TECHNICAL REPORT ARLCD-TR-83033

N(2) AND CO VIBRATIONAL CARS AND H(2) ROTATIONAL CARS SPECTROSCOPY OF CH(4)-N(2)O FLAMES

KENNETH ARON
L. E. HARRIS
JOANNE FENDELL

AUGUST 1983

U.S. ARMY ARMAMENT RESEARCH AND DEVELOPMENT CENTER
LARGE CALIBER WEAPON SYSTEMS LABORATORY
DOVER, NEW JERSEY

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.

The citation in this report of the names of commercial firms or commercially available products or services does not constitute official endorsement by or approval of the U.S. Government.

Destroy this report when no longer needed. Do not return to the originator.
N(2) AND CO VIBRATIONAL CARS AND H(2) ROTATIONAL CARS SPECTROSCOPY OF CH(4)-N(2)O FLAMES

Kenneth Aron, L. E. Harris, Joanne Fendell

ARDC, LCWSL
Applied Science Div [DRSMC-LCA-C(D)]
Dover, NJ 07801

August 1983

16. DISTRIBUTION STATEMENT (of this Report)
Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES
Kenneth Aron, who co-authored this report, is associated with Geo-Centers, Inc., Newton, Massachusetts.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
CARS
Nitrogen
Carbon monoxide

Hydrogen
Methane-nitrous oxide flame

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)
Broadband CARS (coherent anti-Stokes Raman scattering) spectra of N(2) and CO were obtained from the post-flame gases of rich CH(4)-N(2)O flames by the use of the nonplanar BOXCARS technique. The temperature and concentration of both N(2) and CO in these flames, estimated from CARS spectra with the aid of model calculations, agreed with standard thermochemical predictions. In addition, several pure rotational H(2) CARS transitions, most of which had previously

(cont)
been unobserved, were seen in several spectral regions, most notably in both the CO and NO CARS regions. These observations are important in future modeling of CARS data.
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Experimental Method</td>
<td>2</td>
</tr>
<tr>
<td>Results</td>
<td>3</td>
</tr>
<tr>
<td>Discussion</td>
<td>7</td>
</tr>
<tr>
<td>Conclusion</td>
<td>9</td>
</tr>
<tr>
<td>References</td>
<td>11</td>
</tr>
<tr>
<td>Distribution List</td>
<td>23</td>
</tr>
</tbody>
</table>
INTRODUCTION

Coherent anti-Stokes Raman scattering (CARS) spectroscopy has become an effective method for analysis and investigation of flames and combustion processes. The theoretical background of CARS and its experimental applications have been extensively reviewed (refs 1 through 6). CARS is based on the nonlinear response of a homogeneous medium upon which waves \(\omega_1 \) and \(\omega_2 \) are incident and which generates an oscillating polarization. The lowest order nonlinearity is the third order susceptibility, \(\chi^{(3)}(-\omega_3, \omega_1, \omega_1, -\omega_2) \) which generates a frequency component of the polarization at \(\omega_3 = 2 \omega_1 - \omega_2 \) by the process of three wave mixing (ref 7). Vibrational resonant enhancement of three-wave mixing occurs if \(\omega_1 - \omega_2 \) is made equal to a Raman active vibration, \(\omega_1 \), in this way generating the CARS signal. Numerous flames have been studied with CARS of N\(_2\), CO, H\(_2\), and H\(_2\)O (refs 2 and 3).

Depending on the demands of the particular combustion circumstances to be studied, CARS can be carried out in several different modes. Normally \(\omega_2 \) is narrowband and scanned to obtain the CARS spectrum at \(\omega_3 \). However, to obtain spectra in transient or turbulent flames, it is appropriate to use a broadband \(\omega_2 \) [approximately 150 cm\(^{-1}\) full width at half height (FWHH)] to obtain the full rovibrational spectrum at \(\omega_3 \) within the time duration of the laser pulse (\(~\!10 \) ns) (ref 8).

The CARS experiments can also be carried out in different geometrical modes to effect the required phasematching for the coherent process. When \(\omega_1 \) is split to achieve phasematching, it is termed BOXCARS (ref 9). In this case spatial resolution is improved since CARS generation occurs only where all three beams intersect. In folded (nonplanar) BOXCARS, there is the additional advantage that \(\omega_3 \) is easily separated spatially from the generating beams (refs 10 and 11).

BOXCARS has been used to obtain temperature and concentration of post-flame gases in stationary flames using broadband (ref 12) and narrow band (ref 13) spectra, and in transient flames using single-shot (refs 14 and 15) spectra. Recently, broadband N\(_2\) and N\(_2\)O CARS from the reaction zone of a flame has been reported utilizing the precisely defined spatial resolution of BOXCARS in the direction of the laser beams (ref 16). CARS allows direct monitoring of the rovibrational levels of the reactant molecules as they undergo flame reaction processes.

