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ABSTRACT

Solid modeling is the subject of representing solid

objects in a computer - to permit their analysis,

manipulation and display. This thesis describes the

•- development of a new solid modeling method called octree

-.. d9_ing, in which arbitrary objects are represented to a

/.specified resolution in 8-ary hierarchical trees or

: A-octrees. The number of nodes in an object's octree is

used as a measure of object complexity. This number is

shown to be on the order of the product of object surface

; area and the inverse of the square of the resolution.

A dual data-base approach is proposed. A

general-purpose solid-modeling system based on octree

encoding would interactively perform geometric, analytical

S'-and display operations in conjunction with specialized

%*::: .:: application data bases. k ---------------....

Efficient algorithms are presented for the

determination of mass properties (volume, surface area,

center of mass and moment of inertia, etc.) for the

formation of new objects via the use of set operations

(union, intersection, difference and negation), for linear

transformations (including translation, scaling and

L. rotation), for interference detection, for swept-volume

definition, and for display from any point in space (with
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surface texture, anti-aliasing and hidden surface removal).

* i The complexity of the processing required to display an

object is related to the visual complexity of the scene

rather than the complexity of all objects involved. p
Interference detection requires computation related to the

separation distance between the objects.

_ The above algorithms require only simple integer

arithmetic (addition, subtraction, magnitude comparison, and

shift) in order to facilitate implementation in VLSI

processors.

The new method is compared to existing solid modeling

methods in 21 problem areas.

a !Results are presented which show the application of the

technique in the verification of NC (Numerical Control)

machine programming and in the display of 3-D medical

objects derived from multiple CT (Computed Tomography)

images.
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CHAPTER 1

*! p

INTRODUCTION AND HISTORICAL REVIEW

Solid modeling is concerned with methods and systems

for the computer representation, manipulation, analysis and

- display of solid objects. The primary applications for

- solid modeling are in CAD/CAM (Computer-Aided Design and

SComputer-Aided Manufacturing). This includes the design and

* analysis of mechanical parts, the generation and

u verification of commands for NC (Numerical Control)

* machines, the analysis of kinematic chains, and the analysis

of space utilization processes (e.g., packaging, process

S planning, robotics, parts assembly, etc.). Other

application areas include medical imaging and

cinematography.

Many experts predict that solid modeling will be the

key to the future of CAD/CAM [13, 35, 471. The Solid

Modeling Systems (SMSs) being developed today will form the

lower levels of advanced CAD/CAM systems. The higher levels

- will incorporate sophisticated artifical intelligence

techniques. They will draw upon vast knowledge structures

containing the information needed to automate tasks such as

part design and process planning. As such, these

lower-level facilities will be utilized with a high duty
L

cycle and, just as with lower-level operating system

°.1



procedures, must be made fast and efficient. They must be

extremely reliable and completely automatic. Human

intervention to resolve ambiguities obviously could not be

tolerated.

Although there are currently more than 20 major SMSs,

they are all limited to a greater or lesser degree because

of deficiencies in object representation and processing-

algorithms (54]. Two major shortcomings will be mentioned.

First, representation capabilities are not sufficiently

robust easily to handle the object complexities required in

a realistic environment. Second, the manipulation and

display algorithms for such functions as interference

detection (two or more objects occupying the same space) and

hidden-surface removal (necessary for realistic display)

require extremely large numbers of calculations in practical

situations. They usually exhibit polynomial growth (often

quadratic) in the number and complexity of the objects.

The goal of this research has been to devise a new

object representation scheme and associated linear growth

algorithms in which objects of abitrary complexity tan be

encoded, manipulated, analyzed and displayed interactively

_ein low-cost hardware. A solid modeling method called octree-

encoding was developed. The technique is based on a

hierarchical 8-ary tree or moctree."

This researchl was conducted over a period of almost

five years. This thesis is the seventh in a series of

2



publications documenting the work [38-431. The major

results are presented here, with the earlier reports

referenced for supporting information.

1.1 Existing Solid Modeling Schemes

Most commercially available CAD systems do not employ a

true SMS in that 3-D objects are not really modeled. They

* [are essentially extensions of drafting techniques based on

the use of edges to represent solids in projection. The

determination of what is actually solid is left to human

. -interpretation. Most systems cannot reliably remove hidden

lines or generate sectional views automatically.

. Excluding such "drafting" schemes, most existing SMSs

employ one or more of the following six representation

*i schemes [55,561:

P (1) Primitive Instancing - families of objects are

defined parametrically. A shape type and a limited set

of parameter values specify an object. -

(2) Spatial Enumeration an object is represented by

the cubical spatial cells (volume elements or "voxels")

which it occupies.

(3) Cell Decomposition - a generalized form of spatial

enumeration in which the disjoint cells are not

necessarily cubical or even identical.

(4) Constructive Solid Geometry (CSG) - objects are

3



represented as collections of primitive solids (cuboids,
-9

cylinders, etc.). A tree structure is typically used

with leaf nodes representing primitives and branch nodes

specifying set operations.

(5) Sweep Representation - a solid is defined as the

volume swept by a 2-D or 3-D shape as it is translated

along a curve.

(6) Boundary Representation (B-Rep) - objects are

represented by their enclosing surfaces (planes, quadric

surfaces, patches, etc.).

Specific advantages and disadvantages of each have been

tabulated [57] along with a classification of 21 existing

* systems. For a primary representation scheme, most use CSG

(TIPS, PADL, SynthaVision, etc.) or B-Rep (Build, CADD,

Design, Solidesign, Romulus, etc.) or a combination of the

two (EUKLID, GMSolid). Often other formats are used for

secondary functions. Some allow alternate representations,

such as swept volume, for input. Some have special features.

For example, TIPS sorts the primitives into a spatial

enumeration array to facilitate interference analysis. In a

separate study, Baer, Eastman and Henrion (3] have analyzed

and compared 11 popular systems. Much information has

recently become available on specific systems (7-9, 10, 11,

28, 36, 49, 61, 80, 82].

New methods are needed to solve or at least reduce the

4
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following problems which have been found to plague (to a

*greater or lesser extent) systems based on the above six

schemes (see [27, 56]).

(1) Limited domain -The currently used schemes are

characterized by a restricted domain of representable objects

because they are constructed from a limited number of

mathematically well-dfndsraeo oi primitives.

Some systems allow quadric surfaces and higher-order patches.

This can limit performance, however, because the more general

and more powerful primitives usually require substantial

* additional computations for object manipulation and display.

Adding a new primitive to a system or generalizing the use of

an existing one may necessitate extensive development of

5 mathematical tools and significant software modification.

* - -Another consideration is the potentially large labor cost

involved in what is essentially the art of fitting primitives

to a desired object.

(2) Validity - In many schemes, not all objects which

can be created are true or valid 3-D objects (also called

well-formed" objects). The 'intersection of two objects, for

example, may create *nonsense objects" such as dangling edges

or faces bounding no volume. Some systems depend upon human

intervention to eliminate such artifacts. Others contain ad

hoc algorithms to detect and eliminate invalid elements after

each operation. A few make such checking an integral part of

the manipulation algorithms. In any event, it adds overhead

5



and reduces the efficiency of a scheme. Ideally, any object

which can be legally generated should correspond to a valid

object.

(3) Completeness - A complete representation contains

all the information required to determine the interior and

exterior of an object. There should be no ambiguity. All of

the aforementioned schemes are (or can be made) complete

representations and, in fact, completeness is required for a

true SMS. It may be costly in overhead processing, however.

(4) Uniqueness - If a SMS is unique, there is only one

possible symbol structure for a given object, regardless of

position or orientation. This simplifies object matching and

identification, which may be important in some applications.

However, most existing schemes are not unique.

There are two common causes of nonuniqueness:

permutational nonuniqueness in which substructures in the

symbol structures can be permuted, and positional

nonuniqueness in which different representations correspond

to the same object but at different- positions or

orientations.

(5) Conciseness - There are two parts to conciseness.

Basically, it refers to the amount of data (bytes, for

example) required to represent an object. If an object can

be represented in a scheme with fewer words of storage, then

it is more concise. A deeper meaning takes into account the -

size of the domain of representable objects. A valid

6



comparison of conciseness can only be made between two

systems when both are configured to represent the same set of

"- possible objects to the same precision, usually a very

" difficult, if not impossible, task.

(6) Closure - A SMS has the property of closure if the

results of any object operation can be used as input for

further operations.

(7) Finiteness - It should not be possible to create

-- objects with infinite volumes.

(8) Null object - It should be easy to determine whether

an object is null (contains no volume).

- -. (9) TransDortability - Object representations should be

able to be transported to alternate computer facilities

5without inadvertant modifications resulting from a change in

word size, floating-point precision, etc. In addition,

identical operations on all machines should generate

*I identical results.

(10) Extensibilitv- The initial implementation of a

solid modeling system should be easily extended for modeling

larger, smaller or more complex objects, a larger number of

objects, sculptured surfaces, objects to a greater precision,

7 etc.

(11) -utonom The scheme should not require human

. intervention under any circumstances.

(12) Reliability - All possible objects (or at least all

SL objects which could be required) should be able to be

7
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processed by all operators without error. In some systems,

for example, self-intersection is a fatal condition.

(13) Efficiency - The computational complexity and

resource requirements (memory, for example) of algorithms

should not grow faster than linearly in the number and

complexity of objects. In addition, it would be very

desirable if the instantenous computational load were related

to the actual complexity (in some sense) of the specific user

requested task rather than the overall number and complexity

of objects involved.

(14) Implementabilit7 - An SMS should be easily

implemented for a large range of practical tasks on existing

computers or in hardware utilizing current or near-term

technology. A scheme will be more easily implementable if

the number of calculations are small relative to the number

of objects and object complexity. Also, algorithms requiring

simple mathematical operations and those allowing extensive

paralleling or pipelining of operations will be easier to

implement in the VLSI (Very-Large-Scale Integration) environ-

ment of the future.

Many of the existing SMSs were designed when an

evaluation of the hardware requirements called for compact

data structures and algorithms that would fit into limited

memory (typically 64K bytes). Calculations were to be

handled by a single, serial processor, most often a -

general-purpose minicomputer. This stategy has resulted in

8
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schemes that may be very efficient in memory usage but often

require unrealistically large numbers of calculations,

usually in floating-point rather than integer arithmetic. A

more realistic appraisal of current hardware trends could

result in more powerful and easily implementable schemes.

(15) Multiple representations - For a broad-based

application, two or more representation schemes may need to

be maintained to handle all requirements. Experts in the

field seem to agree (reluctantly) that this will be

necessary, given the limitations of the six representation

schemes.

.. (16) Consistency- If multiple representation schemes

are maintained, they should be guaranteed to be consistent at

" all times. If two representations of a single object could

be contradictory, an application system would probably be

useless.

I (17) Conversion - If multiple representations are used,

a method to convert from one to another is required. The

transformation should be exact (rather than approximate) and

invertable. In general, however, this is not the case with

existing schemes.

(18) Ease of object creation and manipulation - In

. general, a system that allows a user more easily to generate

and manipulate any desired object will be more useful. A

short response time is desirable, for example.

(19) Finite-element modelinq capability - It is an

9
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advantage if a scheme can easily and automatically generate a

finite-element mesh in 3-D.

(20) Interference analysis - Many applications require

the detection of interference between two or more objects.

The generation of a hidden surface view can be thought of as

a visual interference problem. The development of linear

growth algorithms involving interference was a major

objective of the research described in this thesis.

(21) Tweakinq - It should be possible to make local

changes without involving the entire object.

1.2 Historical Review

The solid modeling method described here results from a

doctoral program undertaken by the author in September 1977.

In the spring of 1978 a literature survey of techniques for .

representing and analyzing shapes was carried out, with an

emphasis on 3-D techniques [38].

In the-.fall of 1978 the-general goals of the research

effort began to take form. A new solid modeling method would

be developed to alleviate many of the common problems

encountered with existing systems, especially when applied to

large-scale efforts in CAD/CAM. The primary consideration

was to develop a simple, powerful, efficient and fast scheme

that could be easily implemented in VLSI for future

"real-world" applications of great complexity.

10
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The coding of what later became the program OCTREE began

in October 1978. The outline of a new technique employing

hierarchical tree structures was defined and first

implemented in a 2-D scheme called "area encoding." By the

spring of 1979, algorithms had been developed and implemented

for the entry of 2-D chain codes, conversion to an area

encoded format, and generation of the intersection of two

objects.

At about the same time, April 1979, the first widely

distriouted paper describing a similar 2-D technique with

applications in a different area, image processing, was

published by Hunter and Steiglitz [29]. Based on Hunter's

PhD thesis (30], it made use of 2-D hierarchical tree

structures called "quadtrees" (also called "quad-trees" or

"quad trees").

Further investigation turned up a proposal by Tanimoto

* S [78] to use a "pyramid" image model as a measure of binary

image complexity. Additional quadtree publications have

appeared in.. the literature-since that time; Rosenfeld (58,

59] has pursued quadtree efforts in pattern recognition and

image processing. Samet has presented an overview of

quadtrees (with Rosenfeld) (72], and developed quadtree

0algorithms to compute the perimeter [65], convert from

boundary codes [68], to boundary codes (with Dyer and

Rosenfeld) (19], from raster format (69], to raster format

[70], from binary arrays (71], compute the medial axis

11
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transformation [63], compute a distance function [64], find

neighbors [671, and label connected components [66]. Shneier

has developed algorithms to calculate geometric properties of

quadtrees [74]. Ranade has employed quadtree techniques for

edge enhancement [511, and (with Shneier) for image smoothing

[50, 52]. Hunter and Steiglitz have presented an algorithm

to perform linear operations on quadtrees based on _

transforming edge segments (31]. Burt has developed the

"hierarchical discrete correlation" (HDC) for efficient image

processing [12].

The effort continued during the summer of 1979 with the

development of the "overlay" technique for efficiently

performing linear operations on objects and the basic hidden

surface display algorithms. Much of this was implemented and

verified during the fall of 1979.

In October 1979 a presentation of the technique was made

that included computer output examples of translation,

rotation (90-degree, 180-degree and arbitrary-angle), union,

intersection, difference, reflection about- an axis, 2-D

hidden-line elimination and 2-D perspective display. At

about this time the name "octree encoding" was given to the

technique (it had earlier been called "volume encoding").

In the spring of 1980, a report was written to present

the scheme. It was first submitted in July of 1980 and later

published as an IPL technical report [391. Additional

results were presented in a paper titled "Geometric Modeling

12



Using Octree Encoding.w It was submitted in December 1980

and released as an IPL technical report [40]. A slightly
.'updated version was published in Computer Graphics and Image

Processing 144].

