scaling..................0...............077

4.4.3 Rotation..0......‘...I..00000000000000000079

4.4.4 Concatenated Geometric Operationse.cecece...84

1
2
3
4
5
6
REE GENERATION.................'...............'...l47
1
2
3
4
b4
1

-
.

[

L]
®
K
L]
L]
L]

SNt Wwh

1
1
1
1
1
1
e

L Y
s o o
oW

e S ae oA A A P8

- o - TR
R R s iSRS

S. INTERFERENCE ANALYSIS.cccccecscceccscscssscsccccssesacessdl

B 5.1 Interference DetectioON..ceceeececscccccacccscsss9d0 ’
T 5.2 Swept VOlUMEe.ceecececcccrccscsassscssrssncncnsessIdB :
.2.1 Convolution Formulation of Swept Volume...99
2 Example of Swept Volume
(Non-Hierarchical) ccecececcenvrescocseassrlOl
.3 Hierarchical Swept Volumee..ceocecesesoessosl04
.4 Weighting Tree GenerationN..eccececececsece.109 >
.5 Example of Swept Volume (Hierarchical)...lll
e6 ANalySiS.ccccecsccrcccscecsscscavccscesceell?

60 DISPLAY...Q.C..0.......0.0.00..00..0'...'...-00.00.00.120

7. RESULTS: e eueesecasnensesnenesasseneseneesesesnssenassl3l "
7.1 Program OCTREE...cccceccccccceccacscsccscsscsesal3l -
7.1.1 NC VerificatioNiceeecceococcaceccecoseaneslldl
7.1.2 Medical Imagingesececescccccsossssscssesscssl3S

12

8. DISCUSSION AND CONCLUSIONSC ® S © 0 ¢ © OO O DS OO O OO 0" SO SO N e 140
8.1 ACCOmpl ishments. 2 @ @ @ 8 & 9 9 9 TS OO QB S SIS ST BT O PSS OO Y .144
8.2 Suggestions for Further Research..cecccecccecee..145

-
[T

REFERENCES............O........'.....'.........'...l..147

h':

b

v

S
—

.

k",

b .

9

b .

p. - »

.

.

.

"l

A

i i Jandie Sauir e 4
LAY NS

Pl S A At et gt i Ay S S S A S - o 4 M S e A Wi T Ve i oA e undn i tndh Saski et v
A A At T OO ER A . R

LIST OF TABLES ']

g ' Page .
Table 2.1 Tabulation of Resolution and Expected %
h NOde Count ® 6000080000080 00000805000000080008ss 42 —-j

LIST OF FIGURES

Page
Figure 2.1 Child and Vertex Labeling ..cccceeecocecsces 25

Pigure 2.2 Sample OCtree .ccecceescccaccsssccsccncsccns 26

Figure 2.3 Minimum-Surface Representable Object
Which TouChESQObels S &% 8 9 O 6 00 S0 " O PO OO LEO S 31

Figure 2.4 Area of ObjeCt c.cctevececccccoacsavacoscaeas 32

Figure 2.6 Edge of Object Cuts Obel and Intersects
Obel Diagonal ® ® 6 62 8 0% ¢80 0 S S OO BSOS OT O PO ONEDPS 40

Figure 3.1 Octree Generator ccecceccccccsccsccccccscscscces 52

Figure 3.2 Calculation of Child Vertex Coordinates
From Parent ValueSececcceccsscscccscssacncsses 54

Figure 3.3 Octree Generation for 3-D Orthogonal

Block ® 00O OO0 DO O OGO OSSO S OO D OO OO0 SO O0eGe RS0 s 56

Figure 3.4 Generation Terms for Child Obel from
Parent values ® B O O O 0 06 OO O O OO OSSOSO OO0 SO OGS 60

Pigure 4.1 Example of Octree Set Operationsecec.. 68
Figure 4.2 Overlay Structure ...cccececcccscsccccccesccs 74
Pigure 4.3 Three-Dimensional Overlay cccscececccscsscecs 75
Figure 4.4 Example of Octree Translation cecscsscnccaan 76
Figure 4.5“ Example of Octree Scaling .;................ 78
Pigure 4.6 Example of Octree Rotation by 90 Degrees ... 80
Figure 4.7 Rotation Overlay .ccescecoceccsccscscscseass 8l

Figure 4.8 Example of Octree Rotation by Arbitrary
Angle (27.8 DegreesS) ceeccecccccesccscsscases 83

Figure 4.9 Target Obel for -Concatenated Geometric
TranSfotmation ® ® 0 0 & 0 0 OO0 OO C OO0 SN OL S OS SesD 85

Figure 4.10 Transformed Coordinate Value .ceccecescesecess 87

[1]
2

vii

.......
........

g N Pigure 4.11 Target Obel for 3-D Concatenated Geometric
. Transfomation ® 80 5 &0 & 0O 000 O 0O O SO0 OO OO O OE e se 88

Pigure S.1 Interference Detection Universe Pointers ... 95
Pigure 5.2 Swept Area ® 6 O 6 O 00O OGO OO S OO OO PO eSS0 00 102
Pigute 5.3 weighting Pattern ® & 6 O 65 6 2 0 & 05 OO O SO 000 0P e e 103

Pigure 5.4 Distribution of Children Input Node/Weighting
NOde Paits for l-D Sweep Left e9s e ve00c0000 108

FPigure 5.5 Weighting Tree Generation ..ccccececcocccses 112
Pigure 5.6 Object to be SWePt ceecececccccvccscaosnnsses 114
Figure 5.7 Example of 1-D Sweep Algorithm ..cceocceeee. 115
Figure 6.1 Hidden Surface Traversal Sequencee.... 121

Figure 6.2 Octree Object Nodes (Cubes) Are Written
Into Display Screen Quadtree ..ceceececeasees 123

Pigure 6.3 Projection of Node (Cube) on Display Screen
and Overlay StrUCtULE ccecesccscccvcsccssese 124

Pigure 6.4 Octree Representation of Turbine Blade 128

Pigure 6.5 1Illumination Plane (Quadtree) Projects
Illumination on Object Node e 0 0 © 0000 %0 000000 130

Pigure 7.1 Simulated Milling Operation cceccececccececss 134
Pigure 7.2 Display of Section of Human Skull ..cceceee. 136

Pigure 7.3.. Display of Sinus PassagesS .secccieccecccacses 138

viii

o '
BN » SEICIPRIIP

P PP Wi R R S S

®

Bt

ACKNOWLEDGEMENT

The author wishes to express his appreciation to
Professor Herbert Freeman of the Electrical, Computer and
Systems Engineering Department and Director of the Image
Processing Laboratory (IPL) at Rensselaer Polytechnic
Institute for the guidance, support and encouragement
received under his supervision.

The author would also like to thank Professor W.
Randolph Franklin, the other committee members and Dr.
Michael Potmesil for their assistance and suggestions.

This résearch was funded in part by the National
Science Foundation's Automation, Bioengineering and Sensing
Program under grant ENG-79-04821 and in part by the Office
of Naval Research under Contract NO0Ol14-82-K-0301,
NR049-515. Development of the NC verification system was
funded by the Center for Manufacturing Productivity and
Technology--Transfer (CMP/TT) at RPI. - Devélopment of the

swept volume and display algorithms was sponsored by Phoenix

Data Systems, Albany, New York.

V.

by .1

I H
S | |
o CHAPTER 1 j
. "
N INTRODUCTION AND HISTORICAL REVIEW
Solid modeling is concerned with methods and systems ()

for the computer representation, manipulation, analysis and

display of solid objects. The primary applications for

solid modeling are in CAD/CAM (Computer-Aided Design and
;'{ Computer-Aided'Manufacturing). This includes the design and
analysis of mechanical parts, the generation and
¥ verification of commands for NC (Numerical Control)
machines, the analysis of kinematic chains, and the analysis
of space utilization processes (e.g., packaging, process
l planning, robotics, parts assembly, etc.). Other
. | application areas include medical imaging and -
cinematography.
. Many experts predict that solid modeling will be the
’ key to the future of CAD/CAM [13, 35, 47]. The Solid
Modeling Systems (SMSs) being developed today will form the

lower levels of advanced CAD/CAM systems. The higher levels

? - , will incorporate sophisticated artifical intelligence
; techniques. They will draw upog vast knowledge structures
containing the information needed to automate tasks such as
part design and process planning. As such, these
: E lower-level facilities will be utilized with a high duty

cycle and, Jjust as with 1lower-level operating system

1
K
K
i
-
R
:;]‘
®

procedures, must be made fast and efficient. They must be
extremely reliable and completely automatic. Human
intervention to resolve ambiguities obviously could not be
tolerated.

Although there are currently more than 20 major SMSs,

they are all 1limited to a greater or lesser degree because

KX

of deficiencies in object representation and processing
algorithms [54]. Two major shortcomings will be mentioned.
First, representation capabilities are not sufficiently
robust easily to handle the object complexities required in o H

a realistic environment. Second, the manipulation and

display algorithms for such functions as interference
detection (two or more objects occupying the same space) and
hidden-surface removal (necessary for realistic display)
require extremely large numbers of calculations in practical
situations. They usually exhibit polynomial growth (often
quadratic) in the number and complexity of the objects.

The goal of this research has been to devise a new
object representation scheme and associated linear growth
algorithms in which objects of abifrary complexity ¢an be
encoded, manipulated, analyzed and displayed interactively
in low~-cost hardware. A solid modeling method called octree
encoding was developed. The technique 1is based on a
hierarchical 8-ary tree or "octree."

This research was conducted over a period of almost

five years. This thesis is the seventh in a series of

publications documenting the work (38-431. The major
' results are presented here, with the earlier reports ;J!
referenced for supporting information. §
;
- 1.1 Existing Solid Modeling Schemes 8
]

-. Most commercially available CAD systems do not employ a
= true SMS in that 3-D objects are not really modeled. They #
are essentially extensions of drafting techniques based on i
; the use of edges tb represent solids in projection. The E
ﬁ determination of what is actually solid is left to human H
interpretation. Most systems cannot reliably remove hidden i
lines or generate sectional views automatically. %
' Excluding such "drafting" schemes, most existing SMSs "
' | employ one or more of the following six representation ;
schemes [55,561]: é
. (1) Primitive Instancing - families of objects are !
. defined parametrically. A shape type and a limited set ?
of parameter values specify an object. - j

(2) Spatial Enumeration - an object is represented by

the cubical spatial cells (volume elements or "voxels")

which it occupies.

(3) Cell Decomposition - a generalized form of spatial
enumeration in which the disjoint cells are not

necessarily cubical or even identical.

(4) Constructive Solid Geometry (CSG) - objects are

!
]
)
B
7

AP AP U WP TP W P AP it - A P M

A

el

......
.........

..................................

!
ol il

represented as collections of primitive solids (cuboids,

37— A VOB LA

cylinders, etc.). A tree structure is typically used
with leaf nodes representing primitives and branch nodes
specifying set operations.

(5) Sweep Representation - a solid is defined as the
volume swept by a 2-D or 3-D shape as it is translated

along a curve. -—

(6) Boundary Representation (B-Rep) - objects are

represented by their enclosing surfaces (planes, quadric

surfaces, patches, etc.).

i

Speéific advantages and disadvantages of each have been
tabulated [57] along with a <classification of 21 existing
systems. For a primary representation scheme, most use CSG
(TIPS, PADL, SynthaVision, etc.) or B-Rep (Build, CADD,

Design, Solidesign, Romulus, etc.) or a combination of the

)’

two (EURKLID, GMSolid). Often other formats are used for

secondary functions. Some allow alternate representations,

such as swept volume, for input. Some have special features.
For example, TIPS ISOtts the primitives into a spatial
enumeration array to facilitate interference analysis. In a
éj separate study, Baer, Eastman and Henrion [3] have analyzed
. and compared 1l popular systems. Much information has
. recently become available on specific systems (7-9, 10, 11,

l 28, 36, 49, 61, 80, 821.

I

New methods are needed to solve or at least reduce the

...............

. & e T o w7 R R R T "

...........

following problems which have been found to plague (to a
greater or lesser extent) systems based on the above six
schemes (see [27, 561).

(1) Limited domain - The currently used schemes are
characterized by a restricted domain of representable objects
because they are constructed from a 1limited number of
mathematically well-defined surface or solid primitives.
Some systems allow quadric surfaces and higher-order patches.
This can limit performance, however, because the more general
and more powerful primitives usually require substantial
additional computations for object manipulation and display.
Adding a new primitive to a system or generalizing the use of
an existing one may necessitate extensive development of
mathematical tools and significant software modification.
Another consideration is the potentially large labor cost
involved in what is essentially the art of fitting primitives
to a desired object.

(2) validity - In many schemes, not all objects which
can be created are true or valid 3-D objects (also called
*well-formed"” objects). The intersection of two objects, for
example, may create "nonsense objects"™ such as dangling edges
or faces bounding no volume. Soﬁé systems depend upon human
intervention to eliminate such artifacts. Others contain ad
hoc algorithms to detect and eliminate invalid elements after
each operation. A few make such checking an integral part of

the manipulation algorithms. 1In any event, it adds overhead

------- R .“ Lot Lt - e L S e .
- R Ty Y P S T T S L, Gt i T T Y PRE W L TP W PO PUGAT PRI S Y N -

.....

and reduces the efficiency of a scheme. 1Ideally, any object
which can be legally generated should correspond to a valid

object.

(3) Completeness - A complete representation contains

all the information required to determine the interior and
exterior of an object. There should be no ambiguity. All of
the aforementioned schemes are (or can be made) complete
representations and, in fact, completeness is required for a
true SMS. It may be costly in overhead processing, however.

(4) Uniqueness - If a SMS is unique, there is only one
possible symbol structure for a given object, regardless of
position or orientation. Tﬁis simplifies object matching and
identification, which may be important in some applications.
However, most existing schemes are not unigue.

There are two common <causes ©Of nonunigueness:
permutational nonuniqueness in which substructures in the
symbol structures can be permuted, and positional
nonunigueness in which different representations correspond
to the same object but - at different- positions or
orientations. |

(5) Conciseness - There are two parts to conciseness.
Basically, it refers to the amount of data (bytes, for
example) required to represent an object. If an object can
be represented in a scheme with fewer words of storage, then
it is more concise. A deeper meaning takes into account the

size of the domain of representable objects. A valiad

L ‘
IOV IS

L

PO, I W T W DT W S g Y W W T TP IR AL TR AL WP PRI UL WP ar WA W Wity Y W Y W P e e PR/

comparison of conciseness can only be made between two
systems when both are configured to represent the same set of
possible objects to the same precision, usually a very
difficult, if not impossible, task.

(6) Closure -~ A SMS has the property of closure if the
results of any object operation can be used as input for
further operations.

(7) Finiteness - It should not be possible to create
objects with infinite volumes.

(8) Null object - It should be easy to determine whether
an object is null (contains no volume).

(9) Transportability - Object representations should be
able to be transported to alternate computer facilities
without inadvertant modifications resulting from a change in
word. size, floating-point precision, etc. In addition,
identical operations on all machines should generate
identical results.

(10) Extensibjlity - The initial implementation of a
solid modeling system should be easily extended for modeling
larger, smaller or more complex objects, a larger number of
objects, sculptured surfaces, objects to a greater precision,
etc.)

(11) Autonomy - The scheme should not require human
intervention under any circumstances.

(12) Reliabjlity - All possible objects (or at least all
objects which could be required) should be able to be

[T G K YL

ana® b

s .._) VNN

L it s aouiaRCasul BBk il aoill o/t SunirSERi S A e e e i e Sinit Bt Snst Shats Shas SEaSEgt Mtk Mttt Sl Mait 2 C i SN I ird
................... P N . RN - .

processed by all operators without error. 1In some systems,

for example, self-intersection is a fatal condition.

f .o
. g
-y 3 - A i ddot

(13) Efficiency - The computational complexity and

Ly

resource requirements (memory, for example) of algorithms
should not grow faster than 1linearly in the number and

complexity of objects. In addition, it would be very

desirable if the instantenous computational load were related
to the actual complexity (in some sense) of the specific user
requested task rather than the overall number and complexity
of objects involved.

(14) Implementability - An SMS should be easily
implemented for a large range of practical tasks on existing
computers or in hardware utilizing current or near-term
technology. A scheme will be more easily implementable if
the number of calculations are small relative to the number
of objects and object complexity. Also, algorithms requiring
simple mathematical operations and those allowing extensive
paralleling or pipelining of operations will be easier to
implement in the VLSI (Very-Large-Scale Integration) environ-

ment of the future.

e
.
N

Many of the existing SMSs were designed when an

v
it

.‘:
14

evaluation of the hardware requirements called for compact
data structures and algorithms that would f£fit into 1limited

memory (typically 64K bytes). Calculations were to be

handled by a single, serial processor, most often a

general-purpose minicomputer. This stategy has resulted in

schemes that may be very efficient in memory usage but often

require unrealistically large numbers of calculations,
usually in floating-point rather than integer arithmetic. A
more realistic appraisal of current hardware trends could
result in more powerful and easily implementable schemes.

(15) Multiple representations - For a broad-based

application, two or more representation schemes may need to
be maintained to handle all requirements. Experts in the
field seem to agree (reluctantly) that this will be
necessary, given the limitations of the six representation
schemes.

(16) Consistency -~ If multiple representation schemes
are maintained, they should be guaranteed to be consistent at
all times. If two representations of a single object could
be contradictory, an application system would probably be
useless.

(17) Conversion - If multiple representations are used,
a method to convert from one to another is required. The
transformation should be exact (rather than approximate) and
invertable. In general, however, this is not the case with
existing schemes.

(18) Ease of _object creatisn and manipulatjon - In
general, a system that allows a user more easily to generate
and manipulate any desired object will be more useful. A

short response time is desirable, for example.

(19) Finite-element modeling capability - It is an

ot) o

. advantage if a scheme can easily and automatically generate a
! finite-element mesh in 3-D.

(20) Interference analysis - Many applications require

X the detection of interference between two or more objects.
The generation of a hidden surface view can be thought of as
. a visual interference problem. The development of linear
i growth algorithms involving interference was a major
; objective of the research described in this thesis.

(21) Tweaking - It should be possible to make local

changes without involving the entire object.

1.2 BHistorical Review

The solid modeling method described here results from a
doctoral program undertaken by the author in September 1977.
In the spring of 1978 a literature survey of techniques for
representing and analyzing shapes was carried out, with an
emphasis on 3-D techniques [38].

In the-fall of 1978 the-general goals o6f the research
effort began to take form. A new sblid model ing method would

be developed to alleviate many of the common problenms

encountered with existing systems, especially when applied to
iarge-scale efforts in CAD/CAM. The primary consideration
was to develop a simple, powerful, efficient and fast scheme
that could be easily implemented in VLSI for future

"real-world" applications of great complexity.

R, TSSO W . S

| T P P P AN L - o P WA Y T U R WY Papgi Pl ey |

A

The coding of what later became the progrém OCTREE began
in October 1978. The outline of a new technique employing
hierarchical tree structures was defined and first
implemented in a 2-D scheme called "area encoding.” By the
spring of 1979, algorithms had been developed and implemented

for the entry of 2-D chain codes, conversion to an area

encoded format, and generation of the intersection of two
objects.

At about the same time, April 1979, the first widely
distripbuted paper describing a similar 2-D technique with
applications in a different area, image processing, was
published by Hunter and Steiglitz [29]. Based on Hunter's
PhD thesis [30], it made use of 2-D hierarchical tree
structures called "guadtrees" (also called "quad-trees™ or
"gquad trees").

FPurther investigation turned up a proposal: by Tanimoto
(78] to use a "pyramid" image model as a measure of binary
image complexity. Additional quadtree publications have
appeared in.. the 1literature-since that time: Rosenfeld [58,
59] has pursued quadtree efforts in pattern recognition and
image processing. Samet has presented an overview of
guadtrees (with Rosenfeld) [72]; and developed guadtree
algorithms to compute the perimeter [65), convert f£from
boundary codes [68], to boundary codes (with Dyer and
Rosenfeld) [19], from raster format (69], to raster format

(701, from binary arrays [(71], compute the medial axis

11

DRI --' o 2 -.' - - P e o = LR PSPPI S g L L . P PGS TR D AP W WL W b WP WL P LI - W Y

.........

r_v-—:iv'—v-_w-_ﬁ-_-_ et T Tt B S st Jere S e e a~ e de ol N s S AP S AN T A N St T Y T T ST e TR T T e ToeT e Y]
......... L. - e - . - - . - .
-

]

.4\

transformation [63], compute a distance function [64], find
neighbors [671, and label connected components [66]. Shneier
has developed algorithms to calculate geometric properties of
quadtrees (74]1. Ranade has employed guadtree techniques for
edge enhancement [51], and (with Shneier) for image smoothing
[50, 52]. Hunter and Steiglitz have presented an algorithm

to perform linear operations on quadtrees based on o
[

transforming edge segments [31]. Burt has developed the
"hierarchical discrete correlation” (BDC) for efficient image

processing (12].

i
F The effort continued during the summer of 1979 with the

development of the "overlay" technique for efficiently

performing linear operations on objects and the basic hidden
surface display algorithms. Much of this was implemented and
verified during the fall of 1979.

In October 1979 a presentation of the technigue was made

that included computer output examples of translation,
rotation (90-degree, 180-degree and arbitrary-angle), union,
intersection, difference, reflection about- an axis, 2-D | i‘
hidden-line elimination and 2-D .perspective display. At
about this time the name "octree encoding” was given to the
technique (it had earlier been called "volume encoding"). - %

In the spring of 1980, a report was written to present

the scheme. It was first submitted in July of 1980 and later 1

Y - SNPENINNS -4

published as an IPL technical report (39]. Additional

results were presented in a paper titled "Geometric Modeling

12

[

P P IR WA, Tl Wiy W UREIT UT YR T (A P Yl Ty W Wiy ar gy addbhben, o TP - e tbrsomcdin - eend Y

Using Octree Encoding." It was submitted in December 1980
and released as an IPL technical report [40]. A slightly

updated version was published in Computer Graphics and Image

Processing [441].

The Octree Encoding scheme was presented in the Computer
Graphics course at RPI during the Fall of 1980 and officially
proposed as a PhD thesis topic in March 1981.

The advanced display algorithm presented below was
developed during the spring and summer of 198l. It was first
described early in September 1981 and, later that month, a
paper describing the technique was presented at the IEEE
Computer Society's Tenth Workshop on Applied Imagery Pattern
Recognition (AIPR) in Coliege Park, Maryland. The paper was
also released as an IPL technical report [41]1. An updated
version was presented at the IEEE Computer Society's Pattern
Recognition and 1Image Processing (PRIP) conference in June
1982 [45]).

The "hierarchical convolution” technique and its
application..to swept volume-generation were-developed during
the Fall of 198l. The swept volume algorithm was first
presented in November 1981. The algorithm is described
below.)

A major effort in late 1981 and early 1982 was devoted
to efficient object generation algorithms. These and other
results are documented in an IPL technical report [43].