Because of these capabilities, measurement of N\(_2\) and CO CARS was undertaken, particularly in rich CH\(_4\)/N\(_2\)O flames. It is seen that CARS-derived temperature and species concentrations agree with standard thermochemical estimates. In addition, pure rotational CARS signals were seen from several high-lying H\(_2\) rotational levels, including two previously unobserved lines. The H\(_2\) lines seen in this work lie in several spectral regions, most notably atop the CO CARS signal and in the region of the NO CARS transition. A thorough understanding of these H\(_2\) lines would not only provide a new and uncomplicated approach to CARS temperature diagnostics, but would also clarify observed interferences in CARS spectra of hydrocarbon flames.
EXPERIMENTAL METHOD

The experimental method is described in references 16 and 17. Briefly, nonplanar BOXCARS was utilized to achieve phasematching. The output of a Quanta-Ray DCR-1A Nd/YAG laser at 1.06 microns (700 mJ) is doubled to generate the pump beam at 5320 Å (250 mJ) with a bandwidth of near 1 cm\(^{-1}\). The pump beam is separated from the primary beam with prisms. The pump beam is split with a beam splitter to generate \(\omega_1\) and \(\omega_1'\), and is used to pump a dye laser to generate the Stokes beam, \(\omega_2\). The dye laser consists of a flowing dye cell in a planar Fabry-Perot oscillator cavity pumped slightly off-axis by 20 percent of \(\omega_1\) with the output amplified by an additional dye cell pumped by the remainder of \(\omega_1\). For the N\(_2\) spectra, the dye laser was operated broadband with Exciton Rhodamine 640 in dry methanol at a concentration of 2.4 \times 10^{-4} M and 3.2 \times 10^{-5} M in the oscillator and amplifier dye cell, respectively, to produce 25 mJ ordinarily centered near 6060 Å (16502 cm\(^{-1}\)) with a bandwidth of 125 cm\(^{-1}\). For the CO spectra, the pH of the oscillator dye solution was raised by the addition of methanol saturated with NaOH. For the investigation of the NO region, Exciton Kiton Red dye was used, 130 mg/L of dry methanol for the oscillator and 16 mg/L in the amplifier. To achieve BOXCARS geometry, \(\omega_1\) is again split with another beam splitter to generate \(\omega_1\) and \(\omega_1'\). In the optical configuration used to generate nonplanar BOXCARS, the \(\omega_1\), \(\omega_1'\), and \(\omega_2\) beams are parallel and situated on a circle of 0.5-inch diameter at the focusing lens (200 mm focal length) with \(\omega_1\) and \(\omega_1'\) in the central horizontal plane of the lens and \(\omega_2\) below \(\omega_1\) and \(\omega_1'\) in the central vertical plane. Telescopes are inserted in the \(\omega_1\) and \(\omega_2\) beams to allow the focal spot size of both beams to be equalized. The telescopes also allow the position of the \(\omega_1\), \(\omega_1'\), and \(\omega_2\) beamwaists to be adjusted such that they all intersect after focusing. This was achieved with 0.85x and 2x telescopes in \(\omega_1\) and \(\omega_2\), respectively.

To achieve phasematching, a 12.5 mm-thick optical flat, rotatable about its horizontal axis, was inserted into \(\omega_2\) before focusing. It was adjusted to maximize the \(\omega_3\) signal. The beams were recollimated with a 200 mm focal length lens, after which \(\omega_3\) was located below the plane of \(\omega_1\) and \(\omega_1'\). \(\omega_1\) and \(\omega_2\) were terminated with a neutral density filter. \(\omega_3\) was focused with a 50-mm focal length lens onto the slits of a 1/3-meter monochromator equipped with a 2,400 line/mm grating and a 25-micron slit. The signal was detected by a PAR SIT detector and processed by a PAR OMA2 system. Neon lines were used to calibrate the monochromator. The FWHM of the neon lines nearest \(\omega_3\) were determined to be nominally 2.0 to 3.5 cm\(^{-1}\) per channel, depending on the experiment.

Flame measurements were made on premixed CH\(_4\)/N\(_2\)O flames maintained on one of two circular burners. One burner was 1.8 cm in diameter and its surface was constructed of a matrix of steel syringe needles of 0.2 cm o.d. so that a flat flame could be obtained under suitable flow conditions. The second burner, of similar construction, consisted of two distinct sections: a 2.25-cm-diameter inner core area for the flame, constructed of 0.09-cm-o.d. needles and surrounded by a 1.0-cm-wide torus composed of 0.13-cm-o.d. needles through which argon could be flowed to provide an inert gas sheath for the flame. Matheson technical grade methane and chemically pure nitrous oxide were separately flowed through Matheson rotameters prior to premixing. The flow through the burner was adjusted according to equivalence ratio and the need for sufficient flow to prevent re-ignition.
in the hotter flames. Equivalence ratio (ϕ) is defined here as the fuel/oxidant molar ratio divided by the stoichiometric fuel/oxidant molar ratio. For ϕ = 0.5, the flow velocity was adjusted to 19.7 cm/s; for ϕ = 1.0, 30.2 cm/s; for ϕ = 1.2, 31.5 cm/s; ϕ = 1.8, 16.2 cm/s; ϕ = 2.5, 7.9 cm/s. The center line of the burner was placed at the intersection of the ω1, ω1', and ω2 beamwaists. The burner was mounted on horizontal and vertical translation stages.

