
7 RD-R132 93 DCENTRALIZD CONTROL
OF SCHEDULING IN

DISTRIBUTED
L/2

I SYSTEMS(U) MASSACHUSETTS UNIV AMHERST DEPT OF

U L ELECTRICAL AND COMPUTER ENGINEERING J A STANKOVIC
UNCLASSIFIED 19 MAR 93 DRRBS7-82-K-J@i5 F/G 9/2 N

li1.0 W~ L08
La V .2

-
m VEM IM

11111.25 1LA1 I~i. 11.

MICROCOPY RESOLU TION TEST CHART
NATIONAL DuREAU OF STANfAfOS- 1963 -A

9!
kiSEARCH AND DEVELOPMENT TECHNICAL REPORT
CE CO M

DECENTRALIZED CONTROL OF SCHEDULING IN DISTRIBUTED SYSTEMS

9

ZJOHN A. STANKOVIC

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING
UNIVERSITY OF MASSACHUSETTS
AMHERST, MA 01003

18 March 1983

5th QUARTERLY REPORT FOR PERIOD 15 DEC 82 to 4 MARCH 83

Distribution Statement

Approved for public release;
distribution unlimited.

PREPARED FOR
CENTER FOR COMMUNICATIONS SYSTEM (C. GRAFF)CECOM

U S ARMY COMMUNICATIONS- ELECTRONICS COMMAND
FORT MONMOUTH, NEW JERSEY 07103
9

H9S18 March661983
9- , ' ' ' ' . . . " -' '' . - - m . ,J

w i•----W-..

L
"

CLEARANCE OF TECHNICAL REPORTS FOR PUBLIC RELEASE

(AR 360-5, AR 70-31 and AR 530-1k' SUBMIT IN DUPLICATE

TO: ERADCOM Tech Spt Actv S Fn DRSEL-COM-RF-2 DATE:
DELSD-L-ST Siqnal ProcesssinQ Division 13 May 1983

INSTRUCTIONS: SECTION I: Self explanatory. SECTION 11a: Self explanatory;
b, c, d, & e: if the report contains any of this aricrmation, Distribution
Statement B applies (see DOD Dir 5200.20; f & g: Delete this information
from report; h,i & j: Coordinate and obtain approval from agencies concerned.
SECTION III: Self explanatory. SECTION IV: Self explanatory.

In compliance with AR 360-5, AR 70-31 and AR 530-1 the attached unclassi-
fied technical report is forwarded for clearance for public release and assign-
ment of Distribution Statement A: "Approved for pullir release; distribution
unlimited."

SECTION I DESCRIPTION

1. TITLE OF REPORI
Decentralized Control of Schediuling in Distributed Systems

2. AUTHOR(S) EXT NO

Dr. J. Stankovic

FOR I. CONTRACTING OFFICER'S TECHNICAL REFRESET"rATIVE COTR EXT NO
C Charles J. Graff 65619CONTRACT)h. CONTRACTOR..

REPORTS Dept. of Electrical Engineering, University of Mass.

5. CONTRACT NO DAAB07-82- K-J015 REPORT NO 5th Quarterly

6. CONTRACTOR I-' IS IS NOT AUTHORIZED ACCESS TO CLASSIFID
MATERIAL UNDER THIS-CONTRACT

SECTION II BASIS FOR RELEASE

The report identified above has been reviewed by the under-
signed who affirm that the document does not contain any of the
following information:

a. Classified information.
b. information furnished by a foreign government with the

understanding that it not be released outside the U. S.
Gcvcrnnent.

c. Proprietary information for which authority for release
has not beeni obtained.

. Infc rnat r resultinC from t~ct or evaiuatim of commercial
jrduc-t , miiarary herlware.

t:. Manement rvew.-, reccrdc of cor rac- pe crmw-ice evaluation,
cr cth,.,r aA,'iso-y docur.ento ev2luating prog: .zs of contractors.

f, ihf.r ,ctIor. ,ha. would te prejudicial or embarrassing to the
G(,'cnmf-nt, L fcreigr. Fovernment, A contractor, a corporation

.- o: a- in..vl d~.a.

F. i.c.r.atic. concerning subjects (f potential controversy
- ..ong the military services.

"h. S..Ject. matter concerning significant polc_;y within the
purview of other agencies.

i. Subject matter that implies cfficial positions or scientific
atti-tudes of higher authority.

DELSD Form 21 (1 Apr EI) (SUPERSEDES SEL Form 1100, 1 May 71)

-. .'. .'- .' '.' '.' '-'-% v - ,,, " ," , " " 9 " . , , , . ', n . , - '

J. Subject matter on space, sate-LIte, atomic or WB

activities requiring clearance of agencies concerned.

SECTION III OPSEC CLEARAN~CE

In addition, the ..ndersigned certify that the- attached R&Dl technical
report has been cleared for public release in accordance with the OPSEC Plan
of this activity as prescribed by AR 530-1 and DARCOM supplement 1 thereto.

JOHNE QUIGLEY t-L CHAR FS .1 - RA F
2OPSEC OFFICR AUTIIH OR OT

.JAMES H. SALTON, Acting Chief
Signal Processina flivic n
DIVISION DIR!ECTOR

SECTION IV CLEARANCE

TO: -FROM: ERADCOM TECH LIBRARY, TSA DATE:
STINFO
DELSD-L-S

The report identified in Section I is cleared for public release. It
* may be made available to the National Technical Information Service. It may

also be presented at symposia or published in the open literature in the
United 'States without further clearance, provided no charnge is made contravening
the basis of release certified to in Sections 11 and Ill.

CKEI, STINFO OFFICE

Nc r I C E3

IN sc I irner i

-Jh

.

j14 it~* Cn**

REPORT DOCUMENTATION PAGE READ ONSTRUCTIONSBEFORE COMPLETING FORM
1. REPORT NUMBER 2 GOVT ACCESSION No. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (mnd Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Decentralized Control of Scheduling in 5th Quarterly Report
-Distributed SystemsDec 15. 1982 - March 14. '83DSstems 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(&)

Dr. John A. Stankovic DAABO7-82-K-J015

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

Dept of Electrical and Computer Engineering,
Univ. of Mass., Amherst, Mass. 01003 1L1.61102.AH48.DF.01

1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

CDR US Army CECOM IR Marrh 1QR
DRSEL-COM-RF-2 13. NUMBER OF PAGES
Fort Mnnmnith_ N,1 A77p" 102

14. MONITORING AGE CY NAME & ADORESSII different from Controlling Office) I5. SECURITY CLASS. (of tAle report)

UNCLASSIFIED
ISa. DECLASSIFICATION/OOWNGRADING

SCHEDULE

-*" 16. DISTRIBUTION STATEMENT (of this Report)

Approved for Public Release;
Distribution Unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necensary and Identify by block number)

Decentralized Control, Scheduling, Network Management.

20 ABSTRACT (Continue an reverse aide if neceesary ad Identify by block number)

This fifth quarterly report includes two technical papers. The first paper
* deals with three algorithms that could be utilized to control tasks/job

scheduling in distributed systems. Using a simulation approach, insight into
the performance and stability of decentralized job control scheduling algorithms
is demonstrated. The second paper provides a survey of current research direc-
tions in distributed systems software. Research in distributed operating
systems, languages and data bases is covered, and important research questions
for distributed system software are Posed.

DD 1 jAf73 1473 EDITION OF I NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

................................

i ° "

;.-., :,-:.z¢ ¢?;ZS ,. ,"¢ ," . .::: . ;;.' ; " ' " " ' " " " ' ' " "

. 1- .0..

Fifth
Quarterly Report

Professor John A. Stankovic
Department of Electrical and Computer Engineering

University of Massachusetts
Amherst, Massachusetts 01003

Contract Number: DAABO7-82-K-J015

Date of Report: March 18, 1983

Title of Report: Decentralized Control of Scheduling in
Distributed Systems

Period: December 15, 1982 March 14, 1983

Report prepared by: John A. Stankovic

-. .-. % * * ,%

- ..;a

* .;

Preface

This report includes an outline of the work performed during the fifth

quarter of this contract and a budget summary. Two papers written during this

quarter are added as appendices.

i
o "

o
....................................