The general idea of hierarchical geometric models as the

PP (T SPEUE (PUL R W Gy S ot

LRI S e e S e T R T T T i

basis for future hidden-surface algorithms was proposed by
Clark I[16]. Multidimensional binary trees and algorithms
have been studied by Bentley for use in data base
applications [4, 61]. Franklin has developed the "variable
grid" technique for hidden 1line and surface applications
[21-23]. It 4is shown to be a linear growth algorithm at the
expense of pre-sorting. This has been extended into a
hierarchical structure in Octree Encoding and forms the basis
of the linear computational characteristics of the scheme.
Rubin and Whitted [62), Reddy and Rubin [53), Fuchs
[25], and others have presented various object space
pre-sorting techniques. The use of 8-ary hierarchical trees
to represent 3-D objects was apparently first suggested by
Hunter [30] in his PhD thesis (1978) as a possible extension
of quadtrees. It was later independently proposed by Jackins
and Tanimoto (33, 34], Moravec [461, Srihari [75, 76] for
medical imaging, Meagher [39] and perhaps others. Later

octree reports include (17, 18, 32, 861.

1.3 Approach

The ultimate goal of this effort has been the actual
construction of a full-function, real-time (about 1/30 second
response) solid modeling system to handle any number of
arbitrarily complex objects while operating on relatively

low-cost hardware. Conventional solid modeling wisdom

e
P b A R A T
rony) l~’.;_l.h._nk P YR N P IRE

L T et i e e gt et 2 Jaalt Nedb b St Al L i Ml Mg aib el Al el ik At S e S A SRR

N |

r
A
.
g

et
PRLTEN S}

assumed that these characteristics were mutuaily exclusive.

Levels of performance many orders of magnitude greater than o

K3 — EATROENLYIRN * $ R

o

allowed by existing techniques are needed. Obviously a new

A approach was required!

v The remainder of this section is a summary of the four i
-

or five years of evolving reasoning and philosophy embodied

in the octree encoding method. A more in-depth study is

y — presented in [43].
The first step was to reject any preconceived ideas
about so0lid modeling. An entirely new method would be

designed and developed. A list of priorities was established

E 7; ‘.

for guidance and direction. The highest priority throughout

the effort was high-speed operation. For the first few years

i the actual usefulness of the method was open to guestion but
there was never doubt the functions could be performed at an
extremely. high throughput utilizing modest hardware.
j n The second priority was robustness. This included both :
the ability to represent arbitrary objects and a full
complement of analysis, manipulation and display functions. y
The third thrust was a general drive for simplicity. _ ﬁ
Do , This required, for example, a single representation scheme |
for all objects and very simple aigorithms.
Given these general priorities, the first step was to

devise a solution to the object storage problem. Arbitrary

objects require arbitrary quantities of storage for

representation. It was decided to represent arbitrary

15

.................... v, S e . PO J N . .
.................. - PR Tt e S . . " . . . - .
"""" PELIE JOT. O U B G Y.), TR . VO L W) P R S -4 B B b a .o A i

TR TV v
T T T T e W e T TS Pl A

. objects to a variable but limited precision.
(_ CSG schemes handle this dilemma by taking what can be -
: looked at as the opposite choice. Unlimited resolution (for

2 -all practical purposes) is preserved but objects are

restricted to primitive analytic shapes or combinations =
thereof.

. The next step was to address the computational
. complexity issue. Most existing CAD systems have evolved . b
X from attempts to automate 2-D drafting. Complexity has not

generally been a consideration because the typical drafting s

i

task is linear in a small number of items. Interactive
operation is not difficult to achieve.
é The progress of CAD into £full 3-D applications has
l changed the situation. Operations involving some form of
; interference analysis have been found to require large, often
| prohibitively large, computational resources for interactive
operation. The root of the problem is a comparison task.
Naive algorithms perform an interference detection operation
by checking.. for intersection between each possibly relevant
SR pair of primitives. A combinatofial explosion results
because, in general, the number of pairs grows quadratically
in the number of primitives.

The solution was to design a spatially pre~sorted
representation scheme that would never require additional
sorting or extensive searching. The octree scheme satisfies

this requirement.

_
T ’ 5
P Jals

-
.

.
-

16

0 ’,‘“ N N " 'v'l'

[ORE

-e.
1

.. -
.....

vvvvvv L R BV e S ara e S Sran Juod Rt SN IR RSN NN
P A e T e N T .

N TIE N Ty

The philosophical approach adopted for algorithm
development was based on the hierarchical ideas of Clark [16]
and the sharing of partial calculations that has been proved
so successful in the Fast-Fourier Transform (FFT). It is the
hierarchical structure into which the problem has been cast
that allows 1large numbers of 1low-level calculations to be
eliminated at an early stage when processing typical objects.

The approach to actual implementation adopted for this
effort was based on the current trends in VLSI technology.
It is clear that to maximize the performance-to-cost ratio,
full advantage should be taken of the tremendous improvements
in hardware which have resulted and will no doubt continue to
result from VLSI.

Before proceeding, a popular misconception concerning
increased computing power should be dispelled. The trought
that increasingly powerful hardware at lower cost will 2llow
inefficient algorithms to become wuseful is, in general,
wrong. Other factors being equal, a performance increase
will allow .larger problems. to be handled, -further widening
the performance gap between an inefficient (quadratic growtb,
for example) algorithm and an efficient (linear) algorithm.
Thus, computational complexity iésues become more, not less,
important as technology moves into the VLSI age.

The implementation approach was to develop algorithms
designed specifically for semi-custom or full-custom VLSI

based operation. This decision impacted the entire design

17

.
e

.\"‘
%
)
e

N . S

- .

T T R P R P L e e T T TR

B0 oor Ty SANEE Stat JAngh B0t M SN it Jaofl Jand M Badh Jeadh el Aeib Sindt Sndh el il i d

philosophy. Traditional solid modeling systems tend to be
huge, ever growing, ever changing, software packages with
complex internal structures. The VLSI based system, in
contrast, must be based on a small number of very simple,
fixed, powerful and extremely reliable algorithms. They are
implemented in hardware and form the primitive lower level
functions in an applied system.

Based on the simplicity and ease of implementation
requirements, algorithms were allowed to employ only integer
numbers and only simple arithmetic (addition, subtraction,
magnitude comparison and shifts). Neither floating-point
operations, integer multiplications nor integer divisions

were allowed.

18

o - B . . L PO . . . N . . . P
PG T W P W . O S PN WU 1P Ws U Pag Wy vy e St esndtbhent ottt enfhnuinmni Uy o) s

-y w T

&)

-

............
...

e 3
‘Y,
Lo
9

CHAPTER 2 ' '21

R S DAL AN
a2
A

N . THE OCTREE METHOD

2.1 Definitions ~

A graph G(N,P) is a finite, nonempty collection N of
nodes and a set P of unordered pairs of distinct nodes called
edges. Two nodes connected by an edge are adjacent nodes.
If an edge has an associated direction, it is a directed
edge. The direction is from the tail node to the head node.
A graph containing only directed edges is a directed graph.
The number of edges having a particular node as their tail
node is the outdegree of that node. The number of edges

having a particular node as their head node is the ipdegree
of that node.

A path is a segquence of edges connecting two nodes. For
E j a directed graph, the nodes visited must be -in taii—to-head
i : order. A graph containing no paths which originate and end
| in the same node is called acycl% .

\ A tree is an acyclic directed graph in which all nodes
i ' have indegree 1 except one node, the root, which has indegree

0. Any node with outdegree 0 is called a terminal node or

' N leaf. Nodes with outdegree greater than 0 are branch nodes.

L

! L The level of a node is defined as the distance in edges from

3

- o

E 19 ;
L R

AT
oo
B

PRI NPT U VP UL UL AU T,

.“-‘ITTY‘I‘",,,:
P T .

the root. The root is at level 0.

The root is assumed to be at the top of the node
structure and all other nodes exist below the root. All
nodes reachable from a particular node 'are called the

descendants of that node. All nodes from which a particular

node can be reached are the ancestors of that node.
Descendants one 1level below a node are the children of that
node. The ancestor adjacent to a node is the parent of that
node. Nodés having a common parent are siblings.

If a node does not actually exist in a tree but can be
inferred from an existing terminal node which would be one of
its ancestors, it is <called an implied node. Loosely,
operations on a tree which use implied nodes are said to
process the implied tree rather than the actual tree.

Every branch node is a root of one or more subtrees.
The degree of a node is the number of subtrees that exist for
that node. If the outdegree of every branch node is <= m,
the tree is an m-ary tree. If the outdegree of every branch
node is m, the tree is a complete m—ary tree.

An m—ary tree is positjonal if the children have m

~distinct positions. The position is indicated by a value

from the child number set {0,1,2,...,m-1}. Every node is
uniquely identified by a string over the child number set,
the node address. The root is represented by the empty
string. The node address of a child is the child number

prefixed by the address string of its parent.

anas Y s

Tale

A tree will be called a hierarchical tree if the R

children of a node are associated with their parent in some i
particular relationship. '

All objects exist within the universe. It is a finite @
section of N-dimensional space defined by N orthogonal axes ;;
and 0<=x(i)<=d where x(i) is a displacement in dimension i, i
(x(1), x(2)4...,x(N)) is a point in the universe, d is the j
length of an edge of the universe and N is the order of the #

universe (number of dimensions). The symbol "N" will be 1

reserved for the order of the universe throughout this

thesis.

Note that all edges of the universe have the same length
and form a square for N=2, a cube for N=3 and an
N-dimensional hypercube for N>3. The oriajin of the universe
is the point of intersection of the axes. Negative
displacements from the origin are not allowed. The space
beyond the universe is the vojd. No object can exist in the
void. Any part of an object moved into the void is

annihilated.. An aupgmented universe is one in which one or

more adjacent (empty) universes are added to the primary

4

universe. Augmented universes are used to facilitate
algorithm initialization.

Before encoding, objects are called real objects. They

"'J. PR
2 dendnd o

may be real-world objects or a mathematical description of an

ideal shape. An object encoded in the octree format is known

as the encoded object or simply the object.

21

. PN v e
' i . . . B
L‘AA—LJ e o ot '1 PRI

4

e el oA o b

; "
1 If a single encoded object is used many times to :?
- generate new, transformed objects, the original object is the - i}
model and the new objects are instances.. .ff

An object is always of the same order as the universe in i;

which it is defined and is composed of discrete units of - ;j
N-dimensional space. All objects in a third order universe :;li

must occupy volume, for example. A 2-D object could not
exist here. The smallest object in such a universe would be
the smallest resolvable unit of space.

Other Ehan this, there are almost no restrictions on
objects. They can be concave as well as convex, have
interior voids, and can be simply- or multiply-connected.

Each object is defined over the entire universe. It has
a property value defined at each point in the universe. For
a typical small object (relative to the universe) most of the

space in the universe has the property of being empty.

2.2 Object Representation

During the design and development of the object
representation scheme, the primary considerations were the

need for a spatially sorted format to eliminate the quadratic ‘j-J

i g
\ .

growth of algorithms and the desirability of a hierarchical
structure to reduce the volume of data that would need

processing for a typical solid modeling operation. A third

L . - :

consideration was the simplicity of algorithms that could

r..

LA ol MDA SR, r SO v
AT PR .
o oal M .

Bl e JEadh B sl Sl
BT G dtan e Jang Sudr Juch g edb R S Y adie o S il AN aot M oM SN el i | A e

......

result if a regular spatial structure was used.

To facilitate spatial sorting, orthogonal planes were
used to segment object space. The need for a hierarchical
structure was satisfied by employing trees in which the
children represented the same space as the parent but to a
higher precision. To fulfill the requirement for a regular
structure, nodes at a given level represent disjoint segments
of space, are identical size, shape and orientation, and
completely fill the universe when all possible nodes are
taken together. The result was a recursive subdivision of
space with objects represented by cubes of exponentially
related size.

An octree object is represented by an 8-ary hierarchical
tree or octree. Each node represents a cubical section of
the universe and contains a property value associated with
the cube. 1In its simplest form, the property has one of 3
values. If the space is completely occupied by the object,
the node has the value F (for "full"). If completely
disjoint, the value is E (for "empty"). If-neither occupied
nor disjoint (at least part of the object's surface is within
the cube) it has the value P (for "partially occupied"). The
property value is often loosely ﬁged as a node gqualifier.
For example, a "P node" is a node with a property value of P.

The 8 octants of the cube represented by a node are, in
turn, represented by the node's 8 children. An octree is

hierarchical in that the children, taken together, represent

23

A

VN3 VAT

LA
i .

ypo

e e e e e e i i A A s

exactaly the same space as the parent.]
The correspondence between octant and child number is _'i

defined in 2.1 along with the vertex labeling convention. A

sample object and the universe are shown in 2.2(a). In -

2.2(b) the corresponding octree is presented. The root node - i

at level 0 represents the entire universe and is given the

LG

value P. At level 1, of the 8 octants of the universe, 6 are ‘ i
empty and given E values. Two are partially occupied and are

given P values. At level 2, the three solid cubes forming

the object result in three F nodes. The node addresses are
shown below the nodes.

E and F nodes represent homogeneous sections of space.
There is no need for further subdivision and they are,
therefore, leaf nodes; The space represented by a P node is
not homogeneous. Lower level nodes are needed to resolve the
object. P nodes are thus branch nodes.

This scheme can be applied over any number of

dimensions. A 1-D hierarchical binary tree is a bitree. 1In

2-D, it is a guadtree, in 3-D, an octree -and in 4-D, a
hexadecatree.]
The segments of space represented by nodes are object ;]

elements or obels. They are object elements even if disjoint —

from the object (E nodes). Obels are distinguished from

spatial enumeration voxels because they are not uniform in

RN

F‘ size and not necessarily three-dimensional. An obel is a
3

section of N-dimensional space whereas the node representing

. .
el ottt bl

. ¥
-

Dimension 2
Vertex 2 TL Vertex 3

2 3

y b Vertex 6 &L T AL°
ertex é—:>,

Vertex 7

6| 7|7
LN R
AR Note: Child 0 and 5 Dimension 1
2 Vertex 0 (the 4 5 5 ///Vertex 1
. origin) are
a2 hidden

Vertex 4 Vertex 5
.x. Dimension 3

3 o Figure 2.1 Child and Vertex Labeling

P
St

' T, % e T
B

B . poee
o Lt '
PO By) [L

P JR

R . S
AA.AL’ e g

/m’verse
/bject

%

(a) 3-D Object :.;:,

SNy .

a4

/Leve‘l 1 9 2 3
OrGJOR0X0 .

= S

2) o

N7
|

% 40 41 42 43 44 45 46 4

Level 2 ‘
t OO -
- \ Y

N
\\
N\

(b)-Octree Representation of 3-D QObject

Figure 2.2 Sample Octree -

. -
.

TR SRR

o Sama g g e L W/ 2

4
]
26 |

P PP S R P P N N A N P A N § nl
A P SV B S P i G AL . I G S P A I PR P N PO

.Y w -
......... g S At it st et At Sagi g S P Pl A i Al A D A

L e ek Sk gt el Jadh geatt

it is an element of a data structure but they are generally
considered to be synonymous.

Trees as used here should not be confused with the
non-hierarchical tree structures used in data processing to
maintain items in a sorted format. Adding to the confusion
is the fact that such structures have also been called "quad
trees" by Finkel and Bentley [(20] when representing data
items with a double index.

In advanced applications additional properties such as
color or texture values, material type, function, density,
surface normals, thermal conductivity, etc. are simply
attached to F nodes and possibly P nodes.

When a real object is converted to octree format, branch

- R F

nodes at the lowest level must be given a terminal . value.

This could be E or F if the obel is less than or greater than
half occupied, respectively. If interference detection is
involved, the worst case situation is wusually assumed, in
which case they are given the value F.

If all of the children of a branch node are terminal
with the same property value, the children are unnecessary.
They should be eliminated and the parent converted to a leaf
node containing the child ptoéérty. If a tree contains no
such nodes it is a reduced or trimmed tree.

Unreduced trees are sometimes created during algorithm
operation. | They are 1legal objects and are correctly

processed by most algorithms but cause inefficiency.

27

Versions of algorithms that generate trees in a depth-first
sequence typically eliminate unnecessary nodes during
operation. The output is a reduced tree. Otherwise a
separate reduction pass through the tree is usually
performed.

In specific applications an additional terminal node
type, a tolerance node, is used. In a material removal

operation they represent the tolerance object. This 1is the

space within the tolerance of the surface of the minimum
desired object which can be optionally removed. Tolerance
nodes are handled in a special manner by processing
algorithms. They can be used as E nodes to obtain the
minimum object, as F nodes for the maximum object or locally
converted to whichever would result in the greater node
reduction for the minimum storage object (assuming tolerance
information no longer needed).

It should be noted that the location of any obel in the
universe is known exactly. The 1limited precision of an
object as a.function of tree.level applies to the location of
the surface of the object within an obel. .

The node address identifies a pérticular node and also
locates the section of space represented by the node. 1In a
1-D tree it is a binary string. The number of bits is equal
to the level of the node. The value is the number of the
section of the 1-D universe occupied by the node, numbered

from 0 at the origin to 2h3 where n is the level. 1In 2-D,

28

- e . - o o . - - N e n . . . : . e A s e s D W, T ST S U PP

CRh i S Jad) LY, v _wL e W oWy ."'.‘."‘.‘_\.>‘,r.‘-‘. et P - I

the address will be a string of single digit guaternary

numbers and in 3-D, octal numbers. The section of a higher

order universe can be determined by independently considering

TS Yt e
. .

¢ "
. .

the individual bit for each dimension in the <child number

values. On occasion a node is identified by its level and

LISy e

the decimal equivalent of the binary value of its address

string.

A point can be determined to be interior or exterior in
log time by traversing from the root to a leaf node. The

child containing the point is selected at each level. For
£ points on a face, edge or vertex of an obel, two, four or

eight leaves may need to be examined, respectively.

2.3 Node Requirements

The number of nodes required to represent an object is a
function of the size and shape of the object, its position
and orientation when digitized, the level of resolution, etc.
An upper limit is set, however, by object-surface area and
the resolution of the object. The following is similar to

the proof presented by Hunter and Steiglitz [29] showing the

:;Q number of nodes required for a 2-D quadtree object to be on
the order of the perimeter of the object.

Assertion 2.1: For a representable 3-D connected
object, the number of nodes required for octree .?

representation is on the order of the product of the surface

29

" L. M -
L.'I_A-;.AE.AA.L.

PRI I TP TPT WG WL LAY LI U0 0 WA CLULE W WUy Ve V. S, e TSP P

area of the object and the inverse of the square of the
resolution.

" Proof: A function g(n) is defined to be on the order of
f(n), or 0(f£(n)), if there exists a constant ¢ such that g(n)
<= cf(n) for all but some finite (possibly empty) set of
non-negative values of n.

Consider a 3-D universe defined to level m. Without
loss of generality, the volume of the universe is defined to
be 1. Resolution at level n will be defined as the edge
size, e, of an obel at that level or e=1/2", The resolution
of the object, r, is the edge size at the 1lowest 1level or
r=1/2",

A representable object is an object that can be
repreéented as a collection of obels. Consider the minimum
surface object which touches or intersects 8 obels at level n
and continues on tc touch a ninth as shown in Figure 2.3(a).
As noted in 2.3(b), it touches or intersects the 8 obels at
and around the common vertex at which all 8 touch and
continues along the entire-length of an edge. It will be a
linear run of minimum-level obels fbr a distance e and has a
surface area of 4re+2r®* as shown in Figure 2.4. For an
object to actually intersect all 9, it must be 1larger than
this and have a larger surface area.

Let S be the surface of an object and let k be the
number of cubes at level n which could be enclosed by the

object or intersected by its surface. In a worst case

30

DL W WL WA WP S BT R, SR T PR PUT Gu I G S S P, ¥ WL S A S . I G P PR

e

K

PO SR S ACE Rl I b dhad S il e ey Sk e et ol SRl s B Jfent Snt detve Sute e Shute fingt Thatiute S et
St - St « et - . L ANt R Lo

z{f/ //// 8 Obels

7~

9th Obel

(a) Set of 8 Obels Plus Ninth

////"Common Vertex of 8 Obels

Object '
///// ‘J///Object Touches Face

of 9th Obel

aN- = e - -

4 [}
’ s
’ i &~
' 4
’
i
4
"
yoe e een e ebead maa
4 7/
/
7/

(b) Object Touches 8 Obels at Common Vertex and 9th Obel

Figure 2.3 Minimum-Surface Representable Object which Touches
9 Qbels

31

tnafin ittt oo S daatinefiod P IR I ALt e tataiadar-ane

B AP i s e e Shnte Bt S Shgs Jia, 2 e Bt e ge Sk T g

E'~_*.‘.v.".".*,';'\'.“v:-.'.f.v*r'r.-,rx R T T IrT—

5 _
F! X - Area of Each
Side is r2

e o

Area of Each Front, Back, Top and Total Surface Area
Bottom Face is re is 4(re) + 2(r2)

Figure 2.4 Area of Object

32)

ot . o - . - .) N . N - - " - : .
N ol e = - - o N - . - P . - . . .
th shittintiiinliothoh bttt Siutdttnitdetih il bt e PRy it i ks o

L

-
-sd

..............

situation, the surface area would cover aAmaximum-length
linear run of minimum-level obels. This sets an upper bound
on the number of enclosed or intersected obels at level n:

k < 8(S/(4re+2r?)+l1)

The 1 accounts for (actually, more than accounts f£for)
the four obels which could be intersected along with obel 9
at the far end of the run. Since r? is positive, its removal
from the denominator will preserve the inequality:

k < 8(S/4re+l) = 2S/re+8

The valué of k is the number of F and P nodes at a
level. To ©place an upper limit on the total number of nodes
at level n, it will be assumed that each will have seven
E-valued siblings. An upper 1limit on the node count at a
level will thus be 8k.

Let C be the total number of nodes (over all levels)

required to represent an object:

m
C < (8)SUM(2S/re+8)

n=0
. m - m . -
C < (16S/r)suM(2™) + 64(SUM(1))
e =0

C < (168/r) (2™l 1) 464 (m+1) = (325/r)2™-16S/r+64m+64

2

C < 325r2-165r"1+64m+64 or C is 0(Sr~2)

Q.E.D.

33

L

rT——— ' S S T S ol e Sogs 3 R . wre Ty T e e . v
............. MR AT ACT AR I i AC At R i A ol . e WA TN TR AT Al

’

3

2.4 Complexity Metric R
)

An important item that is generally iacking in the field ﬁ

of 3-D solid modeling is a measure of object complexity. It i
— N

is difficult to study a situation analytically when K
quantitative measures are not available. Intuitively, the
measure of the complexity of aﬁ object should in some sense
be related to the amount of information required to represent

the object.

The measure of object complexity used here is the number ;L?
of nodes in its octree [40]). This is an extension of the
measure proposed by Tanimoto for binary images [78l.