RESULTS

Broadband CO and N2 spectra were obtained at several heights in 0.5, 1.0, 1.8, and 2.5 equivalence ratio flames. All these flames were scanned vertically along the center line, from a height of 2 mm to 60 mm above the burner surface. Spectra similar to those shown in figure 1 for N2 and figure 2 for CO were obtained for ϕ = 1.0, ϕ = 1.8, and ϕ = 2.5 flames at heights of 2 mm, 5 mm, 10 mm, 20 mm, 30 mm, 50 mm, and 60 mm.

The spectra shown in the figures and similar spectra taken at other positions in the flame allow the determination of temperature and concentration of N2 and CO. N2 CARS spectra were calculated with the method outlined in references 17, 18, and 19. The observed CARS spectrum is proportional to the square of the modulus of the third order susceptibility, χ(3), which is the sum of a resonant term, χr, related to a nuclear displacement and a nonresonant term, χnr, related to electronic displacement:

\[
χ(3) = χ_r + χ_{nr}
\]

(1)

The resonant term is calculated as a sum of Lorentzian line shapes of each 0(J) vibrational/rotational transition which is a function of the number density of the resonant molecule, the Raman cross-section, the Boltzman population difference, and the isolated linewidth. The calculated \[|χ(3)|^2\] is first convoluted over the laser lineshapes and then over a triangular slit function. χr is the sum of a real χr', and an imaginary component, χr'', such that,

\[
(χ_r(3))^2 = χ'^2 + 2χ'χ_{nr} + χ''^2 + χ_{nr}^2
\]

(2)

χ' and χ'' display dispersive and resonant behavior, respectively, with respect to the detuning frequency, \[ω = ω - (ω_1 - ω_0)\], where ω is the frequency of the Raman resonance. As the concentration of the resonant species is lowered, the cross term χ'χnr, which is dispersive, modulates the shape of the spectrum. The observation of dispersions modulated spectra allows estimation of the concentration in addition to the temperature based on model calculations. More critically, both temperature and concentration can be determined from these molecular spectra since in these hot flames the intensities of the higher hot bands of both CO and N2 (particularly 032 in both cases) are sufficiently concentration-dependent to allow both these variables to be modeled (ref 17). Observation of hot bands allows least-squares fitting of the calculated and experimental 0 peaks maxima to give temperatures to ±100 K and concentration to ±10% absolute, based
on replicate determinations. The spectrum shown in figure 1 was obtained at 2 mm above the burner in an unshielded $\phi = 1.0$ flame. The temperature and concentration calculated for this flame were 3000 ± 100 K and 50% ± 5% N_2. The temperatures seemed to cool gradually, probing up the flame, with the N_2 concentration stable at 48% to 52%. At a height of 50 mm above the burner head, the temperature cooled only to about 2900 K. The temperature and concentration obtained from thermochemical calculations (ref 20)—2920 K and 51% N_2 for this flame—are within the error of the experimentally determined values.

In addition, to confirm the temperature and concentration measurements derived from N_2 CARS, measurements were taken with CO CARS in the same unshielded CH_4/N_2O flames. A CO CARS spectrum for a $\phi = 2.5$ shielded flame, shown in figure 2, is an example of CO CARS diagnostics. The CO CARS-derived data for the $\phi = 1.0$ flames ($T = 3100$ K, $C = 8\%$) are consistent with the thermochemical data ($T = 2920$ K, $C = 7.2\% N_2$) and with the N_2 CARS data. However, for the $\phi = 2.5$ flame, shown in figure 2, the derived temperature and concentration values ($T = 2550$ K, $C = 16\% ± 1.6\% CO$) are actually hotter than the thermochemical data. This discrepancy for the rich $\phi = 2.5$ flames is discussed below. In summary, for the 1.0 flame, temperatures and concentrations were measured as 3100 K, 50% N_2 and 8% CO at 2.0 mm above the burner surface, cooling only slightly to 3000 K going up the flame even as high as 60 mm above the burner head. N_2 concentration increased only to 55% at 50-mm height, whereas by 20 mm above the burner, the CO signal had dropped below detection limits into the nonresonant background.

It was seen that for the $\phi = 1.8$ flame, both N_2 and CO CARS measurements approached the thermochemical predictions on species concentrations ($CO = 16\%, N_2 = 42\%, T = 2734$), even given the interaction of these rich flames with room air in this unshielded burner. At 2 mm above the burner head, N_2 CARS measured a temperature of 2600 K and 42% concentration. CO CARS, neglecting a sharp spike on the (1,0) CO peak, measured 2600 K and 8% CO. The N_2 concentration remained at 42% with a consistent temperature measurement near 2600 K even through the height of 60 mm. It was difficult to measure CO in this flame at heights greater than 30 mm above the burner.

CARS measurements on the $\phi = 2.5$ flame at 2 mm above the burner surface gave concentrations close to calculated ($20\%, CO, 35\% N_2$) but the observed temperatures, 2400 K to 2500 K, were somewhat hotter than calculated (2252 K) since the flame was, in fact, considerably leaner than 2.5 due to admixture with ambient O_2.