... ...

.

December 15, 1982 - January 14, 1983

Progress:

1. We wrote the annual report.

2. We converted the GPSS programs written earlier in the contract to
run on the VAX for better accessibility, enhanced language features
and reduced cost.

3. Each of the converted scheduling algorithm simulations were rerun to
verify correctness.

4. Confidence intervals were generated for several of the algorithms
by repeated simulations.

" Results:

The simulations identified a simple but effective algorithm for decentra-
lized load balancing. See the paper in the appendix entitled "Simulations
of Three Adaptive, Decentralized Controlled Job Scheduling Algorithms."

"" Plans:

1. We plan to return to debugging the Dynamic Bayesian decision theory
simulation program.

2. The two RA's will continue to design the simulation programs for the
general bidding algorithm and the stochastic learning automata algo-
rithm discussed in previous reports.

**.

.

January 15, 1983 - February 14, 1983

Progress:

1. The Dynamic Bayesian decision theory simulation is completely debugged.
Tests are being run and evaluated.

2. Both the bidding scheduling algorithm and the stochastic learning
automata algorithms are designed and being implemented.

3. Additional work has begun in the area of scheduling with real time
constraints.

Results:

Preliminary simulation results for the Dynamic Bayesian decision theory
approach are being obtained.

Plans:

Continue all the above.

February 15, 1983 - March 14, 1983

Progress:

I. Simulations for Dynamic Bayesian decision theory are complete.

2. A paper on current research issues was written entitled "Current
Research and Critical Issues in Distributed Software Systems" (see
the appendix).

3. Implementation efforts described in the previous month are continuing.

Results:

Results of (1) above are being written in paper form. The first draft
is almost complete.

Plans:

1. Continue the implementation of the simulations

2. Continue work on scheduling with real-time constraints.

-' .

2. Budget update for 2nd year of contract

Month Planned

December (82) 6,809.53

January (83) 4,021.00

February 4,000.00

March 4,000.00

April 4,000.00

May 4,000.00

June 7,000.00

July 7,000.00

August 7,000.00

September 3,397.64

October 3,000.0

November 3,000.00

December 3,000.00

55,830.53

*1
o

,:

Appendix

This appendix contains two papers produced as part of this contract. It

is requested that both these papers be cleared for publication.
.4

-.- .I

CURRENT RESEARCH AND CRITICAL ISSUES

IN DISTRIBUTED SOFTWARE SYSTEMS

by

John A. Stankovic

Krithi Ramamritham

Walter H. Kohler

University of Massachusetts

Amherst, Massachusetts

Preparation of this material was funded in part by the following: the
National Science Foundation under grants MCS 82-02586, MCS 81-04203, ECS
81-20931 and CECOM CENCOM grant DAAB7-82-K-J015.

% ABSTRACT

A survey of current research in diztributed 3,y3temfs software i.

presented. Emphasis is placed on raeiirzn in di3tributed operating

systems, programming languages fcr distributed systems, and distributed

databases. While many references are made to existing research

projects, Systems and languages, an attempt was made to identify the

important issues and, where Possible, to categorize current solution

techniques for the individual issues. Some of the more important open

research questions for distributed systems software are itemized.

."I

CR Classification

Categories and Subject Description

C. Ccanputer Systems Organization

C.2. Computer-Communication Network
C.2.4 Distributed System

- Distributed Databases
- Network Operating Systems

D. Software

D.3 Programming Languages
D.3.3 Language Constructs

- Concurrent Programming Structures
- Control Structures

D.A Operating Systems
D.4.1 Process Management

- Concurrency
- Deadlock
- Scheduling
- Synchronization

D.4.3 File Management Systems
-Distributed File Systems

D.4.4 Communication Managament
- Buffering
- Message Sending

D.4.7 Organization and Design
- Distributed systems

H. Information Systems

H.2 Database Management
H.2.4 Systems

- Distributed systems
- Transaction Processing

General Terms: Design, Language

Additional Keywords and Phrases: survey, research issues

.;.-*- *A --,-s

1.0 INT10DUCTION

A distributed software system is one that Lf eiecjted DA at\n arch.teeture.

in which multiple processors are connected Vig.a eQwXUrJcatLVL netvorK.

The main . sue in the design of such systems LS: Kow are pfcorans, data

and control to be distributed among the components of a Jistributed

system? In this paper we consider this issue from the perspective of

the distributed operating system, programing language and database

areas. The goal of this paper is to survey and integrate the current

research in these areas as well as to identify some of the critical

research problems for distributed software.

Section 2 summarizes current research in distributed operating

systems and programming language areas. These two areas are discussed

together due their symbiotic nature. Section 3 discusses distributed

database research. Critical issues in the design, implementation and

evaluation of distributed software systems are itemized in Section 4.

Given that distributed systems have been under investigation for a

number of years now, a survey of issues in this area could have a very

wide scope. We focus only on the issues connected with those software

aspects mentioned above. For instance, our presentation here does not

directly include such areas as the communication subnet, parallel

algorithms, hardware architectures for distributed systems, and impact

of other areas such as artificial intelligence on distributed systems.

...................

:- -- m- . - - -- - ..- - ' | - . -- •- -

2.0 DISTRIBUTED SYSTEMS SOFTWARE

Distributed systems software is usually designed and implemented in

multiple levels. Each level provides the next higher level with an

abstract distributed machine consisting of resources and primitives for

using them. This section describes distributed systems software issues

and current research for the operating system and programming language

levels as well as their interaction.

2.1 Background

2.1.1 Operating Systems - Due to the wide variety of distributed

systems there is a wide variety of operating systems controlling them.

For purposes of discussion we simplistically divide these operating

systems into three classes - network operating systems (NOS),

distributed operating systems (DOS) and distributed processing operating

systems (DPOS).

Consider the situation where each of the hosts of a computer

network has a local operating system that is independent of the network.

The sum total of all the operating system software added to each of

these network hosts in order to communicate and share network resources

is called a network operating system. The added software often includes

modifications to the local operating system. In any case, each host can

still act independently of the network and various degrees of sharing

are possible. The most famous example of such a network is ARPANET and

it contains several NOS's, e.g., RSEXEC and NSW [FORS78]. Such

operating systems are characterized by their having been built on top of

existing operating systems.

%

Next consider networks where there is logically only one native

operating system for all the distributed component .. is called a

distributed operating system. The confusing elemew 3S dnac Thig one OS

may be implemented in a variety of Ways. Ae -1ot doiaI iLflepeptation

is to replicate the entire OS at each host of the 4'strijx:a system.

One might be tempted to then consier thIS replcatea Piece as a local

OS. In fact it is not because resources are allocated in a more global

fashion, there is no exclusive, local admintstrati/e aontrol, and, in

general, there is no dichotomy from the user's point of view between

being on the network or not. If we draw an analogy to the NOS we see

that the local replicated piece of the DOS is similar to a piece of an

NOS with a null local OS. On the other hand, there is no requirement

for a DOS to be implemented by replication and many implementation

designs are possible. For example, see any of the DOSs in Table 1. A

final point that should be made is that distributed systems with DOSs

are designed and implemented with network requirements in mind from the

beginning in contrast to NOSs where the network aspects are usually

afterthoughts.

Finally, a distributed processing operating system is a DOS with

the added requirement that the OS must be implemented with no central

data or control at any level. This is such a demanding requirement that

there are probably no systems that completely meet these requirements

if, in fact, they can be met. If such systems were possible significant

advantages are hypothesized (ENSL78, JENS78, STAN79]. If such systems

are not possible, those approximating a DPOS would also provide similar

advantages but to a somewhat lesser degree.