In the remainder of this report the symbol "C" will be
reserved to represent the node count (any type) in an
object's tree. The value of C is the sum of the number of

branch nodes, B, and leaf nodes, L. Because each branch node

M

has 2N children, and each node (except the root) has a branch

node parent, the following relationships hold:

c=8+L=802N +1- : : - (2-1)
B= (c-1)27N = (27N (2-2)
L=c-tc-127N = (1-27Mc+27¥ = r(1-27M (2-3) <y

A tabulation by N is:

ol NENCRE N NS +- G
1
e .

P A
abhadod kol

34

AP AP URIPR PRDPES AL DU TS T DU GAE W DAr S 1 DU T TV DAy T VOIS DR/ vy S e WPt g e

g - e —T— Pt G . il oy oF T RT T T) N
e w Push Fats st snac an Sl M@ b Nnh Sl Yoy ara s SM WL AR AR i Ca Sttt Pt It A CH A - e Te N N - '}
IR AL L A) @ L ey e e T TN MRS . . - - - - . .

)

1-D 2-D 3-D 4-D g

-

B = lcs2d Lc/al Lc/al Lc/161 g

L = rcs/21 [3C/41 [7¢/81 [15C/16 7 J
Within the count of leaf nodes, the number of nodes with

a value of E (or F) can range from 1 to L-1.
For mathematically simple shapes, the octree C value may

be much larger than some object complexity measure which

could be defined for a CSG or B-Rep scheme. This
disadvantage may be offset by the following: (1) as object ﬂ
complexity increases, the CSG or B-Rep value may approach or
exceed (in some sense) the octree C value, and (2) many
opérations (set operations, for example) exhibit linear

growth using octree methods (because of spatial pre-sorting)

D . SATPBARN] e

but quadratic growth using CSG and B-Rep.

Often the number of calculations required within an

algorithm is proportional to the C value for an input or %
output object. Depending on the algorithm and the situation,

such a tree (or an intermediate internal tree) may not be

reduced. The C value in such a case is the complexity of the
tree structure used and méy be larger than the reduced C
value. On the other hand, because of the hierarchical nature

of the octree, many algorithms require only a subset of the

input nodes. In such situations processing is proportional

to the actual number of nodes accessed.

35

9

..J PP .-" g’ e '.— -n' PSP R SN SN o ! P P AP P SRS S LA ; -t b P LAY 2 e Alas e aldel

2.5 Storage Requirements

pointers into application data structures, etc.

A minimum usable scheme requires two types of data items 4 k

per node, a property value and pointers to its children (if a : ﬁ
branch node). Additional data items which could be used are %
parent pointers, multiple property values, average subtree ']
properties, sibling pointers, 6bject feature pointers, ; i
»

3

Normally a two-bit field is used to encode the three

node values (E, F and P) requiring 2C bits or C/4 bytes for

L

an object. A saving of between about 20% and 44% can be

realized by allowing for a single-bit value [43].
Conceptually, each branch node of an octree has 8 i

storage fields for <child pointers. For implementation,

however, a single location will suffice because it is a
complete tree. The children can be located in blocks of 8.
A single pointer to the block will uniguely 1locate each ﬁ ,?
child. The address of a particular child is siﬁply the sum :
of the pointer and its child number (0 to 7). 1In Figure 2.5 s
a single word per node (4 bytes/word) holds both the value
~field and pointer field for the object from Figure 2.2. The
pointer field for leaf nodes could be used for the storage of

e

additional properties.]
Memory requirements can be substantially reduced if node \;EE
storage is sequentially allocated. Using a heap-like storage ___ .1
format, the position of a value in a string indicates its N f
, @

.

b

-
e

~N Oy O S w N~ O

Root

———

Offset 0

N OB W

L

alue Pointer

2 3e—— 30 Bits —y

ndiibe o e N

g

InIRSN AR A Bt e shod

0 Node Address
1

mMmMiIvovlolimim]m|lm

Children of Root

50

40

5

41

52

42

w nn — O

53

43

54

44

55

45

N U

56

mimjim M mimjm |m

46

rﬂmm'm mimjijm |m

57 7

47

Level 2 Children

Figure 2.5 Single 4-Byte/Node Storage Format

Ty

T

) . SO

A

K. SRR
BN - SN o~

. o e
"APJ‘J‘JA‘ L3

s s
o e el
PR, -

Gt e e e e
. . 4'
A_L_.EL‘A-"J'AI-‘

P AR R T Y O .;';;’,A,;;.j

tree address. Two bits per node (or less)'is sufficient.
The allocation can be breadth-first or depth-first. The
major disadvantage is that, similar to a magnetic tape, all
earlier nodes must be read before a desired node can be
located.

Parent pointers are probably not necessary because in
any real application the number of levels is limited. With a
32-leve1 octree, for example, objects could be represented to
a resolution of 0.001 inch in a universe enclosing 311,48z.8
cubic miles. In such a situation, depth-first traversal
algorithms could keep parent pointers in a small stack.

In some applications subtrees can be shared within an
object or between objects. Pointers are simply allowed to
point to the same node (root of the shared subtree). This

may, however, complicate object modification and deletion.

2.6 Expected Performance

A preliminary analysis of the viability of a real-time
solid modeling system based on octree encoding method will be
attempted by relating the valqg of C to the size of the
active workspace and by then speculating on the performance
of specialized hardware processors.

An important statistic when analyzing the number of
nodes required to represent an object is the average ratio of

branch children to leaf children. It would be desirable to

------ ~—

calculate an expected value for the number of the children of
a node through which the surface of an object would pass,
given that the surface passes through the parent node. This
number of children will correspond to the number of branch
nodes. Nodes not intersected by the surface of the object
are completely interior or exterior to the object and will be
leaf nodes.

It will first be assumed that the object surfaces
cutting the obels are planar. This becomes true even for
sculptured surfaces as the obel size becomes very small
relative to surface curvature.

A 2-D obel is shown in Figure 2.6(a) along with an edge
of the object. Depending on the slope of the intersecting
edge, there will be at least one diagonal (segment 1 to 2 in
this case) intersecting the edge. Figure 2.6(b) shows the
four children and their diagonal lines. Note that the length
of a child diagonal is exactly one~-half the 1length of the
parent diagonal. Since they are all parallel, if the object
edge can intersect the parent diagonal at any random
location, it is expected that any'particular child will have

~a 0.5 probability of intersecting the edge. The reasoning is
easily extended into 3-D with the same results. Thus, from
this analysis, half of the child nodes can be expected to be
branch nodes.

In 3-D, an average of four of the eight children of a

branch node would thus be expected to be branch nodes. The

39

. [

i
“..l
g
{
.

R A . T P S . R P U YD Y. U T TP G YA Wl PR SR I

e vy b e Znabe Sl Suen. Shue Jinte feate Jhes bt e MERS Men Maee 2 e e sl
AN Pt et cpan i A L LaRS anme snas LR s S e) Sl Pl PP Pl B - Bl B S L

¥

- NSS4 WO

Edge of Object Cuts Obel
(1
2 3

N

(a) Parent (b) Four Children

Figure 2.6 Edge of Object Cuts Obel and Intersects
Obel Diagonal

CAEN A S Al

LEME Gn b n un Bee avie a-i s S aeel gen pon Suee pens JUNL sl Bedl AL EREE RN BRI N SO SR

number of branch nodes at level i would be 4i, The total
number of nodes at a level must be twice this to account for
the leaf nodes except for i=0 which has a single branch node
(the root). The expected value of C is thus the summation of

the nodes for each level or:

(@)
"

n R
suM (2(41))-1 = 2 ((4"lo1)/3)-1
i=0

(2/314"%1.5/3 = (2/3)471 | (2-4)

where n is the lowest level.

The growth of C by a factor of 4 with each additional
level is consistent with the above result showing C to be
related to the inverse of the square of the resolution.

It should first be noted that the above rate of node
growth is expected only within a section of the universe of
size comparable to the size of the object. For a small
object within a 1large universe the node count would be
expected to increase by a constant value per level until the
obels were of approximately the same size_as the object or
smaller. i .

In Table 2.1 a number of items have been tabulated as a
function of the number of levels in the universe (assuming
the whole universe is the active workspace). The second
column is the level number of the lowest level. Column 3 is
the resolution of the universe. In a universe with 11

levels, for example, the edge of the smallest obel is 1/1024

41

"
i K
.3 DR

Y WP T |

_..' t s ‘.1.:'=.! L .

L

!1
.-4.1
oy
!
-
®

(PR

2
- \
: ~
Lowest Resolution Nodes Total Storage) ﬂ
Levels Level (1 part in) Voxels (level N) Nodes (bytes) -
1 0 1 1 1 1 1]
2 1 2 8 8 9 3
2
- 3 2 4 64 32 41 11
-
8 4 3 8 512 - 128 169 43
d 5 a 16 4K 512 681 171
6 5 32 32K 2K 2.7K 683
7 6 64 256K 8K 10.6K 2.7K
8 7 128 2M 32K 42.6K 10.7K
9 8 256 16M 128K 171K 42.7K
10 9 512 128M 512K 683K 171K
11 10 1K 16 2M 2.7M 683K
12 11 2K 8G 8M 10.7M 2.7M
13 12 4K 64G 32M 42.7M 10.7M
14 13 8K 512G 128M 171M 42.7M
15 14 16K 4T 512M 683M 171M
16 15 32K 32T 26 _ 2.7G 683M
Table 2.1 - Tabulation of Resolution and Expected Node Count - 2
-— ..
k
. :,'H
o]
]
1
42 .

....................

;253 of the edge of the universe. The next column lists the
| . number of voxels (lowest-level obels) in the universe. This L

is the number of storage 1locations required in a spatial B

enumeration representation.
The fifth column lists the expected number of nodes at
the lowest 1level assuming that one-half of the children of

branch nodes are also branch nodes.

The sixth column is the accumulated number of nodes (C).
It should be emphasized £hat this value is a rough estimate
based on simplistic assumptions. The object must be of
comparable size as the universe. In a much larger universe,
the C values can be thought of as applying to objects encoded
to a resolution relative to the object of approximately the
value given in the third column. Also, uniform resolution is
not required over the entire surface of an object. Given a
constant value of C, lower resolution over some sections will
allow higher resolution in other sectionms.

The last column is the storage requirement for the

object, sequentially allocated at 2 bits/node.

. Given this information, what level of performance can be
expected from a specialized octree processor? It will be

g; assumed that a single unit could process a node in 50 nsec.

T
. . . r ' . 1 L -
. i R A
o O

to 100 nsec., depending on the algorithm and function. 1If 30

complete operations per second are required for real-time

Ty v

m

operation, an object with a C value between 325K and 650K

nodes could be handled by a single processor. According to

@ﬁ 43

the table, this corresponds to an object defined over a
section of the universe of a size between 2562 and 5127,
Based on this admittedly crude analysis, for algorithms which
could be operated in parallel such as display, an 8-processor
system would seem to be able easily to handle objects with an
average resolution of 1 part in 1024 in each dimension at
real-time rates. This assumes a single object in a
worst-case situation (all nodes accessed). Such a system
would seem to be sufficiently powerful for most interactive
situations. More complex situations could be handled at a
slower rate.

The overall growth of C with resolution places an upper
limit on object precision in any practical situation. 1In
many cases performance could be enhanced if high resolution
was maintained only on surfaces where it was actually needed.

Nevertheless, many applications require much greater

precision than would be practical for a simple octree system.
To accommodate such situations, a dual data structure
approach is envisioned. -A specialized -data structure

tailored for a specific applicafion and its functional

ivCwt ol iy < S AWK

requirements would be used in conjunction with a general

N o f Db

purpose octree-u.mjed system. This 1latter section would
handle interactive geometric and geometry-related functions

such as object manipulation, analysis and display.

Items in the application data structure would be

relatively permanent whereas the octree data could be more or

44

....... S . - Lt . - - oL e - . .
PP W Wy, W S Wy PG ST SN . L NP N o PR R WY W IR G- P UoT WL vy S S V. =

L

v voa .
AR
apad)1

< less transient. This is somewhat analogous to the relation
_. between a conventional 2-D geometric data base and the frame "
buffer memory of a raster graphics display. The description

of a circle in the data base may be an actual part of a

- design while its representation in the frame buffer memory
would be temporary data generated to fulfill a specific need
such as visualization by the user.

Of course, frame buffer type data may be made part of
the application data bése. This could include the
digitization of a real-world image or perhaps a scene that
would be difficult or very time-consuming to recreate. 1In
like manner, octrees acquired from CT scanners or the final
results of a design session could be retained in the
application data base in octree format.

The overall strategy is as follows. Objects or parts of

objects not maintained in octree format are converted from

- . user format beginning at the root and continuing down as
needed by the currently running processcrs on a demand basis.
In practice, all items involved in a user session are kept in
octree format to some modest depth. This would typically be
the local depth at which each obel would contain only one or
very few primitives from the apéiication data base. This
corresponds to the 1locally optimal grid size in the

) variable-grid technique of Franklin [21]).

;{: Sufficient information is kept with the current 1leaf

nodes quickly to generate the subtrees when needed. They are

>, —— L v - it wowerwY L e Shade Sadc s Sea Shet Shnte Shadh Shnde Redn Siate St Sindie it At i
| e 2 B R e T e T W R R e o - - Ad AaliaA it B Al D .

T 5 B
','-..l L.‘v"'.

P

?; soon discarded when their usefulness has passed.

What is to prevent the generation of all nodes to a 1low

!
.

level whenever a user makes a request? The answer is to

L. s e v
) .
aoaials s oo

develop algorithms that require computation (request nodes)

; in a quantity related (in some sense) to the complexity of - t‘
; the immediate situation rather than the number of and
; complexity of all objects involved. In interference

R

detection, for example, the number of nodes examined could be
a function of the nearness of the objects. In hidden-surface B

display, the computation could be related to the actual

complexity of the scene generated. The development of such

R P
e n:l-..w’.

algorithms was a major part of this research.

.
I

Py

]
- -.'.,.’ 1

, [
o

R - SRR

46

L“L.:‘ PR W W T U A DA R W I T WA UL WA SR WAL TP U WP Ul T U Pl W DUC TR T WD DA gir Wil O% War SRS ILP N W

...........

................

CHAPTER 3
OCTREE GENERATION

In addition to octree generation, an objective of this
chapter is to begin developing a body of "tools" to be
employed by algorithme for performing sub-functions within
the implementation constraints (simple arithmetic, easy VLSI
implementation, etc.). This will be a "bag of tricks" from
which speéific solutions will be drawn as the need arises.
These tools perform specific, not general, functions but
will, hopefully, be broadly useful over many algorithms.
Lower-level tools will be combined to form higher-level ones
to implement more sophisticated functions. At the lowest
level, tools are the simple arithmetic operators. To the
system implementor they correspond to specific hardware
subsystems to be used in the construction of special-purpose
hardware processors.

In order to motivate the tool development, it will be
placed within the context of solutions to increasingly
difficult modeling system functions. In most cases,
solutions to the 2-D (or 1-D) ptgslem will be presented first

for clarity, followed by the extension to 3-D.

L 4

¢ ea e e
*'I.L.J- AN
il

R
!

K
L
)

5
P PR S

.....

..........................

@

3.1 Algorithm Considerations

L R
PRAPRIFEN Y WO

Many factors were considered during algorithm design and

development. A few of the major ones will now be discussed.

."L‘L4-..

The mathematical operations that algorithms can employ

are severely restricted because of speed, cost,
implementation and simplicity considerations. The permitted
("legal"”) operations are integer addition and subtraction,
magnitude comparison, shifts, and data movements such as
LOAD, STORE, stack PUSH, stack POP, queue INSERT, and gqueue
DELETE. These legal operations form a set called simple
arithmetic.

Solid modeling:functions can still be performed, 1in
spite of these restrictions, because of the design of the
data structure. 1In almost all cases where a product (or
quotient) is needed, one of the factors is a power of 2. The
desired result can thus be generated by the process of
shifting.

Two phases of algorithm-operation are -defined: setup
and run. During the setup pﬁase. a small number of
unrestricted computations are allowed for processing user
requests. During the run phase, the requested solid modeling
function is performed over the octree'objects. Only simple
arithmetic is allowed. In mass property measurement, an

isolated multiplication or division may be needed to compute

an intermediate or final property value.

Rodiiain Siana e Slaae Jine Snbd Shaln. dintin i Aiate dhai el il o

During algorithm design, maximum advantagé was taken of
the more or 1less standard techniques that have proved to
enhance performance. This includes extensive use of
parallelism and pipelining, avoidance of iteration; looping
or unbounded situations, and so on. The classical
computation-versus-memory tradeoff was generally decided in
favor of extensive use of memory.

For most of the algorithms, two catagories of tree
traversal sequences, depth-first and breadth-first, are
possible. They correspond to two strategies for attacking
problems. A depth-first algorithm generally traverses a tree
downward from parent to child, returning to the parent when
all lower nodes have been processed. Breadth-first traversal
processes all nodes at one 1level before working the next
lower level.

Depth~-first traversal tends to be used when local
information is required whereas breadth-first is employed
when global information is needed. Depth-first operations
typically use a stack, either directly or via reentrant code,
to maintain tree location. Breadth-first information is

passed from one level to the next in a queue.

49

. - s

)
§
A
-

A

I S A e Bre Tt Thiinc) DA
g S & NN d Y drin ari s G e WD S A it et St A) A A
frind Nk Sl Rt SN .

-
~
iy
K{

Ff 3.2 Octree Generators

It is expected that high-speed conversion from various
high—1e§e1 application formats into octrees will be required.
Perhaps the most obvious method for this is the brute force
use of spatial enumeration. A full tree is first constructed
with all possible leaf nodes at the desired 1lowest level.
The input objects are processed with the leaf nodes
corresponding to the interior voxels marked F. As noted by
Requicha [56], conversion from any popular SMS format to
spatial enumeration is straightforward. The tree 1is then
simply reduced.

The obvious difficulty with this érocedure is the huge
memory requirement (0(8") where n is the lowest level) and
the associated processing time (all leaves must be accessed
at least once).

A variation is to generate 2-D gquadtrees representing
orthogonal slices through the universe. They are converted
to an octree (voxels on a plane) and then ufiioned together.
All possible obels in the universe'are still accessed but the
~memory required may be substantially reduced. This method
was used to generate the medical octree objects from 2-D CT
images shown in Figures 7.2 and 7.3. |

In some situations the bottom-up conversion methods of

Samet (68, 69] for gquadtrees can be used. For the most

efficient cases, the computations can be proportional to o

50 =1

...............

PP SIP (U JET RPN T UL WP APRE WA 2P SN TS PRI DRSO M A WY PR 0 W WP Y st a3y e e adalatalolatatuBatatatoatan

object complexity. This runs counter, hoﬁever, to the
general strategy of converting from application format to
octree format in a top-down manner on a demand basis. Better
methods are needed.

A proposed solution is the use of specialized software
or hardware processors called octree generators. As shown in
Figure 3.1 these would be preloaded with the object
parameters. The user of the data (the octree processor)
would request node values. The generator maintains the state
of the traversal in an associated stack or queue.

From a complexity viewpoint, the efficiency of an octree
generator is a function of the false-P rate. This is the
fraction of nodes marked P that will have a value of E or F
after reduction. This is not considered to be an error
because the obel has not been incorrectly determined. The
calculation of the final value has simply been postponed,
requiring additional work.

If the false-P rate is zero, all nodes are correctly
determined the first time -and the tree is-identical to the
reduced tree. If the obel values can be determined in
constant time, the computations grow 1linearly with object
complexity (C). 1If, for a typical user request, only parts
of a tree are needed, computations could be expected to be
linear (in some sense) in the complexity of the specific
case.

Conceptually, an unsorted input object can be converted

51

“

« e e T T e T e

.

ros

T——
N -
. . \

L2 A

» . .
) ™

3~ RS
SIS

ST A

Node Request/Response

Octree Octree Stack
Processor Generator or
Queue

Preload
(Object Parameters and
Traversal Information)

Figure 3.1 Octree Generator

52

MY T .

« e .0 wo O FF T T T T T R R LT R

.............

D..J PRI

into a sorted octree in linear time, rather than O(n log (n)) 2
. >
. or worse time, because a radix-type sort over a finite {

"alphabet®™ (the obel locations) is involved [1]. The worse

than linear growth of typical sorting operations is caused
-‘3 when comparisons between elements is required. None are
reqguired here.

The basic octree generation operation is to compare a

rooo.
| M

test obel and the real object being converted. The result is
one of the three status values, E if Obel (| Object = @, F if
Obel N Object = Obel, or P otherwise.

The octree generation strategy is as follows. Beginning
with the root node the values of test obels in the output
' ~ octree object are determined by comparison with the input
(real) object. A node in the octree is created with this
value. In most situations of interest this can be performed
in constant time. E and F nodes are terminal and need no
longer be considered. P nodes are subdivided with the
corresponding children used as later test obels.

The first algorithm tool to be developed is the
calculation of child vertex coordinates from the parent
- - values. As shown in Figure 3.2 for 2-D, this is easily
15 accomplished by means of additions and shifts (divide by 2).
The 3-D or N-D equivalent is obvious.

The following sections discuss the conversion of convex
ﬁ objects. Conversion of <concave objects is much more
. difficult and less well understood. Suggested approaches are

L‘ 53

Y

.........
............

o)
8 X
- TR
- » j
i; J
¥
—
(Xot%y Yo')
2 ’ 2
y
A . A
(xoay]) ‘
t-———--- (X] ’.Y]) Yy {====--
.y] child
Parent o b, Yol 2V S Yo,
’]]
Obel 7 79" 2 Jchitd chitd) @
.Yo { 0 1
"""" ; '(x'|s.YO) .Yo"""": '.
(xgs¥g) ! . \ :
-+ ; —> X | 4 4 >
PR ’
X X X 0™ X
0 1 0o 2 1 e
(a) Parent (b) Children -

Figure 3.2 Calculation of Child Vertex Coordinates from Parent Values.

54

P P I B

POERFRY I WP P i Bl sl

KR MRS . ,
. PR .
v P . .
e “ S e e E I
R Loa g 4o g L : .

-y e - e G 4r e gy B
ot eI i I ik Sot S St eI et iR e St SaP S S

2 et s it Sade s /i Sl oin-adite e Aot i A PR i R

PR A L T

i * S T
[CRN
5.3

outlined in [(431.

o Ll

3.3 Orthogonal Blocks

.4 W

The development of object generation tools will begin
with a simple case, a 3-D block (rectangular parallelepiped)
with faces perpendicular to the major axes.

A typical <case is 1illustrated in Figure 3.3, The

IS - 3 DR

minimum and maximum coordinates in each dimension are noted.
Three test obels with the three status values are shown. ;

Because the bounding planes and axes are orthogonal, the
status determination can be decomposed into an independent
comparison in each dimension. Determining of obel status is

straightforward.

A"-’.‘"‘. J.:“l It‘ 'AA N ’-A.'.

The development and analysis of the orthogonal block

generation algorithm is presented in [43). It has a zero

false-~P rate.