Except for use with rich flames such as the $\phi = 2.5$ flame, temperatures near to those which the calculations predict were seen in both of the burners which were used in these experiments. In fact, for the burner which was used only to compare shielded and unshielded flame behaviors, flames run at flows identical to those used with the first burner showed temperatures several hundred degrees below thermochemical predictions. At these flows, temperatures in this burner for $\phi = 1.8$ flames, for example, seemed to stabilize at 2300 to 2400 K. It is assumed that this burner exhibited substantial heat gain to its large burner head, necessitating the use of higher flow rates than used in the primary burner to raise the reaction zone.
During the course of obtaining the above temperature and concentration profiles for the various CH$_4$/N$_2$O flames with vibrational CARS spectra, several intense and narrow peaks were seen. These appeared in marked contrast to the broad rovibrational CO and N$_2$ transitions and exhibited a strong dependence on flame stoichiometry and, in at least one case, on the probed position within the flame.

The CARS spectrum in the CO spectral region of several CH$_4$/N$_2$O flames, ranging from a rich $\phi = 2.5$ flame to a $\phi = 1.2$ flame, is shown in figure 3. In these spectra, the (1,0), (2,1) and (3,2) vibrational bands of CO can be seen superimposed on the nonresonant CARS background. In addition, at $\Delta \nu = 2131$ cm$^{-1}$, superimposed on the (1,0) CO peak is a sharp peak whose linewidth seems to be instrument limited. This sharp "spike" dominates the spectrum for the fuel-rich flames and becomes less intense as the flame ratio approaches stoichiometric. The line intensity is not proportional to the square root of CO concentration, being more dependent than CO itself on flame stoichiometry. As is indicated above, reasonable agreement with thermochemical calculations for temperature and concentration of CO can be obtained only by attributing this peak to a species other than CO, with its position atop the CO (1,0) peak fortuitous.

In fact, this 2131 cm$^{-1}$ peak has previously been observed (refs 21, 22, and 23). Kllick et al (ref 23) attribute it to an (11,9) pure rotational transition of ground state H$_2$. Its behavior with respect to flame stoichiometry (and thus directly, with H$_2$ concentration) is documented below.

The CARS spectrum in the NO spectral region of several CH$_4$/N$_2$O flames, ranging from a rich $\phi = 2.5$ flame to a lean $\phi = 0.5$ flame, is shown in figure 4. In none of the spectra was NO itself seen, but superimposed on the background nonresonant CARS signal were two narrow (linewidth limited by instrument resolution) peaks. The higher energy peak, at $\Delta \nu = 1809$ cm$^{-1}$, behaves similarly to the peak seen in the CO region: it is very intense in the rich flames and decreases in intensity as the flame is made leaner. The normalized intensity behavior which is nearly proportional to the square root of H$_2$ concentration is tabulated and compared in table 1. The $\Delta \nu = 1714$ cm$^{-1}$ peak maintains a nearly constant normalized intensity relative to the nonresonant signal independent of flame stoichiometry. As discussed below, these peaks are also assigned as due to pure rotational H$_2$ CARS.

The signal from these narrow peaks was more intense in the NO region than in the CO region. That these peaks result from a CARS signal is obvious from the clear, typical CARS modulation seen in the $\Delta \nu = 1809$ cm$^{-1}$ narrow peak in every spectrum in the NO region. Even in the $\phi = 0.5$ flame, where the peak itself is almost diminished into the noise, the typical CARS modulation is still apparent. This modulation on the H$_2$ peak cannot be seen as readily in the CO region, though on closer inspection and comparison of the different stoichiometric spectra, it can be discerned in this region as well.

In addition, because of the critical role N$_2$ CARS plays in flame temperature and concentration diagnostics, it is important to point out the possible observation of a narrow peak at 2298 cm$^{-1}$, almost centered atop the N$_2$ (2,1) hot band. Though such narrow structure is characteristic of N$_2$ CARS in hot flames, where
intensity enhancement due to overlap between a high $v'' = 0$ to $v' = 1$ rotational transition and a low $v'' = 1$ to $v' = 2$ rotational transition is predicted (ref 18), the persistence and high intensity of this narrow peak above the theoretical low-resolution plots in several spectra should not be overlooked. \(\text{N}_2 \) is the most commonly employed molecule in CARS diagnostics, and in these diagnostics the \((1,0): (2,1)\) intensity ratio is critical for temperature and even concentration determinations. Any interference in the \((2,1)\) peak intensity by a second species might consequently make erroneous any temperature/concentration measurements based on the \((2,1): (1,0) \text{N}_2 \) ratio if its presence were not accounted for.