The Octree Encoding scheme was presented in the Computer

Graphics course at RPI during the Fall of 1980 and officially

proposed as a PhD thesis topic in March 1981.

The advanced display algorithm presented below was

developed during the spring and summer of 1981. It was first

described early in September 1981 and, later that month, a

paper describing the technique was presented at the IEEE

Computer Society's Tenth Workshop on Applied Imagery Pattern

Recognition (AIPR) in College Park, Maryland. The paper was

5 also released as an IPL technical report (41]. An updated

version was presented at the IEEE Computer Society's Pattern

Recognition and Image Processing (PRIP) conference in June

01 1982 [45].

The whierarchical convolution" technique and its

application..to swept volume-generation were-developed during

the Fall of 1981. The swept volume algorithm was first

presented in November 1981. The algorithm is described

below.

A major effort in late 1981 and early 1982 was devoted

to efficient object generation algorithms. These and other

results are documented in an IPL technical report [43].

" - LThe general idea of hierarchical geometric models as the

13



basis for future hidden-surface algorithms was proposed by

Clark [16]. Multidimensional binary trees and algorithms

have been studied by Bentley for use in data base

applications [4, 6]. Franklin has developed the "variable

grid" technique for hidden line and surface applications -

[21-23]. It is shown to be a linear growth algorithm at the

expense of pre-sorting. This has been extended into a

hierarchical structure in Octree Encoding and forms the basis

of the linear computational characteristics of the scheme.

Rubin and Whitted [621, Reddy and Rubin [53], Fuchs

[251, and others have presented various object space

pre-sorting techniques. The use of 8-ary hierarchical trees

to represent 3-D objects was apparently first suggested by

Hunter [30] in his PhD thesis (1978) as a possible extension

of quadtrees. It was later independently proposed by Jackins

and Tanimoto [33, 34], Moravec [46], Srihari [75, 76] for

medical imaging, Meagher [391 and perhaps others. Later

octree reports include [17, 18, 32, 861.

1.3 Approach

The ultimate goal of this effort has been the actual

construction of a full-function, real-time (about 1/30 second

response) solid modeling system to handle any number of

arbitrarily complex objects while operating on relatively -

low-cost hardware. Conventional solid modeling wisdom

14
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assumed that these characteristics were mutually exclusive.

Levels of performance many orders of magnitude greater than

" - allowed by existing techniques are needed. Obviously a new

approach was required!

The remainder of this section is a summary of the four

or five years of evolving reasoning and philosophy embodied

- *in the octree encoding method. A more in-depth study is

presented in (431.

' .*The first step was to reject any preconceived ideas

about solid modeling. An entirely new method would be

designed and developed. A list of priorities was established

-..2 for guidance and direction. The highest priority throughout

the effort was high-speed operation. For the first few years

5 the actual usefulness of the method was open to question but

there was never doubt the functions could be performed at an

extremely. high throughput utilizing modest hardware.

, NThe second priority was robustness. This included both

the ability to represent arbitrary objects and a full

complement of analysis, manipulation and display functions.

The third thrust was a general drive for simplicity.

This required, for example, a single representation scheme

for all objects and very simple algorithms.

Given these general priorities, the first step was to

devise a solution to the object storage problem. Arbitrary

objects require arbitrary quantities of storage for

representation. It was decided to represent arbitrary

15
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objects to a variable but limited precision.

CSG schemes handle this dilemma by taking what can be

looked at as the opposite choice. Unlimited resolution (for

all practical purposes) is preserved but objects are

restricted to primitive analytic shapes or combinations-

thereof.

The next step was to address the computational

complexity issue. Most existing CAD systems have evolved

from attempts to automate 2-D drafting. Complexity has not

generally been a consideration because the typical drafting

task is linear in a small number of items. Interactive

operation is not difficult to achieve.

The progress of CAD into full 3-D applications has

changed the situation. Operations involving some form of

interference analysis have been found to require large, often -

prohibitively large, computational resources for interactive

operation. The root of the problem is a comparison task.

Naive algorithms perform an interference detection operation

by checking-. for intersection between each possibly relevant

pair of primitives. A combinatorial explosion results

because, in general, the number of pairs grows quadratically -

in the number of primitives.

The solution was to design a spatially pre-sorted

representation scheme that would never require additional

sorting or extensive searching. The octree scheme satisfies

this requirement.

16
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The philosophical approach adopted for algorithm

development was based on the hierarchical ideas of Clark [16]ip
U and the sharing of partial calculations that has been proved

so successful in the Fast-Fourier Transform (FFT). It is the

hierarchical structure into which the problem has been cast

*. that allows large numbers of low-level calculations to be

eliminated at an early stage when processing typical objects.

-mThe approach to actual implementation adopted for this

*effort was based on the current trends in VLSI technology.

It is clear that to maximize the performance-to-cost ratio,

7 full advantage should be taken of the tremendous improvementsI.

in hardware which have resulted and will no doubt continue to

result from VLSI.

Before proceeding, a popular misconception concerning

increased computing power should be dispelled. The tought

" "that increasingly powerful hardware at lower cost will allow

ON inefficient algorithms to become useful is, in general,

wrong. Other factors being equal, a performance increase

. will allow ..larger problems. to be handled,-further widening

the performance gap between an inefficient (quadratic growth,

* for example) algorithm and an efficient (linear) algorithm.

.*Thus, computational complexity issues become more, not less,

important as technology moves into the VLSI age. 0

The implementation approach was to develop algorithms

designed specifically for semi-custom or full-custom VLSI

L based operation. This decision impacted the entire design

17
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1.71

philosophy. Traditional solid modeling systems tend to be

huge, ever growing, ever changing, software packages with

complex internal structures. The VLSI based system, in

contrast, must be based on a small number of very simple,

fixed, powerful and extremely reliable algorithms. They are

implemented in hardware and form the primitive lower level

functions in an applied system.

Based on the simplicity and ease of implementation

requirements, algorithms were allowed to employ only integer

numbers and only simple arithmetic (addition, subtraction,

magnitude comparison and shifts). Neither floating-point

operations, integer multiplications nor integer divisions

l were allowed.

.4
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CHAPTER 2

THE OCTREE METHOD

2.1 Definitions

- A graph G(N,P) is a finite, nonempty collection N of

nodes and a set P of unordered pairs of distinct nodes called

edges. Two nodes connected by an edge are adiacent nodes.

K4 If an edge has an associated direction, it is a directed

*_-. The direction is from the tail node to the bg" node.

A graph containing only directed edges is a directed graph.

The number of edges having a particular node as their tail

node is the outdegree of that node. The number of edges

having a particular node as their head node is the i r

* ,of that node.

A 2_l is a sequence of edges connecting two nodes. For

a directed graph, the nodes visited must be -in tail-to-head

order. A graph containing no paths which originate and end

in the same node is called acyclic.

A tree is an acyclic directed graph in which all nodes

have indegree 1 except one node, the root, which has indegree

0. Any node with outdegree 0 is called a terminal node or

leaf. Nodes with outdegree greater than 0 are branch nodes.

L The level of a node is defined as the distance in edges from
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the root. The root is at level 0.

The root is assumed to be at the top of the node

structure and all other nodes exist below the root. All

nodes reachable from a particular node are called the

descendants of that node. All nodes from which a particular -

node can be reached are the ancestors of that node.

Descendants one level below a node are the ciren of thatip
node. The ancestor adjacent to a node is the parent of that

node. Nodes having a common parent are siblings.

If a node does not actually exist in a tree but can be

inferred from an existing terminal node which would be one of

its ancestors, it is called an implied node. Loosely,

operations on a tree which use implied nodes are said to

process the implied tree rather than the actual tree.

Every branch node is a root of one or more subtrees.

The degree of a node is the number of subtrees that exist for

that node. If the outdegree of every branch node is <= m,

the tree is an m-ary tree. If the outdegree of every branch

node is m, the tree is a complete m-ary tree;

An m-ary tree is Ptionl if the children have m

distinct positions. The position is indicated by a value

from the child number set {0,l,2,...,m-l). Every node is

uniquely identified by a string over the child number set,

the node address. The root is represented by the empty

string. The node address of a child is the child number

prefixed by the address string of its parent.

20



" iA tree will be called a hierarchical tree if the

children of a node are associated with their parent in some

particular relationship.

* All objects exist within the universe. It is a finite

section of N-dimensional space defined by N orthogonal axes

and O<=x(i)<-d where x(i) is a displacement in dimension i,

(x(l), x(2),...,x(N)) is a point in the universe, d is the

length of an edQe of the universe and N is the order of the

" universe (number of dimensions). The symbol "N" will be

reserved for the order of the universe throughout this

thesis.

* .i Note that all edges of the universe have the same length

and form a square for N=2, a cube for N=3 and an

U N-dimensional hypercube for N>3. The origin of the universe

is the point of intersection of the axes. Negative

* displacements from the origin are not allowed. The space

* beyond the universe is the v No object can exist in the

void. Any part of an object moved into the void is

annihilated.- An augmented universe is one ifi which one or

. more adjacent (empty) universes are added to the P

universe. Augmented universes are used to facilitate

-".. algorithm initialization.

Before encoding, objects are called real objects. They

* may be real-world objects or a mathematical description of an

- ideal shape. An object encoded in the octree format is known
L

as the encoded object or simply the object.
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If a single encoded object is used many times to

generate new, transformed objects, the original object is the

model and the new objects are instances.

An object is always of the same order as the universe in

which it is defined and is composed of discrete units of

N-dimensional space. All objects in a third order universe

must occupy volume, for example. A 2-D object could not

exist here. The smallest object in such a universe would be

the smallest resolvable unit of space.

Other than this, there are almost no restrictions on

objects. They can be concave as well as convex, have

interior voids, and can be simply- or multiply-connected.

Each object is defined over the entire universe. It has

a property value defined at each point in the universe. For

a typical small object (relative to the universe) most of the

space in the universe has the property of being empty.

2.2 Object Representation

During the design and development of the object

representation scheme, the primary considerations were the

need for a spatially sorted format to eliminate the quadratic

growth of algorithms and the desirability of a hierarchical

structure to reduce the volume of data that would need

processing for a typical solid modeling operation. A third

consideration was the simplicity of algorithms that could

22
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I" result if a regular spatial structure was used.

To facilitate spatial sorting, orthogonal planes were

used to segment object space. The need for a hierarchical

structure was satisfied by employing trees in which the

children represented the same space as the parent but to a

higher precision. To fulfill the requirement for a regular

structure, nodes at a given level represent disjoint segments

of space, are identical size, shape and orientation, and

completely fill the universe when all possible nodes are

taken together. The result was a recursive subdivision of

space with objects represented by cubes of exponentially

related size.

An octree object is represented by an 8-ary hierarchical

* tree or octree. Each node represents a cubical section of

the universe and contains a property value associated with

*-- the cube. In its simplest form, the property has one of 3

values. If the space is completely occupied by the object,

" the node has the value F (for "full"). If completely

disjoint, the value is E (for "empty"). If-neither occupied

nor disjoint (at least part of the object's surface is within

the cube) it has the value P (for "partially occupied"). The

property value is often loosely used as a node qualifier.

For example, a "P node" is a node with a property value of P.

The 8 octants of the cube represented by a node are, in

turn, represented by the node's 8 children. An octree is

L hierarchical in that the children, taken together, represent

23



exactaly the same space as the parent.

The correspondence between octant and child number is

defined in 2.1 along with the vertex labeling convention. A

sample object and the universe are shown in 2.2(a). In

2.2(b) the corresponding octree is presented. The root node

at level 0 represents the entire universe and is given the

value P. At level 1, of the 8 octants of the universe, 6 are

empty and given E values. Two are partially occupied and are

given P values. At level 2, the three solid cubes forming

the object result in three F nodes. The node addresses are

shown below the nodes.

E and F nodes represent homogeneous sections of space.

There is no need for further subdivision and they are,

therefore, leaf nodes. The space represented by a P node is

not homogeneous. Lower level nodes are needed to resolve the

object. P nodes are thus branch nodes.

This scheme can be applied over any number of

dimensions. A 1-D hierarchical binary tree is a bitree. In

2-D, it is a ouadtree, in 3-D, an octree -and in 4-D, a

hexadecatree.

The segments of space represented by nodes are object

elmnts or obels• They are object elements even if disjoint

from the object (E nodes). Obels are distinguished from

spatial enumeration voxels because they are not uniform in

size and not necessarily three-dimensional. An obel is a

section of N-dimensional space whereas the node representing

24
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K- :! it is an element of a data structure but they are generally

considered to be synonymous.

Trees as used here should not be confused with the

non-hierarchical tree structures used in data processing to

maintain items in a sorted format. Adding to the confusion

is the fact that such structures have also been called "quad

trees" by Finkel and Bentley [201 when representing data

items with a double index.

In advanced applications additional properties such as

color or texture values, material type, function, density,

surface normals, thermal conductivity, etc. are simply

attached to F nodes and possibly P nodes.

When a real object is converted to octree format, branch

nodes at the lowest level must be given a terminal value.

This could be E or F if the obel is less than or greater than

- half occupied, respectively. If interference detection is

E involved, the worst case situation is usually assumed, in

which case they are given the value F.

If all.of the children of a branch node are terminal

with the same property value, the children are unnecessary.

They should be eliminated and the parent converted to a leaf

node containing the child property. If a tree contains no

such nodes it is a reduced or trimmed tree.

Unreduced trees are sometimes created during algorithm

operation. They are legal objects and are correctly

processed by most algorithms but cause inefficiency.
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Versions of algorithms that generate trees in a depth-first

sequence typically eliminate unnecessary nodes during

operation. The output is a reduced tree. Otherwise a

separate reduction pass through the tree is usually

performed. -

In specific applications an additional terminal node

type, a tolerance node, is used. In a material removal

operation they represent the tolerance object. This is the

space within the tolerance of the surface of the minimum

desired object which can be optionally removed. Tolerance

nodes are handled in a special manner by processing

algorithms. They can be used as E nodes to obtain the

minimum object, as F nodes for the maximum object or locally -

converted to whichever would result in the greater node

reduction for the minimum storage object (assuming tolerance

information no longer needed).

It should be noted that the location of any obel in the

universe is known exactly. The limited precision of an

object as a~function of tree-level applies to the location of

the surface of the object within an obel.