JS

In Table 1 we attempt to categorize zome of fM- ert-an-r istributed

computing OS research. We apolgize for those 3ystems omitted and note

that the classification is Somewhat ukec 'ive.. Stricxl) speaking, all

the OS's in the DPOS category are probably DOSs. However, those DOSs

that attempt to treat the Specia requirements of DPOSs are placed in

the DPOS category. For additional information we list four distributed

file systems.

TABLE 1: CATEGORIZATION OF OPERATING SYSTEMS

FOR DISTRIBUTED COMPUTING
!£

NOS DOS DPOS

NSW [FORS78] Accent [RASH81] ADCOS [STAN81]
RSEXEC [FORS78] Apollo [APOL81] Archons
XNOS [KIMB78] DCS [FARB73] CHORUS EGUIL82]

Domain Fully DP
Structure System [ENSL80]

[CASE77] HXDP [JENS78]
Eden [LAZO81] Medusa [OUST8O]
RIG [BALL76,LANT80] Micros [WITT80]
ROSCOE (Arachne) StarOS [JONE79]

(SOLO79]
TRIX [WARD80]
UNIX (5)
WEB [HAMI78]

FILE SERVERS

Cambridge FS [DIO80]
DFS [STUR80]
Felix FS [FRID81] -

Locus [POPE81]
Violet [GIFF79b]

The (5) after UNIX indicates that there are at least extensions
to UNIX for distributed systems including Locus, [RASH8O], and those
extensions done at Bell Labs [LUDE81], Berkeley [ROWE82], and Purdue.

%".

. .". .
%* ~ *~~.. .

2.1.2 Programming Languages - Languages for distributed systems, in

general, contain message-based mechanisms for process communication and

synchronization. Though most extant distributed systems have been

programmed using adhoc modifications to sequential languages, concurrent

languages based on shared variables for process interaction are becoming

more widely available. Illustrative languages in this category have

been listed under Concurrent Programming Languages (CPL) in Table 2.

Such languages provide high-level constructs for the specification of

processes and the interaction between processes. Process interaction is

via resource sharing controlled by mechanisms based on the monitor

concept [HOAR74 . A monitor is a structured mechanism which

synchronizes access to shared resources.

Although the shared variable based approach is appropriate for

processes with shared memory, it is not suitable for programming systems

in which physically distributed processes cooperate and interact closely

in order to perform a single task. For such systems, due to the

presence of an underlying communication network, a message-based

interaction is the most appropriate. Languages designed to make this

possible are called Message Passing Languages (MPL) and are listed in

Table 2. However, in general, programs are written such that various

modules in a program interact via procedure calls. In order to give

users a uniform interface, irrespective of whether the program is

executed on a centralized system or on a distributed system, a few

languages have been designed to permit process interactions via

procedure calls to remote sites. The remote procedure calls themselves

would be implemented through an underlying message passing protocol. We

call such languages as Remote Procedure Languages (RPL). The

.." . .

possibility of interactions threvueh..le5o- asskftj a M prace4.ure calts

is essential in order to COXIFL~ure. tightly-coupted rvlw&ses as a single

I.gicaL module that execute asL a sa%*Le-. prves5sv; processes within a

nodule would interact via procedure~ calls whereA~s processes in di~ereat

modules would interact via mes--gi-pa.-.:sini. Heiice. .zome alg the proposed

languages provide for interactions via both messaije passii and remote

procedure calls. In the following table they are termed Hybrid

Languages (HL). Details concerning these languages such as program

structuring and communication primitives, can be found in subsequent

sections.

TABLE 2: CATEGORIZATION OF PROGRAMMING LANGUAGES
FOR DISTRIBUTED COMPUTING

C PL M PL
Concurrent Pascal EBRIN75J CSP [HOAR78I
Modula CWIRT77J Gypsy [G00D79)
Mesa [MITC79J PLITS LFELD791
CLU CLISK791

RPL HL

DP [BRIN78] *MOD [C00K79)
Argus[LISK821 SR(ANDR81]
Ada EDOD8O)

'7 -L

2.1.3 Issues -

The following are the main issues involved in the design of

distributed S yS1em software.

o Structuring distributed systems,

o Addressing distributed processes and resources,

o Communication between distributed processes,

o Nature of communication channels,

o Task Scheduling

o Decentralized control,

o Protection mechanisms,

o Error recovery and deadlock, and

o Distributed file systems.

For many of these issues much of the distributed systems software

research has been experimental work in which actual (prototype) systems

are built. However, further work needs to be done in the evaluation of

these systems in terms on the problem domains they are suited for, their

performance, etc. The prototype work is valuable because many

individual research ideas are integrated into an actual system and it is

important to know how well they coexist.

Of course there have also been investigations carried out

independently of a particular system. This work is also treated in the

discussions below. Overall, we feel that all the above issues are still

unresolved in the context of NOS, DOS, DPOS, and programing languages

for distributed systems and merit further work. In the remainder of

this section we briefly treat each of the above research topics using

examples from current research.

a aa.
°

. .-- r-.. . . .

Page 6

2.2 Structuring Distributed Systems

A node in a distributed system is a collection of resources and

processes, and is typically an autonomous entity. Processes outside a

node access the processes and resources within a node via messages

whereas intra-node communication is normally through shared memory (HXDP

is an exception). Definition of the structure of a node requires the

specification of a name for a node, the resources and processes that

constitute the node and a set of interfaces for accessing these

processes and resources. The structure of a node could change with

time.

Most distributed systems are structured using the so called

resource-server model. This model in conjunction with

object-orientation also appears to be a conceptually attractive

structuring mechanism. There has been considerable work on both

centralized [WULF74, WILK79, KAHN81J and decentralized [JONE78a, POPE81J

object based systems in the context of operating systems and programing

language levels (LISK82, GOLD81]. Conceptually, an object is a

collection of information and a set of operations defined on that

information. In practice, the term object is viewed simply as a

collection of information with common access characteristics. In either

case, objects seem to provide a convenient and natural model for

reducing the complexities in distributed operating systems. For

example, moving a process to another processor after it has begun

execution requires careful treatment of code, data and environment

information. Treating each of these pieces of information as objects

(or possibly the combination of them as objects) facilitates their

movement. Typically, associated with each object is a server which

- - - - -

Page 9

controls the execution of operations on the object and services requests

for operations on the objects.

Programming languages have started addressing the structuring

issue, in particular, Argus CLISK82] (where the concept of a "guardian"

is introduced), SR [ANDR81] (where the term "resource" is used) and *Mod

[COOK79] (where "modules" are used for structuring systems). Processes

and data within each guardian, resource, and module exist and run on one

physical node. In Argus, a distributed program consists of a set of

guardians. Each guardian encapsulates a set of resources, which are

instances of abstract datatypes. Operations on these resources are

controlled by the guardian which also provides schemes to handle

concurrent access and system failure. These issues are discussed in

detail in sections 2.4 and 2.9. In SR, a resource is defined along with

a set of processes, called operations, to access the resource. In *Mod,

a module is defined by the data structure definitions, procedures,

processes and an external interface and is thus similar to a resource in

SR. In all three cases, operations on the objects are executed via

. remote procedure calls. Using the above proposals, a distributed system

can be structured as a set of objects, i.e., as guardians, resources or

modules and processes that access the objects.

Only Argus addresses the issue of failures of nodes by invoking

concepts such as locking, atomicity, and checkpointing, concepts

traditionally applied in databases. The problem of structuring

distributed systems is complicated by the presence of truly distributed

resources such as distributed databases wherein resources need to be

partitioned and replicated for achieving reliability and availability

(see section 3). Node structuring schemes adopted in the above

.- *=. * .

." -'.. ,.""..-""" .""" .";". .""" .""- "- . ", .".". .";". , . '. " ." .". .. '-.' " ' ,° ' .'''..' .''" .''',. " "," '"""

P'age tv

languages do not appear to be appropriate for distributed database

applications.

