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ABSTRACT 
d

A principal mode of failure of structural components in

mechanical systems is fatigue. One method of predicting the

probability of fatigue failure of a structural component is

to determine the probability that the calculated cumulative

fatigue damage index is greater than the critical damage

index at failure. The cumulative fatigue damage index is

represented as a random variable, and the critical damage

index is represented by the statistical variance of existing

experimental data. A FORTRAN computer code using this failure

criteria is presented, which calculates the probability of

failure for a structural component in the high-cycle fatigue

regime under a random stress response environment, using both

the Weibull anLd log-normal statistical distribution models.

The Weibull model has been found to be the more conservative

model in the low probability of failure region, which is con-

sistent with failure predictions between the two models using

the classical failure criteria of cyclic life.
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I. INTRODUCTION

Fatigue is a many facetted phenomenon, influenced by such

diverse factors as component surface condition, mean and maxi-

mum stress, prestrain, temperature, loading rates, stress con-

centrations, corrosion, axial orientation of loading, loading

sequence and random stresses or strains incurred [Ref. 1]

through [Ref. 5]. All of these factors, as well as the mate-

rial properties of the component undergoing the fatigue process,

have an enormous statistical variation in their determined mag-

nitudes. This variation in parametric values has led to the

development of reliability analysis techniques for predicting

the useful life of a component.

Early prediction models were developed from extensive case

history data files. From this information, mean stress and

cycles to failure were readily available, so the most preva-

lent analysis models are based on cyclic stress history tech-

niques. To apply these models to a new design, extensive

testing must be accomplished to obtain sufficient data to get

reasonable resolution of predicted results. The testing prob-

lem becomes even more severe for components operating in the

"infinite life" region of stress-life (S-N) curves.

Many structural components (i.e., heat exchangers, off-

shore structures, etc.) are subject to random loadings, such

as flow excitation, with generally small vibration amplitudes

11
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101
and stress/strain cyclic lives in excess of 10 cycles. For

this situation, the fatigue problem is one of high-cycle ran-

dom fatigue [Ref. 6]. Due to a lack of experimental data and

case histories for structures in this regime, fatigue failure

prediction models based on the cumulative damage index of the

Palmgren-Miner Linear Damage Law are being proposed.

The purpose of this research was to develop a FORTRAN com-

puter code based on the cumulative damage index that could be

used to predict the probability of failure for a structural

component in the high-cycle fatigue regime under a random

stress response environment. The computer code developed

calculates the probability of failure for such a component,

utilizing both a Weibull and a log-normal statistical distri-

bution procedure. The computer code was tested by using ex-

isting experimental data, with the predicted results of the

two distributions compared to each other. Additionally, the

trends of the predicted values are compared with published

descriptions of the behavior of these two distribution models

as used in cyclic life analysis.

The predicted probabilities of failure for the two models

were compared for both single component structures, and simple,

multiple component structures. In the multiple member case,

the weakest link analogy was used as the structure failure

criteria. In this analogy, the structure is assumed to fail

when the weakest component of the structure fails.

12



This document contains the analytic development of equa-

tions used in the computer code, as -ell as extensive graphical

presentation of calculated results. The computer code and a

users guide are presented as appendicies. Recommendations for

future work, such as incorporation of multiaxial fatigue analy-

sis and effects of maintenance procedures are also given.
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II. BACKGROUND

A. FATIGUE

Fatigue has been described as a process of progressive

localized permanent structural changes in a material due to

strains at some point in that material, which may result in

cracks or fracture after a sufficient number of cyclic fluc-

tuations [Ref. 7]. Fatigue can be classified into two cate-

gories; low-cycle fatigue and high-cycle fatigue. In the low-

cycle fatigue regime, plastic strain predominates and ductility

controls performance. In the high-cycle fatigue regime, elastic

strain dominates and strength control performance. In the high-

cycle fatigue regime, most of the fatigue life is spent in the

crack initiation phase, with a relatively short portion of life

spent in the crack propagation phase.

In that the analytic technique developed here contains mate-

rial fatigue strength as one of its control variables, and util-

izes stress vice strain analysis, the model is only applicable

to high-cycle fatigue life predictions. No applicability to

low-cycle fatigue is intended or implied, thus the following

discussion is limited to high-cycle fatigue. Many factors

affect fatigue life in the high-cycle fatigue regime. Two of

these factors are solely stress-dependent functions, and deserve

some amplification. Additionally, a brief discussion of S-N

curves is presented.

14



1. Lc ding Sequence

The loading sequence effect has received extensive

investigation. One simple, but descriptive presentation of

*the effect was tendered by Dowling [Ref. 8]. Figure 2.1 is

a representation of the potential orders of stress loading

sequence.

IO-

U,

LL;C,,

C,,
Lii

Figure 2.1 SEQUENCE EFFECTS ON CRACK INITIATION (from Ref. 8)

For the high- low stress loading sequence (Fig. 2.1(a)),

a crack may initiate in the high stress range, with resultantI

K failure in the low stress range after fewer operating cycles
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than would normally be expected. For the low-high loading

sequence (Fig. 2.1(b)), application of a large number of cycles

at the low stress level does not significantly affect the number

of cycles required for failure at the high loading level. For

multiple changes in loading sequence (Fig. 2.1(c)), a crack

initiated at a high level can propagate in the low level. In

all three cases, cracks are assumed to initiate in the high

stress loading level, but to propagate in either stress loading

level. These cracks are only cracks due to loading sequence,

and do not include cracks that would have developed regardless

of loading level (i.e., constant amplitude stress loaded struc-

tures can develop cracks). Thus, loading sequence has a signi-

ficant effect on fatigue life.

2. Mean Stress

Realistic fatigue life prediction in cases where the

mean stresses are large, relative to the fluctuating stresses,

must account for the affect of the mean stresses. Due to the

relatively low fluctuating stress amplitudes in the high-cycle

fatigue regime, mean stress effects are very important. If

the strain levels are high enough to cause repeated plastic

straining, mean stresses are rapidly relaxed and mean stress

effects can be neglected [Ref. 6]. However, high-cycle fatigue

is dominated by elastic strain, not plastic strain, so mean

stress effects must be accounted for.

16



Various investigators have proposed models which

estimate the effect of mean stress, a on fatigue life. Most

of these models are based on the following relationship:

4
A o(N) = a(ao) Aueq(N) (eqn 2.1)

where Ao(N) stress range including the effect of mean

stress as a function of cycles, N

Aa (N) = equivalent stress range that would cause
eq

failure in the absence of a mean stress

expressed as a function of cycles, N

a(co) mean stress correction coefficient

The four most frequently used models for a(Oo) are

graphically depicted in Figure 2.2. Examination of these

curves demonstrate a significant difference in predicted safe

values for the design stress range. Comparison of the models

with experimental data for ductile steels indicates the Goodman

and Soderberg curves are too conservative, while the Gerber

parabola seems to be the best representation. The Goodman

model does correspond rather well with brittle steel data,

and as fracture strength approaches ultimate strength, the

SAE model approaches the Goodman models predicted value

(Ref. 6].
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Figure-2.2 PROPOSED MODELS FOR THE EFFECT OF MEAN STRESS
(from Ref. 9)

Goodman model: 1 - (00 lau)
0 "u

Soderberg model: 1 - (a .,.)

0oy

SAE model: 1 - (a o/f)

Gerber model: 1 (a la o 2

o u

where a = mean stress

au = ultimate tensile strength

ay yield strength

a fatigue strength coefficient (or true fracture

strength)

18
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3. Stress-Life Curves

Stress-life (S-N) curves have been used for determin-

istic fatigue analysis for decades. Typically, S represents

the applied stress, and N represents number of cycles, or life

to failure. These plots usually are presented on semilog or

log-log coordinates. Most S-N curves have a continuously slop-

ing trace, but some curves (primarily low strength steels),

have a discontinuity, with an essentially horizontal segment
6 7

from 10 to 10 cycles.

This marked cessation of non-zero slope led to the

first definition of endurance (fatigue) limit. The fatigue

limit is the limiting value of the median fatigue strength as

N becomes very large. The median value is used due to the

scatter in test values. Commonly, test data at several stress

levels is obtained, and then S-N curves are drawn through the

median points, and thus represent fifty percent expected fail-

ures [Ref. 10]. This statistical scatter, and subsequent

median value representation is an added reason for using prob-

abilistic fatigue analysis, vice deterministic fatigue analysis.

Fatigue is usually classified as either low cycle or
5

* high cycle fatigue, with the transition occurring around 10

cycles. Most high cycle fatigue test data terminates around

107 cycles, and the preponderence of S-N curves in the litera-

ture range from 100 to 107 cycles. This study is concerned

with fatigue lives well above the published curves, i.e.,

19



fatigue lives greater than 1010 cycles, so an extrapolation

method of available data and cvrves was needed.

Recent literature classifies fatigue lives in the

range of interest as being in the "ultra-high cycle fatigue"

region, rather than the usual phraseology such as fatigue life

in the "infinite life" region of the S-N curve, because of the

low, or poorly defined endurance limit of most materials.

Manson [Ref. 11] presents an excellent discussion on all three

ranges of fatigue life, and of importance to this study, pre-

sents a summary on ultra-high cycle fatigue extrapolation.

This summary is based on the work of G. R. Halford, of the

ASME Nuclear Pressure Vessel Piping Code Activity. In that

reference material is available in which techniques for, and

justification for, extrapolating known S-N curves into the

region of interest in this study, the assumption of the avail-

ability of the appropriate S-N curves for fatigue life predic-

tions is valid.