The node address identifies a particular node and also

locates the section of space represented by the node. In a

l-D tree it is a binary string. The number of bits is equal

to the level of the node. The value is the number of the

section of the l-D universe occupied by the node, numbered

from 0 at the origin to 2n~l where n is the level. In 2-D,
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the address will be a string of single digit quaternary

numbers and in 3-D, octal numbers. The section of a higher P

order universe can be determined by independently considering

the individual bit for each dimension in the child number

values. On occasion a node is identified by its level and

*" the decimal equivalent of the binary value of its address

.string.

A point can be determined to be interior or exterior in

log time by traversing from the root to a leaf node. The

* child containing the point is selected at each level. For

points on a face, edge or vertex of an obel, two, four or

eight leaves may need to be examined, respectively.

2.3 Node Requirements

The number of nodes required to represent an object is a

function of the size and shape of the object, its position

and orientation when digitized, the level of resolution, etc.

An upper limit is set, however, by object-surface area and

the resolution of the object. The following is similar to

the proof presented by Hunter and Steiglitz [29] showing the

number of nodes required for a 2-D quadtree object to be on

the order of the perimeter of the object.

Assertion 2.1: For a representable 3-D connected

L object, the number of nodes required for octree

representation is on the order of the product of the surface
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area of the object and the inverse of the square of the

resolution. I

Proof: A function g(n) is defined to be on the order of

f(n), or O(f(n)), if there exists a constant c such that g(n)

<= cf(n) for all but some finite (possibly empty) set of

non-negative values of n.

Consider a 3-D universe defined to level m. Without

loss of generality, the volume of the universe is defined to

be 1. Resolution at level n will be defined as the edge

size, e, of an obel at that level or e=l/2n. The resolution

of the object, r, is the edge size at the lowest level or

r=l/2m.

A representable object is an object that can be

represented as a collection of obels. Consider the minimum

surface object which touches or intersects 8 obels at level n

and continues on tc touch a ninth as shown in Figure 2.3(a).

As noted in 2.3(b), it touches or intersects the 8 obels at

and around the common vertex at which all 8 touch and

continues along the entire-length of an edge. It will be a

linear run of minimum-level obels for a distance e and has a

surface area of 4re+2r' as shown in Figure 2.4. For an

object to actually intersect all 9, it must be larger than

this and have a larger surface area.

Let S be the surface of an object and let k be the

number of cubes at level n which could be enclosed by the

object or intersected by its surface. In a worst case

30
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(a) Set of 8 Obels Plus Ninth

Common Vertex of 8 Obels

"IAbject Touches Face
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Ue

• I /

(b) Object Touches 8 Obels at Common Vertex and 9th Obel

Figure 2.3 Minimum-Surface Representable Object which Touches
9 Obels
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situation, the surface area would cover a maximum-length

linear run of minimum-level obels. This sets an upper bound

on the number of enclosed or intersected obels at level n:

k < 8(S/(4re+2r 2 )+l)

The 1 accounts for (actually, more than accounts for)

the four obels which could be intersected along with obel 9

at the far end of the run. Since r2 is positive, its removal

- -from the denominator will preserve the inequality:

k < 8(S/4re+l) = 2S/re+8

The value of k is the number of F and P nodes at a

level. To place an upper limit on the total number of nodes

at level n, it will be assumed that each will have seven

E-valued siblings. An upper limit on the node count at a

..level will thus be 8k.

Let C be the total number of nodes (over all levels)

required to represent an object:

m
- -- C < (8)SUM(2S/re+8)

n=0

m m
C < (16S/r)SUM(2n) + 64(SUM(1)

n-0 n-0

C < (16S/r) (2m+l-l)+64(m+l) = (32S/r)2m-16S/r+64m+64

C < 32Sr-16Sr-1 +64m+64 or C is O(Sr - 2

O.E.D.
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2.4 Complexity Metric

An important item that is generally lacking in the field

of 3-D solid modeling is a measure of object complexity. It

is difficult to study a situation analytically when

quantitative measures are not available. Intuitively, the

measure of the complexity of an object should in some sense

be related to the amount of information required to represent

the object.

The measure of object complexity used here is the number

of nodes in its octree 1401. This is an extension of the

measure proposed by Tanimoto for binary images (781-.

In the remainder of this report the symbol "C" will be

reserved to represent the node count (any type) in an

object's tree. The value of C is the sum of the number of .

branch nodes, B, and leaf nodes, L. Because each branch node

has 2 children, and each node (except the root) has a branch

node parent, the following relationships hold:

C = B--+ L = B(2N) + 1 (2-1)

B - (C-1)2 - N = L(2-NC (2-2)

L = C-(C-I)2 - = (1-2-')C+2 N - (l-2-)c1 (2-3)

A tabulation by N is:
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1-D 2-D 3-D 4-D

* B LC/2J LC/4J Lc/8J Lc/l6J

L rC/21 r3c/41 r7C/81 r15c/161

Within the count of leaf nodes, the number of nodes with

a value of E (or F) can range from 1 to L-1.

For mathematically simple shapes, the octree C value may

be much larger than some object complexity measure which

could be defined for a CSG or B-Rep scheme. This

disadvantage may be offset by the following: (1) as object

complexity increases, the CSG or B-Rep value may approach or

exceed (in some sense) the octree C value, and (2) many

operations (set operations, for example) exhibit linear

growth using octree methods (because of spatial pre-sorting)

* but quadratic growth using CSG and B-Rep.

S.- Often the number of calculations required within an

algorithm is proportional to the C value for an input or

* .i output object. Depending on the algorithm and the situation,

such a tree (or an intermediate internal tree) may not be

reduced. The C value in such a case is the complexity of the

tree structure used and may be larger than the reduced C

value. On the other hand, because of the hierarchical nature

of the octree, many algorithms require only a subset of the

input nodes. In such situations processing is proportional

to the actual number of nodes accessed.
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2.5 Storage Requirements

A minimum usable scheme requires two types of data items

per node, a property value and pointers to its children (if a

branch node). Additional data items which could be used are

parent pointers, multiple property values, average subtree

properties, sibling pointers, object feature pointers,

pointers into application data structures, etc.

Normally a two-bit field is used to encode the three

node values (E, F and P) requiring 2C bits or C/4 bytes for

an object. A saving of between about 20% and 44% can be

realized by allowing for a single-bit value [43].

Conceptually, each branch node of an octree has 8

storage fields for child pointers. For implementation,

however, a single location will suffice because it is a

complete tree. The children can be located in blocks of 8.

A single pointer to the block will uniquely locate each

child. The address of a particular child is simply the sum

of the pointer and its child-number (0 to 7); In Figure 2.5

a single word per node (4 bytes/word) holds both the value

field and pointer field for the object from Figure 2.2. The

pointer field for leaf nodes could be used for the storage of

additional properties.

Memory requirements can be substantially reduced if node

storage is sequentially allocated. Using a heap-like storage

format, the position of a value in a string indicates its
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tree address. Two bits per node (or less) is sufficient.

The allocation can be breadth-first or depth-first. The

major disadvantage is that, similar to a magnetic tape, all

earlier nodes must be read before a desired node can be

located.

Parent pointers are probably not necessary because in

any real application the number of levels is limited. With a

32-level octree, for example, objects could be represented to

a resolution of 0.001 inch in a universe enclosing 311,482.8

cubic miles. In such a situation, depth-first traversal

algorithms could keep parent pointers in a small stack.

In some applications subtrees can be shared within an

object or between objects. Pointers are simply allowed to

point to the same node (root of the shared subtree). This

may, however, complicate object modification and deletion.

2.6 Expected Performance

A preliminary analysis of the viability-of a real-time

solid modeling system based on octree encoding method will be

attempted by relating the value of C to the size of the

active workspace and by then speculating on the performance - p

of specialized hardware processors.

An important statistic when analyzing the number of

nodes required to represent an object is the average ratio of

branch children to leaf children. It would be desirable to
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calculate an expected value for the number of the children of

a node through which the surface of an object would pass,

given that the surface passes through the parent node. This

number of children will correspond to the number of branch

nodes. Nodes not intersected by the surface of the object

n are completely interior or exterior to the object and will be

leaf nodes.

It will first be assumed that the object surfaces

cutting the obels are planar. This becomes true even for

sculptured surfaces as the obel size becomes very small

relative to surface curvature.

* . A 2-D obel is shown in Figure 2.6(a) along with an edge

of the object. Depending on the slope of the intersecting

* edge, there will be at least one diagonal (segment 1 to 2 in

this case) intersecting the edge. Figure 2.6(b) shows the

four children and their diagonal lines. Note that the length

* Iof a child diagonal is exactly one-half the length of the

parent diagonal. Since they are all parallel, if the object

S-.- edge can intersect the parent diagonal at any random

location, it is expected that any particular child will have

a 0.5 probability of intersecting the edge. The reasoning is

easily extended into 3-D with the same results. Thus, from

this analysis, half of the child nodes can be expected to be

branch nodes.

In 3-D, an average of four of the eight children of a

branch node would thus be expected to be branch nodes. The
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number of branch nodes at level i would be 4i. The total

number of nodes at a level must be twice this to account for

the leaf nodes except for i=0 which has a single branch node

(the root). The expected value of C is thus the summation of
S

-- the nodes for each level or:

C = SUM (2(4i ))-I = 2((4n+I-1)/3)-l
i=O

- (2 /3 )4 n+i-5 /3 = ( 2 / 3 ) 4 n+i- (2-4)

where n is the lowest level.

The growth of C by a factor of 4 with each additional

level is consistent with the above result showing C to be

related to the inverse of the square of the resolution.

It should first be noted that the above rate of node

growth is expected only within a section of the universe of

size comparable to the size of the object. For a small

object within a large universe the node count would be

expected to increase by a constant value per level until the

obels were of approximately the same size as the object or

smaller.

In Table 2.1 a number of items have been tabulated as a

function of the number of levels in the universe (assuming

the whole universe is the active workspace). The second

column is the level number of the lowest level. Column 3 is

* the resolution of the universe. In a universe with 11
1 levels, for example, the edge of the smallest obel is 1/1024
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Lowest Resolution Nodes Total Storage 0
Levels Level (U part in) Voxels (level N) Nodes (bytes)
-------------------------------------------------

1 011111

2 1 2 8 8 9 3

3 2 4 64 32 41 11

4 3 8 512 128 169 43

5 4 16 4K 512 681 171

6 5 32 32K 2K 2.7K 683

7 6 64 256K 8K 10.6K 2.7K

8 7 128 2M 32K 42.6K 10.7K

9 8 256 16M 128K 171K 42.7K

10 9 512 128M 512K 683K 171K

11 10 1K IG 2M 2.7M 683K

12 11 2K 8G 8m 10.7M 2.7M

13 12 4K 64G 32M 42.7M 10.7M

14 13 8K 512G 128M 171M' 42.7M

15 14 16K 4T 512M 683M 171M

16 15 32K 32T 2G -2.7G 683M

Table 2.1 -Tabulation of Resolution and Expected Node Count
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of the edge of the universe. The next column lists the

number of voxels (lowest-level obels) in the universe. This

is the number of storage locations required in a spatial

enumeration representation.

-- The fifth column lists the expected number of nodes at 5

the lowest level assuming that one-half of the children of
.-." branch nodes are also branch nodes.

The sixth column is the accumulated number of nodes (C). -

It should be emphasized that this value is a rough estimate

based on simplistic assumptions. The object must be of

comparable size as the universe. In a much larger universe,

the C values can be thought of as applying to objects encoded

to a resolution relative to the object of approximately the

value given in the third column. Also, uniform resolution is

not required over the entire surface of an object. Given a

constant value of C, lower resolution over some sections will

.. allow higher resolution in other sections.

The last column is the storage requirement for the

object, sequentially allocated at 2 bits/node.

Given this information, what level of performance can be

expected from a specialized octree processor? It will be

-: assumed that a single unit could process a node in 50 nsec.

to 100 nsec., depending on the algorithm and function. If 30

- complete operations per second are required for real-time

operation, an object with a C value between 325K and 650K
L

nodes could be handled by a single processor. According to
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the table# this corresponds to an object defined over a

section of the universe of a size between 2563 and 5122.

Based on this admittedly crude analysis, for algorithms which

could be operated in parallel such as display, an 8-processor-

system would seem to be able easily to handle objects with an

average resolution of 1 part in 1024 in each dimension at

real-time rates. This assumes a single object in a-

worst-case situation Call nodes accessed). Such a system

would seem to be sufficiently powerful for most interactive

situations. More complex situations could be handled at a

slower rate.

The overall growth of C with resolution places an upper

limit on object precision in any practical situation. In

many cases performance could be enhanced if high resolution

was maintained only on surfaces where it was actually needed.

Nevertheless, many applications require much greater

precision than would be practical for a simple octree system.

To accommodate such situations, a dual data structure

approach is envisioned. -A specialized -data structure

*tailored for a specific application and its functional

requirements would be used in conjunction with a general

purpose octree-i,'..ed system. This latter section would

handle interactive geometric and geometry-related functions

such as object manipulation, analysis and display.

Items in the application data structure would be-

relatively permanent whereas the octree data could be more or
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less transient. This is somewhat analogous to the relation

Snbetween a conventional 2-D geometric data base and the frame

buffer memory of a raster graphics display. The description

of a circle in the data base may be an actual part of a

design while its representation in the frame buffer memory

would be temporary data generated to fulfill a specific need

-* such as visualization by the user.

Of course, frame buffer type data may be made part of

* the application data base. This could include the

digitization of a real-world image or perhaps a scene that

would be difficult or very time-consuming to recreate. In

like manner, octrees acquired from CT scanners or the final

results of a design session could be retained in the
application data base in octree format.

* " The overall strategy is as follows. Objects or parts of

objects not maintained in octree format are converted from

user format beginning at the root and continuing down as

needed by the currently running processors on a demand basis.

In practice,. all items involved in a user session are kept in

octree format to some modest depth. This would typically be

the local depth at which each obel would contain only one or

very few primitives from the application data base. This

- corresponds to the locally optimal grid size in the

variable-grid technique of Franklin [21].

Sufficient information is kept with the current leaf

nodes quickly to generate the subtrees when needed. They are
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soon discarded when their usefulness has passed.