Another structuring scheme is based on the physical structure of

the model associated with the problem. For example, a problem which

requires solving a set of independent subproblems can be structuted as a

system which first seeks the solutions for the subproblems in parallel.

Chang [CHNG82] has also described some algorithms for detecting

properties of general graphs by traversing paths in a graph in parallel.

One of the advantages of this approach is that this utilizes the

concurrency in the problem in a fairly natural manner. Programs written

in functional languages and implemented on data-flow architecturEs are

amenable to this form of structuring [COtP82].

2.3 Addressing Distributed Processes And Resources

The addressing issue (SALTT8, SCHO78, DAVI81, BIRR81] in

distributed systems is complicated because "names" are used in the

context of so many different functions and levels. For example, names

are used for referencing, locating, scheduling, allocating and

deallocating, error control, synchronization, sharing, and in

hierarchies of names - to name a few. Names actually identify a

resource in a logical way, then are mapped to an address which in

distributed systems is then mapped to a route. Names used at different

levels referring to the same object must also be bound together.

Allowing relocation and sharing of objects causes additional problems.

Ideally, names should be bound to addresses and routes dynamically for

Page 11

increased flexibility. but this causes a potentially large and excessive

run time penalty. Broadcasting is often involved in implementing

dynamic binding of names, addresses and routes. Heterogeneous

distributed systems cause additional naming problems (more mappings

required).

Addressing can also be categorized as implicit, explicit,

path-based, or functional [VINT83J.

The simplest form of connection establishment is implicit

addressing, where a process can only commnunicate with one other process

in the system. This is usually the case for processes created to

perform a single service and only communicate with their parent process.

Though such a model is appealing in its simplicity, it is not flexible

enough by itself to allow any pair of processes to communicate, a

minimal requirement of a general communication facility.

Explicit addressing is characterized by the explicit naming of the

process with which communication is desired [HOAR78, BRIT8O]. This

addressing scheme is particularly suited for process configurations in

which the output of one process serves as input to another. Explicit

addressing requires a global knowledge source containing the identity of

each process in the system. Some systems have predefined names for

processes providing System services and a user accessible table of user

process ID's. A communication mechanism dependent on explicit

addressing is an adequate basis for a complete communication system, as

evidenced by its Use in the Thoth system [CHER79J. However, explicit

addressing by itbelf is not flexible enough to effectively handle such

commnon circumstances as process migration in distributed systems and

' °. ' - - -. - .--N--- ' --- .-- • ..

Page 12

multiple processes providing a single service.

Path-based addressing associates global names with message

receptacles, or 'mailboxes'. A process can declare a mailbox into which

messages can be received and can specify a destination mailbox when

sending a message. Such a scheme is used in [GOOD79] wherein the

mailbox is global to the processes that use it. Recently, use of a

distributed but globally accessible memory for process communication is

described in [GELE82].

Functional addressing establishes a connectin-1ased on the need to

serve or request a service. In this case the communication path is

itself a named entity of the system. For the user of a path, the

identity of the process or processes on the other end of the path is

insignificant. What is significant is that they are providing a service

or that they are requesting that a service be provided. This scheme is

flexible because an individual process is not necessarily associated

with a communication path, and paths themselves may be passed within

messages. This kind of addressing was introduced in [BALZ71] and

expanded in [WALD72]. Functional addressing is the underlying concept

used in many current languages, most notably in the following: PLITS

[FELD79] and *Mod ICOOK79) where "port" denotes a path, Distributed

Processes [BRIN78] and Ada [ADA8O] where "entry" denotes a path, and SR

[ANDR81] where "operation" denotes a path. It is also used in the

following message-based operating systems: Accent [RASH81] whertv 'port'

denotes a path, and DEMOS [BASK77], where 'link' denotes a path.

L. Page 13

Addressing in most programming languages is static in that the

processes accessible to each process is fixed at compile time. However,

some languages, for example, Gypsy (GOOD79] and PLITS CFELD79], do

support dynamic addressing whereby it is possible to interact with a

changing envirorinent.

It should be clear that the various forms of addressing described

above need different kinds of operating system support. Implicit

addressing is straightforward since a process is connected to only one

other process. Translation from logical name to physical address is

necessary for explicit addressing. In path-based addressing, access to

mailboxes has to be mutually exclusive. Even here, mapping from logical

mailbox names to physical mailbox addresses has to be performed.

Functional addressing requires the most operating system support. This

is due essentially to the dynamic nature of path connections between

servers and the served. The first element of address mapping is the

determination of the process that provides the needed service followed

by communication with the process along the path connected with the

process. Operating System support for functional addressing is

described in detail in [STEM82].

2.4 C unication Between Distributed Processes

There are three aspects of inter process communication (IPC):

communication primitives used for message-passing, techniques used for

bufferring messages, and the structure of messages [VINT83]. (In this

section and those that follow, the term ",ort" refers to a comunication

link between two processes.)

............................-.%.

" - ~ - .'

7. 1 1~- 1 ,7 t77 -7 .77 .

Page 14

We start our discussion of the first of the above aspects, namely

communication primitives, with procedure calls. This primitive is

commonly used for programming resource-server interactions and hence

languages provide higher-level language support for this type of

interaction. A procedure call can be simulated in a message oriented

approach to process communication with the reply-send primitive (also

referred to as the remote invocation send [LISK79]). (Consult [NELS811

and [STAN82a] for an extended comparison of message-based and remote

procedure call approaches to communication.) The remote procedure call

can be implemented either by having a single cyclic process, as in *Mod

-COOK79] and SR [ANDR81] for each type of call, by creating a new

process for each execution, as in Distributed Processes [BRIN78] and

Argus [LISK82], or by programing the server process with separate

receives for distinct calls, as in Ada [ADABO]. With the synchronized

send, the sender is blocked until the message is received by the

destination process [HOAR78].

The reply-send and synchronized send primitives require no message

buffering or queueing if only a single process has send access to the

path.

The no-wait send (or asynchronous send as discussed in [GENT81])

maximizes concurrency between communicating processes. In this model,

the sender resumes execution as soon as the message is composed and

buffered within the communication facility. The no-wait send is the

most flexible of the three send primitives, though it introduces

extensive implementation problems. The need for buffering introduces

problems of flow and congestion control, addressed later in this

subsection.

Page 15

There are two forms of receives: unconditional and conditional.

The unconditional receive, or blocked receive, blocks the receiver until

a message is queued on ;he selected port. The unconditional receive

sacrifices process concurrency by blocking the receiver when no messages

are queued. It has two variations. Frequently it is desirable to block

on a set of paths. The first message received on any of the specified

set of paths is returned to the receiver. This primitive, known as

restricted unconditional receive is useful for a serving process

awaiting messages from multiple sources. A second, more important

variation is the blind unconditional receive. This form of

unconditional receive blocks on all paths to which the requesting

process has receive access [STEM82].

The conditional receive (or selective receive as discussed in

[RA080]) introduces a polling capability, allowing the receiving process

control over the degree of concurrency desired. The conditional receive

polls a (set of) port(s) for a queued message. If a message is present

it is returned, otherwise control is returned with a flag indicating

that no message is available. The conditional receive can be

generalized to check for a more complex condition than the presence or

absence of a message [ANDR82].

The second aspect of communication between processes involves

implementing the buffering of messages. Regardless of the buffering

technique used, buffer maintenance introduces the problem of resource

allocation. There are three basic techniques, port-local allocation,

process-local allocation, and system-global allocation, and a hybrid

technique called port-global allocation.

..

.° -~

"- . - . , . , , " " £.V. A- ,'X""" ,,L,.1 % % " ' % ",.-', ' ' .'. . ''," .. "".," ''. '''
"

Page 16

Port-local allocation, assigns a fixed buffer space to each port

[RASH81]. When the buffer space is filled and a process attempts to

send another message to the port, there are three alternatives. First,

if a flow control option is included in the send primitive, the port can

dynamically expand its size to allow an additional message. Second, the

sending process can remain blocked until space is available on the port

for an additional message. Third, an error flag can be returned to the

sending process indicating a full port.