B. PALMGREN-MINER HYPOTHESIS

In 1945 Miner developed a cumulative linear fatigue damage

model, based on criterion suggested by Palmgren in 1924 [Ref.

10]. Within the context of this hypothesis, fatigue failure

occurs when the cumulative fatigue damage index reaches one(l).

Because of its simplicity, the model has been widely used in

fatigue analysis. However, it does not include consideration

of the statistical variability existing in fatigue behavior.

20



The critical value (i.e., the actual value of the cumulative

damage index at failure, not the assumed value of 1.0 at

failure) is not always close to one (1), but has a range of

values from 0.18 to 23, with only a small portion close to one

[Ref. 12].

To account for the statistical variability of the critical

damage index (denoted as A), two probability distribution models

have been used. These are the Weibull and the log-normal dis-

tributions. Wirsching [Refs. 12, 13] suggests using the log-

normal distribution for A with a mean of 1.00 and a coefficient

*of variation of 0.65, based on the collection of experimental

data of several investigators. Buch [Ref. 14] also examined

numerous sets of existing experimental data, investigating

the variation of the critical damage index A , for different

loading spectra and structural components.

Selecting thirty-seven sets of data from Buch's paper,

order statistics [Refs. 15,16] were used to reduce the data

and plot it on probability paper. A best fit analysis was

conducted, and the Weibull distribution with a mean of 0.9

and a coefficient of variation of 0.67 was found to be the

best representation of the data, as shown in Figure 2.3. The

Weibull distribution shape parameters b and c were determined

to be 0.9791 and 1.3289 respectively.

From the mean and coefficient of variation of A , the

standard deviation of A was determined to be 0.4781. Accepted

probabilistic theory indicates 99.7% of all possible values of

21



any distribution will be contained within the range of the

mean plus and minus three standard deviations. Thus the

statistical range of the A's from Buch's data is 0.00 to

2.33, excluding the tail regions, while the actual range is

0.01 to 3.40. This is a significant deviation from the value

1.0 of the Palmgren-Miner hypothesis, and demonstrates the

need for the development of a probabilistic fatigue life pre-

diction model.

C. PROBABILITY MODEL OF A

The thirty-seven sets of A and the resultant shape para-

meters, mean, standard deviation and coefficient of variation

were used to test the developed Weibull distribution model.

The same mean and coefficient of variation were used in the

log-normal distribution so that a legitament comparison could

be made, with the understanding that the data fit the Weibull

distribution better than it did the log-normal distribution,

so some discrepancy was expected. The mean and coefficient

of variation would be the same, regardless of which distribu-

tion actually applied, but tail region scatter affects may be

different for each distribution.

1. Weibull Distribution

The probability density function fx(x) is defined as:

c-1 c
S(x) [] exp[-(j.) ] (eqn 2.2)x22
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Figure 2.3 WEIBULL DISTRIBUTION OF THE CRITICAL FATIGUE
DAMAGE INDEX (A) AT FAILURE
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The cumulative distribution function F (x) is defined as:x
c

F - 1 exp [-(J (eqn 2.3)Fx(

where x > 0, b > 0, and c > 0.

The relationship between the shape parameters b and c, and

the mean (x) and the standard deviation (a,) of the random

variable x are:

x b r [1 + (eqn 2.4)
c

and

= ~ 2 2 1
a b-] - p [ I (eqn 2.5)

x c c

where r (a) = Gamma function = fo e - t t a - I dr.

From equations 2.4 and 2.5, the coefficient of variation, CV

is:

ar [1 + 2
x

CV -eqn 2.6)
xP [l+ ]

2. Log-normal Distribution

The other, more frequently used, distribution function

in fatigue analysis is the log-normal distribution function.

It is more prevalently used due to the availability of a closed

form mathematical formulation. The probability density func-

tion fx (x) is defined as:

24



fx(X) 1 exp in(x)-x)] (eqn 2.7)

x x

where x is the mean of ln(x) and ax is the standard deviation

of ln(x). The cumulative distribution function Fx (x) is defined

as:

J ln(x)-x

Fx (x) _ exp[-i] du; x > o (eqn 2.8)

or

Fx(x) a ̂  Inx (eqn 2.9)
x

where * [ ] is the standard form of the normal distribution

functions. For a random variable x, if x follows a log-normal

distribution, then ln(x) follows a normal distribution [Ref. 17],

thus the closed form normal distribution functions can be used.

This alleviates the necessity of using numerical integration

routines to solve the distribution functions.

The mean, x, and the standard deviation, a^, of random^

variable x are:

x a exp [x + -.- ] (eqn 2.10)

i.

25
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andj

ay =exp [2x a^ {exp [a-1} (eqn 2.11)
x x

Solving for x and a^ in terms of iand ax x

x ln(x 2 ) l. n (a~ 2+ V) (eqn 2.12)

and

a^ = -ln x 2) + n(a 2+ x 2) (eqn 2.13)
x

26



III. FORMULATION OF ANALYSIS

A. INTRODUCTION

In formulating a probability based analysis of fatigue

*. life for structural components, the measure of fatigue fail-

ure can be expressed as the probability of failure, Pf. The

failure criterion to be used can be defined such that the

design cumulative fatigue damage index (denoted as D), is

greater than the critical damage index A , at failure. Both

damage indexes are subject to statistical scatter, thus the

probability of failure is a two variable function. The prob-

ability of failure can be defined as:

Pf-- Pr[D>A] = f FA X)fD(x)dx (eqn 3.1)

or
00

Pf = 1 - Pr[D<A] = 1 -f FD x)fAx)dx (eqn 3.2)

-00

where FD F = the cumulative distribution functions of D

and A respectively.

fD' fA - the probability density functions of D and

A respectively.

27
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Due to the paucity of experimental data in the cyclic

stress range of interest, a time history simulation model

must be used to generate a representative data base for input

to the probabilistic analysis model. The simulation model

used in conjunction with this study was developed by Y. S.

Shin [Ref. 6]. In that a substantial portion of the developed

source dode consists of this model, pertinent aspects of the

model are presented in conjunction with the development of the

probabilistic analysis model.

B. CUMULATIVE FATIGUE DAMAGE

As previously discussed, the most widely used criterion

for determining fatigue failure for variable stress loads is

the Palmgren-Miner hypothesis. The cumulative fatigue damage

index, D, is the sum of the damage incurred at each stress

level, and can be expressed as:

ni

D= E Di  (eqn 3.3)NI
where n i = elapsed number of cycles at stress level si

Ni = total number of cycles at stress level si

inducing failure in the component

D. = damage incurred at stress level si

For continuous systems, D can be expressed by:

N of s (S)

D = N (S) ds (eqn 3.4)

28



or
D= No E 1 (eqn 3.5) p

where No = the total number of cycles in the design life

f s(S)ds = fraction of stress peaks between stress

level s and level s+ds

N(S) = number of cycles at stress level s

E[Y] = expected value (probabilistic mean) of Y

At failure, D > A, and from equations 3.4 or 3.5, the total

number of cycles to failure (NT) can be calculated as:

A

NT =](eqn 3.7)

E

C. RANDOM VIBRATION ANALYSIS

"A stochastic process is employed to analyze the vibration
responses statistically, and to determine the type of pres-
sure (e.g., narrow/wide band process) and the peak envelope
distribution with statistical parameters (e.g., mean, stand-
ard deviation). High-cycle fatigue test data for materials
under random vibration are scarce and the commonly avail-
able sinusoidal fatigue S-N curves are resorted to as a
basis to evaluate the random fatigue life." [Ref. 6]

For a given fatigue life curve, equation 3.6 can be eval-

uated if fs(S), the probability density function (PDF) of a
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peak stress envelope is known, or can be approximated. In most
cases, the PDF cannot be easily derived. However, if the stress

history follows a Gaussian process with zero mean stress, closed

form solutions for f (S) are available.
5

1. Probability Density Function for Peak Stress Envelopes

The irregularity factor, a , can be defined such that:

n

a 0(eqn 3.8)
m
o

where no = expected rate of zero (mean stress) crossings

mo = expected rate of peaks

If a approaches zero, a very peaky process is indicated, and

a Gaussian distribution for f (S) can be assumed. Therefore,

fs(S) can be expressed as:

2fs(S )  _ Iexp[- S  -- ; -oo <S < (eqn 3.9)

S 2/2 s 2 s

where as is the standard deviation of the stress amplitude.

If a approahces one, a narrow band process is implied, and a

Rayleigh distribution for f (S) can be assumed. Thus, fx (S)

can be expressed as:

2
S S

f (S) a-- exp[-; o < S < (eqn 3.10)
= S 2S
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When the cyclic stress history follows the stationary

Gaussian process with zero mean stress [Ref. 18], the PDF for

the peak stress envelope can be expressed by:

f CS) = i-a2  exp [- $2a5 2 (1-t 2 )s ZT Ys  2 jS2 la

__S S S{ 1 + erf[ ] I exp[- S ]
s 's! _ 2 (eqn 3.11)

where erf(x) is the Gaussian error function, and can be

expressed as: x
Ji -t2

erf(x) 2 e - d t  (eqh 3.12)

2. Number of Stress Cycles at Stress Level Si to

Cause Failure: Ni

The source data for this analysis can be obtained from

existing sinusoidal S-N fatigue curves, constant amplitude test-

ing, or stress limits specified in codes, such as the ASME

Pressure Vessel and Piping Codes. For example, if S-N data

is available such that

b
S of Ni  (eqn 3.13)

then S. -8
[-T] (eqn 3.14)

f
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where

a; > (eqn 3.15)

In which b is the fatigue strength exponent of the particular

material being analyzed. These values have been experimentally

determined and tabulated for selected engineering alloys

[Ref. 19].