What is to prevent the generation of all nodes to a low ..

level whenever a user makes a request? The answer is to

develop algorithms that require computation (request nodes)

in a quantity relate6 (in some sense) to the complexity of

the immediate situation rather than the number of and

complexity of all objects involved. In interference

detection, for example, the number of nodes examined could be

a function of the nearness of the objects. In hidden-surface

display, the computation could be related to the actual

complexity of the scene generated. The development of such

algorithms was a major part of this research.
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CHAPTER 3

OCTREE GENERATION

In addition to octree generation, an objective of this

chapter is to begin developing a body of "tools" to be

employed by algorithm& for performing sub-functions within

the implementation constraints (simple arithmetic, easy VLSI

implementation, etc.). This will be a "bag of tricks" from

which specific solutions will be drawn as the need arises.

These tools perform specific, not general, functions but

* .will, hopefully, be broadly useful over many algorithms.

Lower-level tools will be combined to form higher-level ones

Uto implement more sophisticated functions. At the lowest

level, tools are the simple arithmetic operators. To the

system implementor they correspond to specific hardware

* subsystems to be used in the construction of special-purpose

hardware processors.

In order to motivate the tool development, it will be

placed within the context of solutions to increasingly

difficult modeling system functions. In most cases,

solutions to the 2-D (or l-D) problem will be presented first

for clarity, followed by the extension to 3-D.

SL
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3.1 Algorithm Considerations

Many factors were considered during algorithm design and

development. A few of the major ones will now be discussed.

The mathematical operations that algorithms can employ

are severely restricted because of speed, cost,

implementation and simplicity considerations. The permitted

("legal") operations are integer addition andsubtraction,

magnitude comparison, shifts, and data movements such as

LOAD, STORE, stack PUSH, stack POP, queue INSERT, and queue

DELETE. These legal operations form a set called simple

arithmetic.

Solid modeling.functions can still be performed, in

spite of these restrictions, because of the design of the

data structure. In almost all cases where a product (or

quotient) is needed, one of the factors is a power of 2. The

desired result can thus be generated by the process of

shifting.

Two phases of algorithm-operation are -defined: setup

and run. During the setup phase, a small number of

unrestricted computations are allowed for processing user

requests. During the run phase, the requested solid modeling -

function is performed over the octree objects. Only simple

arithmetic is allowed. In mass property measurement, an

isolated multiplication or division may be needed to compute

an intermediate or final property value.
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During algorithm design, maximum advantage was taken of

I! the more or less standard techniques that have proved to

enhance performance. This includes extensive use of

parallelism and pipelining, avoidance of iteration, looping

or unbounded situations, and so on. The classical

computation-versus-memory tradeoff was generally decided in

* favor of extensive use of memory.

For most of the algorithms, two catagories of tree

traversal sequences, depth-first and breadth-first, are

possible. They correspond to two strategies for attacking

problems. A depth-first algorithm generally traverses a tree

downward from parent to child, returning to the parent when

-iall lower nodes have been processed. Breadth-first traversal

processes all nodes at one level before working the next

lower level.

Depth-firSt traversal tends to be used when local

information is required whereas breadth-first is employed

when global information is needed. Depth-first operations

typically use a stack, either directly or via reentrant code,

to maintain tree location. Breadth-first information is

passed from one level to the next in a queue.
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3.2 Octree Generators

It is expected that high-speed conversion from various

high-level application formats into octrees will be required.

Perhaps the most obvious method for this is the brute force

use of spatial enumeration. A full tree is first constructed

with all possible leaf nodes at the desired lowest level.

The input objects are processed with the leaf nodes

corresponding to the interior voxels marked F. As noted by

Requicha [56], conversion from any popular SMS format to

spatial enumeration is straightforward. The tree is then

simply reduced.

The obvious difficulty with this procedure is the huge -

memory requirement (O(8
n ) where n is the lowest level) and

the associated processing time (all leaves must be accessed

at least once).

A variation is to generate 2-D quadtrees representing

orthogonal slices through the universe. They are converted

Fto an octree (voxels on a plane) and then ufnioned together.

All possible obels in the universe are still accessed but the

memory required may be substantially reduced. This method

was used to generate the medical octree objects from 2-D CT

images shown in Figures 7.2 and 7.3.

In some situations the bottom-up conversion methods of

Samet (68, 693 for quadtrees can be used. For the most

efficient cases, the computations can be proportional to
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object complexity. This runs counter, however, to the

general strategy of converting from application format to

octree format in a top-down manner on a demand basis. Better

methods are needed.

-- A proposed solution is the use of specialized software

or hardware processors called octree Qenerators. As shown in

Figure 3.1 these would be preloaded with the object

parameters. The user of the data (the octree processor)

would request node values. The generator maintains the state

of the traversal in an associated stack or queue.

From a complexity viewpoint, the efficiency of an octree

generator is a function of the false rate. This is the

fraction of nodes marked P that will have a value of E or F

after reduction. This is not considered to be an error

because the obel has not been incorrectly determined. The

calculation of the final value has simply been postponed,

requiring additional work.

If the false-P rate is zero, all nodes are correctly

determined the first time -and the tree is-identical to the

reduced tree. If the obel values can be determined in

constant time, the computations grow linearly with object

complexity (C). If, for a typical user request, only parts

of a tree are needed, computations could be expected to be

linear (in some sense) in the complexity of the specific

case.

Conceptually, an unsorted input object can be converted
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Node Request/Response

Octree Octree Stack
Processor Generator or

Queue

Preload
(Object Parameters and
Traversal Information)

Figure 3.1 Octree Generator
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into a sorted octree in linear time, rather than O(n log (n))

U or worse time, because a radix-type sort over a finite

- alphabet" (the obel locations) is involved [1]. The worse

than linear growth of typical sorting operations is caused

when comparisons between elements is required. None are

required here.

The basic octree generation operation is to compare a

test obel and the real object being converted. The result is

one of the three status values, E if Obel f Object = 0, F if

* Obel n Object = Obel, or P otherwise.

The octree generation strategy is as follows. Beginning

with the root node the values of test obels in the output

octree object are determined by comparison with the input

(real) object. A node in the octree is created with this

* value. In most situations of interest this can be performed

in constant time. E and F nodes are terminal and need no

longer be considered. P nodes are subdivided with the

"* corresponding children used as later test obels.

The first algorithm tool to be- deviloped is the

calculation of child vertex coordinates from the parent

- values. As shown in Figure 3.2 for 2-D, this is easily

accomplished by means of additions and shifts (divide by 2).

*- The 3-D or N-D equivalent is obvious.

The following sections discuss the conversion of convex

L objects. Conversion of concave objects is much more

difficult and less well understood. Suggested approaches are
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Figure 3.2 Calculation of Child Vertex Coordinates from Parent Values.
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3.3 Orthogonal Blocks

The development of object generation tools will begin

with a simple case, a 3-D block (rectangular parallelepiped)

%. with faces perpendicular to the major axes.

A typical case is illustrated in Figure 3.3. The

minimum and maximum coordinates in each dimension are noted.

Three test obels with the three status values are shown.

Because the bounding planes and axes are orthogonal, the

-.status determination can be decomposed into an independent

n comparison in each dimension. Determining of obel status is

straightforward.

The development and analysis of the orthogonal block

* generation algorithm is presented in (43]. It has a zero

false-P rate.

3.4 Convex--Obiects

The generation of octrees for convex objects is more

difficult than for blocks because the dimensions cannot, in

general, be analyzed independently. The basic low-level

operation is determining whether a particular vertex point of

a test obel is interior or exterior to the object. If the

object is a convex polyhedron, the surface is described by a
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Figure 3.3 Octree Generation for 3-D Orthogonal Block
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set of planar faces, each of the form:

Ax + ty + Cz + D 0 3-1)

-.i -Each plane divides the universe into two half-spaces.

The half-space containing the object will be called the

positive half-space; the other is the negative half-space.

For points not on the plane, (3-1) will evaluate to a

positive or negative value depending on the half-space.

A simple substitution of the coordinates of the vertex

point determines whether the location is on the plane or in

one of the half-spaces. Note that a positive evaluation

value does not necessarily indicate the positive half-space.

Also, a point in the positive half-space is not necessarily

* within the object. The face plane is the entire plane

whereas the face is a segment of the face plane.

Since multiplications are not allowed, the components of

i I(3-1) are calculated for obel vertices by averaging from the

parent components. A set of components for each vertex point

in each dimension for each plane would need to be maintained.

In 3-D this requires 24 values per plane.

Alternately, the signed perpendicular distance from the

vertices of the universe to the plane can be calculated from:

d - (Ax+By+Cz+D)/((AI+Bt+C2 ) (1/2)) (3-2)

The distance value for a new vertex in a child obel is

the average of the two parent vbrtices defining the edge

containing the new vertex. The sign of the distance

57



indicates the half-space. The new distances are calculated

as follows:

d = (DVAL(AND(CHILD,VERT))+DVAL(OR(CHILD,VERT)))/2 (3-3) -

where CHILD is the child number of the new obel, VERT is the

number of the desired vertex of the new obel and D_VAL(n) is

the distance of parent vertex number n. The AND and OR

functions perform bit-wise Boolean operations on the child

and vertex numbers in binary format.

For each plane, 8 values are used (one for each vertex).

In practice, only one distance value need be kept. The

remaining values can be generated by adding an offset from a

pre-computed table.

For a convex polyhedron, if a point is in the positive

. .half-space of all face planes, then it is interior to the

polyhedron. If it is in the negative half-plane of any face

plane, then it is exterior to the object. Otherwise, the

point lies on the surface of the object (on one or possibly

more faces). A surface point touches the object but is not

considered to be interior to the object.

Thus, for polyhedral objects, an obel vertex point can

V be determined to be interior," exterior or on the surface

using simple arithmetic without considering the location of

the faces on the face planes or the actual intersections of

face planes.

For convex objects defined by an analytic surface the
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location of the point relative to the object can often be

determined by evaluating the defining expression for the

surface.

- In 3-D, the most general second-degree equation is:

Ax +By+Cz+Dxy+Exz+Fyz+Gx+Hy+Iz+J=O (3-4)

Note that the terms have three formats, a constant times

a coordinate, a constant times the square of a coordinate and

a constant times the product of two different coordinates.

Generating the terms of the expression .for the vertices of a

child obel using simple arithmetic on parent values can be

accomplished as illustrated in Figure 3.4. In 3.4(a) Gx is

the product of coefficient G and the coordinate value for a

" * vertex (x). The value of Gx' is the product of G and a new

p
coordinate value x'), a vertex of one of the children. The

value of Gx' is desired as a simple function of Gx from the

parent. Because the distance value between the two

[-' coordinates (x'-x) is equal td an edge of an obel at that

level (e), the needed multiplication can be performed by

shifts (e is a power of 2). It is computed as follows:

Gx' - G(x+e) Gx+Ge Gx+G(2(m-n) )  (35)

where m is the level of the lowest level in the universe

(where e-l) and n is the level of the child obel. The first

term is the parent value and the second is a shift of the

constant G. Thus, a shift by m-n followed by an add

operation will be sufficient.
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Figure 3.4 Generation Terms for Child Obel from Parent Values
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In Figure 3.4(b) the value of Ax'2 is desired from Ax

and Ax'. The value of Ax' will be needed later and is

calculated as above. The Ax'" value can be evaluated by:

Ax, = A(x+e)2 = Ax2+2eAx+Ae 2

(m-n+1))x+ (2(m-n)
Ax'+(2 )Ax+A(2 (3-6)

Two shift operations and two adds are required in

addition to the shift and add to compute Ax'.

More sophisticated objects involving third-order

equations require Kx'' as shown in Figure 3.4(c). The Kx'

and Kx'' values are maintained as above with Kx'' calculated

as follows:

Kx's = K(x+e)* = Kx3+2eKx2+e2Kx+eKx'+2e2Kx+Ke3

= Kx3+(2 (m-n+l))Kx2+(22 (m-n))Kx+(2(m-n))Kx'

+(2 (rn-n)+1) )Kx+(23 (r-n))K (3-7)

Five additional shifts and adds are used for a total of

8 each.

Two cross-product terms are illustrated in Figure

* 3.4(d), Dx'y and Dx'y'. The first is tomputed from the

parent values of Dx, Dy and Dxy as follows:

Dx'y - D(x+e)y = Dxy+eDy - Dxy+(2 (mn))Dy (3-8)

A shift and an add are needed. The second is computed

by:

Dx'y' - D(x+e)(y+e) - Dxy+eDy+eDx+e'D
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=Dxy+(2(m-n) )Dy+(2(m-n))Dx+ (22 (ln) )D (3-9)

Three shifts and adds are needed.

Based on these tools, zero false-P algorithms for the

conversion of polyhedra and restricted objects defined

mathematically have been developed [43].
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CHAPTER 4

ANALYSIS AND MANIPULATION

4.1 Object Properties

Of the following methods for object property

determination, volume, surface area and separation of

S,.disjoint parts are 3-D extensions of published quadtree

techniques [65, 66, 74].

4.1.1 Volume

Volume is the sum over all levels of the product of the

F node count and obel volume (a power of 2) at each level.

If an error tolerance is allowed, a minimum and maximum

volume can be calculated breadth-first from the root. Only F

nodes are summed into the- minumum while-P nodes are also

summed into the maximum. When the average is within limits,

processing is terminated.
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4.1.2 Surface Area

Surface area is simply the sum of the areas of all

exterior obel faces (faces separating an E node and an F

node). F nodes may need to be subdivided (if a face touches
both E and F nodes).

4.1.3 Center of Mass

If a homogeneous object is divided into n disjoint -

regions having volumes Vl, V2 , ... Vn and centers of mass
UXlX 1" "1 ,  0.-. (xI  •0 n the"-

.1 o 1 x2,1X 2 ,n '  ** XN,n

object center of mass, (xx 2, ... xN) can be calculated as

follows:

n n
x. i SUM(Vjx i )/SUM(V.) (4-1)

j= 1 j=l -

For an octree object, the disjoint regions are the F

nodes. The centers are the obel centers and the volumes the

obel volumes (a power of 2).

If a tolerance is allowed, a minimum and maximum can be

computed during traversal.
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4.1.4 Moment of Inertia

The moment of inertia, I, is defined as follows:

n
SSUM(MiRi2) (4-2)
i=1

where Mi  is the mass of particle i and Ri  is the
1 

1

-. perpendicular distance to the axis of rotation.

For a homogeneous octree, the mass of an F node is

proportional to the volume (a power of 2). The distance

- - squared value is computed using simple arithmetic as shown in

the octree generation section, if the axis of rotation is (or

* has been made through rotation) parallel to a coordinate

system axis.