The process-local allocation technique associates the buffer space

with the process rather than the port [KNOT75]. This restricts the

total number of outstanding messages for a process.

A third resource allocation alternative is to maintain a global

buffer pool (examples include Roscoe [SOLO79] and UNIX [RITC74]). This

technique, termed system-global allocation, introduces a bottleneck in

the system. A viable solution to the two problems mentioned above is to

combine the port-local and system-global techniques. The port-global

hybrid associates a fixed buffer space to each port while reserving

buffer space with the system.

The third aspect of communication is the structure of messages. An

important issue in message structure is the typing of data within

messages. Some systems are purporting the benefits of strongly typed

data within messages (Eden [LAZO81], CLU [LISK79], and Accent [RASH81]).

Strong typing of data restricts the contents of messages being passed

and thus provides reliability in general, but in a distributed system

consisting of heterogenous nodes, it is especially important in ensuring

proper conversion of messages across nodes. However heterogeneous

............... *

Page 17

computer networks [ANDE71, LEVI77, BACH79] cause problems because of the

different internal formatting schemes that exist. One proposed solution

to the data incompatibility problem is to define a canonical

representation for each type that can be used in messages. Each

different implementation of the type defines a translation function

between its representation and the canonical representation [HERL82J.

Further complications arise when there are precision loss and data type

incompatibility, internetwork mappings (gateways), including naming

[SCHO78] and routing.

Another issue concerning message structure is the length of the

messages. The Roscoe [SOLO79], StarOS [JONE79], and Thoth (CHER79]

systems have short, fixed length messages. This is in part due to the

belief that most messages in such tightly coupled systems are short

control messages. Special, synchronous communication paths are provided

for large data transfer, such as reading and writing files. Medusa

[OUST80], Accent, and CLU [LISK79] provide for variable length messages,

and, in general. most protocols for loosely coupled systems support

variable length message transfers. Variable length messages are

obviously more difficult to implement due to the buffering problems they

induce.

2.5 Nature Of Communication Channels

The primary considerations in the design of communication channels

in a distributed system are directionality, ownership, frequency of use,

transference rights, and connection structure [VINT83].

• "•, "oO -o~~~~~~~~~~~~~~~.o....,-° b......... - -,. ,. .- o . .•,

*~~~7 . W. P--~ '

Directionality concerns whether or not a single process has both

send and receive access to a single communication path. If so, the path

is bidirectional (or duplex, as used in TRIX [WARD80]). Most systems

provide only unidirectional (or simplex) paths, in which a process may

send or receive messages over the path, but not both. In systems

providing only unidirectional paths, bidirectional communication can be

simulated via a pair of paths.

Ownership deals with the capability to destroy the path and

terminate communication without consent of all processes with access to

the path. Ownership can be associated with the directionality of

communication, as in the Accent system where the allocator of a path

automatically has ownership and receive access to the path.

Frequency of use deals with the limitations on the number of times

a path can be used. The DEMOS [BASK77] and Roscoe [SOL079] systems have

a 'reply' path, created for the sole purpose of returning a single

message. Such a path is automatically destroyed after it is used once.

Transference rights concern the ability to duplicate a path, or

pass access and/or ownership rights of an established path to another

process. For example, a process with ownership rights to a path can

send that privilege to a receiving process, allowing it to destroy the

path or change the path's characteristics. Transferring access rights

can, but does not necessarily, imply loss of the transferred right.

Connection Structure of a path is the nature of process connections

established by the path. Connection structure can take four general

forms: one-to-one, one-to-many, many-to-one, and many-to-many.

Communication paths that are not one-to-one can often be functionally

J -" '""''"" . ." ;" ." .' . - - " . , .. ._- ' , -,,. ."," . . ; . " . : v .'. .,,..-... ' . _ ' .. , . ' ._,., ..

rage vj

equivalent to a set of one-to-one paths, an important issue in examining

connection complex connection structures. The Process Control Language

(PCL) [LESS8O] provides a complete specification of a wide variety of

topological structures of unidirectional communication paths. The terms

used below are introduced in the PCL description.

The simple path is provided for a one-to-one connection. A single

queue is maintained to hold all messages. The broadcast and multiple

read connections are one-to-many connections, associating a set of

receivers with each sender. Every message sent on a broadcast

communication path is received by every receiver and hence is suited for

system wide dissemination of information; any message sent on a

multiple read path is received by the first process requesting it and

hence is suitable in situations where multiple servers exist for a

single type of service and the service is performed equally well by any

of the servers. The broadcast path can be easily simulated by a set of

simple paths from the sending process to the set of receivers assuming

all the receivers are known. A multiple-read path cannot be simulated

with one-to-one paths without additional management control within the

processes performing the service.

Many-to-one connections are provided in the multiple-write and

concentration communication paths. A multiple-write mapping is the

converse of the multiple-read mapping: every message sent by any sender

is received by the receiver. This connection which is useful when

multiple users are served by a single server and can be simulated by

forming a set of simple paths from the sender processes to the receiver.

The concentration path can be used for synchronization of the set of

senders: every message received is the concatenation of the set of

WT N

messages from a single send by each sender. A message cannot be

received until every sender has transmitted a message. Thus a

concentration path can be used to connect processes, that are solving a

set of subproblems in parallel, with the process awaiting the result of

the subproblems.

Many-to-many paths are combinations of one-to-many and many-to-one

paths. The multiple-write/broadcast transmits every sent message to

each receiver. A message transmitted on a multiple-write/multiple-read

path by any sender is only received by the first receiver requesting it.

A concentration/broadcast message is the concatenated messages from each

sender and is sent to every receiver. A concentration/multiple-read

message is the concatenated messages from each sender and is received by

the first receiver requesting it.

The connection structure of a path is closely related to the

transference and access rights of processes to the path, and may change

over the lifetime of the path.

Current programming languages do not appear to have the facilities

to specify the above restrictions on communication paths. However, a

need for such facilities is apparent, especially for the designer of a

protected system [STEM82J wherein protection of resources and processes

is achieved by restricting the use of communication paths.

I7 .
I

p

Page e i

2.6 Task Scheduling

Task scheduling research for distributed systems has been

approached in a variety of ways including task assignment, job

scheduling, and clustering. While ideas from these various approaches

overlap, most of the research on scheduling for distributed systems can

be considered "task assignment" research and can be loosely classified

as either graph theoretic [STON77, STON78a, STON78b, B101H79, CHOW82],

based on mathematical programming [CHU69, CHU8O, MA82], or heuristic

[GONZ77, ELDE80, CHOW82, EFE82]. By task assignment is meant that a

task is considered to be composed of multiple modules and the goal is to

find an optimal (or in some cases a suboptimal) assigment policy for

the modules of an individual task. Typical assumptions found in "task

assignment" work are: processing costs are known for each module of the

task, the interprocess communication (IPC) costs between every pair of

modules is known, IPC cost is considered negligible for modules on the

same host, and reassignment does not occur.

An exmple of task assignment research where reassignment- does

occur can be found in the "domain structure" operating system [CASE77].

The scheduling algorithm in this system directly addresses the

scheduling and dynmic movement of individual tasks. It does this by

describing the structure of a task that is necessary to facilitate

movement of tasks that are in execution. However, the scheduling

algoritths are Completely heuristic and contain weighting factors which

are left unspecified, presumably to be tuned as system parameters.

Interaction between multiple tasks in the system and the necessary

scheduling decisions to take these interactions into account are not

discussed.

* . .. ,.'.,.,'.-, ,. ,-, ."." ",". , -%. ., . . . - . .. ,,.,,..,'. ' ,- " .-.- .' .*' .'-.-. , ' ,.-'-..,.*., ' ,'.