Substituting equation 3.14 into 3.7,

A = NT E[ SB - S] NT
T T (eqn 3.16)

For a given stress history the expected value S, E[S 8 ] can

be estimated from:

= -- Z Sj (eqn 3.17)m J~l

B. CYCLIC STRESS/STRAIN ANALYSIS

When stress histories follow other than a stationary

Gaussian process, or have a none-zero mean stress value,

closed form solutions are not available for the PDF. The

use of the random vibration approach to determine E[SB] is

extremely difficult. To alleviate this problem, cycle count-

ing algorithms are used. These algorithms are very useful

if cyclic stress/strain histories for the component are known.

The major disadvantage of using cycle counting methods is
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that a tremendously large amount of data is required to obtain

reliable fatigue life predictions. To compensate for the lack

of data, a typical stress/strain time history data block is

estimated [Ref. 20]. The generated data block is assumed to

repeat itself ad-infinitum, so that fatigue life prediction

calculations for high-cycle fatigue can be accomplished.

1. Cycle Counting Algorithms

The object of cycle counting methods is to compare

actual, irregular load histories with S-N curves developed

from uniformly repeated simple load cycles, which are readily

available.

"All good counting methods must count a cycle with
the range from the highest peak to the lowest valley and
seek to count other cycles in a manor that maximizes the
ranges that are counted. This rule can be justified
either by assuming that damage is a function of the mag-
nitude of the hysteresis loop, or by considering that in
fatigue (as in many other fields) intermediate fluctua-
tions are less important than the overall differences
between high points and low points."

"All good counting methods count every part of
every overall range once and only once. They also count
smaller ranges down to some predetermined threshold once
and only once. Three counting methods that achieve this
objective are well documented in the literature: range-
pair, rainflow, and racetrack." [Ref. 10]

All three methods can be used with, or without mean stress con-

siderations. The racetrack method is considered the most suit-

able for condensing actual load histories. The rainflow method

is the most popular method, and can be used with load histories,

or strain histories [Ref. 10].
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2. Rainflow Cycle Counting Method

The rainflow cycle counting method is used in this study,

because it can identify the stress range associated with low

frequency components, and the linear damage law summation pro-

cedure allows addition of damage index values from large and

small stress ranges [Ref. 6].

The "rainflow counting" method is so named because it

reminded its developers, M. Matsuishi and T. Endo [Ref. 21],

of rain flowing down a series of pagoda roofs. Rules are

imposed on this downward flow so that cycles and half cycles

can be differentiated and counted.

In application, a sample stress time history, X(t),

is converted to a point process of peaks and troughs as shown

in Figure 3.1, with the peaks assigned even numbers, and the

troughs assigned odd numbers. The time axis is oriented ver-

tically, with the downward direction being the positive direc-

tion. A "rainflow" is started at each peak and each trough.

When a rainflow started at a trough comes to a peak, the flow

is terminated if the magnitude of the opposite trough is less I
than the originating trough (e.g., Fig. 3.1(b); paths 1-4,

5-6, 7-8 and 9-10). For a path originating at a peak, flow

is terminated by a peak of greater magnitude than the origin-

ating peak (e.g., paths 2-3, 4-9). If the rain flowing down

a path intercepts flow from a previously counted path, count-

ing of the current path is terminated so that each path is
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Figure 3.1 EXAMPLE OF RAINFLOW CYCLE COUNTING METHOD
(from Ref. 22)
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only counted once (e.g., paths 3-3a, 6-6a, 8-8a). A new path

(i.e., cycle count) is not started until the path under con-

sideration is terminated by one of the above rules.

E. WEIBULL DISTRIBUTION MODEL

The probability density function fx (x) and the cumulative

distribution function Fx (x) were defined as equations 2.2 and

2.3. The probability of failure, Pf, was defined as equations

3.1 or 3.2. For this study, equation 3.1 was chosen. Sub-

stituting A and D into F A(x) and fx=D(x) respectively, the

new cumulative distribution function can be expressed as:

FA(x) = 1 - exp [-(F-u] (eqn 3.18)
A

and the new probability density function can be expressed as:

cD CD-1 cD
fD D exp [-) (eqn 3.19)

D D D

where bA, cA ; Weibull distribution shape parameters for the

critical damage index

bD, cD = Weibull distribution shape parameters for the

design damage index

From these equations, the probability of failure can now be

expressed as:

Pf = f FA(x) fD(x)dx (eqn 3.20)

0

36



Solution of this integral requires the use of numerical

integration techniques. The program developed uses the NONIMSL

subroutine DQSF, which is a combination of Simpson's rule and

Newton's three-eighths rule. This routine is a fourth order

precision algorithm with fifth order truncation error, and was

deemed to be accurate enough for the purposes of this study.

F. LOG-NORMAL DISTRIBUTION MODEL

If A and D follow log-normal distributions, ln(A) and

ln(D) follow normal distributions. Therefore, define random

variable Z as:

ln(Z) = ln(A) ln(D) (eqn 3.21)

Assuming that A and D are independent random variables, the

mean and the variance of ln(Z) are expressed by:

Z =A D (eqn 3.22)

and
2 2 2

SA + aD (eqn 3.23)

where , A , = mean of ln(Z), ln(A), and ln(D)

a^, a, a^ = variance of ln(Z), ln(A), and ln(D)

Hence,

Pf-- Pr[ln(D) > ln(A)] -- P [ln(Z) < 0]

37

ff Ar

J 'exp[- 2. dt = [.] (eqn 3.24)
G-
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The log-normal distribution shape parameter is simpler to

obtain than the Weibull shape parameters. For the log-normal

model, it is simply the ratio of the means of the two random

variables. Within this study, the shape parameter will be

called the central safety factor. The central safety factor

(n) is expressed as:

n (eqn 3.25)

Using equations 2.12 and 2.13, (A,aA) and (D, aD) can be

expressed in terms of the central safety factor and the coef-

ficients of variation CVA and CVD as:

AA D n

A = lnAP) _ inCa 2+ P) in (eqn 3.26)
/ +CV 2

a^ / in(2) +ln(aA 2+ E2) In[I+CVA2] (eqn 3.27)

^ 1 T
2

D = In(D 2) - in(0 D
2  i+Dn/ (eqn 3.23)

= -ln(]2) + In( + + ) = In[I+CVD2] (eqn 3.29)

Substituting equations 3.26 through 3.29 into equations 3.22

and 3.23,

1_+ CVD2 eq3.0

Z = in (n) +in/ (eqn 3.30)

/ l+CV 2
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and

ICY = in [(1 + CD +)(I CVAz)] (eqn 3.31)

Hence, equation 3.24 can be written as [Ref. 23]:

i+CVD2

F ln(n) + in) CD 2
PIn [ + n W2 ] (eqn 3.32)

/ln[(1+CVD2 )(l+CV9]

Where D [ ] is the standard argument for normal distribu-

tions, as previously discussed. The program developed uses

the IMSL subroutine MDNOR, which evaluates the absolute value

of the standard argument and returns the probability of sur-

vival. The probability of failure is then defined as one

minus the probability of survival.

G. WEAKEST LINK ANALOGY

In the weakest link analogy, a multiple member structure

is assumed to fail when its weakest member fails. That is,

the remaining members cannot take on, without failing them-

selves, the load born by the failed member. For a multiple

component structure, the probability of failure can be

defined as:

Pf = Pr [i| I (Ai  - Di)< 0 : I = 1,2,3,...,N] (eqn 3.33)
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or

Pf = Pr [i I (A i  Di ) > 0 1 =-1,2,3,...,N] (eqn 3.34) a

where Ai = the critical damage index of the i-th member

Di = the design damage index of the i-th member
1

i fI [(Ai  Di) < 0 ] is the occurrence of at least

one event (Ai  D) < 0 for any "i"

N = the number of members

iI [(A. D) > 0 1 is the occurrence of all events

(A i - D) > 0 for all "i"

Assuming "Ai" and "Dilare mutually independent, and the design

damage index is the same for all members (Di = D), then

( N :
P I II [1 - A(x)] fD(x)dx (eqn 3.35)J i=l 1~

-00O

where F (x) = cumulative distribution function of A.

fD (x) = piubability density function of D

If the cumulative distribution function A. is the same for

all members,

c

f N
Pf 1 -J [1- FA(X)I fD(x)dx (eqn 3.36)

-O4
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where FA(x) is the cumulative distribution function of A

fD(x) is the probability density function of D

. As an approximation, an upper bound on Pf can be expressed

* as [Ref. 24]:

00i
N N N

Pf = E -- F (x) + . E Fa (x)F (x)...] fD(x)dx

(eqn 3.37)

N N
i=l f Fi(x)fD(x)dx = l Pfi

then

Pa N
mx p < P (eqn 3.38)
1fi < Pfexact < i= fi

where Pf = the probability of failure of the i-th member.