; - 3.4 Convex.Objects : -

The generation of octrees for convex objects is more
B difficult than for blocks because the dimensions cannot, in
¢ - general, be analyzed independently. The basic low-level

operation is determining whether a particular vertex point of

a test obel is interior or exterior to the object. If the

object is a convex polyhedron, the surface is described by a

...........
f et et

............................
......................

. W)

Test Obel #1 (No Intersection, Status=E) -

Test Obel #2 (Intersection but
Not Enclosed, Status=P)

y max | Orthogonal
7 / Block

\
i
’ i [Test 0Obel
| -
(Enclosed,

/ StatU5=F)
M |

Figure 3.3 Octree Generation for 3-D Orthogonal Block

‘) ".

™ (..'r.' ‘.".’-‘"'-

PR -
AR

et

*."
™ -l

a 40 4 P
'-"'A"l.l
EEE R

ls" ot
A

.............

set of plaﬁar faces, each of the form:

Ax + By + Cz + D = 0 - (3-1)

Each plane divides the universe into two half-spaces.
The half-space containing the object will be called the
positive half-space; the other is the negative half-space.
For points not on the plane, (3-1) will evaluate to a
positive or negative value depending on the half-space.

A simple substitution of the coordinates of the vertex
point determines whether the location is on the plane or 'in
one of the half-spaces. Note that a positive evaluation
value does not necessarily indicate the positive half-space.
Also, a point in the positive half-space is not necessarily
within the object. The face plane is the entire plane
whereas the face is a segment of the face plane.

Since multiplications are not allowed, the components of
(3-1) are calculated for obel vertices by averaging from the
parent components. A set of components for each vertex point
in each dimension for each plane would need to be maintained.
In 3-D this"requires 24 values per-plane;

Alternately, the signed perpendicular distance from the

"vertices of the universe to the plane can be calculated from:

d = (Ax+By+Cz+D)/ ((A?+B2+c?) (1/2) (3-2)

The distance value for a new vertex in a child obel is
the average of the two parent veértices defining the edge

containing the new vertex. The sign of the distance

57

..........................
...

indicates the half-space. The new distances'are calculated
as follows:

d = (D_VAL (AND(CHILD,VERT))+D_VAL (OR(CHILD,VERT)))/2 (3-3) -

where CHILD is the child number of the new obel, VERT is the
number of the desired vertex of the new obel and D_VAL(n) is
the distance of parent vertex number n. The AND and OR
functions perform bit-wise Boolean operations on the child
and vertex numbers in binary format.

For each plane, 8 values ére used (one for each vertex).
In praciice, only one distance value need be kept. The
remaining values can be generated by adding .an offset from a
pre—-computed table.

For a convex polyhedron, if a point is in the positive
half-space of all face planes, then it is interior to the
polyhedron. If it is in the negative half-plane of any face
plane, then it is exterior to the object. Otherwise, the

point lies on the surface of the object (on one or possibly

more faces). A surface point touches the object but is not
considered to be interior to the object.

Thus, for polyhedral objects, an obel vertex point can

)
3
¥
N
f

be determined to be interior, " exterior or on the surface
using simple arithmetic without considering the 1location of
the faces on the face planes or the actual intersections of

face planes. s

For convex objects defined by an analytic surface the

RIS
v
©

£

. - - d . - - “ et - . . . a . PO S
Pl S S PR St ot LT S U e e e e e e e e e e O R K RN)
Wy W T Yo N SR, LS DY T T W WA WD IR T WY | PP PR A U W L LTI Wb WL W WUy W S i . TN SIS S G.¥ W, PO RPN .

W\f‘v‘—_‘_-\r.r‘ B LN I TR TR

!

.
.

o

v
b
Fi
-

..........
............
2 P s

.

Uit S AT A S DtERE eI A

location of the point relative to the object can often be
determined by evaluating the defining expression for the
surface.

In 3-D, the most general second-degree eguation is:

Ax*+By?+Cz* +Dxy+Exz+Fyz+Gx+Hy+Iz+J=0 (3-4)

Note that the terms have three formats, a constant times
a coordinate, a constant times the square of a coordinate and
a constant tiﬁes the product of two different coordinates.
Generating the terms of the expression for the vertices of a
child obel using simple arithmetic on parent values can be
accomplished as illustrated in Figure 3.4. 1In 3.4(a) Gx is
the product of coefficient G and the coordinate value for a
vertex (x). The value of Gx' is the product of G and a new
coordinate value (x'), a vertex of one of the children. The
value of Gx' is desired as a simple function of Gx from the
parent. Because the distance value between the two
coordinates (x'-x) is egual to an edge of an obel at that
level (e), the needed multiplication can ?e performed by
shifts (e i; a power of 2). .It is-compufed as follows:

Gx' = G(x+e) = Gx+Ge = Gx+G(2 (W~ N)) (3-5)

where m is the level of the lowest level in the universe
(where e=l) and n is the level of the child obel. The first
term is the parent value and the second is a shift of the
constant G. Thus, a shift by m-n followed by an add

operation will be sufficient.

59

[WA PR SOV I PR YRR WA AT PP P PR IR PR TIPS V.S VPN PO S VW SR |

y
.

[;;g;q! e

T T N T T L S R AT AR e e e e e s s e e e e
2 E
N | Gx Gx'
A [}]
G e e —
’.;5;; k- child 3 child
o N—— parent —

(a) Given Gx, calculate Gx' -

Ax2 Ax'2 i}

4 Ax Ax' -
— + i —» X
- : (b) Given Ax and Ax", calculate Ax' and Ax'€.
%) Kx3 kxS et
2 Kx? kx' 2
- Kx Kx' B _

3

B

(c) Given Kx, sz and Kx3, calculate Kx', Kx'2 and Kx'

1\

<]
- _— g)"
.1_ X' yu
E:.-' y. /\
= Dx
Dy .
Dx
- N /V - ey
y > .
e— e —n e
~ (' -
X x' _
- (d) Given Dx, Dy and Dxy, Calculate Dx', Dy', f?
i Dx'y and Dx'y'
s d
e Figure 3.4 Generation Terms for Child Obel from Parent Values

) 60 ed

;5
!-- In Figure 3.4(b) the value of Ax'? is desired from Ax
l and Ax?. The wvalue of Ax' will be needed later and is
calculated as above. The Ax'2? value can be evaluated by:
Ax'? = A(x+e)? = Ax?*+2eAx+Ae? |
. = ax2+(2(® At 00 (22 (mon), (3-6)
| Two shift operations and two adds are required in
addition to the shift and add to compute Ax’'.
More sophisticated objects involving third-order
‘equations require Kx'?® as shown in Figure 3.4(c). The Kx'
; and Kx'? values are maintained as above with Kx'? calculated
._‘ as follows:
: Kx'? = k(x+e)’ = Kx*+2eKx?+e?Kx+eKx2?+2e?Kx+Ke?
= Rx?+(2 00 ypyay (22 (0-0) gy g (2 (M0))y gye
' #(2 20 +1) g gy (23 (m=ndy g (3-7)
i Five additional shifts and adds are used for a total of
- 8 each.
) Two cross-product terms are illustrated in Figure
3.4(d), Dx'y and Dx'y'. The first is computed from the
> parent values of Dx, Dy and Dxy as follows:
- Dx'y = D(x+e)y = Dxy+eDy =_pxy+(2(m."))0y (3-8)
= A shift and an add are needed. The second is computed
- by:
" Dx'y' = D(x+e) (y+e) = Dxy+eDy+eDx+e2D
E; _
i 61

= - T T T T e e R TR e T L L R R R e m L e e T e T e o T T s
W W T N T W R N T T TN S TR T T T I T T T T T T T N . R -0 - . .
LS < 2 ATAAE AP I A . .) .

. l ‘
!l:, P

A

a‘s a4

ol

= Dxy+(2 (™) ypy (o (mn)yp (o2 (mn)yp (3-9)

adadn

Three shifts and adds are needed.

Based on these tools, zero false-P algorithms for the

b4 .

conversion of polyhedra and restricted objects defined =

mathematically have been developed [43].

,,"-"'p'r"l‘,‘,,"-‘.‘-“
FDWNCVUNF\ 4 ST TR s,

-

w3y

-~

o

" JGV
RAD . § RSN, 4%

? 5
e

v, I. o0
agaa'e PN

4
0,

v
D

v
Ty
VW W

A o

(o))

N

L C
K. SR

et el el ol

I P R N, SR S MR WS WP L W P WAL AT WP WAL ST S DRSPS VAR A S VA WA WO S 1900 U W T A S S R ST P

-

CHAPTER 4

ANALYSIS AND MANIPULATION

4.1 QObject Properties

Of the following methods for object property
~ determination, volume, surface area and separation of
disjoint parts are 3-D extensions of published quadtree

techniques [65, 66, 74].

4.1.1 VYVolume

Volume is the sum over all levels of the product of the
F node count and obel volume (a power of 2) at each level.
If an error tolerance 1is allowed, a minimum and maximum
volume can be calculated breadth-first from the root. Only F

nodes are summed into the - minumum while P nodes are also

summed into the maximum. When the average is within 1limits, -4

processing is terminated.

AN Ao g

~d

(X

b 63

PP TP I S S PP WA S DL I S W

4.1.2 Surface Area

M Surface area is simply the sum of the areas of all
- exterior obel faces (faces separating an E node and an F

8 node). F nodes may need to be subdivided (if a face touches

both E and F nodes).

4.1.3 Center of Mass

If a homogeneous object is divided into n disjoint

regions having volumes Vl' Vz, cee Vn and centers of mass
--: (xl'lpxz'll' ' XN'l)' oo e (xl’n'lenl ee e XN'n), the

object center of mass, (xl,xz, oo xN) can be calculated as

follows:
o n n
i. X; = gg%(vjxi’j)lggg(vj) (4-1)
}? . For an octree object, the disjoint regions are the F
é nodes. The centers are the obel centers and the volumes the

obel volumes (a power of 2)..

l‘ -““ &

If a tolerance is allowed, a minimum and maximum can be

¢l
Sl

computed during traversal.

i T

T | 64 -

Bt AT S A S v A S A A i SRS AP I T

¥

£
s

e,

4.1.4 Moment of Inertia 5

The moment of inertia, I, is defined as follows:

n 2)
1= SUM(MiRi) (4-2) i

- i=1

where Mi is the mass of particle i and Ri is the

perpendicular distance to the axis of rotation.
For a homogeneous octree, the mass of an F node is
proportional to the volume (a power of 2). The distance

squared value is computed using simple arithmetic as shown in

I

the octree generation section, if the axis of rotation is (or

has been made through rotation) parallel ;o a coordinate

system axis.
N I . The above formula assumes a point mass. Errors result
:;{ if the center of a distributed mass is used. This is
. corrected by employing the parallel-axis theorem. The number
of F nodes at a level is multiplied by the moment of inertia
for an F node (at that level) about a parallel axis through
the node cefiter (a precomputed constant). Tﬁe sum over all

levels is added to the result of (4-2) to determine the exact

value.

‘‘‘‘‘‘

=~ iy '...-. .
SRR

o bty gty Ly A
~l‘:"}.‘4‘5(:";'_,.

2

e]
oS

PO Y
LR RN)
R

...

4.1.5 Segmentation of Disjoint Parts

The quadtree connected component labeling algorithm of
Samet [66] is easily extended into 3-D to separate disjoint

parts of an octree into multiple octrees.
4.1.6 JInterjor Voids

To obtain the number of interior voids the octree is
negated (see below) and segmented into disjoint parts. The
value is generally the number of parts minus one (the
exterior).

A space filling operation is performed if one or more of
the negated interior sections 1is wunioned back into the

original object.

4.1.7 Correlation

A measire of correlation between two objects is the

fraction of the containing volume having the same status (E

.or F) in both objects. The containing volume is typically

the bounding box of the union of the objects. The
correlation can be expressed as follows:

(volume((A N B) N BOX) + volume(A N B))/volume (BOX) (4-3)

66

wl

S 2

..
.........................

ﬁ{ﬂi where A and B are the objects and BOX is the bounding box.
4.2 Set Operations 3
The set operations are the "regqularized" operators [79]. a

Conveniently, this is the normal result of the quadtree and

octree operations.

Algorithms to perform the set operations of union,
intersection and difference have been published for quadtrees
by Bunter and Steiglitz [29] and are directly extendable to
3—D octrees.

Computation is linear in object complexity (proportional
to the sum of the C values for the input trees). Known
algorithms for CSG and B-Rep are worse than quadratic because
of the combinatorial explosion of face comparisons to detect
new edges (see [28], for example).

The negation operation is performed by simply changing
all F nodes to E and vice versa. Objects are sectioned by
subtracting a "blanking object™ (typically a half-space
defined by a plane).

Figure 4.1 is an example. The set operations of union,
intersection and difference are ﬁérformed on objects A and B, 3
resulting in three new octree objects. F

M
R
R
\
)
=
R
2
Y

(a) Object A (b) Object B iZ
- 4

(c) AUB (d) AN B (e) B - A

Figure 4.1

Example of Octree Set Operations

#
£ .
g e
L .,

Sy e ey
ahd b P

.......................

-
S

-

Wy
-~
...

........

4.3 OQverlays

One of the most important tools employed within octree
algorithms is the overlay. From an implementation viewpoint
its importance would be difficult to overstate.

An overlay is a set of contiguous nodes at a single

level, drawn from an input tree, such +that the space it

represents is guaranteed to enclose the space of an

associated obel, the target obel, from another tree. The
second tree is usually an output object being generated. By
examining the overlay, a decision (perhaps an interim
decision) can be made as to the status of the target obel.

For example, in 3-D an overlay containing a set of 8
obels all of which touch at a common point will always
completely enclose a randomly located target obel of the same
size or smaller if orthogonally oriented (not rotated). The
record for each overlay obel may contain a pointer to a node
in the input tree or the status value of an implied node
taken from the terminal node ancestor.

The overlay can be thought of as a template containing a

number of obels which cover a section of space. Within an

overlay there 1is usually ‘a single obel in a fixed spatial
location (relative to the overlay) such that if the origin of
the target obel is within it, the target obel is covered by

the overlay. The shape of the overlay, the number of obels

69

~

R N
RIAPREPS

AN 1 8 Il et

it contains, the level of its obels relative to the level of
the target obel, etc. depend on the specific algorithm.

By maintaining a set of active neighbors, the overhead
of having pointers chasing through the tree to examine
neighboring nodes is greatly reduced. From a computational
growth viewpoint the savings are not significant because the
expected value of the average traversal 1length required to
locate a neighbor is a constant [66]. From an implementation
viewpoint, however, the savings can be substantial because
fewer memory references are needed.

Operating under the self-imposed restriction of using
only simple arithmetic, the strategy in several of the
algorithms below is to set up an output tree and then proceed
to examine its obeis for spatial interference with the input
tree or trees. A status value based on the status of
intersecting nodes is given to the output node.

Simple CSG systems perform an interference test by
mathematically comparing the test primitive to.each primitive
in the object. The number of comparisons is egual to the
number of primitives in the object.

Because of the spatially pre-sorted nature of thé
octree, it is not necessary to check all nodes in the input
tree for interference. Only those which can possibly
intersect the target obel, i.e., those in its overlay, are
tested. Thus, the total number of tests needed to generate

an output object is limited to the product of a fixed,

70

£

_BL

.3 R, 3 ;.'_""_-‘.J

-

W) VLU WA Sl e U VAT WK U PPl W G U W j

.......

usually small, number (the number of nodes in an overlay) and
the final value of C for the output tree (before reduction).

Advantage cannot be taken of this technique in most
current SMSs because the primitives are not and usually
cannot be spatially pre-sorted.

Several tools are needed to evaluate the status of the
target obel. First, the overlay obels actually intersecting
the target must be determined. This can be a difficult

problem, depending on the algorithm.

Second, a status value must be determined. If all
intersecting nodes have the value F, the target is given an F
value. The same is done for E. Otherwise, the target is
subdivided and each child processed in like manner.

Third, a sub-overlay must be generated for a specific
child of the target. Each sub-overlay is identical in
structure to the parent overlay with the new overlay obels
being drawn from the set of children of the overlay obels.

Sub-overlay generation begins by determining the origin
of the new target. Since it must be within a specific
overlay obel, the exact enclosing child of the overlay is
determined. The selection of the remaining sub-overlay obeis

is fixed by the structure.

71

T S S oy oy eeeys

— N R e e e e T T R T e T e T T8 T T T T e e e T T A e e e e e
PO Lt C AR EIUDLTEIERCR A AN A

-

-

4.4 Geometric Operations

For translation, scaling and rotation, the formal

procedures are in [(39].

4.4.1 Translation

The translation algorithm converts an object and a
movement vector into a new tree representing the translated

object. The process begins by generating an augmented

By

overlay universe composed of the "o0ld" universe containing
L~ the original object and a number of empty universes put
ii together so that the "new" universe, which will contain the
N translated object, is covered by the o0ld universe. The

translation vector specifies the alignment.

Beginning with the root of the new universe, the new ’..
tree is traversed and its node values generated by
simultaneously traversing the old tree using the overlay
technique ogtlined above. 1If a terminal node in the new tree T
is generated, no descendants of that node need be considered.
If an ambiguity exists and the status cannot be resolved, a‘P
node is generated. Its children are produced in the same S
manner.

The overlay obels can be at any level relative to the
target obel. The lower the level below the target, the more

numerous but more accurate the result (lower false-P rate).

72

LBt 2iun e Jee Suss ey Maan 20 ACHEES St M 0r JARNL AR ACEMAC I A A IS AR SRS L

The translation algorithm presented here uses an overlay with
2N obels at the same level as the corresponding new obel.

Figure 4.2(a) illustrates a 1-D overlay. The target has
an edge size of e. The overlay is made up of two adjacent
obels of the same size from the old universe connected at the
overlay center. The offset value is the distance from the
local origin (lower end of target) to the overlay center. It
is limited to 0<=offset<e. The equivalent in 2-D is shown in
Figure 4.2(b). The 8 overlay cubes and the target cube for
3-D translation are illustrated in Figure 4.3.

The orthogonal block techniques from the object
generation sections above are used to determine intersection.
The target obel corresponds to the convex object and the
overlay obels correspond to the test obels. One difference
is that the target obel does not remain fixed for all time.
It subdivides. This presents no problem because the
point-to~edge or point-to-plane distance values are easily
updated for target subdivision using the techniques for test
obel subdivision. The edges and faces _of target obel
children are parallel to the parent edges and faces.

A detailed description of the translation algorithm is
given in [39].

An example is presented in Figure 4.4. An object and
the six obels forming it are shown in 4.4(a) and 4.4},
respectively. The new object in 4.4(c) was created by

performing a translation in z by half the width of an obel.

S

dodS A it

— YTV Y TE—— Y, W s e AR N R R e e R A P S P
Ca 4 2 s Abu/iaP i i S SR B SR OISR S . A . . . FE .

Overlay Center

{

Overlay Obel #0 Overlay Obel #1

py == EuRC

’

)OVERLAY
(from old

universe)
p————t ¢ —
1 NEW OBEL

B e ey aVpmeny
Paait LR

]
Local Origin -:?~ !

————p Y
lﬁ—of—fs—e—t-’l Distance

. 7
l' l' '._l.'_

s,

(a; One-Dimensional Overlay

-4

O

o terte

4 o83

OIMENSION 2 | Overlay Obel #2 Overlay Obel #3

T % NEW OBEL
Qffset in

Dimension 2
Local
Origin

Overlay Obel #0 Overlay Obel #

.
- t.

.
.

OVERLAY
(from old

Overlay Origin universe)

g
e 2

DAUALNC LRI

- - o =

Ty Sy V)
PRI T S

- i . DIMENSION 1 o
- il

v 0ffset in S
;. Oimension !

4 PSRN -
.

(b) Two-Dimensional Overlay 3

Figure 4.2 Overlay Structure o

MR e
1]

-4

I_‘:'

DML - PN 4 iR

et a2

£,
11 ¢

ia,
’

S

s
.....................................

........................

e

R 3 U

Dimension 2 .4
N

AN\

Target
TN

NN
i

\

;E".

Qffset in 1

Dimension o, ./
2 ’ ;
LL-_-Effi:-b}¢;<¢\\

/ Offset in Dimension 3 Offset in Dimension 1
- Dimension 1

Dimension 3

Figure 4.3 Three-Dimensional Overlay

...........

...................
..

TR

2 (a) Object

1 |.‘|."|<.‘| M - § Ol [

(b) Object Obels

Y (c) Translated Object - f

Figure 4.4 Example of Octree Translation

X = Note that each end is now formed by four obels from the next

lower level.

A 4.4.2 Scaling

R Scaling an object by a power of two in all dimensions is
li) accomplished by adding or deleting levels at the root. An k
S object is halved in each dimension by adding one level at the

top. The new root points to one branch node, the o0ld root,
and 28-3 empty terminal nodes.

< In like manner, selecting one of the first-level nodes

| § A

ﬁ; » to be a new root doubles the size of everything within it.
é h: For an arbitrary section of space, it is translated into a
' first-level obel and then expanded to £ill the universe.
Objects can be expanded or reduced by any power of 2 by, in
effect, repeated expansion or redqction.

:. Scaling by a factor other than a power of 2 is
% :' accomplished using an overlay scheme similar to that used for
},§ translation. The target obel, however, may be smaller than
; the overlay in one or more dimensions. 1In addition, a single
?E§ set of offset values cannot be used. The local offset vectbr
‘?:1 ‘ must be computed independently for each child of the target

;'{g obel. A detailed description is presented in [39]).
EEE Figure 4.5 shows an object scaled by a factor of 1.75 in
}‘ the y direction. The original object is in 4.5(a) and the
‘ é; new object in 4.5(b). In 4.5(c) the additional obels are

G NN

o tp e et
% A Y e My ..

DOGETMRS BRI I e
e Ve ¢ * —
.
. :
L
-,. -
. .
. Aa-
, .
-. .»--J
-u. ..
» g .
\ | = .
0 o \
.. —
' ©
. (8
': vy
2 e
B + @ .-
* () 1 e
3 e t
o) (8]
b, 0 o
2 ' © QY
> © o @ N
. (Y] r~)t
2 Q o ;
. + [] — -
r, (8] L8] (=3 <
5 v @ (%2} E X
.Y — - () L
. [0 4 e e
. a o o w .
2 e
- b o] w ‘e
8 + (4] ~— wy t.
. (8] — [1} ° A
), e L] 0 =t N
. o~y (3] o .
. L (Vo) (] o
v o —— [8 o
! —) s S
.. — D — o ..d.
M < ~ — K
¥y, ~ [T et
]
;
.
\-
P
I- oi.l
' .4‘
5 -
. ol
. K
ﬁ-.. ..-
t []
g 2]
. b
4 v k3
» . 4
g 3
, B
» L4
a ol
¥, . . RS s . . %
" o 2 IR . PP T IRRr a3 e et v e . S, ; . o
Y St A NN . 3 i - «

irigr
. "]
'l‘l .

¢ 0y

TSy

e

EE o

)

%

..........
.....................

visible.