The possibility of a transition occurring at $\Delta v = 2298.5 \text{ cm}^{-1}$ transition is the most difficult to fully assess. Because of its low intensity, and because of the clear \(J \)-structure of the \(\text{N}_2 \) vibrational bands, this line could be mistaken for \(\text{N}_2 \) rotational structure. Figures 5 and 6 show two spectra of \(\text{N}_2 \) of a $\phi = 1.8$ flame at an experimental and calculated resolution of 2.0 cm\(^{-1}\) as well as a matching spectrum for each calculated with a resolution of 1.0 cm\(^{-1}\). (The \(\omega_2 \) profiles for these two spectra were quite different.) Figure 5 is calculated at 2400 K, 36%, while figure 6 is calculated with 2300 K, 37.5% \(\text{N}_2 \). It is seen that a sharp peak stands out above the unresolved rotational structure in the 2.0 cm\(^{-1}\) resolution case in the former examples, though it is not as evident in the latter example and is masked altogether in the high resolution plots and could be mistaken for a strong \(J \)-line or a superposition of several \(J \)-lines. High resolution (better than 0.1 cm\(^{-1}\)) calculations can be performed for \(\text{N}_2 \) at several temperature/concentration combinations, and at no reasonable set of conditions does only one rotational line near 2298.5 cm\(^{-1}\) or only one superposition of rotational lines show a marked intensity enhancement over all the other lines or superposition of lines. The \((2,1)\) band itself actually appears as a double peak even at low resolution; at higher resolution, the prominent rotational lines and combinations which contribute to that double-headed structure are obvious. But even after the low resolution of the experiment conceals the other rotational structure, a narrow peak is still apparent. As seen in figure 7, this is even more marked in the untreated data. From energy level calculations, at 2298.5 cm\(^{-1}\) this narrow line is accidentally degenerate with one of the most intense combinations of rotational lines in the region of the \((2,1) \text{N}_2 \) hot band transition for the flame conditions tested.

It was also important in these experiments to determine the effect of an argon shield on the flames which were tested. With the second burner, the most obvious result of flowing argon through the torus surrounding the flame was to effectively create a Smithells separator, even to the naked eye separating the inner and outer cones of the flame. That is, the argon flow prevented the infusion of room air into the flame until about 60 mm upstream, effectively lifting the outer cone or the outer diffusion flame where the excess oxidizable constituents would otherwise burn in air. This is borne out in the derived CARS data for both \(\text{N}_2 \) and \(\text{CO} \) in both $\phi = 2.5$ and $\phi = 1.8$ flames. Just above the burner head, before room air can mix with the flame in even the un shielded case, both the shielded and unshielded flames exhibit essentially the same temperature and concentration, 2250 K, 12% \(\text{CO} \), 50% \(\text{N}_2 \) for $\phi = 2.5$; 2500 K, 12% \(\text{CO} \), 45% \(\text{N}_2 \), for $\phi = 1.8$. Along the center line, this behavior is seen up to a height above the burner head of 10 mm. Above this height, for the unshielded burner, room oxygen
apparently mixes with these rich flames to produce a flame hotter than the
shielded flame, with increased N₂ and decreased CO concentrations going up the
center line. For \(\phi = 2.5 \) flames in the unshielded burner, the CO concentration
drops to 7% at 2550 K at 10 mm height. Under identical conditions but with the
added argon shield, flame analysis yields CO temperature = 2000 K and a CO con-
centration of 12%. By 30 mm, CO concentration drops below our detection limit in
the unshielded flame, while in the shielded flame the CO concentration is main-
tained above 10% through a height of at least 60 mm. These differences are only
somewhat less marked for the \(\phi = 1.8 \) flame. With this insight, experimenta-
tion was carried through predominantly on the unshielded flames.

DISCUSSION

CARS measurements were carried out on two different burners. In the first
burner, which had no capability for shielding the flame, temperature and concen-
tration were obtained from both N₂ and CO to characterize the post flame region
of the \(\phi = 1.0, 1.8, \) and 2.5 flames. The second burner, which could be run with
or without an argon shield, was used only to compare shielded with unshielded
flame characteristics.

Using the first burner, in each of the \(\phi = 1.0, 1.8, \) and 2.5 flames, N₂ and
CO temperatures were consistent to within \(\pm 100 \) K, the estimated experimental
error. In the \(\phi = 1.0 \) flame, the concentration of both N₂ and CO are in agree-
ment within experimental error with the results of thermochemical calculations
(ref 20). Agreement with the thermochemical calculations is attained by adjust-
ing the flow to displace the reaction zone above the burner surface such that
heat loss is minimized without inducing turbulent effects. In the \(\phi = 1.8 \) flame,
agreement of the temperature with the thermochemical calculations cannot be ex-
pected since room air will enter into the flame reactions. This is even more
marked in the still richer \(\phi = 2.5 \) flame. For the \(\phi = 1.0 \) and 1.8 flames, the
measured temperatures are slightly lower than the calculated temperatures (the
rich \(\phi = 2.5 \) flame measures with CARS hotter than thermochemical calculations
predict) while the concentrations of both N₂ and CO along the centerline are
close to their equilibrium values. These measurements serve to characterize the
post-flame conditions under which the narrow resonances at \(\Delta \nu = 2131 \) cm⁻¹ in the
CO CARS region, and at \(\Delta \nu = 1809 \) cm⁻¹ and \(\Delta \nu = 1714 \) cm⁻¹ were observed.