If the critical damage index and the design damage index

are the same for all members, then equations 3.36 and 3.37

reduce to:

Pf< N FA(x)fD(x)dx N Pf (eqn 3.39)

fP

and

Pf < Pfexact <N Pf (eqn 3.40)

where Pf the probability of failure of any one member.
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IV. COMPUTATIONAL PROCEDURES

To evaluate the probability of failure for a given struc-

tural component, a constant amplitude sinusoidal S-N curve

(equation 3.13), statistical parameters of A , and either

the spectral density function or a representative time history

of stress response must be known. The overall computational

procedure is shown in Figure 4.1, depicting the step-by-step

procedure to calculate the probability of fatigue failure.

In the following analysis, it is assumed that the spectral

density response curve is available.

A. DETERMINE CRITICAL DAMAGE INDEX SHAPE PARAMETERS

For any Weibull distribution, the cumulative distribution

can be defined as:

F(x) = 1 exp [ - [ )] (eqn 4.1)

where = Weibull scale parameter

n= Weibull shape parameter

No probability plotting paper exists for direct plotting of

distribution data which contains a shape paramettL. However,

for the Weibull distribution, the shape and scale parameters

may be transformed to equivalent scale and location parameters,

thus Weibull probability plots can be constructed [Ref. 16].

From equation 4.1, transformation yields:
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=exp [ ] (eqn 4.2)

and then,

lnl [1 = nln(x) - nln(E) (eqn 4.3)

Therefore, a plot of any Weibull variate lnln[l/[l - F(X))]

plots as a straight line against the natural logarithms of

the observations.

Rewriting equation 4.3 as:

w = a + bz (eqn 4.4)

where W = lnln[l/[l - F(x)]

z = ln(x)

b=n

a = -nln( )

then,

n = b (eqn 4.5)

and

= exp [ a ] (eqn 4.6)
b

Where the values a and b are obtained as the y intercept and

slope of the plotted line. Within this study, b of equation

4.4 is redesignated c with appropriate subscripts (i.e., c

or cD), and a of equation 4.4 is redesignated b with appro-

priate subscripts (i.e., b. or bD).
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INPUT DATA

Constant Amplitude
S-N Curve

Spectral Density Function
Obtain Fatigue Data G(w) of Stress Response

Statistically Reduce Data- Statistical Parameters
of A : b 1, CA

Generate Probability Number of Points in
Distribution Plot:NubroPinsnDisercetofalure Random Process Simulation.ivs percent failure

Beta Values

Ultimate Strength

Coefficient of Variation
of Design Damage Index D

SSimulate ~~

SEvaluate nO , Moll

'Transform X(t) to Peak and Trough Sequences of
Stress Histories: Apply Rainflow Cycle

Counting Method with Correction for Mean Stressl

I Estimate E[S:5]1

Calculate anda, and~a

[Determine Statistical Parameters of D: , CDI

IDetermine Central Sa ety Factor: n

[Evaluate Probability of Failure of omonent

Weiul Mo'"Log-Normal Model
Weibull ModelLIM

r Extrapolate System P from Component P

f f

Figure 4.1 COMPUTATIONAL PROCEDURE FLOWCHART
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B. SIMULATE STRESS TIME HISTORY X(T)

For a given spectral density function G(w), a sample of

X(t) is simulated using the following expression [Ref. 25]:

J
X(t) Z VZG(wi) i cosCwit + 0i) (eqn 4.7)

i=l

and

j
Wu= Z i ; O< W < u (eqn 4.8)

i=l

where 0i is a random phase angle, uniformly distributed in

the interval (0, 2r).

6wi  = i-th frequency interval

i = frequency at the center of Si

Wu = effective frequency range in G(w)

This simulation of stress history is for a stress history

with zero mean stress. Parametric studies of the effect of

mean stress can be accomplished by using the relationship:

X(t i ) = X(t i ) + THM (eqn 4.9)

where THM is the mean stress amplitude to be studied.
4L

C. CALCULATE no, mo AND a

When the spectral density function is known, no, m,

and a can be calculated as follows:
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-1 (eqn 4. 10)no - 7
(woG Mdw

and

o f [ w' G(w)di

mo r = 00 W2 G(w)dw (eqn 4.11)

then a can be calculated using equation 3.8.

D. CALCULATE STRESS RANGES

Transform X(t) to peak and trough time history and apply

the rainflow counting method to determine the stress ranges.

In the developed source code, subroutine RNFLW counts stress

ranges from troughs to peaks, and subroutine RNDRP counts

stress ranges peaks to troughs. The mean and standard devi-

ation of each stress range is then calculated by subroutine

STAT. These statistical parameters are then averaged to

obtain the overall mean and standard deviation of the simu-

lated stress ranges.

E. ESTIMATE E[S ]

The expected value of S with correction for the effects

of mean stress can be estimated using one of the mean stress

models previously discussed. For this study, the Goodman
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model was chosen. The expected value of S corrected

for mean stress can be expressed as:

E (SIl 1E L. (eqn 4.12)i=l i

-uj

where K = number of stress cycles counted by the rainflow

cycle counting method

Co  mean stress of the i-th cycle

F. CALCULATE A AND a , AND D AND aD

From the Weibull parameters bA and cA obtained from the

curve-fit procedured previously discussed, the mean, standard

deviation, and the coefficient of variation for A can be deter-

mined via equations 2.4, 2.5, and 2.6. As a result of the

rainflow cycle counting of the simulated stress response time

history for the given mean and standard deviation of the design

fatigue life, the mean and the standard deviation of the design

damage index D can be calculated by [Ref. 23]:

E [S ] ND (eqn 4.13)

(af)

and

E [SP CY
D ] ND (eqn 4.14)
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.where D = mean design number of stress cycles

aN = standard deviation of design number of cycles

G. DETERMINE DESIGN DAMAGE INDEX SHAPE PARAMETERS

The mean and standard deviation of the design damage index

previously calculated are fed to the subroutine WEIBR. This

subroutine uses an iterative procedure on equation 2.6 with

initial guess values of the shape parameters to generate a

coefficient of variation. This generated CV is compared to

the actual CV determined from CV = OD/D. The initial guess

values are then modified and the iteration repeated until the

generated CV is within one percent of the actual CV. Once

this criterion is met, the calculated shape parameters are

returned to the main program.

H. CALCULATE PROBABILITY OF FATIGUE FAILURE

1. Weibull Model

Using equation 3.20, the probability of failure is cal-

culated via numerical integration. In that integration to

infinity is not possible, probabilistic theory of distribution

curves is utilized to establish the upper limit of integration.

From probabilistic theory, it is accepted that 99.7% of the

area under a distribution curve is contained within the range

of the mean plus and minus three standard deviations of the mean.

The numerical integration routine used, DQSF, uses the

mean of either the design damage index, or the critical damage

48
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index as the upper limit of integration for the first iteration.

The upper limit of integration is then incremented with one

standard deviation of the appropriate damage index and the

integral re-evaluated. This iterative procedure is continued

until either the predicted probability of failure of the current

iteration is increased less than one percent over the previous

iteration, or ten standard deviations have been added. This

procedure allows maximum penetration into the distributions

S"tail region, and usually accounts for all but 6E-07 percent of

the area under the distribution curve.

2. Log-Normal Model

Using equation 3.32 and the subroutine MDNOR, the prob-

ability of survival is calculated. The probability of failure

is then calculated as one minus the probability of survival.
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V. NUMERICAL EXAMPLES

A. INTRODUCTION

In order to test the developed source code, a sensitivity

analysis of several variables affecting the predicted prob-

ability of failure was conducted. In that this study is a

direct expansion of published material on deterministic analysis

of fatigue life prediction [Ref. 6], the control variables were

chosen to be the same as in that previous study, with the ex-

ception of the time history data block duration. The original

study centered on fatigue life predictions for light water

reactor components subjected to low amplitude, low frequency

stress fields induced by flow excitation.

1. Power Spectral Density of Stress Response

To simulate this low frequency, low amplitude stress

response, a power spectral density (PSD) response function was

assumed. The original study tested both a single peak and a

multipeak PSD, and determined that a single peak PSD used to

simulate a multipeak PSD at the dominant frequency with equiva-

lent RMS stress yields a conservative fatigue life prediction,

thus is safe for use as an approximation.

In that a single peak PSD can be safely used, all test

runs were made using the same single peak PSD. The PSD used is

depicted in Figure 5.1. The area encompassed within this simula-

tion yields a aRMS of 2 ksi, which is one of five values
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previously tested. This PSD has a calculated irregularity

factor a of 0.935, implying that the PSD is a quasi-narrow

band distribution, and that the Rayleigh distribution can be

used to solve equation 3.4 for the value of the design damage

index.

.2s

.11B

A .14

S.12

- .1

*

FREQUENCY CHz>

Figure 5.1 RELATIVE POWER SPECTRAL DENSITY RESPONSE

2. Time History Data Block

Having chosen the PSD, equation 4.5 was solved for this

PSD, creating the simulated stress time history depicted in

Figure 5.2. In the original study, a time history data block

of one second was used. For this research, a two second data

block was chosen for the second analytic study. For the first

LI
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study, the time history data block duration was used as a con-

trol variable, with the data block time duration ranging from

one to twenty seconds.

The fundamental premise of a time history data block

is that it repeats itself ad-infinitum, and thus, can be used

to simulate lives in the infinite life region of the S-N curves.

Symmetry of the data block about its time axis midpoint insures

repetition of the block. The two second block appears to be

more nearly symmetric than data blocks of a shorter time span.

10.

_J

(ncn

LU 0.