Page 22

Task assignment research for extremely large distributed systems

has also received some attention. Micros [WITT80], for one, has a

unique scheduling algorithm called Wave scheduling. The Wave scheduling

algorithm co-schedulea (assigns) groups of related tasks onto available

network nodes. The scheduling managers themselves are distributed over

a logical control oligarchy and send waves of requests towards leaves of

the control oligarchy attempting to find enough free processors. In

fact more processors than required are requested because some parts of

the control oligarchy may not be able to supply the necessary

processors. This is a form of probabilistic scheduling.

The second form of scheduling research on distributed systems,

referred to as job scheduling, can be thought of as assignment of entire

jobs to processors where jobs are independent of each other. Approaches

to job scheduling have included bidding [FARB73, SMIT8O], queueing

theoretic approaches ICHOr79, KLEI81, AGRA82], the use of estimation

theory [BRYA81], and statistical decision theory [STAN83a].

As an example of job scheduling, bidding schemes attempt to match

specific tasks to processors based on the current ability of the

processors to perform this work. These schemes are suboptimal, but are

more extensible and adaptable than many of the other approaches.

However, the cost of making and squiring bids may become excessive, and

the factors to use in making the bids have not been extensively studied.

The Distributed Computer System (DCS) [FARB73] was the first system

to perform a form of dynamic load balancing using a bidding technique.

This system used percentage of available memory as a load indicator.

Inonming jobs are then routed to processors with the most meory

"_- .. .- -..-.

, .. ',' ,.:.',',e .. *' . %, . ,.* *. :. . . . : > , ,,' - '., , , ' '. ,, , . , , ,

Page 23

available. Information concerning current system status is gathered by

means of a broadcast message. However, no analysis, comparisons or

measurements were performed to determine the effectiveness of this

scheme.

Distributed scheduling research known as clustering refers to

scheduling highly communicating tasks on the same processor. "Highly

communicating" implies that there is a large amount of data transfer

between tasks of the cluster, or a high frequency of data transfer

between the tasks of the cluster, or both. Two operating systems StarS

StarOS [JONE79] and Medusa [OUST8OJ, both implemented on the Om

multi-microprocessor [SWAN77], deal with clustering.

StarO is a message-based, object-oriented multiprocessor operating

system. One main idea of StarOS is the task force, a large collection

of concurrently executing processes that cooperate to accomplish a

single task. The structure and composition of a task force varies

"" dynamically and it is the unit for which major resource scheduling

decisions are made. Even though StarOS is designed for a

multi-microprocessor, we believe that the task force concept could also

be used for more loosely coupled distributed systems. The scheduling

function itself is divided between processes which are called

schedulers, and a low level mechanism called the multiplexor. The

schedulers decide which envirorments are to be loaded and the

multiplexor performs the actual loading. As far as we know only very

simple scheduling algorithms were Implemented.

-- Z

... * * j * * * * ** * °~-***

* "*

Page 24

Medusa COUST8O] is an attempt to capitalize on the architectural

features of 00'. Medusa is implemented as a set of utilities (OS

functions), each utility being a task force (task force has the same

meaning as described above for StarOS). Each utility contains many

concurrent, cooperating activities. Load balancing is done by

automatically creating new activities within a task force to handle

increased load and automatically deleting activities when the load is

reduced, by coscheduling (an attempt to have different activities of the

utility executing simultaneously on different hosts), and by pause time

(a short time in which the context of a process remains loaded after an

interrupt to determine if it will be reactivated). The pause time

concept is supposed to reduce context swaps.

As a final note on scheduling, we note that there is a similarity

between some of the above described scheduling research and research in

routing algorithms. For examples see [MCQU4, GALL77, SEGA7?].

2.7 Decentralized Control

Various forms of decentralized control of resources are appropriate

to our current discussion: decentralized control that arises in

distributed databases, decentralized control that arises for stochastic

replicated functions, such as routing and scheduling, and decomposition,

which is a form of decentralized control that potentially arises in

implmenting many functions in a distributed system.

In distributed databases, concurrency control algorithms are

sometimes Implmented as decentralized control algorithms. The

decentralized concurrency control algorithms must maintain database

J.

Page i

integrity. This constraint reduces potential parallelism but is

necessary. Solutions to the type of decentralized control are known

(see section 3).

By replicated functions we mean that the decentralized controllers

implementing a function are involved in the entire problem, not just a

subset of it. By stochastic is meant that there is no data integrity

constraint and information is noisy and out of date. In contrast to the

decentralized control problem for databases, solutions (in the mr,*.,

general form) to decentralized control of stochastic replicated

functions are not known, e.g., Team theory [H080 and various forms of

control theory all fall short in dealing with this problem [STAN82b].

Only preliminary work has been done in the area of decentralized control

for stochastic replicated functions [LELA80, STAN82c, STAN83b].

Possible approaches might include the use of random graphs, decision

theory [RAIF61, HALT71, WINK72, LIND81, STAN83a], and stochastic

learning automata [NARE74, GLOR8O]. The complicating issues fbr

stochastic replicated functions include the need for very low overhead

solutions, the operation in the presence of noisy and delayed

information, the high degree of interaction between cooperating

controllers, and the fact that decisions of each controller affect the

others.

Although research has been active for all three types of

decentralized control mentioned above, the majority of the work is based

on extensions to centralized solutions where the entire state Is known

and can be more accurately described as decomposition techniques, rather

than decentralized control [CHAN69, FU7O, JARV75, CHON75, AOK178, H0801.

In such work large scale problems are partitioned into smaller problems,

..
% % .

• . . _~~~~ .7 , 7 7 77 . 7 7 - . 7

Page 26

each saaller problem being solved, for example, by mathematical

programming techniques, and the separate solutions being combined via

interaction variables. The interaction variables normally model very

limited cooperation. See [LARS79] for an excellent summary of these

types of decentralized control (decomposition). Yet other surveys have

appeared including [SAND78] that note the unclear meaning of optimality

for decentralized control and hypothesize the need for a completely

different approach. One approach for decentralized control is based on

the concept of a "domule". A domule is the combination of a decision

agent (controller), its local subsystem, and interaction relations

between agents [TENN81a,b]. Using this concept, interesting heuristics

are proposed for decentralized control but these are largely based on

decomposition. Many applications in distributed software may be

adequately addressed by known decomposition techniques. However, to

apply these techniques many of the complicating issues listed above for

stochastic replicated functions would have to not exist or be minimal.

In summary, decentralized control remains a rather perplexing issue.

2.8 Protection Mechanisms

Protection has been one of the main concerns of operating systems

from their conception [GRAH68, SALT75]. The notion of capabilities, an

often occurring notion in the area of protection, was first introduced

into an operating system by Dennis and Van Horn [DENN66J. Systems

employing a capability mechanism view all data as strongly-typed objects

which are distinguished from one another by unique identifications. A

capability consists of an object identifier and a set of access rights,

which allow the manipulation of the object with a subset of the

.Le

SW7 r.u%

operations defined by the object's type. Capabilities were later

incorporated into the CAL [LAMP76] and Hydra [WULF74] systems, and

implemented in the Plessey System 250 [C08872]. The ultics system

implemented a complete capability-based scheme with hierarchical control

of authorization [SALT75]. It used sepentation as the memory

addressing scheme wherein protection is achieved by associating with a

computation concentric rings of decreasing access privileges. [PASH82J

compares some of these systems from an architectural point of view.

Capability-based protection mechanisms are difficult to implement

and entail a certain amount of overhead in that each access needs to be

checked. Once a process obtains a capability it is essential that it

not be able to modify it. Capabilities may be stored as C-lists, as

with the Intel 432 [KAHN81], or as tagged memory, as with the IBM

System/38 [BERS8O]. The C-list scheme stores all capabilities in

separate capability sepnents. A major difficulty in the use of

capabilities is the separation of data and capabilities. Tagged memory

requires each unit of data, 32 bits in the case of the System/38, to be

tagged to indicate whether it is a capability or not. Thus tagging

presents a large overhead for memory. See [LEVY81] for a complete

description of capability-based architectures.