Isolated narrow peaks, which appeared in marked contrast to the typical
broad rovibrational spectra, were seen in several frequency ranges. The peaks at
1809 cm⁻¹ and at 2131 cm⁻¹ were the most prominent, and efforts at identification
and documentation of behavior concentrated on these. To characterize these
peaks, spectra were taken at \(\phi = 0.5, 1.0, 1.2, 1.8, 2.5, \) and 3.0. The normal-
ized intensities of the transitions at 2131 cm⁻¹ and at 1809 cm⁻¹, given in table
1, increased in going to richer flames nearly in proportion to the square root of
the increase in the H₂ concentration obtained from the thermochemical calcula-
tions (also listed in table 1). The ratio of the intensities of the two transi-
tions was nearly constant. The peak at 2131 cm⁻¹ had previously been observed
(refs 21, 22, and 23) and attributed to H₂ (ref 22), so it was sensible to inves-
tigate whether all the narrow peaks were due to pure rotational H₂ CARS. The
positions of the pure rotational transitions were calculated from the spectroscopic constants of Fink et al (ref 24). These constants closely fit the first four H₂ rotational lines observed by Stoicheff (ref 25) in the photographic Raman at room temperature. Higher rotational H₂ levels are not known to have been reported. Rotational levels in the ground vibrational state are calculated at 1816.8 cm⁻¹ for the (9,7) S-transition [here, as will be the notation for all the S-type pure rotational transitions, of the form (J', J'')] and 2133.3 cm⁻¹ for the (11,9) S-transition (the latter, as had previously been assigned). These are in close agreement with the observed transitions at 1809 cm⁻¹ and 2131 cm⁻¹. In addition, in the first excited vibrational state of H₂, the (9,7) S-type rotational transition is calculated at 1720.8 cm⁻¹ in agreement with the observed transition at 1714 cm⁻¹. The lower ratios of the normalized intensity of the 1809 cm⁻¹ transitions, relative to the 2131 cm⁻¹ transition for the \(\phi = 1.8 \) and 2.5 flames, reflect the lower temperature in these flames. The temperatures in the \(\phi = 1.8 \) and 2.5 flames are similar in the unshielded burner due to the effect of room air on the flame reactions. The relative constancy of the normalized intensity of the 1714 cm⁻¹ peak may be due to the decrease of the first excited vibrational state population with lowering temperature as H₂ concentration increases with increasing \(\phi \).

The narrow peak observed in several spectra at \(\Delta \nu = 2298.5 \) cm⁻¹ cannot be correlated with an H₂ transition. Using these constants, the (10, 12) H₂ S-rotational (ground state vibrational level) transition is predicted to lie at 2288.8 cm⁻¹ in the vicinity of the N₂ \((v' = 2, v'' = 1) \) hot band, approximately 10 cm⁻¹ from the observed peak. This line would be more difficult to find than the other H₂ S-rotational transitions. The intensity of the N₂ signal from these flames would be expected to swamp the H₂ (10,12) S-rotational line. The intensity of the N₂ signal from these flames would still be expected to be still less intense than the other, due to the rotational line for two other reasons as well. First, the nuclear statistics of the H₂ molecule result in a threefold decrease in the populations of the even H₂ rotational levels with respect to the odd levels. Second, from a simple Boltzman analysis, the population of the v'' = 10 level would be diminished by a further factor of 1.7 with respect to the v'' = 9 level at 2500 K relative to the (11,9) S-transition. Since intensity varies as the square of the population in CARS, this line would be expected to be perhaps 5% of the intensity of the stronger H₂ lines. As is explained below, it would be difficult to detect this line unless it were fortuitous enhanced by an energy degeneracy with N₂ rotational lines, which would be possible at these flame temperatures throughout the N₂ CARS region.

Even at only moderate resolutions, the (2,1) N₂ vibrational band, in calculated spectra, appears with marked structure, often double-headed (ref 17). This structure at these flame temperatures is due not only to the general crowding of rotational O-transitions from high-lying rotational levels of v'' = 0 with transitions from lower J-levels of v'' = 1, but also in particular to the degeneracy of certain of these N₂ transitions. Specifically, the \((v'' = 0, J'' = 48) \) and the \((v'' = 1, J'' = 26) \) N₂ O-lines at \(\Delta \nu = 2289.01 \) cm⁻¹ are separated by 0.007 cm⁻¹, and the \((0,42) \) and \((1,12) \) O-transitions near \(\Delta \nu = 2298.54 \) cm⁻¹ are separated by 0.30 cm⁻¹. Even at 1.0 cm⁻¹ resolution, these near degeneracies showed up as apparently enhanced, single-rotational transitions above the remainder of the more regular rotational structure. The narrow peak possibly observed in these
experiments appears at our resolution to be accidentally degenerate with the higher energy pair of these N\textsubscript{2} lines. It is this degeneracy which creates the difficulty in establishing a definitive observation of this narrow peak. If this peak is due to the presence of a second species and not to some error in the calculated fits, there is a triple enhancement of intensity in a narrow frequency range between a second species transition and N\textsubscript{2} rovibrational CARS transitions.

As seen in figures 5 and 6 which show two $j = 1.8$ spectra of resolution = 2.0 cm$^{-1}$ and matching calculated spectra of resolution 1.0 cm$^{-1}$ at $T = 2400$ K, C = 36% N\textsubscript{2} in figure 5 and $T = 2300$ K, C = 37.5% for figure 6, it is difficult to design reasonable conditions which would account for the enhanced intensity of the spike near 2898 cm$^{-1}$ without suggesting the possibility of a contribution by a species other than N\textsubscript{2}. There is no apparent reason why any one or few adjacent (or overlapped) N\textsubscript{2} rovibrational lines in that region--either from $v'' = 0$ or from $v'' = 1$-- would show such anomalous intensity that only one strong spike would appear even above the smooth unresolved rotational envelope at the 2.0 cm$^{-1}$ resolution in several different observations. Nor is there any particular crowding of rotational lines in a limited frequency region, except the near degeneracies mentioned above.