4.4.3 Rotation

Rotation by 90 degrees about an axis can be performed by
a simple reordering of the nodes in the tree. For an octree,
if the center of rotation is the center of the universe,
rotation by 90, 180 or 270 degrees or reflection across a
plane through the center parallel to a face of the universe
or oriented at 45 degrees is accomplished by reordering or,
within an'algorithm, a change in the traversal sequence.

Figure 4.6 is an example of an object and two new
versions rotated by 90 degrées using this method.

For rotation about an arbitrary point, the object can be
translated to the center of the universe, rotated, and
translated back.

Rotation by an arbitrary angle is more difficult. In
2-D, the over1a§ arrangement for a 0 to 90 degree rotation is
shown in Pigute 4.7. Nine overlay obels are required. The
local origin of the target obel is always in overlay obel B.
Clearly, for 0 deg. to 90 deg. rotation, the target will Ee

" covered by the overlay in dimension 1. In dimension 2, the

maximum reach of the target is 1 + SQRT(2) which is less than
3, the height of the overlay. Coverage is thus guaranteed.
Again, the techniques from the object generation

sections are used to determine overlay obel intersection. A

79

........................

*a
PN) BRIERIRIN.) AP

LRl

(R AR NEY R RN
ot e el e

-"
RN

s 338

.'
-8

ot

AN OOt - - Sk

P
s ala

g 3
RO

‘e
-
oy
%
-
1
-
s’
'ﬂ..

Y L3O

-

¥y

§ o ST B

Y Pk AL Jaa i ai

Original Object

Rotated
About
X=-axis

Figure 4.6 Example of Octree Rotation by 90°

- . .

g1

R ada e st

.4, 4

C e e .
S.'\' .'.“%. o* RS

[l
Lo

‘- l-
‘-I [
‘.c l.
o T
‘.‘

s R
..;
A
n".! .n
PR
.-
v g

-

LA

BN}
<
X
org
e Ci
e
: -.: G ‘H . I

\F
) Overlay

;i.' ' _____________—Target Obel

. A BN ¢

- ' N Local Origin of Target

e e

T Local Origin of Overlay
N

e Figure 4.7 Rotation Overlay

-
l.'
[0

PA

-

.l

L3

A

.qu e
-
.
.

§ 0t

CL

ral

C)

, ™
b '-1
3]
¢ -

.....

o e i il i i O T e R
LR P A R A AT T S TR Sl B PRI -

T T Ty oy Ty == .

detailed description of the algorithm is given in [39].

For an arbitrary 3-D object rotation, three operations
could be performed using a slightly modified 2-D algorithm,
one for each axis. An even simpler method is to perform
multiple skew operations. Iftikhar [32] has proposed this
based on the 2-D work of Catmull and Smith ([15]. This
approach may be generally undesirable, however, because at
the lowest levels aliasing products are generated on the
object surface when nodes are forced to be terminal. The
object is essentially being redigitized from a previously
digitized object. This tends to corrupt the surface and is
compounded by the repeated operations that are required.
This is minimized by computing nodes to lower levels, by
performing operations in a single pass and by regenerating
instances of an object from the original octree model each
time it is moved or changed (rather than incremental movement
of a single object).

Because of this, 3-D rotation in one pass is preferred.
This is acgomplished by extending the 2-D scheme into 3-D by
the use of a 4 by 4 by 4 overlay. As shown in [43], a 3 obel
per edge overlay is not sufficient. '

Figure 4.8 is an example of rotation by an arbitrary
angle. The six-obel object from Figure 4.6 has been rotated
by an angle selected at random (28.7 degrees). In 4.8(a),
obels are forced to be terminal at the same level as the

obels in the original object. 1In the algorithm used, all P

aq
#
~
-
B
D
-
5 .
.,
N a

BRI

) RIS

A0

................

(a) Same Level

(b) Level-l

Ve e NG N Y

MUV

(c) Level-2

)

Figure 4.8 Example of Octree Rotation by Arbitrary Angle (27.8°)

83

S e et el T e e T e e T T T S T LY T T e T T T e e T e e (Y e e e

LR]
A

.............
R R A .

.,
oS
L
c"
!
Ko
>

!‘.
o R A e ta e
L -: , \\-.‘ " .“" " "y

nodes at the 1lowest level are given the value F, causing an
enlargement of the object. In 4.8(b) through (d@),
increasingly lower 1levels are used, allowing a higher

precision result.

4.4.4 Concatenated Geometric Operations

Using homogeneous coordinates [48]) any number of
sequential linear operations (x' = Ax + Byjy + Cy, ¥' = Ax ¥
By + Cz) can be concatenated and reduced to a single matrix
of coefficients (3 by 3 for 2-D or 4 by 4 for 3-D). This, of
course, includes the geometric operations of translation,
scaling, rotation and skewing. The composite transformation
can then be performed in a single matrix multiplication. The
correlation can be expressed as follows for 2-D:

[x‘,y‘,l] = [x'y'l] B B 0 (4-4)
clc?
1 =2

Reversing for the moment the direction of data flow in
an overlay operation (the target obel will now "generate" the
overlay), the above concatenated transformation will be

performed if a parallelogram-shaped target obel is used as

" shown in Figure 4.9. The target universe is assumed to be of

unit edge length. The matrix coefficients determine its
location, orientation and shape.
The C coefficients specify the location of the origin of

the universe. The A coefficients determine the 1length and

84

'''''''''''''
.......

.

e
. rorL
PP TP PO

WY

......

oy,
PRI
bl s ndund

PIPIP ST T TR)

N o S S st Mo A re S At S e Jte e S e Al -711-_ ..V-"T_ B AU ICI A I S T e T e N e N e WATE WL -:‘_.ﬁ_v‘:‘.\'."-—

5 A DN

Wy .

"
-
i

Figure 4.9 Target Obel for Concatenated Geometric
Transformation

D}

A

s ' lae
D e
ey dvis

RRARRK < 4 it e bt 4

"‘....
AN

’,
- s .
PP "u'! N
WLtatatat

LS N

. R . S e e .
. . DRI RN -
ARt oS B alond na Aol Bon D oo a2

........
- Qe

- e e

slope of the 1lower and upper edges telative‘to the overlay
whereas the B coefficients determine the 1left and right
edges. The original universe containing point (x,y) is shown
in Figure 4.10(a). In 4.10(b), the transformed x value is
shown. The C; value gives the origin offset. The x value
specifies the fraction of the 1lower edge of the target
universe spanned between the origin and the projection of the
point on that édge. Since the projection of the edge on the
x' axis. is Al' this displacement, when projected on the x'
axis is Ayx.

The value of y is similarly the projection on the left
edge which projects a distance of B1 on the x' axis. The x°

component due to the value of y is thus shown to be B,y. The

value is the sum of the three components or x' = A;x + Byy +
Cl' The value of y' is computed in like manner as y' = Azx +
Bzy + C2.

For a universe with a non-unit edge, the matrix
coefficients are simply multiplied by the edge value to
generate the target universe parameters.

The matrix product' for concatenated linear
transformations in 3-D can be expressed as follows:

[x‘,y’,z’,l] = [x,y,z,l] Bl 82 B3 0 (4-5)

Cl C2 C3 0
D1 D2 D3 1
The geometric values for the target obel used to perform

equivalent transformations are shown in Figure 4.11l.

86

...

.............................

ry

B
AR |

". E
(R

Ao

- HD-A132 4

UNCLASSIFIED

THE OCTREE EMNCODING METHUD FOR EFFICIENT SOLID MODELING
(U) RENSSELAER POLYTECHNIC INST TROY NY IMAGE
[J MEAGHER AUG 82 IFL-TR-83Z2
F G

PROCESSING LAE
N@@p14-52-K-6201

272

LR A

PO P R A

AJhAY L yre e LR s % e N

~

"

AU NG

e

s

- e

L e AT
.

) oo~

vw .tm.
4.

.y (e wow

...
oty e

S e
NP

‘e

!
=
Ol =Ml o
= = =
¥; un-« -M.»«.H -,N. -me.nﬂ.. - -.A. ..'. .c.. -.- . gl a.- ¢q

EEEERE
S EEE

d3a m_umuu.._.m

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A

-
ad

o ukand

e

n.."
a3

* A

0
o > X
:

: 1“")

(x,y) in old

(x',y') in
universe X

Origin

‘V
*

g 2 k—— x' =A-| x+B-|y+C] ——-)i %

(b) Generation of Transformed x Value

Figure 4,10 Transformed Coordinate Value

87

Lt e T
PSP "

-. "
L&
\J

-

"1‘;‘ WL S QTR TRTRTT T

Projection of Target Obel

b4 Projection of

Target Obel

4
zl
(b) Projection of Target Obel on x'-z' Plane

Figure 4.11 Target Obel for 3-D Concatenated Geometric Transformation

88

Kk

¥

15

BAAANA SEUENUOINY 1 LR

}k

S A

RSALLLS

[3es

Tr.

COETELEL TR e

L g i LG

Returning to the original data flow from overlay to
target obel, the new obel is generated from the overlay when
it is deformed according to the inverse of the coefficient
matrix.

The distance values needed to determine overlap can be
updated using previous techniques because the edges and faces
of the children are parallel to those of the parent.

If the relative tree level difference between the target
and overlay is fixed, the number and arrangement of overlay
obels cannot be fixed unless restrictions are placed on the
matrix coefficients. An alternate strategy is to £fix the
overlay configuration and subdivide the target obel at
algorithm initialization until coverage is guaranteed.

If the shape of the target obel 1is generalized (not
restricted to a parallelogram) nonlinear transformations such

as perspective deformation can be performed ([431].

ey St P4 W Aaibrite 14 iiathbons JAe Nar ey

CHAPTER 5

INTERFERENCE ANALYSIS

5.1 Interference Detection

Interference detection as used in this section is the
detection of a situation in which the proposed insertion of a

"new" 3-D object into a workspace at a specific location

" | AR AN

would cause it to occupy space already occupied by an

:
. »
Ry ey

existing "o0ld" object or objects. It may be sufficient
simply to determine that an interference exists. In other

cases, the actual spatial interference "object" may need to

2 o4 TR
XIS § SN

be computed.

For a practical system, two primitive operations are
required, object insertion (including interference detection)
and object deletion. Additional operations could be defined.

An interference universe is maintained _in which large
numbers of objects can be inserted and deleted efficiently.
Since it can be assumed that some objects will be vefy
complex, it would be very desirable for the required
computations to be related to situation complexity, not
object complexity.

Conventional interference detection as performed by

existing SMSs takes the following form (801:

90

....... PR N . . e e T e e T P T NP P RN
T e - e Tt e - . et et AN AT e TNt '.n“_< -

PR N .

s e, S A .
. LR LS e e T B EaA SRR o . . O -

PR VTN Y. Y AP AP NI, PSP TP TP PRI P, WA W Sty PP U T e (P WSy SR . Y ke TR O, P S e ten e de S S Sma paran |

Y

P
u

PRl gt it AR ek i et e i SRR P

n
UNION (NEW_OBJECT N osancri) = @ (5-1)
i=1

where NEW_OBJECT is the object to be inserted, OBJECTi is the
i-th object already in the ihterference universe and n is the
number of objects. .

Clearly, such a procedure could require a processing
time proportional to the product of the complexity of the new
object and the complexity of all existing cbjects in the
universe.

For schemes such as CSG and B-Rep, the unioning of all
existing objects into a single object for testing would
probably not reduce the problem because most if not all of
the primitives.would typically be retained. 1In any event, if
some method were used to reduce the primitive count, the
deletion problem would become more difficult. The subtree
corresponding to a particular object could no longer be
simply deleted.

The use of a binary tree to detect the intersection of
orthogonal rectangles has peen :eported by Bentley and Wood
[s]. Btiefiy. a 1-D hierarchical "segment tree" is

maintained for the width of rectangles while the universe is

" scanned in height. The sorted data format of the segment

tree is shown to allow insertion and deletion in log time.
The spatially pre-sorted nature of the octree will now be
used to facilitate 3-D interference detection.

Two data structures are defined, an object table and an

3
i
v
g
5

.........
2 s a

&h&a

“aXx]
e

LINNSAN

)

octree interference universe. The object table will be

indexed by object number, a transient number assigned to
objects. Table information will identify the object, point
to the tree location in memory, etc.

It will be assumed that all trees will be reduced.
Trees with false-Ps could be used with slightly modified
algorithms but efficiency would be reduced.

The interference universe must be configured such that
objects can be distinguished at the obel level. Each node
maintains a list of records. They contain the object numbers
of interference objects having P or F nodes corresponding to
the interference universe node and associated information
such as tree pointers. P node records will be marked as
expanded or unexpanded. They are expanded if their children
are also contained in the interference universe. If their
children have not yet been added to the lists attached to
lower nodes in the interference universe, they are unexpanded
nodes.

Nodes of the new object are inserted -in a generally
breadth-first traversal. The state of node insertion is
saved in a queue. If an input P or F node is inserted inéo
an interference node containiné. no objects (the 1list is
empty), no interference can exist at this node or below. It
is not expanded into lower levels.

If an input P node hits an F node or an input F node

hits a P node in the tree, an interference has been detected

92

D ‘
[y

Bl

~E L

"

re

(all trees are reduced). If all nodes are P, they are

[P

g

wiiingd g Hm. W # R TERTRREERN. W T T

expanded. This continues until an intersection is found or

all potential interference nodes are expanded. The depth of

-

the descen£ and, therefore, the number of nodes expanded is

V48

related to the nearness of the possible interference objects

over the surface of the input object.

o~
toswt
PR

Deletion is performed by traversing the object's octree
and deleting its records from the node lists.

A major problem is the expansion of memory to hold the

« e+ & v « d
. .l "l " ‘:..- ‘4.

interference universe. It could expand to eventually

approach the sum of the C values for all objects. The vast

7=

bulk of the nodes would have been expanded in an ad hoc

l‘!‘II,

manner to detect specific close approaches; the probability
ﬁ " that most would ever be used again would generally be low.
) Obviously a "garbage collection® function is required to
EZ delete unneeded interference nodes and their lists. From the
lowest levels, nodes would be deleted from the lists and the
E! parent entry changed <from expanded to unexpanded. Assuming
node expanséon is relatively costly in time,_. and insertions
are not completely random in location, it would be
advantageous not to perform this operation after evefy

insertion. Spatially close inserts later may be able to take

would perform the garbage collection based on depth and time

{:
Ef advantage of earlier expansions. An asynchronous process
gsince last use, similar to a cache memory in a conventional

mainframe computer. User requests would, of course, take

L
-
-
|
v
|
'
‘-9
<
<
=

le .
[

Y
S a%adas

|
E"
¢
:

- O THER AT LTI "
'.".‘
.

.

E TR R TR TRV T U WS - - . v s - - - DAL N b o T VR AT
AR TR N -Bh SR I AR e e R M A :

...

higher priority. Data base lockout (required to maintain
-data integrity). would only occur for very short periods while
the children are deleted and the parent marked unexpanded.

The list search problem will now be considered. For
large numbers of objects, a considerable effort could be
expended searching object 1lists attached to nodes for
expansion and deletion. This could add a term proportional
to the product of the number of objects and the number of
nodes processed, in the worst case.

Two steps are proposed. First, separate 1lists are
maintained for expanded nodes and unexpanded nodes. Second,
object lists are multiply-linked as shown in Figure 5.1(a).
Object records can be easily inserted, deleted and
transferred between lists. Since all unexpanded nodes must

be expanded in order to perform a test, no searching is

‘'required for object insertion. They are expanded then

transferred to the expanded list.

The format of each object record is indicated in S5.1(a).
In addition to forward and backward pointers, fields are
provided for a child pointer and for a sibling/parent
pointer. '

Use of the data structure is illustrated in the Figure
5.1(b) for the 1-D case. The child pointer locates the
record for the first child. The sibling/parent pointer
locates the next sibling in order (E nodes are not

represented) and eventually back to the parent.

L

R OCOBDOS

[3

0,0y,

ML

WOy
2%

LIy

L .

:r':jq._ AP

T AN

AN

e 6T

LTI T

[

¢ ’Il_

ELe e

o

- e i it A P g A

‘‘‘‘‘‘‘‘

Level n Interference Universe Node l Level n

List Pointer l

Object Object §§iect k;j(

s \‘s\
/' ~-\
s T —
7/ -
.7 “s
L4 Ol ‘-‘
)/ . A
Backward Child Sibling/Parent|{ Forward
Pointer Py Pointer Pointer . Pointer
)]

(a) Object Record Format (Expanded List)

From Object Parent Record
| Level n Node Alf

| ‘1 Level n
,,,------af_J €--- SRR
/’ ‘\
[} . »
~ff-- r |
\ To Object Sibling or

Back to Parent

J’\ ~N
YN M
N—-h
{
\
~

. Level n+l Node | Level n+1 Node r
! - e~] s Je-——---_—1 Llevel n¥
/””’ / \‘, l,, ‘\\
(g 4 l’(; 4)
(L AL
Level n+2 Children Level n+2 Children

(b) Child and Sibling/Parent Links

Figure 5.1 Interference Detection Universe Pointers

o - -
P

Fad

RERIRARERLS N e S

AR, i i aedrtii

Ok oy

Ly
e

S

AL

Py
A

25

e

S has AR D

These pointers can be used for garbage collection.
?irst the data base is locked. The lowest level, lowest
numbered child is selected. It and its siblings are deleted.
The parent is then marked unexpanded and the data base
released.

For deletion, the object table entry for the bbject is
marked inactive. For each record processed, the table would
be checked. If inactive, it would be ignored. In a
specialized processor, this could probably be performed
transparently with 1little loss of performance. An
asynchronous process would then proceed to delete the
object's records. When done, the object number is released
for future use.

For insertion, if only expanded nodes are allowed or if
no unexpanded nodes are encountered, the computations will be
proportional to the number of input nodes that required
processing. This number is related to situation complexity.
The worst case would require the processing of a number of
nodes equal”to about C for the input object. The minimum
would require almost no computation. For example, inserting

a compléx object into an empty octant of the universe wouid

':equire negligible work even if the other octants contained

objects of great complexity. If unexpanded nodes are
encountered, expansions equal to C times the number of
objects c. 1 be - .ed to-obtain an upper bound.

The lc.est level at which nodes need be tested can be

96

~ 3
- "u . '« "-.'\- "-x

-,.:“ 1!. -.,‘...‘\ -

i A R Tt At

o
o "R antii Yl Guc aned el e i el Batd windbiiaditabidh AL AL NN LIS S L R R e e e . T T N

NS determined if no intersection is found. For two objects to
occupy some part of the same obel, they must be within
SQRT(3) times the edge size of the obel. Thus, the lowest
= ' possible level will be:

- n = 1log, (SQRT(3)E/A) (5-2)

where E is the length of an edge of the universe and d is the
3 shortest distance between the two objects. _
Based on the assumption of one-half branch nodes, the
 expected number of nodes tested would be (2/3)4P*l_1 |
Empty nodes are included because they are accessed, even if
not processed.
These upéer bounds are only reasonable if all nodes must
o be divided down to the lowest level, that is, if the closest
' distance of approach to another object existed over the
entire surface of the object.
If the object surface area in the vicinity of the point
A of closest approach is small and this distance is small
iy compared to the equivalent distance over the remainder of the
object, one could expect that, below a certain level, few
branches would continue frém one level to the next lower

level.

| AT

If no interference is found, no conclusion can be drawn

concerning the minimum distance of separation. 1In fact, the
objects could be touching.

g If a safety margin is needed around an object,

—— . y, - \
AR R
e s e 2%

‘5
EJ

e
%"

b L AT
’

bl ol
'l
zde §

]

AS T i
& - [} ,

e atatal

B,

. .
. & . .
PSR R N W

i '=‘n-."-;’7-‘.'_-'~.".".. :

R +

Couil A v i S0 d—ne i saddh Jhdt 20 - ‘7(1""‘('6':'? LY B 4 e Bese i b4 Bra ik SMG AR B an - 2SS Sl St A S i
A L N e e A R P T A R S -

region—-growing techniques could be employed or two
interference universes could be maintained and tested, one
having a coordinate system offset relative to the other.

The technique can also be used with hexadecatrees for

kinematic analysis.

5.2 Swept Volume

In applications such as the verification of NC
programming, collision avoidance and trajectory planning in
robotics systems, interference analysis involves the "object”
swept out by an object in motion.

Two algorithms have been developed for swept-volume
determination. The first is the "translation" swept-volume
algorithm. It generates the swept volume for an object
translated in space while maintained in a fixed orientation.
It is presented below. In the second, the "rotational"
swept-volume algorithm, the object is rotated in a fixed body
movement about a 1line in space parallel to an axis. It is
described in [43].

The translational swept-volume algorithm accepts an

'octtee and a curve in space (represented by a chain code)

then generates the swept octree object.

k't

Lt

.
'
fe .
: .
e
B
‘

i

L

.t {
B
|

«

P) Cel .
A RARA DS S AN MRl 8l o ol BN i B . P

™ Ty
"] R
e - . e 2 .,
T RO L

P

-

5.2.1 Convolution Formulation of Swept Volume

In image processing, a 2-D convolution summation [14,
60] such as the following is often employed:
k m
v(k,m) = SUM SUM u(i,j)h(k-i,m=3j) (5-3)
i=0 j=0
where u is the input, h is the 2-D weighting function and v
is the output.

In (5-3) h(k-i,m-3j) is the weight at the 1location k-i
units in the negative x direction and m-j units in the
negative y direction from the output point being considered,
(k,m). This corresponds to a point i,j from the origin and
is therefore multiplied by u(i,j).

The translational swept-volume operation can Dbe
formulated in terms of a convolution operation. Again for
simplicity, 2-D swept areas rather than 3-D volumes will be
considered. The result is easily applied to 3 or more
dimensions.

First the non-hierarchical sitvation will be examined.
The input is a binary 2-D object contained in a spatial
enumeration array (not a hierarchical tree). An E valﬁe
indicates exterior and an F value, interior. The weighting
sequence will be a similar array with an F value at each
location that would be visited by the square at location 0,0

if stepped along the sweep path. All other weightings are

Zero.