Co

> -5. -

.--

._1

r- -10. 1
0.0 0.5 1.0 1.5 2.0

TIME(SECONDS$

Fi-gure 5.2 SIMULATED RELATIVE TIME HISTORY STRESS RESPONSE
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To confirm this observation, data blocks up to twenty

seconds in duration were tested. It was found that even time

blocks are essentially symmetric about their time axis midpoint,

while the odd time blocks are not as close to being symmetric,

thus their repetition time is longer than the time interval

represented by the data block. None of the twenty examined data

blocks exhibited exact symmetry, but all of the even blocks were

essentially symmetric, and since the two second block had the

shortest repetition cycle, it was chosen as the time history

data block duration cycle for use in the second study. Although

being further from true symmetry than the even data blocks, the

-. odd time data blocks were retained in the first study because all

* of the data generated as a result of using those data blocks fell

within the acceptance specifications of "Chauvenet's criterion"

[Ref. 26; pp. 65-67].

3. Fixed Input Parameters

The remaining input variables that were to be permanently

fixed were taken from Shin's paper [Ref. 6], with the exception

of the Weibull parameters bA and cA , which were determined from

*the data in Buch's paper [Ref. 14], as previously discussed.

A summary of the input variables that were fixed throughout all

testing is provided as Table I (variable names are fully defined

in Appendix A).
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TABLE I

FIXED INPUT PARAMETRIC VALUES

VARIABLE VALUES (S)

NP 3
NE 5
DT .002
DF 1.0

THM 0.5
SU 60.0

EXPX(NE) 12.0 12.5 13.0 13.5 14.0
WF(NP) 30.0 50.0 80.0
SP(NP) 0.00 0.16 0.00

CL 1.0
CU 10.0

BDEL 0. 9791
CDEL 1.3289

4. Sensitivity Variables

The remaining variables, i.e., the number of points in

the random process simulation, the coefficient of variation

of the design damage index and the number of stress cycles

were the sensitivity variables. Additionally, the beta values

were sensitivity variables, but the same five values were used

throughout the study, so they are listed as fixed parametric

values. In the first analytic study, the coefficient of vari-

ation was tested at 0.2, 0.5, and 0.8, and the design cyclic

life was fixed at 1.8xlO1 0 cycles. This study was to evaluate

the sensitivity of each model to the design damage index coef-

ficient of variation.

The second study was of the effect of cyclic life on

the models. For coefficients of variation of 0.2 and 0.8,
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cyclic life was varied from 106 to 1013 cycles, while the time

history data block was fixed at two seconds (i.e., DT = 0.002

seconds, and IN = 1000). Plots of probability of failure vs

cycles applied were generated for a single component, typically

ranging from 109 to 1012 cycles. Additionally, plots of fifty
6

member structures were generated, with lives ranging from 10

to 10 cycles, depending on the coefficient of variation

studied [Ref. 24].

B. REDUCTION OF BUCH'S DATA

In order to test the prediction models, critical damage

index parameters (i.e., mean, standard deviation, coefficient

of variation and Weibull distribution shape factors) were

required. Buch [Ref. 14] consolidated test data of several

investigators, with the most comprehensive data available being

for aluminum alloy 2024-T3 sheet specimens. Thirty-seven sets

of these damage index values were reduced and plotted utilizing

the methods presented in Chapter IV, section A, and shown _n

Figure 2.3. The Weibull parameters b and c were then obtained

via equations 4.5 and 4.6.

It is recognized that the S-N curves for aluminum alloys

do not have a classical "fatigue endurance limit" as do S-N

curves for some steels, thus the infinite life region is poorly

defined. However, the applied PSD with a a of 2.0 ksi is

below the approximate fatigue limit range for reversed bending

of aluminum alloys. The fatigue limit range is listed as 8.0 M
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to 18.0 ksi [Ref. 27; p. 5-9], thus the "infinite life" assump-

tion was deemed valid. Additionally, a review of the simulated

relative stress response plot (Figure 5.2) shows that the maxi-

mum stress level incurred is about 6.0 ksi, safely below the

lower limit of the approximate fatigue limit range.

Within Buch's paper, a limited amount of data on steels

was presented. Although the data points were too few in number

to obtain a representative data base for probabilistic reduc-

tion, the discussed trends were the same as those for the alumi-

num alloys. Therefore, the specific distribution obtained from

the aluminum data is representative of the statistical scatter

for most metals, and was deemed acceptable for use as an illus-

trative example. This observation was repeated in a review

of Wirsching's work [Refs. 12,13] and [Refs. 28,29]. The trends

of all materials studied, except a smooth specimen composite,

were virtually identical.

The mean of the critical damage index for all of the mate-

rials was within the range of 0.836 to 1.72, excluding the com-

posites, with coefficients of variation of approximately 0.65.

This narrow band led Wirsching to use an assumed mean of 1.00

and CV of 0.65 for all probabilistic studies, regardless of

the material involved. In that the precedent has been set for

assuming a "typical" statistical distribution is valid for most

materials, using fatigue strength exponents associated with

steels and a distribution formulated from failure of aluminum

alloy samples was accepted as a reasonable combination of
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parameters. This combination is possible only because of the

wide range of statistical scatter in the available experimental

data, and this approximation is presumed to be invalid for data

sets having small coefficients of variation.

C. SENSITIVITY TO COEFFICIENTS OF VARIATION

The coefficients of variation of the design damage index

studied were 0.2, 0.5 and 0.8. CVD = 0.2 is representative of

a distribution with relatively little statistical scatter,

*o while CVD = 0.5 yields a standard deviation of fifty percent

of the mean value and represents a fairly large statistical

scatter. However, statistical scatter up to seventy percent

is common, with scatter up to ninety-eight percent in rare

cases, for fatigue studies [Ref. 28]. Thus, CVD = 0.2 is

deemed to be conservative, CVD = 0.5 is midrange, and CVD = 0.8

is representative of most "worst case" scatter situations.

The cyclic life values reported ranged between 1.5 and

1.8 x 10 cycles [Ref. 23], for central safety factors between

one and three. Actual values studied ranged from 109 to 1013

cycles, with central safety factors ranging from near zero to

over one thousand. Common engineering safety factors are in

the range of one to three, frequently as high as five and occa-

sionally as high as ten, so the range of central safety factors

from one to three received the most scrutiny, with some study

of the range one to ten. Generated data outside this range

was not plotted. The study used a control life of 1.8 x 1010
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cycles, which corresponds to ten years continuous operation of

a component subjected to the PSD specified. This value was

derived from the deterministic fatigue life prediction deter-

mined by the deterministic portion of the source code.

For each coefficient of variation studied, the time history

data block was varied from one to twenty seconds by changing

the number of points in the random process simulation. In

increments of 500 points, the point process simulation was

varied from 500 to 10000 points. The time increment was fixed

at 0.002 seconds per point. By varying the time data block,

the stress response function X(t) was changed. This, in turn,

changed the number of simulated cycles counted by the rainflow

counting method, thus E[Sa ] and D were varied.

For each value of D, the corresponding central safety fac-

tor (equation 3.25) and the predicted probability of failure

for each probability distribution model were calculated.

Graphical presentations of the probability of failure versus

the central safety factor for each distribution, separately

and together, were generated.

As can be seen in Figure 5.3, the Weibull model is sensi-

tive to the coefficient to variation up to a central safety

factor value of about 2.25. Beyond this value of n, all three

CVD's studied converge and predict the same probability of

failure. Any further change in the time history data block

duration has no affect on the separation. Although not plotted,
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data runs for central safety factors between ten and twenty

were conducted, with no separation in predicted values.

Figure 5.4 presents the results of the log-normal distri-

bution. The log-normal model is sensitive to the coefficient

of variation throughout the entire range of central safety

factors studied. Below a central safety factor value of about

2, CVD = 0.2 is the most conservative and CVD = 0.8 is the

least conservgtive. At a central safety factor value of about

2, the predicted values cross over, with CVD = 0.8 being the

most conservative, and CVD = 0.2 being the least conservative.

For all values of n, CVD = 0.S tracks between the limits estab-

lished by the other two coefficients of variation.

When the Weibull and log-normal models are compared, each

predicts approximately the same probability of failure for

central safety factors near one. This compatibility of models

was expected, and v:as one of the acceptance criteria for the

source code developed. In the central regions of fatigue data

distributions, the log-normal and Weibull distributions are

often indistinguishable [Ref. 30]. In this specific case,

n = 1.0 means D = A , and A was fixed at 0.9, the mean of the

distribution being studied.

Additionally, there is almost always a significant differ-

ence in the predicted values within the tail regions of the

distribution, with as much as a one order magnitude difference

when the actual value is twenty percent or more below the mean

value of the index [Ref. 30]. Figures 5.5, 5.6, and 5.7
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demonstrate this trend is exhibited by the developed code pre-

dictions for each coefficient of variation studied. The

predicted probability of failure is nearly equal for the two

models for a central safety factor of one, quickly diverge,

and then settle out with a near constant separation. Figure

S.8 is included to demonstrate that this separation exists

well into the tail region, but decreases as the elapsed life

becomes smaller in magnitude.
p-J

In that the variable component of the central safety factor

* 'is the cumulative design damage index D, and D is a function of

elapsed cycles, the higher the value of n, the earlier in

fatigue life the model is analyzing. Therefore, the prediction

models meet the expected separation of predicted values in the

tail region criteria established by the models predecessors.

Based on the coefficient of variation sensitivity analysis,

the developed source code does what it was expected to do.