. T h The above formula assumes a point mass. Errors result

* if the center of a distributed mass is used. This is

corrected by employing the parallel-axis theorem. The number

of F nodes at a level is multiplied by the moment of inertia

for an F node (at that level) about a parallel axis through

* - the node center (a precomputed constant). The sum over all

levels is added to the result of (4-2) to determine the exact

value.
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4.1.5 Segmentation of Disjoint Parts
.4

The quadtree connected component labeling algorithm of

Samet [661 is easily extended into 3-D to separate disjoint

parts of an octree into multiple octrees.

4.1.6 Interior Voids

To obtain the number of interior voids the octree is

negated (see below) and segmented into disjoint parts. The

value is generally the number of parts minus one (the

exterior).

A space filling operation is performed if one or more of

the negated interior sections is unioned back into the

original object.

4.1.7 C.rrelatio

A measure of correlation between two objects is the

fraction of the containing volume having the same status (E

or F) in both objects. The containing volume is typically

the bounding box of the union of the objects. The

correlation can be expressed as follows:

(volume((A B) n BOX) + volume (A n B) )/volume (BOX) (4-3)
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where A and B are the objects and BOX is the bounding box.

4.2 Set O2erations

The set operations are the 'regularized" operators [791.

Conveniently, this is the normal result of the quadtree and

octree operations.

Algorithms to perform the set operations of union,

intersection and difference have been published for quadtrees

by Hunter and Steiglitz [291 and are directly extendable to

3-D octrees.

Computation is linear in object complexity (proportional

to the sum of the C values for the input trees). Known

algorithms for CSG and B-Rep are worse than quadratic because

of the combinatorial explosion of face comparisons to detect

new edges (see (28], for example).

The negation operation is performed by simply changing

all F nodes to E and vice versa. Objects are sectioned by

subtracting a "blanking object* (typically a half-space

defined by a plane).

Figure 4.1 is an example. The set operations of union,

intersection and difference are performed on objects A and B,

resulting in three new octree objects.
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(a) Object A (b) Object B

(c) AUB8 (d)A n B (e) 8-A

Figure 4.1 Example of Octree Set Operations
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4.3 Overlays

One of the most important tools employed within octree

algorithms is the overlay. From an implementation viewpoint

its importance would be difficult to overstate.

An overlay is a set of contiguous nodes at a single

level, drawn from an input tree, such that the space it

represents is guaranteed to enclose the space of an

associated obel, the target obel, from another tree. The

second tree is usually an output object being generated. By

examining the overlay, a decision (perhaps an interim

decision) can be made as to the status of the target obel.

For example, in 3-D an overlay containing a set of 8

obels all of which touch at a common point will always

completely enclose a randomly located target obel of the same

size or smaller if orthogonally oriented (not rotated). The

record for each overlay obel may contain a pointer to a node

N.. in the input tree or the status value of an implied node
N.°

taken from the terminal node ancestor.

The overlay can be thought of as a template containing a

number of obels which cover a section of space. Within an

overlay there is usually -a single obel in a fixed spatial

location (relative to the overlay) such that if the origin of

the target obel is within it, the target obel is covered by

the overlay. The shape of the overlay, the number of obels
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it contains, the level of its obels relative to the level of

the target obel, etc. depend on the specific algorithm. P
By maintaining a set of active neighbors, the overhead

of having pointers chasing through the tree to examine

neighboring nodes is greatly reduced. From a computational -

growth viewpoint the savings are not significant because the

expected value of the average traversal length required to

locate a neighbor is a constant (66]. From an implementation

viewpoint, however, the savings can be substantial because

fewer memory references are needed.

Operating under the self-imposed restriction of using

only simple arithmetic, the strategy in several of the

algorithms below is to set up an output tree and then proceed

to examine its obels for spatial interference with the input

tree or trees. A status value based on the status of

intersecting nodes is given to the output node.

Simple CSG systems perform an interference test by

mathematically comparing the test primitive to each primitive

in the object. The number of comparisons is equal to the

number of primitives in the object.

Because of the spatially pre-sorted nature of the

octree, it is not necessary to'check all nodes in the input

tree for interference. Only those which can possibly

intersect the target obel, i.e., those in its overlay, are

tested. Thus, the total number of tests needed to generate Ik

an output object is limited to the product of a fixed,
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usually small, number (the number of nodes in an overlay) and

the final value of C for the output tree (before reduction).

Advantage cannot be taken of this technique in most

current SMSs because the primitives are not and usually

cannot be spatially pre-sorted.

Several tools are needed to evaluate the status of the

target obel. First, the overlay obels actually intersecting

the target must be determined. This can be a difficult

problem, depending on the algorithm.

Second, a status value must be determined. If all

intersecting nodes have the value F, the target is given an F

value. The same is done for E. Otherwise, the target is

subdivided and each child processed in like manner.

" iThird, a sub-overlay must be generated for a specific

child of the target. Each sub-overlay is identical in

structure to the parent overlay with the new overlay obels

being drawn from the set of children of the overlay obels.

Sub-overlay generation begins by determining the origin

of the new target. Since it must be within a specific

overlay obel, the exact enclosing child of the overlay is

determined. The selection of the remaining sub-overlay obels

S-.: is fixed by the structure.
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4.4 Geometric Operations

For translation, scaling and rotation, the formal

procedures are in [391.

4.4.1 Translation

The translation algorithm converts an object and a

movement vector into a new tree representing the translated

object. The process begins by generating an augmented

overlay universe composed of the "old" universe containing

the original object and a number of empty universes put

together so that the "new" universe, which will contain the

translated object, is covered by the old universe. The

translation vector specifies the alignment.

Beginning with the root of the new universe, the new

tree is traversed and its node values generated by

simultaneously traversing the old tree using the overlay

technique outlined above. If a terminal node in the new tree

is generated, no descendants of that node need be considered.

If an ambiguity exists and the status cannot be resolved, a P

node is generated. Its children are produced in the same

manner.

The overlay obels can be at any level relative to the

target obel. The lower the level below the target, the more

numerous but more accurate the result (lower false-P rate).
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The translation algorithm presented here uses an overlay with

2N obels at the same level as the corresponding new obel.

N Figure 4.2(a) illustrates a I-D overlay. The target has

an edge size of e. The overlay is made up of two adjacent

obels of the same size from the old universe connected at the

overlay center. The offset value is the distance from the

local origin (lower end of target) to the overlay center. It

is limited to 0<=offset<e. The equivalent in 2-D is shown in

Figure 4.2(b). The 8 overlay cubes and the target cube for

3-D translation are illustrated in Figure 4.3.

The orthogonal block techniques from the object

generation sections above are used to determine intersection.

S-. .The target obel corresponds to the convex object and the

- overlay obels correspond to the test obels. One difference

is that the target obel does not remain fixed for all time.

*o-" It subdivides. This presents no problem because the

point-to-edge or point-to-plane distance values are easily

updated for target subdivision using the techniques for test

obel subdivision. The edges and faces -of target obel

-_ children are parallel to the parent edges and faces.

-;. A detailed description of the translation algorithm is

given in [39].

An example is presented in Figure 4.4. An object and

the six obels forming it are shown in 4.4(a) and 4.4 ',

respectively. The new object in 4.4(c) was created by

L. performing a translation in z by half the wi3th of an obel.
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(b) Object Obel s

(c) Translated Object

Figure 4.4 Example of Octree Translation
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Note that each end is now formed by four obels from the next

lower level.

4.4.2 Scaling

'. Scaling an object by a power of two in all dimensions is

accomplished by adding or deleting levels at the root. An

object is halved in each dimension by adding one level at the

top. The new root points to one branch node, the old root,

and 2N-I empty terminal nodes.

In like manner, selecting one of the first-level nodes

to be a new root doubles the size of everything within it.

For an arbitrary section of space, it is translated into a

n first-level obel and then expanded to fill the universe.

Objects can be expanded or reduced by any power of 2 by, in

- effect, repeated expansion or reduction.

. Scaling by a factor other than a power of 2 is

accomplished using an overlay scheme similar to that used for

- translation. The target obel, however, may be smaller than

the overlay in one or more dimensions. In addition, a single

°-i set of offset values cannot be used. The local offset vector

must be computed independently fo'r each child of the target

obel. A detailed description is presented in [39].

Figure 4.5 shows an object scaled by a factor of 1.75 in

the y direction. The original object is in 4.5(a) and the

new object in 4.5(b). In 4.5(c) the additional obels are
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(a) Object bels

(b) Scaled Object

(c) Obels of Scaled Object

Figure 4.5 Example of Octree Scaling
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, 'visible.

- 4.4.3 Rotation

Rotation by 90 degrees about an axis can be performed by

"" a simple reordering of the nodes in the tree. For an octree,

if the center of rotation is the center of the universe,

, rotation by 90, 180 or 270 degrees or reflection across a

-* plane through the center parallel to a face of the universe

or oriented at 45 degrees is accomplished by reordering or,

u within an algorithm, a change in the traversal sequence.

Figure 4.6 is an example of an object and two new

versions rotated by 90 degrees using this method.

For rotation about an arbitrary point, the object can be

translated to the center of the universe, rotated, and

translated back.

Rotation by an arbitrary angle is more difficult. In

2-D, the overlay arrangement for a 0 to 90 degree rotation is

shown in Figure 4.7. Nine.overlay obels are required. The

local origin of the target obel is always in overlay obel B.

Clearly, for 0 deg. to 90 deg. rotation, the target will be

* covered by the overlay in dimension 1. In dimension 2, the

maximum reach of the target is I + SQRT(2) which is less than

3, the height of the overlay. Coverage is thus guaranteed.

Again, the techniques from the object generation

sections are used to determine overlay obel intersection. A

p.7
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detailed description of the algorithm is given in (391.

For an arbitrary 3-D object rotation, three operations

could be performed using a slightly modified 2-D algorithm,

one for each axis. An even simpler method is to perform

multiple skew operations. Iftikhar [321 has proposed this

based on the 2-D work of Catmull and Smith (151. This

approach may be generally undesirable, however, because at

the lowest levels aliasing products are generated on the

object surface when nodes are forced to be terminal. The

object is essentially being redigitized from a previously

digitized object. This tends to corrupt the surface and is

compounded by the repeated operations that are required.

This is minimized by computing nodes to lower levels, by

performing operations in a single pass and by regenerating

instances of an object from the original octree model each

time it is moved or changed (rather than incremental movement

of a single object).

Because of this, 3-D rotation in one pass is preferred.

* This is accomplished by extending the 2-D scheme into 3-D by &

the use of a 4 by 4 by 4 overlay. As shown in (431, a 3 obel

per edge overlay is not sufficient.

Figure 4.8 is an example of rotation by an arbitrary

angle. The six-obel object from Figure 4.6 has been rotated

by an angle selected at random (28.7 degrees). In 4.8(a),

obels are forced to be terminal at the same level as the

obels in the original object. In the algorithm used, all P
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(a) same Level

(b) Level-i

(c) Level-2

(d) Level-3

Figure 4.8 Example of Octree Rotation by Arbitrary Angle (27.80)
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nodes at the lowest level are given the value F, causing an

enlargement of the object. In 4.8(b) through (d), -

increasingly lower levels are used, allowing a higher

precision result.

4.4.4 Concatenated Geometric Operations

Using homogeneous coordinates [48] any number of

sequential linear operations (x' = Alx + Bly + CI, y' = A2x +

B2y + C2) can be concatenated and reduced to a single matrix

of coefficients (3 by 3 for 2-D or 4 by 4 for 3-D). This, of

course, includes the geometric operations of translation,

scaling, rotation and skewing. The composite transformation

can then be performed in a single matrix multiplication. The

correlation can be expressed as follows for 2-D:

[A A20
[xI,yl,l] = Ex,y,l] B1 B2  (4-4)

C I C2 J

Reversing for the moment the direction of data flow in

an overlay operation (the target obel will now "generate" the

overlay), the above concatenated transformation will be

performed if a parallelogram-shaped target obel is used as

shown in Figure 4.9. The target universe is assumed to be of

unit edge length. The matrix coefficients determine its

location, orientation and shape.

The C coefficients specify the location of the origin of

the universe. The A coefficients determine the length and
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slope of the lower and upper edges relative to the overlay

whereas the B coefficients determine the left and right

edges. The original universe containing point (x,y) is shown

in Figure 4.10(a). In 4.10(b), the transformed x value is

shown. The C1 value gives the origin offset. The x value

specifies the fraction of the lower edge of the target

universe spanned between the origin and the projection of the

point on that edge. Since the projection of the edge on the

x' axis is A,, this displacement, when projected on the x'

axis is Alx. 

The value of y is similarly the projection on the left

edge which projects a distance of B1 on the x' axis. The x

component due to the value of y is thus shown to be Bly. The

value is the sum of the three components or x' = A1x + Bly +

CI. The value of y' is computed in like manner as y' = A2x +

B2Y + C2.

For a universe with a non-unit edge, the matrix

coefficients are simply multiplied by the edge value to

generate the target universe parameters.

The matrix product for concatenated linear

transformations in 3-D can be expressed as follows:

A1 A2 A 01
[x',y',z',l] - [x,y,z,l] BI B2 B3 0 (4-5)

C C2 C3 0
[D1 D D 1

The geometric values for the target obel used to perform

equivalent transformations are shown in Figure 4.11. 01!
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Returning to the original data flow from overlay to

target obel, the new obel is generated from the overlay when

it is deformed according to the inverse of the coefficient

matrix.

The distance values needed to determine overlap can be

updated using previous techniques because the edges and faces

" . of the children are parallel to those of the parent.

Mb -If the relative tree level difference between the target

.-- and overlay is fixed, the number and arrangement of overlay

obels cannot be fixed unless restrictions are placed on the

matrix coefficients. An alternate strategy is to fix the

overlay configuration and subdivide the target obel at

algorithm initialization until coverage is guaranteed.

*! If the shape of the target obel is generalized (not

restricted to a parallelogram) nonlinear transformations such

as perspective deformation can be performed [431.
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CHAPTER 5

INTERFERENCE ANALYSIS

5.1 Interference Detection

Interference detection as used in this section is the

detection of a situation in which the proposed insertion of a

-0new" 3-D object into a workspace at a specific location

would cause it to occupy space already occupied by an

existing "old" object or objects. It may be sufficient

simply to determine that an interference exists. In other

cases, the actual spatial interference 'object" may need to

be computed.

For a practical system, two primitive operations are

required, object insertion (including interference detection)

and object deletion. Additional operations could be defined.

An interference universe is maintained -in which large

numbers of objects can be inserted and deleted efficiently.

Since it can be assumed that some objects will be very

complex, it would be very desirable for the required

computations to be related to situation complexity, not

object complexity.