FIIIE-8 TRCORIR


~~~~~~~~

. e e N TN W W e Y T e Y L Y L Y e T T e
- N > R e e e T -
pia ML AN AT TN e T T T S S SRS s S AR N RN
.

The (5-3) convolution formulation is rooted in the 1-D
processing of functions of time. The weighting sequence is
defined from time 0 in a positive time direction. 1In two and
three dimensions, such directional distinctions seldom exist.
In order to be consistent with previous usage, universe
coordinate values will be kept positive. This requires that
the above sense of direction be reversed. Objects will be
swept along a path that 1is entirely within the quadrant
containing negative coordinates relative to the origin. The
index values i and j will thus run from k and m,
respectively, to n, the highest array index. In a real
system, of course, the summation index would be expanded to
handle both positive and negative coordinates.

In the swept-area case, the sum from (5-3) indicate the
number of steps along the path for which the location was
occupied but is typically a useless piece of information. A
single occupancy of the 1location is sufficient. Thus, the

binary input and binary weighting functions can be processed

by the fol}owing version of convolution _(F = TRUE, E =
FALSE) :
n n
V(k'm) = OR OR AND(U(i'j)'h(k-i'm-j)) (5-4)
i=k j=m

In operation, the calculation can be terminated when the

first true value (occupancy) has been found.

100

.Y . R A . . . . -
by . T . TP R WL TR TR TR TN WL I Iy W N APV P . O YOI i G UL P S P W T . b ondhnssondhasmsniie civalhe st - PO, P I S S P

£

-.Hl




v,

> v Rt ombAnd and el 4 & el
AR O gl gt i Sl T i S gl A At i ARG EMONCM I CINCIACA AN i
.
.

-

-y S

5.2.2 Example of Swept Volume (Non-Hierarchical)

An example will serve to clarify the concept. In Figure
5.2(a) é translation curve represented by a 4-direction chain
r,_ code [24] is shown. It is independent of location but for
- convenience is anchored to the origin of the coordinate
system. A T-shaped object is shown in 5.2(b). The. swept
area of the object for the sample sweep curve is shown in
5.2(c). The origin translation vectors are.shown.

In Figure 5.3(a) the swept area resulting from a single
solid square at the origin swept through the curve from
Figure 5.2(a) is shown. It can be interpreted as the impulse

response or weighting pattern for the sweep. It represents

l the response for (result of) a solid square occuring at the
origin or h(i,j) in (5-4). g

In FPigure 5.3(b) the weighting pattern is reversed to %
form h(-i,-j). This is the pattern which will now be
translated in the positive direction by k,m in (5-4) to form K
: w h(k-i,m-j). In Figure 5.3(c) the output. array v(k,m) is
shown. A particular square, v(l,2), is being evaluated. In

5.3(d), the weighting pattern is translated to place the

origin over u(l,2). 1If solid sqﬁhres for h and v are found

[V .
]
e

for the same 1location, the value of v(l,2) is made solid.

The AND operation at u(5,4) and h(-4,-2) is noted.

................




-7 -6-5-4-3-2-10

|

0 -
J : 2

1 . ™ Square at Origin

-2 4 \

-3 Origin of Square at Origin

-4 ] ' ‘<\7i\\\

-5 N

i Translation Chain Code

ettt kR g

(a) Translation Curve
-71-6L-51-4l-31-2l-] 10

(b) T-Shaped Object
-9,-8,-7,-6 -5 -4.-3.-2 -1 0

(c) Swept Area for T-Shaped Object

Figure 5.2 Swept Area




[+ 20 Tt i N S S AR R N B i S i ShA VSR AL I A i M

"
)

U

~t

S ILEPU P

Origin
'7.'6.'5.'41'3Lf\x'1 0

0 7
Z 6 !
-3 4
-4 3 I
-5 2 i
h(i,3) _-6 1
-7 0
0 2 3 4 5 6 7
(a) Sweep of Solid Square at Origin
Origin (h(i.,3j)) (b) Reversed Direction Sweep of
Solid Square at Qrigin
h(1-1,2-3),i=1 to 7,
j=2 to 7
] 7
i .
1 - 6 -
a i 5
4 4]
3] ! 3
2 2
1] R
0 0]
071 \3'4 75 7 oN 2 34 5% 7
( v(1,2)
Square Being Example: i=5, j=4
Evaluated) vik,m) uli3) AND(u(5,4), h(-4,-2)

(¢) Output Square Being Evaluated (d) Location of Weighting Pattern
When Evaluation v(1,2)

Figure 5.3 Weighting Pattern

103

et PRI Sl S U U W S S VPN WP WU Y ISTSII IR U WY ST WA W PGS WP QT A S Y a




...............

5.2.3 Bierarchical Swept Volume

The above demonstrates that a translational swept area
(or volume in 3-D) can be generated using a form of
convolution but the technique cannot be directly applied to
octree objects. In order to allow this, a "hierarchical
convolution” summation was developed (see [12] for a similar
technique applied to image processing). The weighting
information is contained in an octree-like tree structure.
The nodes contain weights for input obels 3just as the
previous weighting function contained weights to be applied
to locations in the input array.

Assume that an obel in an input octree object is being
compared to an obel in a weighting tree (same level, same

location). The value domain of the input obel contains P as

well as the values empty (E) and solid (F) used above. As
with previous octree algorithms, the general strategy will be

to make a final decision if possible or, if not possible,

defer to lower levels. . ) ' -
An "input/weighting node pair™ or simply a "pair" is a

set of two nodes at a common level, one from the input octree

'and one from a weighting tree. The input node represents a =

fixed obel in the input object's universe. The weighting

L M N

s e ot
et - -
e e . e e e e -

Y P i VR

ola'a'a'a'a ! PN S

node contains the weighting information to be applied to the
input obel. Pairs defining a specific input/weighting -a

evaluation are attached to nodes in the output tree being

104

I

SRS . SNSRI . PN

................

..................

e
b
3
h
ol
H
5-
b,
k,
'l
r,
b,
.h
.
'l
3
p
b
b .
p
p
3
3
3
s
e
f
3
3
-
»
3
]
b
P
»
13
’
]
»
L.




0;]

: ;3 generated. An output node may have many attached pairs
) . awaiting evaluation.
If something solid contained within an input obel (an F
" node descendant) “causes™ part of the output obel being
) evaluated to be solid (results in an F node descendant), it
is said to contribute to the output obel.
The operation of the algorithm can be described in

general terms as follows:

For each output obel beginning at the root, maintAin a

list of input/weighting node pairs which could possibly

£l

contribute to it (the output obel). Starting at the root
level, evaluate the pairs, eliminating non-contributing
ones (those which evaluate to a value of E), passing
‘ ' appropriately ordered child pairs to the children of the
: ' output obel and their adjacent obel (s) (if not previously
determined to be solid). Operation is terminated at the

. n level of the chain code input.

Because of its hierarchical nature, the_ weighting tree

cannot contain only binary - values. Each node will contain

one of four values with special meaning:

I i

Candal
s

-7
. .lrlr:-t"l‘l“ )
. r

-

3 105

i
H N JRNIRPIREN . &




Lo

» 1 v -
4 8 b 8-
A LN N

ARN

.
"
.

‘-.5 AW

Ay Ay ',.',.

P AR

.................

Value Meaning

E Nothing within corresponding input obel could
contribute to output obel being evaluated.

P Some solid part of input obel (F node descendant)
could possibly contribute to output obel.

F If input obel. is not E (it's P or F) the output
obel is solid (F).

P2 If input obel is F then output obel is solid (F).
If input obel is P, some part of input obel could
possibly contribute to output obel.

The weighting tree values are labeled in similar fashion
to standard octree nodes for convenience and clarity. It |is
a special-purpose tree, however, and is only defined and
meaningful within the context of this specific algorithm.

An input/weighting node pair is evaluated according to

the following rules:

Rule Input Node Weighting Node Evaluation

No. (u) (h) (v=u/h)
1 E (any) E

2 (any) E E

3 P P P

4 F P P

5 P F F

6 P . F F-
7 ) P P2 P

8 F P2 F

The symbol "/" will be used to indicate an evaluatién
according to the above rules (pair evaluation = input node
value/weighting node value).

For a particular output node, perhaps many pairs will be
evaluated. If a pair evaluates to a value of E, the pair is

simply deleted. If evaluated as F, the output obel is marked

106

P
0

 $Y8

ot

|V




F. If none evaluate to F, the output is P. Both F and P
evaluated pairs are subdivided into multiple pairs for
distribution to the children (if any) of the output node and
the neighbors of the children (if not already F).

The child pair distribution pattern for a negative going
sweep in 1-D is shown in Figure 5.4. Each node has two
children. Each input/weighting node pair thus has four child
pairs numbered 0 to 3. Two are passed down to child 0 of the
node. One is passed to child 1 of thé node and one is passed
to child 1 of the neighbor node in the negative direction.
Each child node thus receives about twice as many pairs as
its parent, depending on pair elimination and the pair count
of the parent's neighbor.

This pattern of child pair transfer is explained by
considering the children of a pair. The two children of the
input node will be u(i) and u(i+l). The two children of the
weighting node will be h(k-i) and h(k-(i+l)). There are four
combinations. Of particular interest is the combination of
the earlier~input with the later response value (child pair
1). It cannot contribute to the output children of the
current output node. It forms one of the terms for tﬁe
evaluation of an output node ‘earlier in the sequence of
output nodes (ie., smaller coordinate value than the output
being evaluated by the original pair in the parent). The

four pairs belong in evaluations as follows:

107

................

...........................

T T T T Y T T WY WY YR T v el 1 T TR TR Y TR W YRR T TR, Yy Ths T Te e T YT e
JR e A e i M i P e T T i NN P




k—— Node m —_,]

-+ -

Level 2 Output Obel |—
‘ 1 Input Node/Weighting Node .
| I
|
|
|
Child Pair O
Child 0 of Input/ !
Child 0 of Weighting (
. ]
Child Pair 1 . Child Pair 3 Child Pair 2
OT INPUL/T Thild 1 of Input/ Child ] of '
Child 1 of . put/ sty
weighting ' Child 1 of Weighting , ofpweignllng
Level 241 L ‘ .
Output ' ' 1 3
Obels  le— cnitd 1 of —>h— Child 0 of —sf—chitd 1 of —)
: Node m-1 Node m | Node m

Figure 5.4 Distribution of Children Input Node/Weighting
Node Pairs for 1-D Sweep Left




u:}'.in.n:\v:\-.".m-.w..\.-a. bbb AE R E A SR S RO T o lT
o
YR

¥
"] iR
‘S 5 No. Child Pair Output Evaluation Index
R
Py T
L~ 0 u(i)/h(k-i) v(k) i
4 ! 1 u(i)/h(k-(i+l1)) v(k-1) i
DA 2 u(i+l) /h(k~-i) v(k+l) i+l
o 3 u(i+l) /b (k=-(i+l1)) v (k) i+l
:{Eé Note that output evaluations 0, 2 and 3 are for children
N . of the original pair. '
}3_} 5.2.4 Weighting Tree Generation
. _-.
?%Ei The weighting tree is generated by sweeping test obels
.f‘, along the sweep curve. The process begins by placing at
= location 0,0 in an empty universe a single solid obel at
g L level n, the level of the chain code represention of the
:E_ curve. Conceptually, it is then swept using the standard
. ! translation and union algorithm along the curve but in the
5 - reverse direction (to account for the negative progression of

the index for the weighting éequence). In practice, more

efficient methods can be used.

&
Wy |

I} [)
(@ A Ney WY

A second copy is made of the sweep of the single test

xRS obel. This™ is the lowest level of the weighting tree. A
N third object is created by sweeping a test obel at level n-1
-E . through the curve beginning, again, at the origin. 1Its nodes
~%

are then compared to the level n nodes in the original tree

s

to determine the node values for the level n-1 nodes in the
weighting tree. The following table 1lists the value

generation rules:

b

. ',‘.' -_\.. .

109




) {on

A
anty

b *
X ,"-_‘.’.t "‘l ‘v;l

’..';_‘;l

DASCRE

oy
e
:‘-,.'

¥, v" '_.}.':i‘ n;:,l' "_;' |

-------- Swept Test Obel -------- === Output ----

Rule Status Descendant Status Weighting Node
No. (current level) (lower levels) (current level)
1 E (any) E
2 P all E E
3 P not all E P
4 F all F F
5 F not all F P2

The process is then repeated for level n-2 and above, up to
the root at level 0. The resulting tree can then be reduced

using the standard procedure. The P2 value is simply

- considered to be a P value.

The above rules can be analyzed by considering the
situations individually. If a node is empty, clearly its
descendants are also empty and nothing in the corresponding
input obel can contribute. It is given the value E. For a P
value, two cases exist. If the descendants are all E nodes,
this higher-resolution information indicates that -no
contribution is possible and an E value is given. 1If éhey
are not all E, the situation is ambiguous. The node is given
a P value and the evaluation will be continued at the next
lower level. i

The fourth and fifth tulés handle the two cases where
the swept test obel has completely enclosed the weighting
obel in question. If all the descendants are also F, the

output obel will evaluate to F if the input obel is F or if

any descendants (down to the level of the chain) is F (true

if input tree is reduced and input node has value of P).

A

Kt

£




Eihe

Cr.

Doy S

. x3 ¥
L LS R LR

A “-."L"\ L
¢
B

LA

po
e

e VIR e e vl

47 €
YRt Al

Y |

e s ent oot S-Sl Yo S damior e ¥ dn e 2 T B e S A IS S et ot i it o i et il S e IR S R SO R R A Sl A S R e

If not all the children are F, the information to be
conveyed into the convolution operation is the following. 1If
the corresponding input obel is solid (F) at this level, then
the output obel being evaluated is also solid. If not, the
result is ambiguous. The value P is given to the output and
the final decision is deferred to the lower levels. The

special value for such a weighéing node is P2.

5.2.5 Example of Swept Volume (Hierarchical)

A 1-D sweep to the left will now be considered as an
example. All objects will be swept left by three steps in a
4-level universe. PFirst the weighting tree is generated.
Figure 5.5(a) shows the result of sweeping a solid obel
located at the origin to the right by 3 steps (reverse of
curve direction) at the four levels. The test obel is solid
and the added swept distance is shaded. At level 3, the
solid obel is swept 3, resulting in the value F for all the
children in the left half of the universe. At level 2, the
swept distance extends into the right half. At level 1{ the
golid object is the left half of the universe. 1It is steppéd
by three level 3 units, covering all but one obel. At 1level
p, the test obel is the entire universe.

In Pigure 5.5(b), the weighting tree is built up. At
level 3, it is given the values from the sweep set at level

3. At level 2, the two left obels are marked F based on rule

111




- NS 4 - T ek ' -

al

‘ﬂ

b F

‘: Level 0 |V
0

' F P

¢ Level | 77—

¢ 0 1

Level 2 |muimmbrrrztam: |
i UYL

§ Level 3 %{E E & E

0" "g 7'

; 27345 6 7
' fa) Four Sweep Right Level Sets i
- r 0 — =]
3 b
e L F | E(P) o
2 I 0 T ] | :;‘
U ]
X L. F F E , E | —
o Ty T2 T3 b
: Fy Fy Fy FyE E E(E o
. |o|1|2|3l4|5|s|7| S
: (b) Weighting Tree Values -
e hO(O) .-.A. “
o
(c) Weighting Tree h 2
Figure 5.5 Weighting Tree Generation =
‘v .
; 112
’ M




-
it
U G

4. On the right, obel 2 is set to E based on rule 2 while 3

is set to E from rule l. At level 1, node 0 becomes F from

) . rule 4. Node 1 becomes P from rule 3. It is later reduced
3 toa final value of E. The root is covered by rule 5,
becoming P2.

Figure 5.5(c) is the resulting reduced weighting tree.
Node labeling is as follows. Node fn(m) is the node from
tree £ at level n such that m is the decimal equivalent of
its address string.

An object consisting of segments 4 and 5 as illustrated
in Figure 5.6(a) will be swept. The object could, of course,
be any 1-D object, including disjoint sections. The tree for
. é: the object is in Figure 5.6(b).

'l . Figure 5.7 shows the steps as the algorithm proceeds.
. The resulting output object can be expanded to alm¢it twite
f &z the size of the input univefse. A second (empty) universe is

added at level 0 on the negative side of the origin forming

»
{%1? an augmented universe.
3 The positive universe at level 0 is. initialized by
. ) attaching the pair containing the roots of the input and
% &i weighting trees (pair no. 1, P/P2). The pair is evaluated

'according to rule 7, resulting in the value P. It is thus

= continued into level 1 of the output universe according to
the subdivision rules. The four sets (pairs 2 to S5) are

noted at level 1 in Figure 5.7. All evaluate to E except

'i; pair ¢4 (ul(l)/hl(O)). It should be noted that even if 2ll

PR Ry A W W P— P S SN ST T S U Wy TN Wy W




--------------------------

(a) Object to be Swept

(b) Input (u) Tree of Object
to be Swept

Figure 5.6 Object to be Swept

114

Y '.‘L.";.:l R P PN T VN DL




- T - L) R MR AN e - . MR * *
:gv:;v:\—';ﬁ AR RS SR /SIS Jhan i i i i it St yowTw NIRRT R RO = L A

;ﬁ - Level 0 Second (Empty) Universe Added Output Universe
NN eve
- L 7L //// i |
o R I 7/ i 444(/1/// -
. ' ) l . ]) uo(o)ho(o) = P/P2-+P ||
g Origin '
-
o Level 1
H i ' |
. ! | 1
- ,' i ' . i :
- ) u1(0)/h](1):2) u,(0)/h, (0)=E/F +E , 4) uy(1)/hy (0)=P/F ~ P,
! =E/E~+E or ‘ \
L 5) uy(1)/hy (V)=P/E ~ E
s
Eiiilfi Level 2
n 'y _
0 17) uy(2)/F | 6)u,(2)/F 18) uy(3)/F=!
- ' F/E-Fy F/F>F ' E/F=E
! or
1
9) u2(3)/F=
) E/F ~E
e
RSN Level 3 Z2 44 : %, %, !
o 10)  F/F>
2 OUtPUt A i iy G i i 4 P G T 7 U S 7 ' |
Object ! -

Original Object
Swept Left 3

SO Level 3 Steps A T T '
AN Using Translation L ) o
o and Union 3 Steps Left Local Origin of
o _ Figure 5.7 Example of 1-D Sweep Algorithm

gl ol Lol bl Ll R S SO RIR S
i ok 2L L L 2P L LA NRE XS K]




pairs attached to an output node evaluate to E at this level,
that output node will not necessarily be E in the final tree.
An F value may be propagated in from a neighbor at a lower
level. The output node is given a P value and will reduce to
an E later if this fails to occur. A more sophisticated
algorithm would check neighbor values first. If all are €E,
no F could be transferred in. A final value of E could
safely be given.

At level 2, four sets are evaluated (pairs 6 to 9). The
first of the two pairs in the center (pair 6) evaluates to F,
determining a final output value of F for the node. The
second is not considered until child pairs are being
generated.

In a 1-D single direction sweep, only one neighbor of
the children need be considered for child pair transfer. 1In
this case (left sweep) it is the neighbor child to the 1left.
For pair 7, an F/F evaluation is transfered to the left
neighbor on level 3 (pair 19). Pair 6 has no child pair to
propagate bgcause it has evaluated to F and the neighbor to
the left has already evaluated to F.

The original sweep chain was defined at level 3 and the
process must be terminated here. Operation at lower levels
will cause erroneous results as pairs are carried into
neighbors.

The final output object is the new tree after reduction

as noted in Figure 5.7. It consists of the two F nodes at

& 0B

3

'.',A!L.'u. S

[

: o TS
a ..,4! ‘_LA_A_._L_L_L_’._!

41,'.'

1

PN Y Sl SO WY N S0 TR Wiy T Gl S Sy -}




. O — - AP e At i Sl Sl AaallAanl A it Vi e e e T B R T T S S S S R Y
R RAre B e ) o aral e Bres Dacine s Mt eeC e A SIS RACRAT AR A A OO AR e e O . . R
.
3

LA ity - A URAIRERENENE ¢ A
-8 weo o

level 2 and the single F node at level 3. As a final check,

the original object is swept left using conventional step and

union operations, as shown at the bottom of the figure. The

o results are identical. 5

5.2.6 Analysis

: For a generalized 1-D sweep in both directions, a
weighting tree extended in the negative direction is
required. The sets of pairs from the negative side would be

generated as above but with a mirrored propagation pattern.

43

in 2-D four sets of pairs are maintained and in 3-D, 8 sets.
One of the major applications of swept-volume techniques

’ . : " is in collision avoidance. In such a situation the desired
- end result is the spatial intersection of the swept volume
with other objects in the universe. The actual swept~volume
.‘ object is a temporary artifact generated in the process.
Except in extreme situations, the vast bulk of the swept

object is not involved in_ a collision and is, in a sense,

wasted. If only the sections causing collision were
calculated, perhaps substantial computational savings wouid

}result.

In the non-hierarchical convolution approach to swept
volume represented by (5-4) this can be accomplished by

simply evaluating the convolution only for locations within

L potential collision objects in the universe. There is no !‘

117 3

..........................




need for evaluation to be performed on open space.

In the hierarchical approach, the situation is more
complicated because pairs existing in open space could be
transferred into a collision object at a lower level. It can
be noted, however, that no descendants of a pair will ever
extend beyond the space occupied by the immediate neighbors
of the parent. Thus, for an output node in empty space (in
the collision universe) if all its neighbors are also empty,
all its associated pairs can be deleted. Otherwise, the
child pairs are generated, but only for neighbors which are
not empty (in the collision universe) and have not previously
been determined to be completely occupied.

Most other octree operations involving two or more input
objects, such as set operations, are 1linear in object
complexity (a constant times the sum of the C values places
an upper bound on calculations). They typically perform
comparisons between objects over spatially identical sections
of the universe. Simultaneous traversal over the input trees

visits spatially identical obels because nodes with the same

address represent identical sections of space. A single set
of comparisons for each obel in the output tree is
sufficient.

In the swept volume algorithm, however, the weighting

tree does not represent absolute space. Weighting tree obels

TR Y -

represent space relative to the location of the output obel

being evaluated. Thus, it would be possible for every




- Ty
A N W N N T Ty Iy L s e oyas

..................

weighting tree node to be examined for each input tree node
(no pairs eliminated), in the worst case. Complexity is,
therefore, on the order of the product of the C value for the
input tree and the weighting tree. Because of pair
elimination, much better performance could be expected in
practice than this quadratic upper bound.

The swept-volume algorithm is easily extended for region
growing and region shrinking. The "response" to a solid obel
is an oversized or undersized solid obel. Such operations
are useful for generating fillets, in trajectory planning,
etc. Region shrinking can be used in a breadth-first
traversal to determine the point of closest approach between
two objects. The technique can also be modified slightly to
perform cross correlation.

The swept volume algorithm can be viewed as an extension

of the overlay concept. 1Instead of an output obel having a

single overlay which determines its value, a series of
overlays (list of pairs) is employed. The input/weighting

node pairs specify not only the space in the immediate

vicinity of the output obel but also spatially distant areas.
A second extension has been the use of a special-purpose trée
to specify the decision rules to be employed on a 1local