That is, it generates essentially equivalent predicted prob-

abilities of failure for the Weibull and log-normal model in

the central region of the distribution, and demonstrates the

expected divergence of predicted values as the tail regions

are entered. In all reference material reviewed, the log-

normal model is considerably less conservative than the Weibull

model in the tail regions of any distribution, whether the orig-

inal data fit the Weibull or log-normal distribution better.
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D. SENSITIVITY TO APPLIED CYCLES: SINGLE MEMBER

Having examined the models sensitivity to the coefficient

of variation of the design damage index, testing proceeded, using

applied design cycles as the sensitivity variable. Based on the

results of the first test phase, the time history data block

was fixed at two seconds (i.e., 0.002 second time interval, with

1000 points in the random process simulation). Additionally,

the design damage index coefficient of variation was only tested

at CVD = 0.2 and 0.8. In that the Weibull model showed conver-

gence of predicted probabilities of failure for high central

safety factors (i.e., low magnitudes of applied cycles), with

CVD = 0.5 tracking between CVD = 0.8 and 0.2 in the sensitive

range, and although the log-normal model was sensitive to CVD

in all ranges, CVD = 0.5 tracked consistently between the

bounds of the other two test values, even after cross over

occurred, the second phase testing was conducted without CVD

0.5 as a test value.
10

As in the first study, design cyclic life was 1.8 10

cycles. Beta values of 12, 12.5, 13, 13.5 and 14 were tested

for each design damage index coefficient of variation and applied

stress cycle value tested. For single member testing, applied

cyclic life was varied from 108 to 1012 cycles.

Figure 5.9 is a presentation of predicted probability of

failure versus number of cycles for the Weibull model, for

CVD = 0.2. This plot shows that for a = 12 (the structure with

the lowest resistance to fatigue failure), the probability of

67

-- =-~ -. .



VIEIBULL MODEL

A 2.

L-

o 1/ /E S=14. 0
.- 5

I-
.-I

a: .3-

0 ) -4 C.4 .

U Li LiJ wi LAI

NUMBER OF CYCLES

*Figure 5.9 IVEIBULL MODEL LIFE CYCLE SENSITIVITY C\, : 0.2

68

'5 A ffi & ffiL C ~ .t-- -- - - -- - -



'A

10
failure is about one hundred percent at 1.8 10 cycles, and

as the beta value is increased (i.e., higher resistance to

fatigue failure), the components cyclic life is increased.

As beta is increased linearly, the design fatigue life in-

creases exponentially. This is amplified in Figure 5.10.

When the data of Figure 5.9 is plotted on a log-log scale,

as in Figure 5.10, when a = 12, the probability of failure

at 1.8 1010 cycles is one hundred percent, while for $ = 14,

the probability of failure is only about two percent.

Figure 5.11 is a presentation of the predicted probability

of failure versus number of cycles for the log-normal model,

for CVD = 0.2. This plot exhibits the same shape as the

Weibull plot, but in the low probability of failure region,

the log-normal model predicts an approximate one order of

magnitude higher cyclic life before component failure begins,

and a slightly lower cyclic life to one hundred percent fail-

ure. These differences are amplified in Figure 5.12, which

depicts a comparison of the two models. As in the coefficient

of variation study, the models are virtually indistinguishable

in the central region, and are about one order of magnitude

apart in the left tail region of the distribution. As pre-

viously discussed, these observations were expected, and felt

to be a necessary occurrence in order to establish the source

code methodology as valid.

Figure 5.13 depicts the log-normal model on a log-log plot,

emphazing the left tail region performance. Figure 5.14 compares
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the performance of the Weibull and log-normal distribution

models in the left tail region. Again, the one order of mag-

nitude separation is exhibited in the left tail region, and

near identical predictions in the central region of the

distribution.

In the log-normal plot, the structure with the lowest re-

sistance to fatigue failure (i.e., = 12) reaches one hundred

*percent predicted failure slightly befor 1.8 1010 cycles. This

is due to the poor resolution of any log-normal probability

model deep in the tail region of a data distribution. This ob-

servation is repeated for all beta values. That is, complete

failure is first predicted by the log-normal model, and onset

of failure is first predicted by the Weibull model.

To verify that the established trends were applicable for

other values of the coefficient of variation of the design

damage index, the analysis was repeated for CVD = 0.8. Figures

5.15 and 5.16 show the Weibull and log-normal models performance

in the same manor as Figures 5.9 and 5.11 did for CVD = 0.2.

Figure 5.17 is a comparison of the two models for CVD = 0.8.

In all three plots, the shape of the curves and trends of the

plots follow the same pattern established by the CVD = 0.2

plots.

Figure 5.18 is a comparison of the coefficient of variation

sensitivity as a function of applied cycles for the Weibull

model. As was the case in the CVD sensitivity study, for low

cyclic lives, the model is insensitive to CVD, with negligible
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separation in predicted failure probabilities. As cyclic

life nears design life, there is a separation in predicted

values, with the CVD = 0.2 being the more conservative value.

From the source code generated data, the CVD = 0.8 plots do

eventually reach a predicted probability of failure of one

hundred percent, but so far into cyclic life, that it does not

show on this plot.

Figure 5.19 is a comparison of the coefficient of variation

sensitivity for the log-normal model. Again, the predicted

trends are sensitive to the CVD throughout the range of study,

with a noticable cross over point. Early in cyclic life,

CVD = 0.8 is the more conservative value, and near design

cyclic life, CVD = 0.2 is the more conservative value.

E. SENSITIVITY TO APPLIED CYCLES: MULTIMEMBER

Fatigue life of a weakest link structure with fifty members

was evaluated. Again, beta values of 12, 12.5, 13, 13.5 and

14, in conjunction with design damage index coefficients of

variation of 0.2 and 0.8, with a fixed time history data block

duration of two seconds, were tested. All members were assumed

to follow the same probability model for the damage index, and

all members were specified to have the same probability of

failure for a given loading spectrum and elapsed stress cycles.

The upper bound for failure of the structure was determined

and plotted in terms of total number of applied cycles, using
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the procedure and equations outlined in Chapter III, section G.

For a design damage index coefficient of variation of 0.2,

Figure 5.20 presents the results of the Weibull model, and

Figure 5.21 presents the results of the log-normal model.

Figure 5.22 compares the two models, with the Weibull model

being significantly more conservative than the log-normal model.

As Figure 5.22 demonstrates, very few additional cycles can

be placed on a log-normal modeled system before predicted fail-

ure transits from near zero to one hundred percent. The Weibull

model, on the other hand, does have an obvious transition range.

The presence of this transition range is very beneficial if

maintenance and inspection procedures are incorporated into

fatigue life prediction modeling.

Figures 5.23 through 5.25 present the same information for

CVD = 0.8. Figure 5.26 compares the Weibull model for the two

CVD's. As expected, there is a negligible separation in the

curves for each beta value, due to insensitivity to CVD at low

cyclic life. Figure 5.27 compares the log-normal model for

the two CVDIs studied. This plot does show a separation in

predicted value for each beta, for each CVD, which is due to

the log-normal model being sensitive to the CVD throughout

the range of analysis.

Figure 5.28 is a comparison of the Weibull and log-normal

models for a combination of single and multimember predicted

results. In that for the entire range of beta's studied, the

plots all have the same shape, a single beta value is presented.
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In this case, beta equals 13 was chosen to represent all beta

values. A review of Figure 5.28 shows a significant separa-

tion in single member and multimember predicted life for the

Weibull model. The observed separation in predicted life is

somewhat more than a complete order of magnitude in cyclic

life. For the log-normal model, the separation in predicted

life is only about one-half of an order of magnitude. For a

system in which the probability of failure is the same for all

components of the system, at least a one order of magnitude

difference in a single components life and the system life

would be expected. Therefore, the Weibull model is more rep-

resentative of a systems extrapolated fatigue life. This is

due primarily, to the response of the Weibull model in the

left tail region of the distribution.

This adaptability of the Weibull model to system life

extrapolation was expected, in that the Weibull distribution

has been extensively studied in its application to system lives

[Ref. 31]. Other probabilistic distributions have been adapted

to the weakest link analogy, but the Weibull distribution is

still considered the best for this purpose. Many investigators

argue that the Weibull model is too conservative in the left

tail region of a fatigue data distribution (i.e., Wirsching,

et. al.), but proponents of either distribution model do concede

that the Weibull m6del is best for system life extrapolation

[Ref. 30].
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VI. SUMMARY AND CONCLUSIONS

A. SUMMARY

A probability based approach to evaluate the high-cycle

fatigue life of single component and multiple member, weakest

link structures, in random stress environments, was described.

This approach utilizes the Palmgren-Miner linear damage rule,

with compensation for mean stress effects and the statistical

variability of the critical damage index. The cumulative design

damage index D was assumed to be a random variable, following

the same probability distribution as the critical damage index

A , for the particular probability distribution being analyzed

(i.e., Weibull or log-normal). Cyclic stress history was

assumed to be representable by a finite, repeating, time history

data block.

Statistical reduction and best fit analysis of selected

existing experimental data for A was accomplished. The subse-

quent application of order statistics and probability paper

plot of the data produced a best fit Weibull distribution,

with a mean of 0.90 and a coefficient of variation of 0.67,

vice the proposed model [Ref. 13], of an assumed log-normal

distribution with a mean of 1.00 and a coefficient of varia-

tion of 0.65. The calculated Weibull distribution shape para-

meters b and c were 0.9791 afid 1.3289 respectively.
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Log-normal models can be formulated as a function of the

mean and coefficient of variation of the data distribution,

which are the same for either log-normal or Weibull distribu-

tions. Therefore, the developed Weibull model was tested by

comparing it to the values of fatigue life obtained by assum-

ing the data did fit a log-normal distribution, and solving

the closed form mathematical representation of the log-normal

distribution.