Conventional interference detection as performed by

existing SMSs takes the following form [801: A
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*n

)..i nOBJECT.)UNION (NEW-OBJECT n OBJECT (5-1)
i-i I

I where NEW-OBJECT is the object to be inserted, OBJECTi is the

i-th object already in the interference universe and n is the

number of objects.

* Clearly, such a procedure could require a processing

time proportional to the product of the complexity of the new

object and the complexity of all existing objects in the

universe.

For schemes such as CSG and B-Rep, the unioning of all

existing objects into a single object for testing would

probably not reduce the problem because most if not all of

the primitives would typically be retained. In any event, if

some method were used to reduce the primitive count, the

deletion problem would become more difficult. The subtree

corresponding to a particular object could no longer be

simply deleted.

The use of a binary tree to detect the intersection of

orthogonal rectangles has been reported by Bentley and Wood

[51. Briefly, a 1-D hierarchical "segment tree" is

:- maintained for the width of rectangles while the universe is

scanned in height. The sorted data format of the segment

• tree is shown to allow insertion and deletion in log time.

The spatially pre-sorted nature of the octree will now be

used to facilitate 3-D interference detection.

I. Two data structures are defined, an object table and an
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octree interference universe. The object table will be

indexed by object number, a transient number assigned to

objects. Table information will identify the object, point

to the tree location in memory, etc.

It will be assumed that all trees will be reduced.

Trees with false-Ps could be used with slightly modified

algorithms but efficiency would be reduced.

The interference universe must be configured such that

objects can be distinguished at the obel level.. Each node

maintains a list of. records. They contain the object numbers

r',MN -A

of interference objects having P or F nodes corresponding to

the interference universe node and associated information

such as tree pointers. P node records will be marked as -

ecs T or unexpanded. They are expanded if their children

are also contained in the interference universe. If their

children have not yet been added to the lists attached to

lower nodes in the interference universe, they are unexpanded

nodes.

Nodes of the new object, are inserted -in a generally

breadth-first traversal. The state of node insertion is

Ssaved in a queue. If an input P or F node is inserted into

an interference node containing no objects (the list is

empty), no interference can exist at this node or below. it

is not expanded into lower levels.

if an input P node hits an PF node or an input F node

hits a P node in the tree, an interference has been detected
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(all trees are reduced). If all nodes are P, they are

expanded. This continues until an intersection is found or

all potential interference nodes are expanded. The depth of

the descent and, therefore, thenumber of nodes expanded is

related to the nearness of the possible interference objects

over the surface of the input object.

Deletion is performed by traversing the object's octree

and deleting its records from the node lists.

A major problem is the expansion of memory to hold the

interference universe. It could expand to eventually

approach the sum of the C values for all objects. The vast

bulk of the nodes would have been expanded in an ad hoc

manner to detect specific close approaches; the probability

that most would ever be used again would generally be low.

Obviously a Ogarbage collectionu function is required to

delete unneeded interference nodes and their lists. From the

lowest levels, nodes would be deleted from the lists and the

parent entry changed from expanded to unexpanded. Assuming

node expansion is relatively costly in time,, and insertions

are not completely random in location, it would be

advantageous not to perform this operation after every

insertion. Spatially close inserts later may be able to take

advantage of earlier expansions. An asynchronous process
I~ii would perform the garbage collection based on depth and time

since last use, similar to a cache memory in a conventional

mainframe computer. User requests would, of course, take
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higher priority. Data base lockout (required to maintain

data integrity).would only occur for very short periods while

the children are deleted and the parent marked unexpanded.

The list search problem will now be considered. For

large numbers of objects, a considerable effort could be -

expended searching object lists attached to nodes for

expansion and deletion. This could add a term proportional

to the product of the number of objects and the number of

nodes processed, in the worst case.

Two steps are proposed. First, separate lists are

maintained for expanded nodes and unexpanded nodes. Second,

object lists are multiply-linked as shown in Figure 5.1(a).

Object records can be easily inserted, deleted and

transferred between lists. Since all unexpanded nodes must

be expanded in order to perform a test, no searching is

required for object insertion. They are expanded then

transferred to the expanded list.

The format of each object record is indicated in 5.1(a).

In addition to forward and backward pointers, fields are

provided for a child pointer and for a sibling/parent

pointer.

Use of the data structure is illustrated in the Figure

5.1(b) for the 1-D case. The child pointer locates the

record for the first child. The sibling/parent pointer

locates the next sibling in order (E nodes are not -.

represented) and eventually back to the parent.
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These pointers can be used for garbage collection.

First the data base is locked.. The lowest level, lowest Z71

numbered child is selected. It and its siblings are deleted.

The parent is then marked unexpanded and the data base

released.

For deletion, the object table entry for the object is

marked inactive. For each record processed, the table would A

be checked. If inactive, it would be ignored. In a

specialized processor, this could probably be performed

transparently with little loss of performance. An
m

asynchronous process would then proceed to delete the

object's records. When done, the object number is released

for future use.

For insertion, if only expanded nodes are allowed or if

no unexpanded nodes are encountered, the computations will be

proportional to the number of input nodes that required

processing. This number is related to situation complexity.

The worst case would require the processing of a number of

nodes equal to about C for the input object. The minimum

would require almost no computation. For example, inserting

a complex object into an empty octant of the universe would

require negligible work even if the other octants contained

objects of great complexity. If unexpanded nodes are

encountered, expansions equal to C times the number of

objects ci be ,ed to-obtain an upper bound.

The lcwest level at which nodes need be tested can be
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determined if no intersection is found. For two objects to

occupy some part of the same obel, they must be within

SQRT(3) times the edge size of the obel. Thus, the lowest

." possible level will be:

n 10g 2 (SORT(3)E/d) (5-2)

where E is the length of an edge of the universe and d is the

shortest distance between the two objects.

Based on the assumption of one-half branch nodes, the
nodes tetdwol4e n+l 1l

* "-'expected number of nodes tested would be (2/3)4  -...

Empty nodes are included because they are accessed, even if

not processed.

These upper bounds are only reasonable if all nodes must

be divided down to the lowest level, that is, if the closest

distance of approach to another object existed over the

entire surface of the object.

If the object surface area in the vicinity of the point

of closest approach is small and this distance is small

compared to the equivalent distance over the remainder of the

object, one"could expect that, below a certain level, few

branches would continue from one level to the next lower

level.

If no interference is found, no conclusion, can be drawn

concerning the minimum distance of separation. In fact, the

objects could be touching.

If a safety margin is needed around an object,
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region-growing techniques could be employed or two

interference universes could be maintained and tested, one

having a coordinate system offset relative to the other.

The technique can also be used with hexadecatrees for

kinematic analysis.

5.2 Swept Volume -

In applications such as the verification of NC

programming, collision avoidance and trajectory planning in

robotics systems, interference analysis involves the "object"

swept out by an object in motion.

Two algorithms have been developed for swept-volume

determination. The first is the "translation" swept-volume

algorithm. It generates the swept volume for an object

translated in space while maintained in a fixed orientation.

It is presented below. In the second, the "rotational"

swept-volume algorithm, the object is rotated in a fixed body

movement about a line in space parallel to an axis. It is

described in [431.

The translational swept-volume algorithm accepts an

octree and a curve in space (represented by a chain code)

then generates the swept octree object.
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- .'- 5.2.1 Convolution Formulation of Swept Volume

In image processing, a 2-D convolution summation [14,

60] such as the following is often employed:

k m
v(k,m) = SUM SUM u(i,j)h(k-i,m-j) (5-3)

i=O j=0

where u is the input, h is the 2-D weighting function and v

is the output.

In (5-3) h(k-i,m-j) is the weight at the location k-i

units in the negative x direction and m-j units in the

negative y direction from the output point being considered,

"-- .(k,m). This corresponds to a point i,j from the origin and

. is therefore multiplied by u(i,j).

The translational swept-volume operation can be

formulated in terms of a convolution operation. Again for

simplicity, 2-D swept areas rather than 3-D volumes will be

n considered. The result is easily applied to 3 or more

dimensions.

First the non-hierarchical situation will be examined.

The input is a binary 2-D object contained in a spatial

enumeration array (not a hierarchical tree). An E value

indicates exterior and an F value, interior. The weighting

sequence will be a similar array with an F value at each

- location that would be visited by the square at location 0,0

if stepped along the sweep path. All other weightings are

zero.
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A ;7.

The (5-3) convolution formulation is rooted in the 1-D

processing of functions of time. The weighting sequence is

defined from time 0 in a positive time direction. In two and

three dimensions, such directional distinctions seldom exist.

In order to be consistent with previous usage, universe

coordinate values will be kept positive. This requires that

the above sense of direction be reversed. Objects will be

swept along a path that is entirely within the quadrant

containing negative coordinates relative to the origin. The

index values i and j will thus run from k and m,

respectively, to n, the highest array index. In a real

system, of course, the summation index would be expanded to

handle both positive and negative coordinates.

In the swept-area case, the sum from (5-3) indicate the

number of steps along the path for which the location was

occupied but is typically a useless piece of information. A

single occupancy of the location is sufficient. Thus, the

binary input and binary weighting functions can be processed

by the following version of convolution .(F = TRUE, E =

FALSE):

n nv(k,m) - OR OR AND(u(i,j),h(k-i,m-j)) (5-4)

i=k j=m

In operation, the calculation can be terminated when the

first true value (occupancy) has been found.
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-.5.2.2 Example of Swept Volume (Non-Hierarchical)

An example will serve to clarify the concept. In Figure

5.2(a) a translation curve represented by a 4-direction chain

code [24] is shown. It is independent of location but for

, :convenience is anchored to the origin of the coordinate

system. A T-shaped object is shown in 5.2(b). The swept

area of the object for the sample sweep curve is shown in

5.2(c). The origin translation vectors are shown.

In Figure 5.3(a) the swept area resulting from a single

solid square at the origin swept through the curve from

Figure 5.2(a) is shown. It can be interpreted as the impulse

response or weighting pattern for the sweep. It represents

1. the response for (result of) a solid square occuring at the

origin or h(i,j) in (5-4).

In Figure 5.3(b) the weighting pattern is reversed to

form h(-i,-j). This is the pattern which will now be

translated in the positive direction by km in (5-4) to form

- h(k-i,m-j). In Figure 5.3(c) the output- array v(k,m) is

shown. A particular square, v(1,2), is being evaluated. In

5.3(d), the weighting pattern is translated to place the

origin over u(l,2). If solid squares for h and v are found

for the same location, the value of v(l,2) is made solid.

The AND operation at u(5,4) and h(-4,-2) is noted.
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5.2.3 Hierarchical Swept Volume

The above demonstrates that a translational swept area

(or volume in 3-D) can be generated using a form of

convolution but the technique cannot be directly applied to -

octree objects. In order to allow this, a Rhierarchical

convolution' summation was developed (see E12] for a similar

technique applied to image processing). The weighting

information is contained in an octree-like tree structure. .

The nodes contain weights for input obels just as the

previous weighting function contained weights to be applied

to locations in the input array.

Assume that an obel in an input octree object is being

compared to an obel in a weighting tree (same level, same

location). The value domain of the input obel contains P as

well as the values empty (E) and solid (F) used above. As

with previous octree algorithms, the general strategy will be

to make a final decision if possible or, if not possible,

defer to lower levels.

An "input/weighting node pair" or simply a 'pair" is a

set of two nodes at a common level, one from the input octree

and one from a weighting tree. The input node represents a

fixed obel in the input object's universe. The weighting

node contains the weighting information to be applied to the

input obel. Pairs defining a specific input/weighting
.i 4

evaluation are attached to nodes in the output tree being
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. -generated. An output node may have many attached pairs

awaiting evaluation.

If something solid contained within an input obel (an F

node descendant) "causes" part of the output obel being

evaluated to be solid (results in an F node descendant), it

is said to contribute to the output obel.

The operation of the algorithm can be described in

general terms as follows:

S-For each output obel beginning at the root, maintain a

list of input/weighting node pairs which could possibly

contribute to it (the output obel). Starting at the root

... level, evaluate the pairs, eliminating non-contributing

ones (those which evaluate to a value of E), passing

. appropriately ordered child pairs to the children of the

output obel and their adjacent obel(s) (if not previously

determined to be solid). Operation is terminated at the

* level of the chain code input.

Because of its hierarchical nature, the- weighting tree

cannot contain only binary values. Each node will contain

one of four values with special meaning:

.|

105



q .....

Value Meaning

E Nothing within corresponding input obel could
contribute to output obel being evaluated.

P Some solid part of input obel (F node descendant)
could possibly contribute to output obel.

F If input obel. is not E (it's P or F) the output -
obel is solid (F).

P2 If input obel is F then output obel is solid (F).
If input obel is P, some part of input obel could
possibly contribute to output obel.

The weighting tree values are labeled in similar fashion

to standard octree nodes for convenience and clarity. It is

a special-purpose tree, however, and is only defined and

meaningful within the context of this specific algorithm.

An input/weighting node pair is evaluated according to

the following rules:

Rule Input Node Weighting Node Evaluation
No. (u) (h) (v-u/h)

1 E (any) E 15
2 (any) E E
3 P P P

' 4 F P P
5 P F F
6 F .FP
7 P P2 P
8 F P2 F

The symbol ./w will be used to indicate an evaluation

according to the above rules (pair evaluation - input node

value/weighting node value).

For a particular output node, perhaps many pairs will be

evaluated. If a pair evaluates to a value of E, the pair is
i simply deleted. If evaluated as F, the output obel is marked
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*F. If none evaluate to Fe the output is P.' Both F and P

Uevaluated pairs are subdivided into multiple pairs for

distribution to the children (if any) of the output node and

the neighbors of the children (if not already F).

The child pair distribution pattern for a negative going

sweep in 1-D is shown in Figure 5.4. Each node has two

children. Each input/weighting node pair thus has four child

pairs numbered 0 to 3. Two are passed down to child 0 of the

* node. One is passed to child I of the node and one is passed

to child 1 of the neighbor node in the negative direction.

Each child node thus receives about twice as many pairs as

its parent, depending on pair elimination and the pair count

of the parent's neighbor.