Figure 7 shows a spectrum in a $\phi = 1.8$ flame (taken broadband with a single laser dye) showing CARS signals from N\textsubscript{2}, CO, and H\textsubscript{2}. Averaging out the irregularity in the N\textsubscript{2} (2,1) band, N\textsubscript{2} and CO CARS calculated using this spectrum give consistent measurements on this flame, with CO CARS giving a CO concentration of 13%, N\textsubscript{2} CARS showing 39% N\textsubscript{2}, a CO-CARS-derived temperature = 2500 K and a N\textsubscript{2}-derived CARS temperature = 2450 K, all consistent with thermochemical calculations.

CONCLUSION

For rich CH\textsubscript{4}/N\textsubscript{2}O flames, N\textsubscript{2}- and CO-CARS provide species-to-species confirmation of experimentally-derived flame temperature/concentration data. Moreover, observation of previously unobserved H\textsubscript{2} rotational lines in a wide range of frequencies might provide additional third-species confirmations as well as a direct probe of flame temperatures and concentrations by a simple readout of narrow rotational line intensity ratios (with the proper dye intensity correction factor). For quick order of magnitude calculations, this might be a satisfactory adjunct to the current method of calculating complete rovibrational molecular spectra to determine flame temperature and concentration.
REFERENCES

17. L. E. Harris, "CARS Spectra from Lean and Stoichiometric CH_4/N_2O Flames," Combustion and Flame, in press.

Table 1. Variation of the intensity of hydrogen rotational transition with hydrogen concentration

<table>
<thead>
<tr>
<th>Frequency (cm(^{-1}))</th>
<th>Equivalence ratio (0)</th>
<th>Normalized intensity*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.2</td>
<td>1.8</td>
</tr>
<tr>
<td>2131</td>
<td>0.37</td>
<td>0.74</td>
</tr>
<tr>
<td>1809</td>
<td>0.80</td>
<td>1.80</td>
</tr>
<tr>
<td>12131/11809</td>
<td>0.46</td>
<td>0.41</td>
</tr>
<tr>
<td>(\text{H}_2) concentration (%)</td>
<td>5.6</td>
<td>16.7</td>
</tr>
</tbody>
</table>

* Normalized intensity = \((I - I_{\text{nr}})/I_{\text{nr}}\)
Figure 1. Experimental points and calculated spectrum (solid line) for N$_2$ CARS signal for a $\phi = 1.0$ CH$_4$/N$_2$O flame, probe height = 2 mm; calculated variables used were $T = 3000$ K and concentration = 50%.
Figure 2. Experimental points and calculated spectrum (solid line) for a CO CARS signal for a $\phi = 2.5$ CH$_4$/N$_2$O flame, probe height = 2 mm; calculated variables used were $T = 2550$ K and concentration = 16%.
Figure 3. CARS spectrum in CO region for (a) $\phi = 1.2$ flame, (b) $\phi = 1.8$ flame and (c) $\phi = 2.5$ flame. The CO resonance is superimposed on the non-resonant susceptibility background. For analysis of the narrow peak at 2139 cm$^{-1}$, see text.
Figure 4. CARS spectrum showing behavior of narrow resonances from 1900 - 1600 cm\(^{-1}\). Note intensity changes (superimposed on the background nonresonant susceptibility) for (a) \(\phi = 0.5\), (b) \(\phi = 1.2\), (c) \(\phi = 1.8\) and (d) \(\phi = 2.5\).
Figure 5. N_2 CARS spectrum in $\phi = 1.8$ flames with calculated spectra of 2.0 and 1.0 cm$^{-1}$ resolution; calculated parameters: $T = 2400$ K and $C = 36\%$. Note experimental spike at 2298 cm$^{-1}$.
Figure 6. N_2 CARS spectrum in $\phi = 1.8$ flames with calculated spectra 2.0 and 1.0 cm$^{-1}$ resolution; calculated parameters: $T = 2300$ K and $C = 37\%$. Note the experimental spike at 2298 cm$^{-1}$.
Figure 7. Unmodified spectrum in a $\phi = 1.8$ flame showing signals from CO CARS, N$_2$ CARS and two H$_2$ CARS lines. Calculations on this spectrum show 39% N$_2$, 13% CO, 2500 K for CO temperature, 2500 K for N$_2$ temperature.
DISTRIBUTION LIST

Commander
Armament Research and Development Center
U.S. Army Armament, Munitions and Chemical Command
ATTN: DRSMC-TSS(D) (5)
DRSMC-GCL(D)
DRSMC-LC(D), J. Frasier
J. P. Picard
DRSMC-LCA(D), A. Moss
DRSMC-LCA-G(D), J. Lannon
D. Downs
L. Harris (10)
T. Vladimiroff
A. Beardell
Y. Carignon
J. Fendell
K. Aron
E. Petro
DRSMC-LCE(D), R. Walker
P. Marinkas
C. Capellos
F. Owens