Sensitivity studies of the predicted probability of fail-

ure as dependent on resistance to fatigue failure (i.e., nega-

tive reciprocal of the fatigue strength exponent), coefficient

of variation of the cumulative design damage index, central

safety factor, and applied stress cycles were conducted. For

both probability distribution models, as beta increases linearly,

fatigue life increases exponentiq' ly. The log-normal model is

sensitive to the coefficient of variation of the design damage

index throughout the entire range of analysis (central safety

factor or applied stress cycles), but the more conservative

value of CVD is dependent on elapsed cyclic life, with a pro-

nounced cross-over. The Weibull model is insensitive to CVD

in early cyclic life (i.e., elapsed life less than about eighty

percent of design life). During that portion of life in which

the Weibull model is sensitive to CVD, the lower the value of

CVD, the more conservative the predicted fatigue life (i.e.,

the higher the predicted probability of failure for a given

value of the sensitivity variable).
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For all selected methods of graphical presentation of

results, the predicted probability of failure for the two

models yield comparative observations that agree with the

published behavior [Refs. 10, 13, 30, and 32] of the two dis-

tributions. That is, in the middle region of the data distri-

bution, the two models are virtually indistinguishable. In

the left tail region of the data distribution, the Weibull

model is significantly more conservative than the log-normal

model, with up to a one order of magnitude difference in pre-

dicted fatigue life.

When the weakest link analogy was used to extrapolate an

upper bound of a multiple member structures fatigue life, the

Weibull model was considerably more conservative in predicted

fatigue life. The separation in the two models ranged from

about one order of magnitude at end of life to two orders of

magnitude in the left tail region.

B. CONCLUSIONS

Extensive investigation of, and efforts to develop prob-

abilistic fatigue life.prediction models has occurred. Early

models were developed using cyclic life as the basis of

analysis, due to the availability of cyclic test data. In

low cycle fatigue regimes, test data can be produced in a rela-

tively short time span. In the high cycle fatigue regime, ex-

tended periods of testing are required, but test data can be

obtained. In the ultra-high cycle fatigue regime, it can
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take years to cycle a single sample the required number of

times to represent the components life. To get a representa-

tive data base, testing costs can exceed component life-cycle

costs, thus prediction models that can use a much more limited

data base are desirable.

From the above requirement, fatigue life prediction models

using the Palmgren-Miner linear damage law and known statistical

distributions of fatigue data are being developed. A FORTRAN

computer code which utilizes this method was developed and

tested, using both the Weibull and log-normal distribution models.

Testing of the code demonstrates that the generated data complies

with the published trends of prediction models formulated on

cyclic life for these two distributions.

New structural designs entail significant modeling and/or

testing. Components designed to operate in the ultra-high

12cycle fatigue regime can entail cyclic testing up to 10 cycles

for a single sample, and then repeating the test on "identical"

samples a sufficient number of times to get a representative

data base. This model can be used to selectively reject mate-

rial compositions which appear to be feasible, but probabilistic

analysis imply will fail earlier than design requirements allow.

Having used the model as a first cut analysis of potential

design components, testing expense can be reserved for viable

compositions, not spent on compositions that might work.

An extensive literature search has demonstrated that there

are as many proponents for using the Weibull model as for using

96



the log-normal model. The log-normal model is easy to formu-

*j late, and has extensive library routines providing closed

*form solution techniques. Its simplicity of implementation

makes it a very popular model to use, and more importantly,

many existing sets of fatigue data fit the log-normal distri-

bution. The Weibull model is not as easily implemented. The

Weibull shape parameters must be calculated, and then the mathe-

matical formulation must be numerically integrated. The major

advantage of the Weibull model is its adaptability to multiple

member structures fatigue life extrapolation from single com-

ponent predicted fatigue life values.

The intention of this study was not to prove the Weibull

model superior to the log-normal model, or vice versa. The

selected experimental data fit the Weibull distribution better

than it fit the log-normal distribution, so it was known that

the Weibull model would be superior in this case. Many data

sets can be found in which the log-normal distribution fits

better, thus the log-normal distribution would be superior.

The purpose for using both distributions was to have a com-

parison method for analyzing the developed Weibull models

predictions. The comparative testing produced observations

consistent with all comparisons located in the literature,

thus implying the formulation of the models was correctly

accomplished.

Based on the interrelationships of the two models, and

the compliance with published behavior of existing fatigue
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life prediction models, it is felt that the developed source

code is an acceptable and viable fatigue life prediction tool.
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VII. RECOMMENDATIONS FOR FUTURE WORK

A. GENERAL RECOMMENDATIONS

In that the developed source code is new and was not drafted

by a programmer, some modifications to the code which enhance

efficiency of computer cost factors are possible. A significant

cost factor is the numerical integration routine used. There

may be more efficient and/or more accurate library routines

available for numerical integration. Additionally, as submitted

in Appendix B, the source code contains numerous write and asso-

ciated format statements which were beneficial in code imple-

mentation, but may be deemed superfluous information in general

use.

The code was tested using only one set of fatigue data, and

more importantly, associated.control parameters were not consist-

ent with the material properties of the source data. It is recom-

mended that additional data be obtained, and a rigid adherence

of consistent material property parameters be applied to the

new data to confirm predicted probabilistic fatigue life complies

with the data sets life. Also, it may be a beneficial exercise

to select a data set that fits the log-normal distribution better

than it does the Weibull distribution, to analyze it and compare

the results of that study with this study to evaluate model

performance based on statistical fit of the data.
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Most probabilistic fatigue life prediction models utilize

the two parameter Weibull or log-normal distribution. In an

effort to enhance the precision of cyclic life models, recent

studies into the use of the three parameter distribution has

been conducted [Refs. 10,32]. In these studies, the third

parameter is called the least life parameter, i.e., minimum

cycles to failure. In terms of the critical damage index, a

least life parameter would be the value of the cumulative

damage index at which first failure occurs (assumed to be

zero in the two parameter model). For initial implementation,

the least life parameter could be assigned the value of A in

the selected data set with the lowest magnitude. The selected

data set would have provided a least life A of about 0.01, but

from a review of the literature [Ref. 121, the least life value

is more generally around 0.18 for log-normal distributions.

Using a least life parameter may reduce the left tail

region separation of the two models. Additionally, incorpora-

tion of a least life parameter could be beneficial, not only

in enhancing accuracy of predicted life compared to actual

life from test data, but may ease the implementation of main-

tenance and inspection procedure effects analysis on the model.

B. MAINTENANCE AND INSPECTION

Reliability analysis of structures subjected to scheduled

maintenance and inspection procedures has been investigated,

primarily by engineers in the aircraft industry. Efforts to
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incorporate the probabilistic analysis of crack detection, and

subsequent repair or replacement of the faulty component,

effects on structural fatigue life are being pursued [Refs.

33,34]. When a crack is initiated, the components fatigue

strength progressively decreases as the crack propagates, in-

creasing fatigue failure rate with time. If the faulty com-

ponent is detected by inspection and repaired or replaced, the

static and fatigue strength of the structure are renewed. This

regeneration of component fatigue strength enhances the struc-

ture's fatigue resistance and life.

One possible way to account for the effects of inspection

and maintenance procedures would be to adjust the least life

parameter upward, commensurate with the reliability of the

maintenance and inspection procedure. In that detection, thus

repair of a crack is a probabilistic function of flaw size and

resolution of the inspection procedure used (i.e., visual in-

spection, liquid penetrant, ultrasonic, magnetic particle,

magnetic field perturbation, or radio-graphic), some cracks are

not detected, so fatigue life does not restart after inspection.

However most cracks that would cause early failure, represented

by the left tail region, would be detected, and eliminated [Ref.

34]. The predicted fatigue life can then be recalculated, re-

jecting those sets of A deep in the left tail. Or, if the

least life parameter were used, the tail region could be re-

tained, with the least life parameter magnitude adjusted upward.

This allows use of the entire statistical distribution, and
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accounts for the increased probability of survival. Rejecting

data elements in the tail region requires recalculation of the

mean and coefficient of variation of the "new" distribution.

If the Weibull distribution were used, recalculation of the

shape parameters is also required.

Structures other than aircraft undergo scheduled maintenance

and inspection procedures (i.e., offshore structures, bridges,

buildings etc.). Thus, incorporation of accountability for

these procedures would enhance the usefulness of any prob-

abilistic fatigue life prediction model. Therefore, investiga-

tion into incorporation of maintenance and inspection procedures

accountability in the developed fatigue life prediction model

is the primary recommendation for future work. It is believed

that modifying the source code to use the three parameter vice

the two parameter distributions would ease this implementation.

C. MULTIAXIAL FATIGUE

A literature search was unproductive in locating material

covering probabilistic fatigue life prediction for components

subjected to multiaxial fatigue. Extensive research is in

progress to evaluate multiaxial fatigue in the deterministic

sense, but no consensus yet exists as to one method of analysis.

Numerous proposals for high cycle fatigue analysis have been

generated. Garud [Ref. 35] presented an excellent state-of-

the-art survey of multiaxial fatigue and discusses most of the

proposed models.