S This pattern of child pair transfer is explained by

considering the children of a pair. The two children of the

input node will be u(i) and u(i+l). The two children of the

MW weighting node will be h(k-i) and h(k-(i+l)). There are four

combinations. Of particular interest is the combination of

the earlier input with the later response value (child- pair

1). It cannot contribute -to the output children of the

current output node. It forms one of the terms for the

evaluation of an output node earlier in the sequence of

output nodes (ie.r smaller coordinate value than the output

being evaluated by the original pair in the parent). The

four pairs belong in evaluations as follows:
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-- No. Child Pair Output Evaluation Index

0 u(i)/h(k-i) v(k) i
1 ui)/h(k- i+l)) v(k-1) i
2 u(i+l)/h (k-i) v(k+l) i+1
3 u(i+l)/h(k-(i+l)) v(k) i+l

Note that output evaluations 0, 2 and 3 are for children

of the original pair.

5.2.4 Weighting Tree Generation

The weighting tree is generated by sweeping test obels

along the sweep curve. The process begins by placing at

location 0,0 in an empty universe a single solid obel at

-. -level n, the level of the chain code represention of the

curve. Conceptually, it is then swept using the standard

U translation and union algorithm along the curve but in the

reverse direction (to account for the negative progression of

the index for the weighting sequence). In practice, more

efficient methods can be used.

A second copy is made of the sweep of the single test

obel. This- is the lowest level of the weighting tree. A

third object is created by sweeping a test obel at level n-i

through the curve beginning, again, at the origin. Its nodes
Ni "

are then compared to the level n nodes in the original tree

to determine the node values for the level n-i nodes in the

. weighting tree. The following table lists the value

generation rules:
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Swept Test Obel --- Output
Rule Status Descendant Status Weighting Node
No. (current level) (lower levels) (current level)

1 E (any) E
2 P all E E
3 P not all E P
4 F all F F
5 F not all F P2

The process is then repeated for level n-2 and above, up to

the root at level 0. The resulting tree can then be reduced

using the standard procedure. The P2 value is simply

considered to be a P value.

The above rules can be analyzed by considering the

situations individually. If a node is empty, clearly its

descendants are also empty and nothing in the corresponding

input obel can contribute. It is given the value E. For a P

value, two cases exist. If the descendants are all E nodes,

this higher-resolution information indicates that no *. -

contribution is possible and an E value is given. If they

are not all E, the situation is ambiguous. The node is given

a P value and the evaluation will be continued at the next

lower level.*

The fourth and fifth rules handle the two cases where

the swept test obel has compl.etely enclosed the weighting

obel in question. If all the descendants are also F, the

output obel will evaluate to F if the input obel is F or if

any descendants (down to the level of the chain) is F (true

if input tree is reduced and input node has value of P).
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If not all the children are P, the information to be

conveyed into the convolution operation is the following. If

1 . the corresponding input obel is solid (F) at this level, then

*+ -. the output obel being evaluated is also solid. If not, the

result is ambiguous. The value P is given to the output and

the final decision is deferred to the lower levels. The

special value for such a weighting node is P2.

-5.2.5 Example of Swept Volume (Hierarchical)

A -D sweep to the left will now be considered as an

example. All objects will be swept left by three steps in a

4-level universe. First the weighting tree is generated.

Figure 5.5(a) shows the result of sweeping a solid obel

located at the origin to the right by 3 steps (reverse of

curve direction) at the four levels. The test obel is solid

and the added swept distance is shaded. At level 3, the

-- , solid obel is swept 3, resulting in the value F for all the

children in the left half of.the universe. At level 2, the

swept distance extends into the right half. At level 1, the

solid object is the left half of the universe. It is stepped

by three level 3 units, covering all but one obel. At level

0, the test obel is the entire universe.

In Figure 5.5(b), the weighting tree is built up. At

-S level 3, it is given the values from the sweep set at level

3. At level 2, the two left obels are marked F based on rule
4q

...
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* (c) Weighting Tree h

Figure 5.5 Weighting Tree Generation

112



4. On the right, obel 2 is set to E based on rule 2 while 3

is set to E from rule 1. At level 1, node 0 becomes F from

rule 4. Node 1 becomes P from rule 3. It is later reduced

to a final value of E. The root is covered by rule 5,

becoming P2.

Figure 5.5(c) is the resulting reduced weighting tree.

Node labeling is as follows. Node f (m) is the node fromn

tree f at level n such that m is the decimal equivalent of

its address string.

An object consisting of segments 4 and 5 as illustrated

in Figure 5.6(a) will be swept. The object could, of course,

be any I-D object, including disjoint sections. The tree for

the object is in Figure 5.6(b).

p Figure 5.7 shows the steps as the algorithm proceeds.

The resulting output object can be expanded to almct:t twite

the size of the input universe. A second (empty) universe is

* added at level 0 on the negative side of the origin forming

"* an augmented universe.

*-. The positive universe at level 0 is- initialized by

attaching the pair containing the roots of the input and

K weighting trees (pair no. 1, P/P2). The pair is evaluated

according to rule 7, resulting in the value P. It is thus

continued into level 1 of the output universe according to

the subdivision rules. The four sets (pairs 2 to 5) are

noted at level 1 in Figure 5.7. All evaluate to E except

pair 4 (u1 (l)/hl(O)). It should be noted that even if all
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(a) Object to be Swept

F* E

(b) Input (u) Tree of Object
to be Swept

Figure 5.6 Object to be Swept
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pairs attached to an output node evaluate to E at this level,

that output node will not necessarily be E in the final tree.

An F value may be propagated in from a neighbor at a lower

level. The output node is given a P value and will reduce to

an E later if this fails to occur. A more sophisticated .

algorithm would check neighbor values first. If all are E,

no F could be transferred in. A final value of E could

safely be given.

At level 2, four sets are evaluated (pairs 6 to 9). The

first of the two pairs in the center (pair 6) evaluates to F,

determining a final output value of F for the node. The

second is not considered until child pairs are being

generated.

In a I-D single direction sweep, only one neighbor of

the children need be considered for child pair transfer. In

this case (left sweep) it is the neighbor child to the left.

For pair 7, an F/F evaluation is transfered to the left

neighbor on level 3 (pair 10). Pair 6 has no child pair to

propagate because it has evaluated to F and the neighbor to

the left has already evaluated to F.

The original sweep chain was defined at level 3 and the

process must be terminated here. Operation at lower levels

will cause erroneous results as pairs are carried into

neighbors.

The final output object is the new tree after reduction

as noted in Figure 5.7. It consists of the two F nodes at
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level 2 and the single F node at level 3. As a final check,

the original object is swept left using conventional step and

union operations, as shown at the bottom of the figure. The

results are identical.

5.2.6 An yis

For a generalized 1-D sweep in both directions, a

weighting tree extended in the negative direction is

required. The sets of pairs from the negative side would be

generated as above but with a mirrored propagation pattern.

. 2-D four sets of pairs are maintained and in 3-D, 8 sets.

One of the major applications of swept-volume techniques

is in collision avoidance. In such a situation the desired

end result is the spatial intersection of the swept volume

with other objects in the universe. The actual swept-volume

* object is a temporary artifact generated in the process.

Except in extreme situations, the vast bulk of the swept

object is not involved in a collision and is, in a sense,

wasted. If only the sections causing collision were

. calculated, perhaps substantial computational savings would

result.

In the non-hierarchical convolution approach to swept

* - volume represented by (5-4) this can be accomplished by

simply evaluating the convolution only for locations within

L potential collision objects in the universe. There is no
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need for evaluation to be performed on open space.

In the hierarchical approach, the situation is more

complicated because pairs existing in open space could be

transferred into a collision object at a lower level. It can

be noted, however, that no descendants of a pair will ever

extend beyond the space occupied by the immediate neighbors

of the parent. Thus, for an output node in empty space (in

the collision universe) if all its neighbors are also empty,

all its associated pairs can be deleted. Otherwise, the

child pairs are generated, but only for neighbors which are

not empty (in the collision universe) and have not previously

been determined to be completely occupied.

Most other octree operations involving two or more input

objects, such as set operations, are linear in object

complexity (a constant times the sum of the C valUes places

an upper bound on calculations). They typically perform

comparisons between objects over spatially identical sections

of the universe. Simultaneous traversal over the input trees

visits spatially identical obels because nodes with the same

address represent identical sections of space. A single set

of comparisons for each obel in the output tree is

sufficient.

In the swept volume algorithm, however, the weighting

tree does not represent absolute space. Weighting tree obels

represent space relative to the location of the output obel

being evaluated. Thus, it would be possible for every
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weighting tree node to be examined for each input tree node
i j(no pairs eliminated), in the worst case. Complexity is,

therefore, on the order of the product of the C value for the

input tree and the weighting tree. Because of pair

elimination, much better performance could be expected in

practice than this quadratic upper bound.

The swept-volume algorithm is easily extended for region

growing and region shrinking. The "response" to a solid obel

is an oversized or undersized solid obel. Such operations

are useful for generating fillets, in trajectory planning,

etc. Region shrinking can be used in a breadth-first

traversal to determine the point of closest approach between

two objects. The technique can also be modified slightly to

P perform cross correlation.

The swept volume algorithm can be viewed as an extension

of the overlay concept. Instead of an output obel having a

single overlay which determines its value, a series of

overlays (list of pairs) is employed. The input/weighting

node pairs specify not only the space in the immediate

. vicinity of the output obel but also spatially distant areas.

A second extension has been the use of a special-purpose tree

to specify the decision rules to be employed on a local

basis. Previous algorithms could rely on a single universal

--decision set.

VI
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CHAPTER 6

DISPLAY

The display algorithm accepts any number of input

octrees and a set of view parameters (3 view angles,

translation vector and a magnitude factor), and generates a

quadtree containing an orthographic projection image of the

objects, with shaded surfaces and hidden surfaces removed.

Anti-aliasing is an integral part of the algorithm.

A second property, pixel intensity, is added to F (and

possibly P) nodes in the output quadtree. The 2-D object

then becomes a gray-scale image rather than a binary image.

The pre-sorted nature of the octree comes into play when

generating a hidden surface view of one or more octree

objects. By selecting the proper depth-first tree traversal

sequence, the cubes corresponding to the visited nodes are

accessed in a "back-to-front" or "front-to-back" sequence

relative to the viewer.

This is demonstrated in Figure 6.1(a). From the

viewpoint shown, nothing contained in cube 7 can be hidden

from view by an object or part of an object in cubes 0

through 6. In like fashion, nothing in cube 6 can be hidden

by anything in cubes 0 to 5, and so on. If the sequence 7

through 0 is followed recursively, a front-to-back sequence

is generated. As shown in Figure 6.1(b) the first F cube is
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found by repeated selection of the highest numbered child.

Thus, a series of object parts is generated in which A

cubes in the sequence cannot be obscured by cubes later in

the sequence. This eliminates the combinatorial explosion

often encountered in hidden surface removal algorithms. No

terminal node is accessed or examined more than once.

The new display algorithm presented here makes use of a

front-to-back sequence. The visibility of each P node as

well as each F node encountered in the sequence is checked

against the parts of the image previously defined by earlier

F nodes. If completely obscured, the node and all its

children (if P) are discarded. Many hidden sections of the

object or objects are not accessed and do not add to the

computation. Thus the number of calculations required to

generate an image is related to the visual complexity of the

scene rather than the complexity of the objects.
P.

Two tree structures are involved. One is a segmentation

of object space (one or more input octrees) and the other, a

segmentation of view space (the output quadtree).

The cubes represented by the nodes of the octree are

projected on the display screen quadtree as shown in Figure

6.2. The projections consist of three 2-D four-sided

polygons as shown in Figure 6.3(a). The bounding box of the

polygon formed by the outer edges is also used as shown in

Figure 6.3(b). In order to avoid confusion in the discussion

to follow, the octree nodes and their projections will be
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K .:. called simply "nodes." The nodes of the quadtree and the

associated squares on the display screen will be called

"windows."

The basic strategy is to access nodes in the

front-to-back sequence and write them into the quadtree

representing the display screen. Previously undefined

windows enclosed by a node are given a corresponding

intensity value and marked inactive. The quadtree is

-, maintained in a reduced state during algorithm operation.

Each node accessed in the traversal (both branch and

L terminal) is checked for visual intersection with the

quadtree. This can be performed using only simple arithmetic

[431. If it intersects only inactive windows, it is not

I visible and is discarded. The next node in the sequence at

- the same level or higher is then processed. If a branch node

is eliminated in this way, all lower level descendants are

* mautomatically discarded without testing.

The computational load could still be unacceptable if

the number of quadtree windows examined for-each object node

could become arbitrarily large. Once again, overlays will be

used. The intersection test is performed between the node
'1.-. .

and exactly four overlay windows. The four windows are the

four possibly intersecting squares at the lowest level such

that the largest dimension of the bounding box of the node is

- the same size or smaller than the edge size of an overlay

square. As shown in Figure 6.3(c), the origin of the
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bounding box (lower left corner) is always in overlay number

0. It is clear that the four overlay squares will completely

cover the object node.

Thus for each object node in the sequence tested, the

intersection test is performed with four overlays. If all

intersecting overlay windows are inactive, the node and

anything within it are hidden and, therefore, ignored. If

not, additional work is required. For branch nodes, the

eight children are processed in like manner using the four

covering overlay child windows of the parent overlay windows.

For terminal nodes, the children of the overlay windows

- are examined. Any active squares enclosed by the object node

are loaded with the appropriate intensity value and marked

inactive. At the minimum quadtree level, the center of the

window is checked for enclosure. For a detailed description

of the algorithm and the formal procedure, see [411.

For automatic sectioning, a blanking object is traversed

in the same manner as displayed objects. All object nodes

corresponding to an F node in the blanking object are

converted to E nodes and therefore become invisible.

Interference between objects can also be easily detected

during algorithm operation.

The intensity value attached to a quadtree node is the

product of object color (or the texture value for that point

on the object) and the cosine of the angle between the

surface normal and the unit vector to the viewer (the dot
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product of the two vectors).

For objects defined mathematically, the surface normal

is often easily calculated (or the surface normal times the

" "texture value at that point) and the x, y and z components

are attached to the node. This requires integer

multiplication, may require substantial memory and, in some

,. cases, the local surface normals are not easily computed. In

such cases, block shading is used. The surface intensity

values for the three faces of a cube are calculated.

Quadtree windows enclosed by one of the three faces of a

terminal cube are given the intensity value for that face.

No multiplications are needed. This technique was used for

the images presented in Chapter 7.

_ "Figure 6.4 presents two images of a turbine blade

represented in octree format. In 6.4(a), block shading was

used. In 6.4(b) shading values were generated from unit

.Inormals attached to F nodes on the surface.