basis. Previous algorithms could rely on a single universal

decision set.

119




v WL N N W T T N L LN K e e T T T T T R T T T T T T T T e N S S T e e T TS T T e s Y e
S RICIMICSLECA P S £ I i i Aras e i e A e A e e N e e R PSR
.

CHAPTER 6

DISPLAY

The display algorithm accepts any number of input

2§ 4 octrees and a set of view parameters (3 view angles,
translation vector and a magnitude factor), and generates a
quadtree containing an orthographic projection image of the =

objects, with shaded surfaces and hidden surfaces removed.

el dditond

Anti-aliasing is an integral part of the algorithm.

A second property, pixel intensity, is added to F (and

-"-! S ‘;' 't‘-la:-‘: "

possibly P) nodes in the output quadtree. The 2-D object
then becomes a gray-scale image rather than a binary image.

The pre-sorted nature of the octree comes into play when
generating a hidden surface view of one or more octree
objects. By selecting the proper depth-first tree traversal
sequence, the cubes corresponding to the visited nodes are
accessed in a "back-to-front™ or "front-to-back” segquence
i relative to the viewer. . ) -
This is demonstrated in Figure 6.l1l(a). From the

viewpoint shown, nothing c¢ontained in cube 7 can be hidden

N from view by an object or part of an object in cubes 0

by -

through 6. In like fashion, nothing in cube 6 can be hidden
by anything in cubes 0 to 5, and so on. If the sequence 7
through 0 is followed recursively, a front-to-back sequence

is generated. As shown in Pigure 6.1(b) the first F cube is

SRR P A

120




................
.........................

(a) Hidden Surface Viewpoint for 7 to O Traversal Sequence

1////r2 /////, 3

” 62 3
31 3

6

6 Tals 1/
. |

s | 5 |3
1
4 . 5 5/

3

(b) Recursive Application of 7 to O Traversal Sequence

¢' I‘ lru l PERES
5.

Figure 6.1 Hidden Surface Traversal Sequence

121

...............................

------




......................................

found by repeated selection of the highest numbered child.

Thus, a series of object parts is generated in which 5‘
cubes in the -sequence cannot be obscured by cubes later in |
the sequence. This eliminates the éombinatorial explosion
often encountered in hidden surface removal algorithms. No -
terminal nbde is accessed or examined more than once. '

The new display algorithm presented here makes use of a
front-to-back sequence. The visibility of each P node as
well as each F node encountered in the sequenceb is checked

against the parts of the image previously defined by earlier

 § 4

F nodes. If completely obscured, the node and all its
children Fif P? are discarded. Many hidden sections of the
object or objects are not accessed and do not add to the
computation. Thus the number of calculations required to
generate an image is related to the visual complexity of the
scene rather than the complexity of the objects.

Two tree structures are involved. One is a segmentation
of object space (one or more input octrees) and the other, a
segmentation of view space (the output quadtree).

The cubes represented by the nodes of the octree are
projected on the display screen quadtree as shown in Figufe

‘6.2. The projections consist of three 2-D four-sided i

polygons as shown in Figure 6.3(a). The bounding box of the
polygon formed by the outer edges is also used as shown in
;ﬂ Figure 6.3(b). In order to avoid confusion in the discussion :l

to follow, the octree nodes and their projections will be

o4

WETLPC PR, J




e v AW T W N Ty e W
arS R ) s five Sk Jigh e S St iAo S ARCIEAC I AU A SIS A 2
It it R B dui i i At Rt

PR}
A gl g
.

'y

‘ - Object Node (Octree)

Display Screen
(Quadtree)

Y

AL
AR

&

Projection of
Object Node

o

> = Viewer —L—""
""Z;‘. o

;;f ) Figure 6.2 Octree Object Nodes (Cubes) are "Written" Into
o Display Screen Quadtree




TR T T T O NS LS P SO s o~

PR A |

Polygon #1

Origin

of
Node k

(a) Projection of Node on

Display Screen

om0 VDN Mt S KRl S P i A et ot =1 A e et i e e S e it e it vt v A vt T A S

- of \
Bounding

Box

Projection
of Node on
Display
Screen’

Bounding
Box

(b) Bounding Box

Overlay #2

Windows

Overlay 43

Origin of
Overlay

Overlay 0

Overlay =

)/ F—__Z-—-—-——Bounding
Box

Figure 6.3 Projection of Node (Cube) on Display Screen and
Overlay Structure

8 M

f S
e YRR

.
. .
R A P




.......

called simply "nodes.” The nodes of the quadtree and the
associated squares on the display screen will be called
*windows."

The basic strategy is to access nodes in the
front-to-back sequence and write them into the quadtree
representing the display screen. | Previously undefined
windows enclosed by a node are given a corresponding
intensity value and marked inactive. The guadtree is
maintained in a reduced state during algorithm operation.

Each node accessed in the traversal (both branch and
te:minal? is checked for visual intersection with the
guadtree. This can be performed using only simple arithmetic
[431. If it intersects only 1inactive windows, it is not
visible and is discarded. The next node in the sequence at
the same level or higher is then processed. If a branch node
is eliminated in this way, all lower 1level descendants are

automatically discarded without testing.

The computational load could still be unacceptable if

52 the number of quadtree windows examined for _each object node

could become arbitrarily large. Once again, overlays will be
used. The intersection test is performed between the noée
gé and exactly four overlay windoﬁé. The four windows are the
four possibly intersecting sguares at the lowesg level such
that the largest dimension of the bounding box of the node is
the same size or smaller than the edge size of an overlay

square. As shown in PFigure 6.3(c), the origin of the

RO WL WL W Wy Yy




R R e W s g W TR W T e THT R TA TN e T T

bounding box (lower left corner) is always in overlay number
0. It is clear that the four overlay squares will completely - i
cover the object node.

Thus for each object node in the sequence tested, the

intersection test is performed with four overlays. If all
intersecting 6verlay windows are inactive, the node and
anything within it are hidden and, therefore, ignored. If
not, additional work is required. For branch nodes, the
eight children are processed in like manner using the four
covering overlay child Qindows of the parent overlay windows.
| For terminal nodes, the children of the overlay windows
are examined. Any active squares enclosed by the object node
are loaded with the appropriate intensity value and marked

inactive. At the minimum guadtree level, the center of the

window is checked for enclosure. For a detailed description

of the algorithm and the formal procedure, see [41]. o Q

For automatic sectioning, a blanking object is traversed ©

ot

in the same manner as displayed objects. All object nodes

corresponding to an F node in the blanking object are

converted to E nodes and therefore become invisible.

~ . Interference between objects can also be easily detected
ﬁ .during algorithm operation.
E The intensity value attached to a quadtree node is the .

P f T . , -
. ' . . . .

M I P e L P \
Ty L e ‘Y B e
LA, LP.....JJJJ.AA SR ) S

product of object color (or the texture value for that point

g on the object) and the cosine of the angle between the

surface normal and the unit vector to the viewer (the dot

i'
. ¥
W) 'J-_'![-.' R




T - B e i R
........ .

-

NI product of the two vectors).

-l

. 8 For objects defined mathematically, the surface normal )
is often easily calculated (or the surface normal times the g
texture value at that point) and the x, y and 2z components %

- are attached to the node. This requires integer ;

multiplication, may reguire substantial memory and, in some

.IIA‘

cases, the local surface normals are not easily computed. 1In
such cases, block shading is used. The surface intensity
values for the three faces of a cube are calculated.

ﬁi Quadtree windows enclosed by one of the three faces of a

;“;s terminal cube are given the intensity value for that face.
' No multiplications are needed. This technique was used for
5 the images presented in Chapter 7.

. Figure 6.4 presents two images of a turbine blade
3 represented in octree format. 1In 6.4(a), block shading was
- used. In 6.4(b) shading values were generated from unit

' = normals attached to F nodes on the surface.

. The anti-aliasing technique computes intensity values to
a higher resolution than the screen. The averages of sets of
these values are the pixel intensity values that are then
displayed. The intersection and enclosure tests afe
performed to the lower levels. " The intensity values for
windows below the screen pixel level are summed into their
ancestor windows at the pixel level. At display time, the

pixel level window values are divided by the appropriate

¥ - value (4, 16, ...) using shifts.

IPUPE S VS 3 dallesodhe Bl - i




(PRI s Wt e o MR A bt S Do 20 AT Ted i P AN S S 4 S et e - R ittt Sat et Sath el Jht i e Sl e Ja e

"rl
R

]
S
=
-b
.
. &3
(a) Block Shading b
]
.]
t.-:-
=
;ﬂ (b) Surface - Normal Shading '

Figure 6.4 Octree Representation of Turbine Blade

1

VYA WY T S AP R  TY PRI AT Ul SN e




To add multiple illumination sources and shadows, the

display algorithm is performed in reverse. A quadtree loaded
with "illumination" is used. As shown in Figure 6.5, when
nodes are projected on the gquadtree they "pick up" and store
whatever illumination 1is enclosed by the projection. The
corresponding windows are then depleted and cannot illuminate
additional nodes later in the sequence (they are marked
inactive). This operation is performed once for each source.
If an image 1is contained in the gquadtree, it will be
projected on the object or objects.

After illumination, the display algorithm is performed
to generate an image. The accumulated illumination value for
each node (or each face for block shading) is multiplied by
the surface orientation weight (dot product of normal and
unit vector to viewer) and, possibly, the texture value, to

determine pixel intensity.

129

A VRO

'.‘L'.S' | VPTRR Y O




LA

e

-t

"‘l ,C “l ’V .‘ l-.'

e
* P
LR BN

"
E Y.

t$.
o
n
s !
-
3
A
v.--
"
-

-
)

Object Node (Octree)
Contains sum of illumination
values taken from quadtree(s))

ITTumination Plane

Projection of
Object Node

Figure 6.5 Illumination Plane (Quadtree) Projects Illumination on
Object Node

130

‘! rr".




e

(BN

......................... .

o e . .
A ) v e e ST . ST et .
PPN WP A L L A k. LA WA P T T Ty VI O R Tl U U S S B, G Wi S iy YRR WY WA WS PPN, I PN a

....................

CHAPTER 7

RESULTS

7.1 Program OCTREE

In order to develop, verify and demonstrate the octree
encoding algorithms, the program OCTREE was written and
implemented on the Prime 750 computer in the Image Processing
Laboratory at RPI. A DeAnza IP5000 color imaging system was
used for display.

The program currently encompases 257 routines containing
20,696 lines of Fortran code (44,864 if comments afe

included).

7.1.1 NC Vgrification . ) -

An important function of CAD is the generation 6f
commands for NC (Numerical Control) machines [83). A major
problem has been the verification of control programs before
release into production. Traditionally this has been
performed on the machine tool itself and typically requires

the program to be regenerated between three and five times

131

.......................
...........

a

e

s

St et atat el




..................................

[26). The verification task has become a bottleneck and a
major expense in recent years as NC machines have become more
popular, parts have become more complex and labor has become
more expensive. Also, a substantial amount of capital
equipment is removed from production and often tools (and
sometimes the NC machine itself) are damaged.

There has recently been interest in utilizing solid
modeling to replace current methods (84]. 1Ideally, a parts
programmer or a machinist could verify all phases of an NC
program interactively on a graphiés CRT.

In the PFall of 1980, the Center for Manufacturing
Productivity and Technology Transfer (CMP/TT) at RPI funded
an éffoft through the auther to develop a demonstration
system to determine the feasibility of using octree encoding
methods to perform NC verification.

An Imlac 6220 vector graphics terminal with lightpen was
employed to facilitate user interaction. An algorithm was
developed and implemented to extract the forward edges of an
octree objegt for display. -
In operation, the user specifies the workpiece (a block

orthogonal to the axes) using the lightpen. - Its octree is

'generated and displayed. A specific tool is then requested

and loaded from a disc file. A top view of the workpiece is
then presented. The user selects a starting location and an

endpoint, again using the 1lightpen. A side view is next

presented for entry of tool depth.

Lo s a o PP G S g

K. RIPUTSTYRYE SN V0. UL

e e e e
P Y S

T
TR

¥ R

-

‘an

1

s
AT IR s
R . NN _.-.'A.A_A.‘E




At this point the system generates an octree for the
swept volume of the tool path and subtracts it from the
workpiece. The tool and the workpiece are then displayed.
The user can interactively change the viewpoint or request
the next tool movement.

The progfam successfully demonstrated the viability of
the technique and has continued to be developed and
embellished by the CMP/TT staff.

Figure 7.1(a) shows a view of a simulated NC milling

machine. The workpiece contains 40 nodes, the clamp 200

nodes, and the tool 7432 nodes for the bit, 40 nodes for the
shaft and 40 nodes for the holder. All 5 objects together
require less than 2999 bytes of storage (serial allocation at
2 bits/node?.

In Figure 7.1(b) a channel has been machined in the

workpiece. Figures 7.1 (c) through (f) show the top, front,

side and orthogonal views after additional material has been

removed.

-l'.-"v', s nl- : - '-..2‘.;;-‘;11;,: . . ‘..._'.‘A. e

Using gurtently available algorithms the program could

e Lo S d

Dt § A,
- . -8 .
e ] .

be given the capability to detect and display any part of the

» -, vy
v P RS
PR R} PY VR v

original workpiece outside the maximum desired object, aﬁy
part of the minimum object removed, and the tolerance object

still remaining after the machining operation.

ARSI 1 § SRR
R r «“a
R t ‘e

! SNORN




R e e E RS P A SR SR AR
| : _. §

e
.‘.'u.
.

(k)
(d)

134

Simulated Milling Operation

)

C

(a)
(

(
Fiqure 7.1

PEPEPOTS GRPPaR R POV S A e I Y




By

- W
A

-
&

h A

A

7.1.2 Medical Imaging

In the spring and summer of 1981, an effort funded by
Phoenix Data Systems, Albany, New York, was undertaken by the
author to investigate the possibility of using octree
encoding methods to interactively generate medical images
derived from CT scans [2, 73, 75-771. Such a capability
would be useful in pre-operative surgical planning [2] and in
other areas. This section reviews the preliminary results.

A series of 42 CT scans of a human head were used for
demonstration and evaluation (scans courtesy Dr. Gabor

Herman, formerly Director of the Medical 1Image Processing

' Group, State University of New York at Buffalo). Thresholded

binary octree objects were generated for display [86].
Pigure 7.2 presents 4 views of the section of the skull
containea in the images. The section extends from just below
to just above eye 1level. Images 7.2(a) and 7.2(b) are
sectioned views of 7.2(c) and 7.2(d), respectively.

The skull octree in 7.2(c) and 7.2(d) requires 43,112

bytes for storage using serial allocation at 2 bits/noée

'(C-172.449) whereas the sectioned skull object in 7.2(a)

requires 22,234 bytes (C=88,937). The original set of images
(with CT numbers) required over 5.5 million bytes for
storage. A more valid compression cbmparison would be with

the set of thresholded binary images. This would correspond

135

S @)




PSRRI § APt strhpesaas | Ohf) Q g T ] v, e ML A LT I “ 5300 Caiihe ‘SO A el - (i

S T B I F ¢ S L LI S ST ERRRTLR | ST O

Figure 7.2 Display of Section of Human Skull
136

Chae e Dl e o Y TR I D I MRS Y Dt X A A A N R e RN S A Lags N oA YK S MR
R LAY A .«-_.-s. LS 8 --,--;--.-, ; 2 49 .AT-.:...'-M- \r A'W\uutt % ',.‘- y




b
B
:

i
L o
J
.

to a spatial enumeration representation. In compressed

format (1 bit/voxel) the object would require 344,064 bytes

or approximately 8 times the storage required for octree
storage of this object.

Figure 7.3(a) is an "object" which represents the low
densify areas inside the head. It corresponds to the sinus
passages. The forward section'forming the nasal passages has
been removed to improve visibility.

In order to understand its location, in Figure 7.3(b)
the sinus object has been sectioned and embedded in the back
half of the skull from Figure 7.2(b).

A different density thresholding scheme was used to
generate the sinus object used in Figures 7.3(c) and 7.3(d).
A narrow threshold corresponding to the air-tissue interface

was selected.

Image 7.3(c) is a sectioned view similar to

7.3(b?. The removal of low density air accounts for the
;hollowed out”™ look which can be noted in 7.3(c).

The patch forward of the eye socket is composed of part
of thé eyel{d'and the beginnings of:the skin _on the nose (the
forward part of the nose is not contained in the CT images).

?igure 7.3(6) is a forward looking view of the entiie
Qinus object of 7.3(c) plus the opposite section of the
skull. The thin, almost vertical part on the right of 7.3(d)
is the back side of the patch of skin in 7.3(c).

Figure 7.2fd? was generated using the display algorithm
presented above. Almost 499,099 level transitions were

137

_ . AT ST Ch S
B o A A A AN e e R MY A b B A At R R

. ..

Patoa et e e B e R R




o e i B dian Ao Aae dume danae L arR aote mes v o
‘.“\'-‘ I‘_I Ot "‘-“.‘ ‘.’ ‘--‘- '-‘ ':' -'- - 'o\ ‘-. ':‘ \‘, L O‘_ ‘.. LIRSS "'l LA A A -I;. -.r‘ r‘_. *. fe e - -

SRy W R S e e e LT e

O
i

S

- !'\.f X

Figure 7.3 Display of Sinus Passages

|

T
I ]

(O )
»

AR - S vi

138 3

e

o T TeNm" . ST e e T T .

* e T P T R I LR O O 3 R TP I
e e Lt B o RS S RN YT AT
haos TR TR WAL T LTI W/ P Wl WP W W T PR VI TR, LS. . T AT ST

[P GIO SP A SL y T N S ..




needed, requiring about 11 minutes of CPU time on a Prime
750. Approximately 69% of the octree nodes were accessed.

y . An earlier back-to-front display algorithm [(39] was used
to create the remaining images in Figures 7.1 through 7.3.

An algorithm was also developed to display transparent

ff objects using only simple arithmetic. The resulting images

are very similar to those generated using conventional

transmission x-ray technigues.

.
,q
3
;

RIS .

P N I U U WA PR




'y
«

.....................

CHAPTER 8

DISCUSSION AND CONCLUSIONS

The viability of octree encoding as a solid modeling
method has been demonstrated in two significant examples, NC
verification and medical imagihg.

At the current state of development, efficient
algorithms gxist to perform the following:

Octree generation from: convex polyhedra, restricted convex

shapes defined mathematically, edges of planar sections (in
chain code format), multiple 2-D images, intersecting prisms,
spatial enumeration arrays, lists of surface intercept points
and swept 2-D or 3-D objects.

Object property measurement: volume, surface area, center of
mass, moment of inertia, number of interior voids,
correlation, and closest approach between 2 objects.

Object _operations: union, intersection, differeﬁce,
negation, segmentation of disjoint parts,_space filling of
bounded volume, translation, scaling (power of 2 or arbitrary
factor), rotation (multiple of 90 degrees or arbitrafy
angle), skewing, reflection, " linear and nonlinear
transformations, region growing and shrinking, sectioning,
perspective deformation, and the generation of translational

or rotational swept volumes.

Interference detection: for fixed or swept objects.

" e ol S Thas Jhait Bt il Eadl Bl add S A S O A N e e A
PRt it s € B LMV A NSt A IR SR S MR ) S AR AR, N RGN A Yo to R R .

g1

TR P T S

g'e)

SNE 8. C.A. K

T




Display: raster image generation from any viewpoint with

hidden surface removal, orthographic or perspective view,

. Rl .;';';‘;.;!L_;;;;‘l

black-and-white or color, surface normal or block shading,
shadowing, dynamic movement of 1light source, multiple

illumination sources, automatic anti-aliasing, sectioning,

)

interference detection, transparent objects, textured E
surfaces, back-to-front or front-to~back traversal, and i
raster or quadtree output. Also, vector display of forward :
4

edges of objects (generation and display of edge-tagged

objects){

The octree method is entirely new and not directly
rooted in any existing system. It is difficult directly to
compare this technique with other SMS methods. Rather, a

profile will be obtained by analyzing its characteristics

with respect to the 21 problem areas presented in Section -
1.1. 5

(1) Limited domain - The domain of objects is completely

B

unlimited within the restrictions of precision and storage
imposed by a specific implementation. -
(2) Validity - Any legally generated octree is valid.
(3) Completeness - All octrees are complete. No "3

overhead processing is required to assure this.

B . SR

i

(4) Uniqueness - A reduced octree is unique if fixed in g.

“

‘\“
o
)
O

location and orientation. The octree method thus has

permutational uniqueness but not positional uniqueness.

(5) Conciseness - In general, conciseness ranges from

141

Lo 3 .
......... N . . . - . . N - -
WD WP L I I T WS, TP L G S N YR G S G SN . P S O I PP G W PR SURPE E A SP, A i -




poor for standard primitive shapes to very favorable for more
arbitrary objects (eg., skulls). One advantage is that, in
its reduced form, there is no redundant information. No
section of space is represented twice.

(6) Closure - The octree encoding method is closed.

(7) Piniteness - All octree objects are finite.

(8) Null object - The null octree is simply an E root
node (in reduced form).

(9) Transportability - Results should be identical from
one system to another because of the strictly integer
arithmetic. This assumes‘ identical algorithms, scale
factors, etc. It is possible that, unless care is taken,

implementation-specific differences could cause changes in

the conversion of user requests to the integer format
required by the algorithms.

(10) - Extensibility - In general, octree encoding is 1
easily extended with respect to object size, the number of r;f

objects, object complexity, precision, etc. Assuming that

the dynamic range of integer variables 'is not exceeded,
standard octree processors should be extensible in these
areas almost without limit. -
(11) Autonomy -~ The algoritﬁhs developed to date are
autonomous.
(12) Reljabjility - All objects which could possibly be
generated can be processed by all compatible algorithms. A

higher level of intelligence is not needed for guidance to

142

- . T - . - Lot - AR e R L. Loy . B N P
[ SRR 2 AP SN S L I} [ PP PP R A TN 1 (I IR T WU D TP U D PR U P il L V. Y-S, [ W




AW T W T W T e N e T T e A R N A |
N . . 2N

‘‘‘‘‘‘‘