102

'4

* -~..-.*------*---.*---.*.-------.*-*-..--.-.------.-



Each proposed model appears to be limited to a specific

application, i.e., proportional cyclic loading in all axial

,. directions, in-phase loading or out-of-phase loading, etc.

Until an accepted correlation is developed, complex multi-

axial fatigue analysis of predicted fatigue life must be

deferred well into the future. On the other hand, simple

cases of bi' xial fatigue may be solvable now. In the high

cycle fatigue regime, equivalent stress, determined by the

Tresca or Von-Mises criterion can be used [Refs. 10,35,36].

However, recent studies indicate this procedure only applies

for in-phase loading with fixed principle axes [Ref. 35].

For this limited case, investigation into using a repre-

sentative PSD with the rainflow counting method to generate

a mean stress for each axis, then application of either the

Tresca or Von-Mises criterion to generate an equivalent stress

can be accomplished. This equivalent stress would then be

used in evaluating E[S ], with the remaining analysis pro-

ceeding as outlined in Figure 4.1. The predicted failure

(i.e., elapsed cycles to fifty percent failure) could then

be compared with the cycles to failure determined via the

classical deterministic approach of S-N curve analysis

(outlined in reference 36).

An additional study could be made by developing a PSD

representative of the equivalent stress from the Tresca or

Von-Mises criterion, then using this PSD with the rainflow

cycle counting method as if the study were initially uniaxial.
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Then, comparison of application of equivalent stress before

cyclic stress simulation and application of equivalent stress

after cyclic stress simulation could be conducted.

D. SUMMARY

The growth potential of the developed source code is un-

limited. Some general improvements have been discussed, and

two in-depth expansions have been proposed. Based on background

material available, incorporation of maintenance and inspection

procedure effects on prolonging fatigue life appears to the

subject area with the most promising, immediate, applicability.
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APPENDIX A

COMPUTER CODE USERS GUIDE

A. INTRODUCTION

The computer code "FATIGUE FORTRAN" is designed to cal-

culate the deterministic fatigue life, Weibull model prob-

ability of failure and the log-normal model probability of

failure for a single structural component. Any one, or a

selected combination of the three models can be chosen.

Additionally, calculations accounting for, or neglecting,

mean stress effects are possible.

B. COMPUTER CODE DESCRIPTION

Representative time history data blocks, applied power

spectral density functions, material fatigue strength expo-

nents, Weibull model shape parameters for the critical damage

index, coefficient of variation for the design damage index

and design cycle life to be analyzed are inserted as variables.

The program then generates a random version spectral density

function and converts the time history data block to relative

stress amplitudes for the specified time sequence. The simu-

lated stress history is then changed to a peak and trough rep-

resentation for Rainflow cycle counting and subsequent calculation

of the mean and standard deviation of the simulated cyclic

stress history. The deterministic fatigue life is then cal-

culated for each beta value to be analyzed.
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The program then calculates the Weibull shape parameters

for the design damage index from the mean and standard devia-

tion of the stress history simulations, as well as the mean,

standard deviation and coefficient of variation of the cri-

tical damage index from the critical damage index shape para-

meters provided as input values. From these values, the

Weibull model distribution and density functions are calc" ated

and inserted into a numerical integration routine for det -

mination of the probability of failure. The integration

routine used is DQSF, a double precision routine using a

bination of Simpson's rule and Newton's three-eighths rule.

The Weibull model formulation implies integration to in-

finity, which is not realistic. To alleviate this problem,

the calling program is established so that the first iteration

of the integral is evaluated from zero to the calculated mean

of the damage index, (both the design and the critical damage

index are used). Subsequent iterations are conducted using

the damage index with one standard deviation of the damage

index added for each iteration. From probabilistic theory,

it is accepted that the mean plus three standard deviations

of the mean for a given distribution will include 99.7% of all

elements of that distribution. Rather than limit the integra-

tion to this level, the iteration is conducted until the dif-

ference between successive iterations is less than one percent,

or ten standard deviations have been added. This typically
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results in five standard deviations being added, with resul-

tant inclusion of all but 6E-07 percent of the area under the

distribution curve.

The Weibull model is evaluated using both the critical

damage index and the design damage index with their associated

standard deviations as the upper limit of integration. The

two methods yield essentially the same predicted probability

of failure. For parametric studies of the critical damage

index, the user can chose to comment out the design damage

index analysis section.

The program then proceeds to the log-normal model, with

its first step being the calculation of the log-normal shape

factor. This shape factor is referred to as the "central

safety factor," and is the ratio of the means of the two

damage indexes. The parameters of the standardized argument

for normal distributions are then evaluated and the standard-

ized argument is then calculated and passed to a routine called

MDNOR. This routine then returns the probability of survival

for the specified standardized argument. The probability of

failure is then calculated as one minus the probability of

survival.

C. COMPUTER CODE SUBROUTINES

Three library routines are used, and are imbedded in the

attached program listing. The MDNOR and GGUBS routines are

from the IMSLDP library and are precompiled, so imbedding is

not required. The DQSF routine is from the NONIMSL library
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and is also precompiled, thus imbedding is not necessary.

The remaining imbedded subroutines are non-library routines

and are tailored to this particular program. Table II pro-

vides a summary of subroutine names and purpose.

The only subroutines with internal write statements are

SPECT and WEIBR. In both cases, for parametric studies, these

write statements and formats can be commented out if desired.

SPECT generates the relative spectral density parameters, and

these values do not change for a given PSD and time history.

WEIBR generates the Weibull shape factors for the design

damage index. These values do change during parametric

studies if the coefficient of variation of the design damage

index is one of the varied parameters. However, the calculated

values are returned to the main program for use in the Weibull

model section, thus writing these values is not necessary.

TABLE II

COMPUTER CODE SUBROUTINES

RANSPC generates random spectral density function
GGUBS basic uniform random number generator
STAT evaluates mean and standard deviation
RNFLW rainflow cycle counting, trough to peak
RNDRP rainflow cycle counting, peak to trough
SPECT computes standard deviation, irregularity

factor, expected rate of zero crossings
and expected rate of peaks

WEIBR calculate Weibull parameters b and c from
the mean and standard deviation

DQSF numerical integration routine using Simpson's
rule and Newton's three-eighths rule

MDNOR Normal or Gaussian probability distribution
function evaluator
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D. COMPUTER CODE INPUT PARAMETERS

A sample input file is presented as Table III for demon-

stration of format specified location and argument type, i.e.,

character string, real or integer value. A description of

each variable as encountered in the input file follows. Each

parameter is referred to as it is named in the program.

First Row

1) HED: Character string title of specific test case.

Second Row

1) NP: Number of input frequencies of stress response

power spectral density (PSD) function.

2) IN: Number of points in random time history

simulation.

3) NE: Number of BETA values (negative reciprocal of

fatigue strength exponent) to be considered.

4) DT: Time interval in random time history simulation

(sec).

5) DF: Average frequency interval to characterize the

power spectral density function (Hz).

6) THM: Mean of time history relative stress response.

7) SU: Ultimate strength of component.

8) IFLAGl: Integer flag value to specify type of analysis.

=0 Deterministic Fatigue Life analysis

=1 Probabilistic Fatigue analysis

=2 both
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Third Row

1-5) EXPX(NE): BETA array, values of BETA to be analyzed.

Fourth Row

1,3,5) WF(NP): Frequencies of input PSD.

2,4,6) SP(NP): Amplitude of PSD at specified frequency.

Fifth Row

1) IWL: Integer flag value to specify type Of prob-

abilistic analysis.

=0 Weibull model

=1 log-normal model

=2 both

2) CL: Lower limit of variability search for use in

determining Weibull shape parameters for the

design damage index.

3) CU: Upper limit of variability search.

4) BDEL: Weibull shape parameter for critical damage

index (intercept of Weibull critical damage

index distribution).

5) CDEL: Weibull shape parameter for critical damage

index (slope of Weibull critical damage index

distribution) .

6) CVWM: Coefficient of variation of the design damage

index.

7) CYCL: Design life cycles to be analyzed.
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E. VARIABLE USAGE

A PSD, time history data block, and material (ultimate

strength and fatigue strength exponents) are chosen and fixed.

Then parametric studies are accomplished by varying the design

damage index coefficient of variation and cyclic life. Depend-

ing on the chosen coefficient of variation, the upper and lower

limits of variability search may have to be changed. For

0.1 < CVWM < 1.0, the resident values of CL and CU are adequate.

F. COMPUTER CODE USAGE

The program is tailored for usage on the IBM 3033, with the

FORTHX compilier. Unit five is used for input, and unit six is

used for output. In addition, unit seven is used for creating

a data file for subsequent graphical presentation of a time

history plot, and unit eight is used for creating a data file

for subsequent graphical presentation of a simulated power spec-

tral density plot. The data from unit seven can be placed

directly into a plot routine, such as PLOTG, and submitted to

the versatec plotter. The data on the unit eight file must be

used as input to a Fast Fourier Transform routine, which gener-

ates the data points for use in a plot routine.

For parametric studies, it is recommended that after the

initial data run, the write statements and associated format

statements for the unit seven and unit eight data be commented

out. Additionally, a significant number of the unit six write

statements and associated format statements can be commented out,

leaving only the required information for the particular study.
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Program array dimension sizes are listed on the first

page of the program. Recommended values, as functions of

the input variables are provided.
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APPENDIX B

COMPUTER CODE
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APPENDIX C
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