Object-oriented systems such as CAL [LAMP76], CAP [NEED77], Hydra

[WULF74] and Intel 432 [KAHN81] associate groups of objects with

modules. A module consists of a set of processes and local data in

addition to shared objects. A process within a module has the right to

distribute access rights to processes outside the module. Programming

language constructs for expressing controlled access to shared objects

.. . .., ..- * .

.

Page 28

is the subject of [JONE78b]. These can be used in conjunction with

K languages designed using the concept of abstract data types such as CLU

[LISK79].

2.9 Error Recovery

Exceptions in distributed systems can occur due to data

transmission errors and process control errors. Data transmission

errors, including lost messages, the receipt of garbled messages,

duplicates, and misdirected messages should be transparent at the

process level. It is the responsibility of the communication facility

and its underlying protocols to ensure reliable, error free data

transmission across communication paths between processes. This

requirement results in all remote procedure calls having an exactly once

semantics whereby a call terminates after the called procedure has been

executed exactly once in spite of system failures.

Process control errors take the form of processes involved in a

deadlock or a livelock, and destroyed processes (including node

failure). The deadlock problem has been studied in various contexts.

See [ISLO8OJ for an excellent survey of deadlock in centralized systems.

Additional work has been published for distributed systems but it is

largely concerned with resources in distributed databases (see section

3).

Little has been written about deadlock in context of NOS, DOS

and DPOSs. One exception Is the Medusa system where deadlock avoidance

is used. Here functions provided by the utilities (OS functions) are

divided into service classes such that (I) a single utility provides all

the services in each class, and (ii) there are no circularities in the

dependencies between classes. Furthermore, each utility must contain

separate pools of resources so that it can provide independent service

to each class. These conditions avoid the deadlock problem. More work

is required for all approaches to deadlock in distributed systems.

Now we examine specific cases of deadlock. The blocked receiver

problem occurs when a receiver blocks on an unconditional receive and no

message is ever delivered to the process. Unexpected process

destruction is the most likely candidate for causing a blocked receiver

problem. The IPC facility must take responsibility for notifying other

processes attached to the destroyed process. The IPC facility should

notify the receivers connected to the conmunication paths to which the

destroyed process has send access. Processes with send access to a port

connected to a destroyed receiver should be notified on the next attempt

to send a message.

The deadlock problem is a direct result of blocked or destroyed

processes preventing further communication. If blocked receivers

timeout and senders are properly notified, deadlock cannot occur. if

either of the features are not included in the communication facility,

it is necessary to actively detect deadlock.

Progrming language designers have only recently started paying

attention to the -specification of actions to be taken in the event of a

failure. An often adopted solution to exception handling is a time-out,

In which the processes indicate a specified time limit for waiting. A

sending process specifies the time within which it expects its message

to be received whereas a receiving process specifies the time within

.. . ' .- ,- _ .. .,,, - "S _

Page 30

which it expects the next message to arrive. When the time limit is

exceeded, control returns to the process concerned with a message

indicating the time expiration [ADA80, LISK82]. In PLITS [FELD78], the

notion of transaction keys can be used to notify processes about errors.

For instance, a process can be programmed to wait for a message by

transaction key only, without specifying the source of the message.

Thus, failure of a sending process can be intimated to the receiving

process by using the appropriate transaction key.

Also, in Argus [LISK82J the notion of atomic action is used to cope

with errors. An atomic action appears to a user to have been executed

in exclusion and thus gives users the facility to program remote

procedure calls with the exactly once semantics. Their implementation

requires facilities for locking and unlocking data items such as those

available in databases. Recovery and roll-back to some previous system

state may be another option. In ERUS80] a set of primitives are

proposed for state restoration in distributed systems.

An entirely different approach, still in its infancy, to dealing

with errors in distributed systems is to construct provably-correct

systems from the start. Gypsy [GOOD79] facilitates the development of

formally correct programs along with exception handling mechanisms.

Proofs make use of the history of message passing in the system.

Several proof methods have been proposed for CSP programs [APT80,

CHAN81]. Proofs for the absence of deadlock in distributed systems can

be found in [CHAN79]. Proofs of systems structured using the

resource-server model are presented in [RA1A82]. The issue of

apecifying and proving network protocols has also been receiving

attention. Sme of the approaches are based on history variables

... . . - .'--..... - . -... ,. - r, ''',,.,. -

associated with message passing [GOOD79] or on state machine models

[BOCH78]. Recently techniques based on temporal logic [MELL81] have

also been investigated. These attempts have to be further developed

before they can become practicable for constructing correct distributed

systems.

2.10 Distributed File Systems

Research in distributed file systems can be considered as providing

an important but only incremental step in establishing integrated

distributed computing systems. Three representative distributed file

systems (see Table 1) are now briefly described in order to illustrate

what facilities current distributed file systems provide. This section

then leads into a dis':ussion of distributed database issues wich

subsume the issues involved here.

The Xerox Distributed File System (DFS) [STUR80] is used as a basis

for database research. Overall, DFS gives the illusion of a single,

logical file system, and it runs on a local network. To support this

illusion there exists a file locating facility that makes file location

transparent to the user. The DFS is based on a client-server model

where multiple servers (one being designated the primary) may cooperate

to service a single transaction in an atomic fashion. Multiple files,

located across the network, may be involved in a single atomic

transaction. File replication is not supported. Users access the DFS

through programs called clients that run on the user sites. DFS uses a

locking mechanisa between transactions that supports client caches for

52

increased efficiency. Finally, facilities exist to deal with server

crashes and aborted transactions.

The Felix file server [FRID81] is designed to support a variety of

file systems, virtual memory and database applications by providing a

simple interface. Felix is the base upon which a higher level file

system is to be built. Felix is the only storage component in the

system and runs on a local area network. An atomic transaction in Felix

may involve single files or a set of files. A highly flexible mechanism

for file sharing is supported by using six access modes specified when

the file is opened (read copy, write copy, read original, write

original, read exclusive and write exclusive). The level of locking

granularity is the block level. Access control is based on capabilities

and no file replication is supported. Felix is also based on the client

- server model.

LOCUS [POPE81] is a distributed file system that is application

code compatible with UNIX [RITC74]. In contrast to the above two

systems LOCUS does support file replication. A centralized

synchronization mechanism is used to maintain mutual consistency among

replicated files as well as to synchronize multiple accesses to shared

files. LOCUS continues to operate even though there is partial system

failure or network partitioning. A concept based on version vectors is

usee to resolve conflicts at system recovery time. LOCUS is not

designed as a client - server model but as a file system integrated with

the rest of the operating system.

: , , , .. ,. . ,. - ,.-.- .,-. . ,.. ,...., ,.,

I rage

Many of the open issues for distributed file systems are the same

as for distributed databases (see Section 3). These include how to

maintain the atomic property in the presence of crashes and other

failures, support of multiple copies, concurrency control and deadlock

resolution. Other issues include directory assignment, replication and

partitioning, division of the responsibility between file servers and

clients, and the relationship of the distributed file system to the

operating system.

3.0 DISTRIBUTED DATABASE MANAGEMENT

In this section we give a brief survey of the current research

associated with the development of general purpose distributed database

management systems (DDBNS's). Iothnie and Goodman [ROTH771 state that

"distributed database mangement is an attractive approach ... because

it permits the database system to act conceptually as a centralized

system, while physically mirroring the geographic distribution of

organizations..." Some of the potential advantages of distributed

database management systems are: easy access to geographically

distributed but logically integrated data from a single site, increased

reliability and availability, faster data access, and incremental system

growth.

The following are the main issues involved in distributed database

management.

0 Transaction model,

.... *..*.* *t* U

*~~~~~~~7 r- -. 777.v wr u *' 1. -. 7. -- K-~ 07 .

o Synchronization (concurrency control),

o Deadlock resolution,

o Recovery (Failure handling),

o Data Models,

o Data Replication and Location Transparency,

o Nested Transactions,

o Distributed directory/dictionary management,

o Typical Applications, and

o Prototypes and testbeds.