Dover, NJ 07801

Administrator
Defense Technical Information Center
ATTN: Accessions Division (12)
Cameron Station
Alexandria, VA 22314

Director
U.S. Army Materiel Systems
Analysis Activity
ATTN: DRXSY-MP
Aberdeen Proving Ground, MD 21005

Commander
Chemical Research and Development Center
U.S. Army Armament, Munitions and Chemical Command
ATTN: DRSMC-CLJ-L(A)
DRSMC-CLB-PA(A)
APG, Edgewood Area, MD 21010
Director
Ballistics Research Laboratory
Armament Research and Development Center
U.S. Army Armament, Munitions and
Chemical Command
ATTN: DRSMC-TSB-S(A)
 DRSMC-BLP(A), L. Watermier
 A. Barrows
 G. Adams
 R. Fifer
 M. Miller
 T. Coffee
 J. Heimeryl
 C. Nelson
 J. Vanderhoff
 J. Anderson
Aberdeen Proving Ground, MD 21005

Chief
Benet Weapons Laboratory, LCWSL
Armament Research and Development Center
U.S. Army Armament, Munitions and
Chemical Command
ATTN: DRSMC-LCB-TL
Watervliet, NY 12189

Commander
U.S. Army Armament, Munitions and
Chemical Command
ATTN: DRSMC-LEP-L(R)
Rock Island, IL 61299

Director
U.S. Army TRADOC Systems
Analysis Activity
ATTN: ATAA-SL
White Sands Missile Range, NM 88002

Director
Defense Advanced Research Projects
Agency
ATTN: LTC C. Buck
1400 Wilson Boulevard
Arlington, VA 22209

Director
Institute for Defense Analyses
ATTN: H. Wolfhard
 R. T. Oliver
400 Army-Navy Drive
Arlington, VA 22202
Commander
Naval Underwater Systems Center
Energy Conversion Department
ATTN: Code 5B331, R. S. Lazar
Newport, RI 02840

Commander
Naval Weapons Center
ATTN: R. Derr
C. Thelen
China Lake, CA 93555

Commander
Naval Research Laboratory
ATTN: Code 6180
Washington, DC 20375

Superintendent
Naval Postgraduate School
ATTN: Technical Library
D. Netzer
A. Fuhs
Monterey, CA 93940

Commander
Naval Ordnance Station
ATTN: Dr. Charles Dale
Technical Library
Indian Head, MD 20640

AFOSR
ATTN: J. F. Masi
B. T. Wolfson
D. Ball
L. Caveny
Bolling AFB, DC 20332

AFRPL (DYSC)
ATTN: D. George
J. N. Levine
Edwards AFB, CA 93523

National Bureau of Standards
ATTN: J. Hastie
T. Kashiwagi
H. Semerjian
M. Jacox
K. Smyth
J. Stevenson
Washington, DC 20234
Hercules Incorporated
Bacchus Works
ATTN: B. Isom
Magna, UT 84044

IITRI
ATTN: M. J. Klein
10 West 35th Street
Chicago, IL 60615

Olin Corporation
Badger Army Ammunition Plant
ATTN: J. Ramnarace
Baraboo, WI 53913

Olin Corporation
New Haven Plant
ATTN: R. L. Cook
D. W. Riefler
275 Winchester Avenue
New Haven, CT 06504

Paul Gough Associates, Inc.
ATTN: P. S. Gough
P.O. Box 1614
Portsmouth, NH 03801

Physics International Company
2700 Merced Street
Leandro, CA 94577

Pulsepower Systems, Inc.
ATTN: L. C. Elmore
815 American Street
San Carlos, CA 94070

Rockwell International Corp.
Rocketdyne Division
ATTN: C. Obert
J. E. Flanagan
A. Axeworthy
6633 Canoga Avenue
Canoga Park, CA 91304

Rockwell International Corp.
Rocketdyne Division
ATTN: W. Haymes
Technical Library
McGregor, TX 76657
Commander
Naval Research Laboratory
Chemistry Division
ATTN: A. Harvey
Washington, DC 20375

General Motors Research Laboratory
ATTN: J. H. Bechtel
Warren, Michigan 48090

System Research Laboratory
ATTN: L. Goss
2600 Indian Ripple Rd
Dayton, Ohio 45440

Exxon Research and Engineering
ATTN: A. Dean
M. Chou
P.O. Box 45
Linden, NJ 07036

Ford Motor Company
Research Staff
ATTN: K. Marko
L. Rimai
Dearborn, Michigan 48120

Sandia Laboratories
Applied Physics Division I
ATTN: L. Rahn
D. Stephenson
Livermore, CA 94550

Rensselaer Polytechnic Institute
Dept. of Chem. Engineering
ATTN: A. Fontijn
Troy, NY 12181

University of California,
San Diego
Ames Department
ATTN: F. Williams
P.O. Box 109
La Jolla, CA 92037

University of California
Dept. of Mechanical Eng.
ATTN: J. W. Daily
Berkeley, CA 94720

Univ. of Dayton
University of Dayton Research Inst.
Dayton, OH 45406