The anti-aliasing technique computes intensity values to

. a higher resolution than the screen. The averages of sets of

these values are the pixel intensity values that are then

displayed. The intersection and enclosure tests are

performed to the lower levels. The intensity values for

windows below the screen pixel level are summed into their

,i ancestor windows at the pixel level. At display time, the

". pixel level window values are divided by the appropriate

value (4, 16, ... ) using shifts.
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Figure 6.4 Octree Representation of Turbine Blade
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To add multiple illumination sources and shadows, the

display algorithm is performed in reverse. A quadtree loaded

with "illumination" is used. As shown in Figure 6.5, when

nodes are projected on the quadtree they "pick up" and store

whatever illumination is enclosed by the projection. The

corresponding windows are then depleted and cannot illuminate

additional nodes later in the sequence (they are marked

i inactive). This operation is performed once for each source.

If an image is contained in the quadtree, it will be

projected on the object or objects.

After illumination, the display algorithm is performed

to generate an image. The accumulated illumination value for

each node (or each face for block shading) is multiplied by

the surface orientation weight (dot product of normal and

unit vector to viewer) and, possibly, the texture value, to

determine pixel intensity.
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Figure 6.5 Illumination Plane (Quadtree) Projects Illumination on
Object Node
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CHAPTER 7

RESULTS

7.1 Program OCTREE

In order to develop, verify and demonstrate the octree

* .- encoding algorithms, the program OCTREE was written and

implemented on the Prime 750 computer in the Image Processing

Laboratory at RPI. A DeAnza IP5000 color imaging system was

.* used for display.

The program currently encompases 257 routines containing

* 20,696 lines of Fortran code (44,864 if comments are

1P included).

7.1.1 NC Verification

An important function of CAD is the generation of

commands for NC (Numerical Control) machines [83]. A major

problem has been the verification of control programs before

release into production. Traditionally this has been

performed on the machine tool itself and typically requires

the program to be regenerated between three and five times
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[26]. The verification task has become a bottleneck and a

major expense in recent years as NC machines have become more

popular, parts have become more complex and labor has become

more expensive. Also, a substantial amount of capital

equipment is removed from production and often tools (and

sometimes the NC machine itself) are damaged.

There has recently been interest in utilizing solid

modeling to replace current methods (84]. Ideally, a parts

programmer or a machinist could verify all phases of an NC

program interactively on a graphics CRT.

In the Fall of 1980, the Center for Manufacturing

Productivity and Technology Transfer (CMP/TT) at RPI funded

an effort through the author to develop a demonstration

system to determine the feasibility of using octree encoding

methods to perform NC verification.

An Imlac 6220 vector graphics terminal with lightpen was

employed to facilitate user interaction. An algorithm was

developed and implemented to extract the forward edges of an

octree object for display.

In operation, the user specifies the workpiece (a block

orthogonal to the axes) using the lightpen. Its octree is

generated and displayed. A specific tool is then requested

and loaded from a disc file. A top view of the workpiece is

then presented. The user selects a starting location and an

endpoint, again using the lightpen. A side view is next

presented for entry of tool depth.
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At this point the system generates an octree for the

p swept volume of the tool path and subtracts it from the

workpiece. The tool and the workpiece are then displayed.

The user can interactively change the viewpoint or request

the next tool movement.

The program successfully demonstrated the viability of

the technique and has continued to be developed and

embellished by the CMP/TT staff.

* -" Figure 7.1(a) shows a view of a simulated NC milling

* machine. The workpiece contains 40 nodes, the clamp 200

nodes, and the tool 7432 nodes for the bit, 40 nodes for the

S"shaft and 40 nodes for the holder. All 5 objects together

require less than 2000 bytes of storage (serial allocation at

2 bits/node).

. .In Figure 7.1(b) a channel has been machined in the

* ' workpiece. Figures 7.1 (c) through f) show the top, front,

side and orthogonal views after additional material has been

removed.

Using currently available algorithms the program could

be given the capability to detect and display any part of the

original workpiece outside the maximum desired object, any

part of the minimum object removed, and the tolerance object

still remaining after the machining operation.
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7.1.2 Medical Imaging

In the spring and summer of 1981, an effort funded by

Phoenix Data Systems, Albany, New York, was undertaken by the

author to investigate the possibility of using octree

encoding methods to interactively generate medical images

derived from CT scans [2, 73, 75-771. Such a capability

would be useful in pre-operative surgical planning [21 and in

other areas. This section reviews the preliminary results.

Ld A series of 42 CT scans of a human head were used for

demonstration and evaluation (scans courtesy Dr. Gabor

Herman, formerly Director of the Medical Image Processing

Group, State University of New York at Buffalo). Thresholded

.-. binary octree objects were generated for display [861.

Figure 7.2 presents 4 views of the section of the skull

p contained in the images. The section extends from just below

to just above eye level. Images 7.2(a) and 7.2(b) are

*. sectioned views of 7.2 (c) and 7.2 (d), respectively.

* . The skull octree in 7.2(c) and 7.2(d) requires 43,112

: ibytes for storage using serial allocation at 2 bits/node

" -*- (C-172,449) whereas the sectioned skull object in 7.2(a)

requires 22,234 bytes 1C-88,937). The original set of images
S-. (with CT numbers) required over 5.5 million bytes for

* .storage. A more valid compression comparison would be with

the set of thresholded binary images. This would correspond

[13
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Figure 7.2 Display of Section of Human Skull
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to a spatial enumeration representation. In compressed

format (1 bit/voxel) the object would require 344,064 bytes

or approximately 8 times the storage required for octree

storage of this object.

Figure 7.3(a) is an "object" which represents the low

density areas inside the head. It corresponds to the sinus

passages. The forward section forming the nasal passages has

been removed to improve visibility.

- - In order to understand its location, in Figure 7.3(b)

the sinus object has been sectioned and embedded in the back

u half of the skull from Figure 7.2(b).

A different density thresholding scheme was used to

generate the sinus object used in Figures 7.3(c) and 7.3(d).

U IA narrow threshold corresponding to the air-tissue interface

was selected. Image 7.3(c) is a sectioned view similar to

- 7.3(b). The removal of low density air accounts for the

"hollowed out" look which can be noted in 7.3(c).

The patch forward of the eye socket is composed of part

of the eyelid and the beginnings of the skin on the nose (the

forward part of the nose is not contained in the CT images).

Figure 7.3(d) is a forward looking view of the entire

sinus object of 7.3(c) plus the opposite section of the

skull. The thin, almost vertical part on the right of 7.3(d)

is the back side of the patch of skin in 7.3(c).

L' Figure 7.2(d) was generated using the display algorithm

presented above. Almost 400,000 level transitions were
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i-i needed, requiring about 11 minutes of CPU time on a Prime

750. Approximately 60% of the octree nodes were accessed.

nAn earlier back-to-front display algorithm (391 was used

to create the remaining images in Figures 7.1 through 7.3.

An algorithm was also developed to display transparent

objects using only simple arithmetic. The resulting images

are very similar to those generated using conventional

transmission x-ray techniques.

L
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CHAPTER 8

DISCUSSION AND CONCLUSIONS

The viability of octree encoding as a solid modeling

method has been demonstrated in two significant examples, NC

verification and medical imaging.

At the current state of development, efficient

algorithms exist to perform the following:

Octree generation from: convex polyhedra, restricted convex

shapes defined mathematically, edges of planar sections (in

chain code format), multiple 2-D images, intersecting prisms,

spatial enumeration arrays, lists of surface intercept points

and swept 2-D or 3-D objects.

Object Property measurement: volume, surface area, center of

mass, moment of inertia, number of interior voids,

correlation, and closest approach between 2 objects.

Obiect operations: union, intersection, difference,

negation, segmentation of disjoint parts,-space filling of

bounded volume, translation, scaling (power of 2 or arbitrary

factor), rotation (multiple of 90 degrees or arbitrary

angle), skewing, reflection, linear and nonlinear

transformations, region growing and shrinking, sectioning,

perspective deformation, and the generation of translational

- or rotational swept volumes.

Interference detection: for fixed or swept objects.
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Display: raster image generation from any viewpoint with

hidden surface removal, orthographic or perspective view,

I black-and-white or color, surface normal or block shading,

shadowing, dynamic movement of light source, multiple

illumination sources, automatic anti-aliasing, sectioning,

interference detection, transparent objects, textured

surfaces, back-to-front or front-to-back traversal, and

raster or quadtree output. Also, vector display of forward

edges of objects (generation and display of edge-tagged

objects).

" 2 The octree method is entirely new and not directly

rooted in any existing system. It is difficult directly to

S"compare this technique with other SMS methods. Rather, a

p iprofile will be obtained by analyzing its characteristics

with respect to the 21 problem areas presented in Section

(1) Limited domain - The domain of objects is completely

unlimited within the restrictions of precision and storage

imposed by a specific implementation. -

(2) Validitv - Any legally generated octree is valid.

(3) ComDleteness - All octrees are complete. No

! .. overhead processing is required to assure this.
.

(4) Uniqueness - A reduced octree is unique if fixed in

* location and orientation. The octree method thus has

permutational uniqueness but not positional uniqueness.

L (5) Conciseness - In general, conciseness ranges from
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poor for standard primitive shapes to very favorable for more

arbitrary objects (eg., skulls). One advantage is that, in

its reduced form, there is no redundant information. No

section of space is represented twice.

(6) Closure - The octree encoding method is closed.

(7) Fiiteess - All octree objects are finite.

(8) Null object - The null octree is simply an E root

node (in reduced form).

(9) Transportability- Results should be identical from

one system to another because of the strictly integer

arithmetic. This assumes identical algorithms, scale

factors, etc. It is possible that, unless care is taken,

implementation-specific differences could cause changes in

the conversion of user requests to the integer format

required by the algorithms.

(10) - Extensibility - In general, octree encoding is

easily extended with respect to object size, the number of

objects, object complexity, precision, etc. Assuming that

the dynamic range of integer variables is not exceeded,

standard octree processors should be extensible in these

areas almost without limit.

(11) Autonomy - The algorithms developed to date are

autonomous.

(12) Ri.bilit - All objects which could possibly be

generated can be processed by all compatible algorithms. A

higher level of intelligence is not needed for guidance to
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handle unusual or special cases.

(13) Efficiency - Within the definition of object

complexity (the value of C), the basic manipulation, analysis

and display algorithms are linear in the number and

complexity of objects. In practice, many algorithms such as

- -display and interference detection, do not require all object

nodes to be processed.

(14) Imnlementability - Octree Encoding algorithms

-" should be easily implemented in multiple VLSI processors

operating in parallel.

(15) Multi~le representations - In operation, two data

structures are envisioned, an application data-base and an

octree structure used for interactive processing.

(16) Consiency- Consistency is not expected to be a

problem because, in most cases, object conversion will be

. -required only from application formats into octrees.

(17) C - Conversion to octree format is a

" straightforward process for most current representation

schemes.

(18) Ease of oblect creation and manipulation - Given

-. high-speed conversion capability and interactive octree

processors, performance in this area should be high when

compared to other methods.

S- (19) Finite-element modeling caDability - The use of

quadtree and octree techniques to automatically generate FEM

L.? meshes was suggested (but not developed) by the author. This
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area is currently under active investigation at RPI (87].

Preliminary results have been very promising. The automatic 1

placement of smaller squares and cubes in areas of high

curvature has been found to be a useful characteristic.

(20) Interference analysis - Interference detection is

performed in linear time. In many cases it is related to

situation complexity. This is a large improvement over most

competing techniques.

(21) Tweaking - Local modifications can be performed in

isolation because of the spatially sorted nature of the

octree. &

8.1 Accomplishments

A solid modeling method based on a hierarchical tree

structure, the octree, was designed and developed. It is

believed this new method may allow, for the first time, the

construction of relatively inexpensive full-function solid

modeling systems capable of handling large numbers of complex

objects at real-time or near real-time rates. This includes

interference related operations such as interference

detection, collision avoidance and hidden surface removal.

The following are considered to be the most significant

specific results:
O

(1) Development of the octree methodology for solid
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modeling, with emphasis on performing operations

efficiently using simple integer arithmetic.

(2) An efficient display algorithm based on the use

of front-to-back octree traversal for hidden surface

removal.

(3) A swept-volume generation (and collision

avoidance) algorithm based on hierarchical convolution.

(4) An efficient interference detection algorithm

based on octrees.

8.2 Suggestions for Further Research

The following areas are suggested for further

research:

(1) Alternate object representation format - A

possible research area could be the investigation and

.Nanalysis of alternate formats. For example, obels could

be subdivided into 27 children rather than 8 or
':: 2. .. subdivided in only one dimension at each level. This

might lead to more compact representations.

Also, octree methods could probably be used byL •other solid modeling schemes to improve efficiency.

(2) Obiect aeneration - Efficient conversion

- methods are needed for object representations such as

ruled surfaces, surface patches and various parametric

-- formats. Automatic octree generation from wireframe
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projections [37, 85] could be useful.

(3) Additional operations - Additional analysis and

manipulation techniques would be useful, such as

calculation of curvature and surface normals, volume

conserving deformations, generation of blends and

extrusions, extracting edges for drafting applications,

automatic dimensioning, etc.

(4) Shape classification - It would be desirable to

develop some form of automatic classification of octrees

by shape. Perhaps a start would be to decompose octrees

into primitive shapes or edge/face/vertex sets with

connectivity information.

(5) Advanced finite-element modeling - It may be

possible to utilize octree techniques in finite-element

analysis.
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A dual data-base approach is proposed. A general-purpose solid-modeling sys-
tem based on octree encoding would interactively perform geometric, analytical
and display operations in conjunction with specialized applicatic'I data bases.

Efficient algorithms are presented for the determination of mass properties
(volume, surface area, center of mass and moment of inertia, etc.) for the for-
mation of new objects via the use of set operations (union, intersection, differ- -
ence and negation), for linear transformations (including translation, scaling
and rotation), for interference detection, for swept-volume definition,.and for
display from any point in space (with surface texture, anti-aliasing and hidden
surface removal). The complexity of the processing required to display an
object is related to the visual complexity of the scene rather than the complex-
ity of all objects involved. Interference detection requires computation re-
lated to the separation distance between the objects.

The above algorithms require only simple integer arithmetic (addition, sub-
traction, magnitude comparison, and shift) in order to facilitate implemention

* in VLSI processors.
The new method is compared to existing solid modeling methods in 21 problem

areas.
Results are presented which show the application of the technique in the

verification of NC (Numerical Control) machine programming and in the display
of 3-D medical objects derived from multiple CT (Computed Tomography) images.
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