..........................

handle unusual or special cases.

(13) Efficiency - Within the definition of  object

i S

complexity (the value of C), the basic manipulation, analysis
and display algorithms are 1linear in the number and
complexity of objects. 1In practice, many algorithms such as

display and interference detection, do not require all object

PRI T S P

nodes to be processed.

(14) Implementabjlity - Octree Encoding algorithms i
should be easily implemented in multiple VLSI processors |
operating in parallel.

(15) Multiple represeptations - In operation, two data

structures are envisioned, an application data base and an

octree structure used for interactive processing.
(16) Consistency - Consistency is not expected to be a
problem because, in most cases, object conversion will be

required only from application formats into octrees.

(17) Conversion -~ Conversion to octree format is a
straightforward process for most current representation 1
schemes. - ) . _ - .

(18) Ease of object creation and manipulation =- Given i

high~speed conversion capability and interactive octree

v,y

'processors, performance in this area should be high when

compared to other methods.

(19) Finite-element modeling capability - The use of

quadtree and octree techniques to automatically generate FEM

aaaR halil

el et

meshes was suggested (but not developed) by the author. This

143

.............................




......................
...........................................

area is currently under active investigation ‘at RPI [87].
Preliminary results have been very promising. The automatic
placement of smaller squares and cubes in areas of high
curvature has been found to be a useful characteristic.

(20) JInterference analysis - Interference detection is
performed in 1linear time. In many cases it is related to
situation complexity. This is'a large improvement over most
competing techniques.

(21) Tweaking - Local modifications can be performed in
isolation because of the spatially sorted nature of the

octree.

8.1 Accomplishments

A solid modeling method based on a hierarchical tree’

structure, the octree, was designed and developed. It is
believed this new method may alldw, for the first time, the
construction of relatively .inexpensive full-function solid
modeling systems capable of handling large numbers of complex
objects at real-time or near real-time rates. This includés
interference related opetatioﬂé such as interference
detection, collision avoidance and hidden surface removal.

The following are considered to be the most significant
specific results:

(1) Development of the octree methodology for solid

144

Kt

. L]
Lo M




modeling, with emphasis on performing operations
efficiently using simple integer arithmetic.

(2) An efficient display algorithm based on the use
of front-to-back octree traversal for hidden surface
removal.

(3) A swept-volume generation (and collision
avoidance) algorithm based on hierarchical convolution.

(4) An efficient interference detection algorithm

based on octrees.,

8.2 Suggestions for Further Research

The following areas are suggested for further
research:

(1) Alternate object representation format - A
possible research area could be the investigation and
analysis of alternate formats. For example, obels could
be subdivided into 27 children rather than 8 or
subdiv{ded in only one dimension at each level. This
might lead to more compact representations.

Also, octree methods could probably be used Ey
other solid modeling schemes to improve efficiency.

(2) Object genperation - Efficient conversion
methods are needed for object representations such as
ruled surfaces, surface patches and various parametric

formats. Automatic octree generation from wireframe




projections [37, 85] could be useful.
(3) Additional operations - Additional analysis and - q
manipulation techniques would be useful, such as i

calculation of curvature and surface normals, volume o

conserving deformations, generation of blends and
extrusions, extracting edges for drafting applications,
automatic dimensioning, etc.

(4) Shape classification - It would be desirable to
develop some form 6f automatic classification of octrees
by shape. Perhaps a start would be to decompose octrees
into primitive shapes or edge/face/vertex sets with
connectivity information.

(5) Advanced finite~element modeling - It may be

possible to utilize octree techniques in finite-element

analysis.




Rl a2t

| 0
B
),
N 1.
E
| T 2.
E
[
= 3.
2
h
b
. 4.
-
-

o

8.
- 9.
& 10.

11.

o,

:

AL ¥

ﬁ.‘ AT VTN " -.:,-w.' w',\::.f

CHAPTER 9
REFERENCES

Aho, A. V., Hopcroft, J. E. and Ullman, J. D., The

Design  and Analysis _of Computer _ Algorithms
Addison-Wesley, 1974, 77-78 !

Artzy, E., Frieder, G. and Herman, G. T., "The
Theory, Design, Implementation and Evaluation of a

Three-Dimensional Surface Algorithm," Computer Graphics
and Image Processing, Vol. 15, 1981, 1-24

Baer, A., Eastman, C., and BHenrion, M., "Geometric

Modeling: A Survey," Computer-Aided Design, Vol. 11,
No. 5, Sept. 1979 _

Bentley, J. L., "Multidimensional Binary Search Trees

in Database Applications,"™ IEEE __ Transactions on
Software Engineering, Vol. SE-5, No. 4, July 1979

Bentley,- J. - L. and Wood, D., "An Optimal Worst Case
Algorithm for Reporting Intersections of Rectangles,"

r VOl. C-29, NO. 7/
July 1980, 571-576

Bentley, J.L., "Multidimensional Divide-and-Conquer,"
Communications of the ACM, Vol. 23, No. 4, April 1980

Boyse, J. M. and Rosen, J. W., "GMSOLID - A System
for Interactive Design and Analysis of Solids," General
Motors Research Laboratories publication GMR-3451

Boyse, J. W. and Gilchrist, J. E., *GMSolid:
Interactive Modeling for Design and Analysis of
Solids," IEEE Computer Graphics and Applications, Vol.
2' No. 2' MaICh 19&’ 27-40

Boyse, J. W., "Data Structure for a Solid Modeller,"
General Motors Research Laboratories publication
BMR-2933, March 1979

Brown, C. M., Requicha, A. A. G. and Voelcker, H.
B., "Geometric Modelling Systems for Mechanical Design
and Manufacturing,"™ Production Automation Project,
Oniversity of Rochester, Oct. 1978

Brown, C. M., "PADL-2: A Technical Summary," JIEEE

147

............

............................

. Ny .
-------



g veNg e . e Pl e g A - Oy D
T T TR R T R T T TP TR TN T NN T W T T, T W T WS AR A S o e I R

L T TR R P I i e S T S e M e’ T Mt e Tt T s e e - -~ P - T T N .
S

-\ -
- -
N

a .

F . .
S R

mputer Gra cs and A jcations, Vol. 2, No. 2,
March 1982, 69-84

12. Burt, P. J., "Fast Filter Transforms for Image

Processing, " Computer Graphics and Image Processing,
No. 16, 1981

AYCEYIYRTG
PR A

13. Bylinsky, G., "A New Industrial Revolution 1Is on the
Way," Fortune, Oct. 5, 1981

< 14. Cadzow, J. A., Discrete-Time Systems, Prentice-Hall,
2 1973, 85-110 .

15. Catmull, E. and Smith, A. R., "3-D Transformations of 517
Images in Scanline Order," SIGGRAPH '80, 1980, 279-285

16. Clark, J., "Hierarchical Geometric Models for Visible

Surface Algorithms," Communjcations of the ACM, Vol.
19, No. 10, Oct. 1976

n'..‘ ""'.,

17. Doctor, L. J. and Torborg, J. G., "Display
Techniques for Octree-Encoded Objects," IEEE Computer
Graphics and Applicatjons, Vol. 1, No. 3, July 1981

18. Doctor, L., "Solid Modeling Algorithms Utilizing Octree
Encoding, " Center for Interactive Computer Graphics,
Rensselaer Polytechnic Institute, December 1980

I

19. Dyer, C. R., Rosenfeld, A., and Samet, H., "Region R
Representation: Boundary Codes from Quadtrees," A

3 Communjcations of the ACM, Vol. 23, No. 3, March 1980

20. Finkel, R. A. and Bentley, J. L., "Quad Trees: A T
Data Structure for Retrieval on Composit Keys," ACTA S
Informatica. Vol. 4, 1974, 1-9 o

21. Pranklin, W. R., "Locating a Point- in Overlapping R
Regions of Hyperspace,” Technical Report CLR-64, >
Rensselaer Polytechnic Institute, Dec. 1978 SRR

i

22. PFranklin, W. R., "A Linear Time Exact BHidden Surface o

Algorithm, " Computer Graphics, Vol. 14, No. 3, July o
1980 : ORI,

. 23. Franklin, W. R., "An Exact Hidden Sphere Algorithm _ %
.. That Operates in Linear Time," S
C: Image Processing, Vol. 15, 1981, 364-379

N 24. Preeman, H., "Computer Processing of Line-Drawing RS
b Images, " Computing Survevsg, Vol. 6, No. 1, March 1974 s

148




- e - Y - LY - R Pl . v . . * ~ - - N . LW . - P
.vv.-"—c'~v'r:':-.>.-.!1§"'..vn.;." MR S P S - . -

i

25. Fuchs, H., "On Visible Surface Generation by A Priori

- Tree Structures,” SIGGRAPH '80, 1980

. 26. Gossard, D. c. and Tsuchiya, F. S., "Numerical

Control Tape Verification Using Graphical Simulation,"

CASA Technical Paper, The Computer and Automated
Systems Association of SME, 1977

27. Grayer, A. R., "Alternative Approaches in Geometric

- Modelling," Computer-Aided Design, Vol. 12, No. 4,
- July 1980

", . 28. BHBillyard, R., "The Build Group of Solid Modelers," IEEE
o Computer Graphics and Applications, No. 2, Vol. 2,
* M March 1982, 42-52

S .

T 29. Hunter, G. M., and Steiglitz, K., "Operations on
~ Images Using Quad Trees," IEEE Tran

T i chi igence, Vol. PAMI-1, No.
s 2, April 1979 ‘

]

X 30. Hunter, G. M., "Efficient Computation and Data
o Structures for Graphics," PhD dissertation, Electrical
S, Engineering and Computer Science Department, Princeton
2 University, June 1978

' 31, Runter, G. M., and Steiglitz, K., "Linear

- Transformation of Pictures Represented by Quad Trees,"
- Computer Graphics and Image Processing, Vol. 10, July
7R 1979

32. 1Iftikhar, A., "Linear Geometric Transformations on
" Octrees,” M.S. thesis, Electrical, Computer, and
e Systems Engineering Department, Rensselaer Polytechnic
- Institute, May 1981

.
' 33. Jackins, C. L., and Tanimoto, S. L.,. "Oct-Trees and
Their Use in Representing Three-Dimensional Objects,”
Technical Report 79-07-06, Department of Computer
Science, University of Washingtop, Seattle, July 1979.
) 34. Jackins, C. L., and Tanimoto, S. L., "Oct-Trees and
a o Their Use in Representing Three-Dimensional Objects, "
e Computer Graphics and Image Processing, Dec. 1980
% 50 35. Jones, L. J., "Solid Modeling: The Future for
SR : Graphics, " Proceedings 80 -
3 Spring Seminar, April 1980

149




el o A urai anes adl’ Trdvr g e L.y vY et e e T W I oA i R
e R gt A gt el g AT Y AN WERANAA A F R S o . R . <o

36. Khullar, P. and Wang, K. K., "Description and T
: o Interpretation of TIPS~1," Technical Report No. 9, NSP 1
(' Injection Molding Project, Cornell University, Oct. -
4 1976, revised Aug. 1977 n

-3 37. Markowsky, G. and Wesley, M. A., "Fleshing Out Wire

Frames," IBM Journal of Research and Development, Vol.

38. Meagher, D., "Computer Analysis of Shape: A Literature
Survey®, IPL-TR-79-001, Image Processing Laboratory,
Rensselaer Polytechnic Institute, May 1979

. 39. Meagher, D., "Octree Encoding: A New Technique for the -
’ Representation, Manipulation and Display of Arbitrary

3-D Objects by Computer, " Technical Report
IPL-TR-80-111, Image Processing Laboratory, Rensselaer
Polytechnic Institute, October 1980

4
o5

R g
L e de YelAS,

40. Meagher, D., *Geometric Modeling Using Octree

: Encoding, " Technical Report IPL-TR-81-005, Image

Processing Laboratory, Rensselaer Polytechnic
Institute, February 1981

gt

4l. Meagher, D., "Bigh Speed Display of 3-D Medical Images
Using Octree Encoding," IPL-TR-021, Image Processing
Laboratory, Rensselaer Polytechnic 1Institute, Sept.
1981

42. Meagher, D., "Graphics Package 1 (GP/1l) and Program
OCTREE Programmers Manual," IPL-TR-028, Image
Processing Laboratory, Rensselaer Polytechnic "
Institute, April 1982 -

1 0y

RS

L
:

43. Meagher, D., "Octree Generation, Analysis and
’ Manipulation, " IPL~-TR-027, Image Processing Laboratory,
Rensselaer Polytechnic Institute, April 1982

{.-_ n;_ f‘ 'f_".

44. Meagher, D., *Geometric Modeling Using Octree

Encoding," Computer Graphics and Image Processing, 19,
June 1982

¥
.
et Sy

s %

l\'-
P

f 45. Meagher, D., "Efficient 8yﬁihetic Image Generation of
g Arbitrary 3-D Objects,™ Proc. IEEE Computer Society
. Confeience on Pattern Recognition and Image Processing, -
L: - June 1982 :J

hﬁ 46. Moravec, H. P., "Three Dimensional Modelling and .
Graphics with Multiprocessors,” internal memo, Robotics e
Institute, Carnegie~Mellon University, Feb. 1980, =

- 150

T TG R L R L TR S S L R R L I N e R e o RPN S A
A A e L N R R SR S T T e T RO -

. .,
-----



y O
......

| § 20

47.
48.
49.
50.
51.
52.

53.

54.

55.
56.
57.

58.

0 L PG

revised Oct. 1980

Myers, W., "An Industrial Perspective on Solid
Modeling, " IEEE Compu a cs and A ications,
Vol. 2, No. 2, March 1982, 86-97

Newman, W. M., and Sproull, R.

Principles of
Interactive Computer Graphics, 2nd Ed., McGraw-Hill,
1979

Okino, N., et al., "TIPS-1l, Technical Information
Processing System," Institute of Precision Engineering,
Hokkaido University, 1978

Ranade, S. and Shneier, M., "Using Quadtrees to Smooth

Images, " IEEE_Transactions on Systems, Man, and
gxhg;gg;;gg Vol. SMC-1ll, No. 5, May 1981, 373-376

Ranade, S., "Use of Quadtrees for Edge Enhancement,"
an ions M and rnetics,
Vol. SMC-11, No. 5, May 1981, 370-373

Ranade, S., and Shneier, M., "Using Quadtrees to Smooth
Images,"” Proceedings of the 5th International
Conference on Pattern Recognition, December 1980

Reddy, D. R.‘ and Rubin, S., “Representation of
Three-Dimensional Objects,® CMU-CS-78-113, Dept. of
Computer Science, Carnegie-Mellon University, April
1978

Requicha, A. A. and Voelcker, H. B., *solid
Modeling: A Historical Summary and Contemporary
Assessment,” IEEE Computer Graphics and Applications,
Vol. 2, No. 2, March 1982, 9-24

Requicha, A., and Voelgker, H., "Geometric Modeling of
Mechanical Parts and Machining Processes,” COMPCONTROL
1979, Sopron, Bungary, Nov. 1979

Requicha, A., "Representations for Rigid Solids:

Theory, Methods, and Systems," Computing Surveys, Vol.
12, No. 4, December 1980

Reguicha, A., and Voelcker, Be, *a Tutorial
Introduction to Geometric Modelling,"™ SIGGRAPE 1980
Tutorial, July 1980

Rosenfeld, A., "Tree Structures for Region
Representation,” Computer Vision Laboratory, University

i

A

| JR
FRSEPO— AT U




14

"

=
R
3

ALY - § 5
i;’:‘;' _'n‘"}: t'_'x‘ il

4
»5 &~
[
"

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

v Lanadic PR -4 SRan 4 T .
e = v R

...............................

of Maryland, 1979

Rosenfeld, A., "Quadtrees and Pyramids for Pattern
Recognition and Image Processing," Proceedings of the
5th International Conference on Pattern Recognition,
December 1980

Rosenfeld, A. and Kak, A. C., Digita Picture
Processing, Acaademic Press, 1976, 12-22

Roth, S. D., "Ray Casting as a Method for Solid
Modeling, " General Motors Research Laboratory
publication GMR-3466, October 1980

Rubin, S. M., and Whitted, T., "A 3-Dimensional
Representation for Fast Rendering of Complex Scenes,"
Computer Graphics, Vol. 14, No. 3, July 1980

Samet, H., "A Quadtree Medial Axis Transformation,"
TR-803, Computer Science Dept., University of Maryland,
August 1979

Samet, H., "A Distance Transform for Images Represented
by Quadtrees," TR-780, Computer Science Dept.,
University of Maryland, 1979

Samet, H., "Computing Perimeters of Images Represented
by Quadtrees," TR-755, Computer Science Center,
University of Maryland, College Park, April 1979

Samet, 8., "Connected Component Labeling Using
Quadtrees,” TR-756, Computer Science Dept., University
of Maryland, April 1979

Samet, H., "Neighbor PFinding Techniques for Images

Represented by Quadtrees," Computer Graphics and Image
Procegsing, Vol. 18, 1982, 37-57 -

Samet, H., "Region Representation: Quadtrees from

Boundary Codes, " Communications of the ACM, Vol. 23,
No. 3, March 1980

Samet, B., "Region Repteseﬁiation: Raster-to-Quadtree
Conversion," TR-766, Computer Science Dept., University
of Maryland, May 1979

Samet, B., "Region Representation: Quadtree-to-Raster
Conversion, " TR-768, Computer Science Dept., University
of Maryland, June 1979

B

RL

U
oy

| N




. LA N

L.
st M - - - - - . P A o
g 8 P e e b B b SO S DcHT R MR A ARG IR e
g

G AN
A%

.
PRV IS

71. Samet, H., "Region Representation: Quadtree from
Binary Arrays,” TR-767, Computer Science Dept..,
Oniversity of Maryland, May 1979

ted .8 8 1

A,
.
- ’ L

. 72. Samet, H., and Rosenfeld, A., "Quadtree Representation -
of Binary Images, " Proceedings of the 5th International
Conference on Pattern Recognition, December 1980

S

SN W)

73. Shani, U., "A 3-D Model-Driven System for the
» Recognition of Abdominal Anatomy from CT Scans,” TR-77,
i Computer Science Dept., University of Rochester, May
" 1980

74. Shneier, M., "Calculations of Geomgtric Properties

. Using Quadtrees, " G

o Processing, Vol. 16, 1981, 296~302

é o 75. Srihari, S. N., "Representation of Three-Dimensional
I Digital Images,"™ Technical Report No. 162, Dept. of
2 Computer Science, State University of New York at
g & Buffalo, July 1980

2 3 76. Srihari, S. N., "Hierarchical Representations for

o Serial Section 1Images,"” Proceedings of the 5th
International Conference on Pattern Recognition,
o, . December 1980

ol arat
ORI AN,
»

IAY

- 77. Srihari, S. N., "Representation of Three-Dimensional

NI Digital Images," Computinag Survevs, Vol. 13, No. 4,
2N Dec. 1981, 399-424

o,

78. Tanimoto, S. L., "A Pyramid Model for Binary Picture
N _ Complexity," Proc. IEEE Computer Society Conference on
it Pattern Recognition and 1Image Processing, Rensselaer
. Polytechnic Institute, June 1977

79. Tilove, R. B.y "Set Membership Classification: A
Unified Approach to Geometric Intersection Problems,"

¢ Vol. C-29, No. 10,
Oct. 1980, 874-883 -

80. Voelcker, H., and Requicha, A., "Geometric Modeling of
Mechanical Parts and Processes," Computer, Dec. 1977

4 LA ArrAON

8l. Voelcker, H., et al., "The PADL-1.0/2 System for
Defining and Displaying Solid Objects,™ Production
Automation Project, University of Rochester

o ata
oS
P AW

~ 82. Wang, K. K. and Khullar, P., "Computer-Aided Design
E of Injection Molds Using TIPS-1 System,” Cornell

LAY W e S -

153




University g

83. Welch, A., "Numerical Control Tape Proofing," SME T-E
' Technical Paper, Society of Manufacturing Engineers, R
’ 1974 3
84. Welch, A., "Verification of NC Programs by Computer :; %
Simulation," Manufacturing Engineering, Sept. 1980, o
77-82 , %

- ;:1

85. Wesley, M. A., "Construction and Use of Geometric
Models, " Computer Aided Design Modeling, Systems
Epgineerin CAD Systems, edited by J. Encarnacao,
Springer Verlag, New York, 1980 .

86. Yau, M. M., and Srihari, S. N., "Recursive Generation
of Hierarchical Data Structures for Multidimensional
Digital Images," Technical Report No. 170, Dept. of
Computer Science, State University of New York at
Buffalo, January 1981

87. Yerry, M. A. and Shephard, M. S.» "Finite Element
Mesh Generation Based on a Modified-Quadtree Approach,"
Center for Interactive Computer Graphics, Rensselaer
Polytechnic Institute, March 1982

LIRS
‘0 |: . .l'
RNy . SRR . SRR

. %o
At il

P

154

o

.
\.

K

ey

.

A

.

,

X

.

.

.

.

.

s

.

,

K

.

.

y

.

,

s

L
Y,

PR . -
Ll W




i Y ol
AN S £

. Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

i REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM ’?
',...-: [T REPORT NUMBEN RECIPIENT'S CATALOG NUMBER :

P
E I L

]

2. VT ACCESSION NOJ 3.
3 1PL-TR-032 }’/5 ¥ M
s

4. TITLE (and Subtitls} . TYPE OF REPORT & PERIOD COVERED :‘

. ‘s
" a

i B The Octree Encoding Method for Efficient Technical :

Solid Modeling )

.'. 6. PERFORMING ORG. REPORT NUMBER -
.:: 7. AUTHOR(S) 8. CONTRACT OR GRANT NUMBER(s)
- Donald J. R. Meagher N00014-82-K-0301
¥ - )
\: ':: 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. ::ggﬂ.AgoERLKEIJErT.Nl:JRMOaJEEgsT. TASK
o Rensselaer Polytechnic Institute
SO Troy, New York 12181
YOI
= 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPOR" D]A;gz
- Office of Naval Research ugust
S 800 North Qunicy Street “-?gz'ERO'PAGES
o Arlington, VA 22217
_: 4. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 1S. SECURITY CLASS. (of this report)
s Unclassified

va

1y

TSa, DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

[18. DISTRIBUTION STATEMENT (of this Report)

“The United States Government is authorized to reproduce and distribute
. reprints for governmental purposes notwithstanding any copyright notices
: hereon." e : el

R (ST AV

BATHMANEND
IR 2 T BRI I

e« sl i

l distributicn is um.’.umea.l.

- .
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, it different from Report)

[PPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

| -

N ) 18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reveras side if necessary snd identify by block number).
computer graphics

A solid modeling

o object manipulation algorithms

e o pattern recognition
e c ntation
‘ - : 20. ABSTRACT (Continue on reverse side If necessary and identify by block number)

Y Solid modeling is the subject of representing solid objects in a computer -
: to permit their analysfs, manipulation and display. This thesis describes the
o development of a new solid modeling method called octree encoding, in which ar-
{ L. bitrary objects are represented to a specified resolution in 8-ary hierarchical

trees or "octrees." The number of nodes in an object's octree is used as a
easure of object complexity. This number is shown to be on the order of the
product of object surface area and inverse of the square of the resolution. (over)

DD ' 5" 1473  ezoimon oF 1 NOV 8813 ORsSOLETE Unclassi fied

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)




................

Unclassi fied
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

A dual data-base approach is proposed. A general-purpose solid-modeling sys-
tem based on octree encoding would interactively perform geometric, analytical
and display operations in conjunction with specialized applicatica data bases.

Efficient algorithms are presented for the determination of mass properties .
(volume, surface area, center of mass and moment of inertia, etc.) for the for- -
mation of new objects via the use of set operations (union, intersection, differ-
ence and negation), for linear transformations (including translation, scaling
and rotation), for interference detection, for swept-volume definition, and for
display from any point in space (with surface texture, anti-aliasing and hidden
surface removal). The complexity of the processing required to display an i
object is related to the visual complexity of the scene rather than the complex- Tl

- ity of all objects involved. Interference detection requires computation re- - DL]
lated to the separation distance between the objects. -

The above algorithms require only simple integer arithmetic (addition, sub-
traction, magnitude comparison, and shift) in order to facilitate implemention
in VLSI processors. ’

The new method is compared to existing solid modeling methods in 21 problem
areas.

Results are presented which show the application of the technique in the
verification of NC (Numerical Control) machine programming and in the display
of 3-D medical objects derived from multiple CT (Computed Tomography) images.

e Ta s
PPy

Unclassified

SECURITY CLASSIFICA" O OF Tu'e PAGE(Wher Data Entered)

................
....................

.........