3.1 Transaction Model

The transaction concept has emerged as an abstraction which allows

programmers to group a sequence of actions into a logical execution

unit. If executed atomically, a transaction transforms a current

consistent state of the database into a new consistent state [ESWA76J.

The virtues and limitations of the concept are described in [GRAY79J.

It is the job of the transaction processing component of a DDBMS to

preserve atomicity of transactions. In order to do this, protocols for

resolving data access conflicts between transactions (concurrency

control protocols) and protocols for recovering a consistent state of

the database in spite of user errors, application errors, or partial

system failure (processes, nodes, links, etc.) are necessary [KOHL81].

There is general agreement that the logical structure (system

architecture) of a distributed database management system can be

described by Figure 1. The four basic components are transactions,

transaction managers (TH's), data managers (H's), and data. Each user

.
I._Q

transaction is controlled by and Interacts with the data management

system through a single transaction manager (TH). The Th's may

simultaneously control multiple independent user transactions. The TM

in charge of a transaction forwards database access and update requests

to the data manager (D) local to the data. The local D's are

responsible for managing their own stored databases and for completing

* local access and update commands received from TH'a on behalf of

transactions. The level of the access and update commands passed to the

DM's depend on the implementation. They may be low level page read and

write requests or high level query and update operations requiring

• extensive computation as well as file input and output. A more detailed

description of this logical model and how it is used as a basis for

concurrency control theory can be found in [BERN81a].

-2

Nod e i

Transaction

X * I '~...? database

Transaction TM DM files

Transaction

Nod e .1

Transaction

.4-- 2) database

Transaction TM DM -{ , files

Transaction>

--- ----------- ----- --------------- -- -- -- --

Node k

Transaction

S.-.-~database
Transactio TM DM files

Transaction

Figure 1. DDBMS System Structure.

3.2 Synchronization (Concurrency Control)

Bernstein and Goodman EBERN8a, BERN82a, BERN82bJ have developed a

unified framework, called serializability theory, for analyzing the

correctness of concurrency control algorithms and have shown that most

of the commonly known methods can be understood using a few basic

concepts: read-set and write-set, schedule, serial schedule, legal

schedule, conflicts, dependence relation, read-write conflict,

write-write conflict, serializable schedule, and equivalence of

schedules. A schedule for a group of transactions with the property

that all actions of any transaction comes before or after any actions of

other transactions is a serial schedule. This means that transactions

are executed one at a time in some order. Serializability theory

assumes that a serial execution is always correct. A schedule which is

equivalent in its effect on the database to a serial schedule is said to

be serializable. The serializability theorem [BERN81a, BERN82a] states

the conditions under which a schedule is serializable. See the listed

references for theorems and definitions of other terms.

The theory partitions the synchronization problem into two

independent sub-problems: read-write and write-write synchronization.

Each concurrency control scheme is a combination of policies to solve

the sub-problems and each policy can be implemented using combinations

of mechanisms. The three major classes of concurrency control policies

are: locking (two phase locking), timestamp ordering, and validation

(also called the optimistic approach [KUNG81, SCHL81, BHAR82]). There

are also a variety of algorithms to support each of these policies.

Several hundred variations have been identified for the distributed

environment [BERN81a, BERN82a] covering the entire spectrum from

centralized to decentralized control. We will make no attempt to list

the very large number of research papers which have been dedicated to

the study of this topic.

New methods for concurrency control are expected to be combinations

and minor variations of known methods. However, even though many

variations are known, little is known about how the choice of a scheme

will affect system performance. Some simulation and queueing studies

[KA 082] have compared performance, but the results are still

* , ,, .. ,.;..:.-.........- : . <... - - J. .. *. .- .

Page 3U

inconclusive. In fact, since the models used in the studies have not

been validated, their results should not be accepted without close

scrutiny. Several experimental studies involving testbed systems are

either underway or planned. The results from these studies should be

helpful in the comparative evaluation, but it is unlikely that one

approach will always be the "best" due to the wide variety of

applications and system structures. These studies should provide enough

evidence to determine if the choice of concurrency control algorithm has

a primary or secondary impact on performance compared with other factors

[BALT82].

The correctness of a concurrency control algorithm is judged by the

serializability of all the schedules allowed in the scheme. That is, if

all the legal schedules of a scheme are serializable, then the scheme is

correct with respect to the serailizability requirement.

Serializability represents the strongest degree of consistency.

Some applications may require only lower degrees of consistency by

allowing, for example, reads from multiple objects without concern for

time consistency between the values read. Gray et al [GRAY76] discuss

four degrees of consistency, degree 0 through 3, where lower degrees

require fewer locks to be set or locks to be held for a shorter period

of time. A smaller degree of consistency may increase performance but

has the disadvantage of reducing the effectiveness of system recovery

after failure. Gray et al suggest that the performance penalty of

degree 3 consistency is small and consequently lower degrees of

consistency are a bad idea.

.._

5.

S.

-5

,%-

rage S

3.3 Deadlock Resolution

Within database systems, deadlock is a circular wait-for condition

which may arise when a locking scheme is used for concurrency control.

It may occur among a set of transactions as a result of the decision to

wait for a lock because of lock mode incompatibility between the granted

lock and the request. The circular wait-for condition prevents any

transaction from proceeding unless one or more of them are chosen as

victims to be aborted. Most of concurrency control schemes using

locking with delay incorporate a deadlock resolution mechanism, but a

deadlock-free locking policy can be designed using deadlock avoidance or

prevention mechanisms as well.

We classify the mechanisms into three categories. More discussion

of these approaches can be found in [ROSE78, MENA79, RYPK79, GLIG80,

CHAN82, KORT82, OBER82].

1. Timeout. One of the simplest ways to resolve deadlock is to specify

a maximum wait time, and roll back the transaction which is waiting

if the time expires before the request is granted.

2. Deadlock Prevention and Avoidance. Deadlock can be prevented by

requiring each transaction to preclaim all the objects to be

accessed before execution. In this case, if a look request cannot

be granted, all locks preclaimed are aborted.

As another more interesting example of a prevention mechanism,

we discuss briefly two protocols proposed by Rosenkrantz and Stearns

"ROSE78] which use timestamps to define a priority. That is, an

older transaction (one with a smaller timestamp) has higher priority

rage

than a younger transaction. The basic philosophy is that an older

transaction is favored when conflicting with a younger transaction

on the assumption that it may have already used more resources and

thus more cost will be paid for rollback and restart.

o Wait/Die Protocol : If the requester (of a look) is older

(smaller timestamp), then it is allowed to wait; otherwise, it

dies (die means rollback and restart).

o Wound/Wait Protocol : If the requester is older, then the

requester wounds the conflicting younger transaction, otherwise,

the requester waits. "Wound" is an activity in which the

requester sends messages to all the nodes the younger

transaction has visited saying that it is wounded and the

scheduler will abort a wounded transaction if the transaction

has not initiated termination. If the younger transaction is

terminating, i.e. in two-phase commit stage, then the wound

message is ignored to save some unnecessary rollback/restart.

See [ROSE78, KOHL81] for more details.

3. Deadlock Detectiot. The detection z echaniSms are mostly based on

finding cycles in a transaction wait-for graph (TWFG). The nodes of

the graph represent the waiting transactions, and the directed edges

indicate for which transactions a given transaction is waiting.

When cycles are detected, they are broken by choosing victims to be

rolled back and restarted. This mechanism seems to have greater

popularity than other mechanisms. However, in distributed systems a

global transaction wait-for graph (GTWFG) must be constructed to

detect deadlock invoving two or more nodes. The GTWFG is maintained

r.

Page 41

by exchanging messages among the nodes, causing additional

communication overhead and delay. When a detection mechanism is

chosen, some other decisions have to be made by the dtsigner:

o Detector organization: centralized detector, distributed

detectors, or something in between, e.g., hierarchically

organized detectors with . detector for a cluster of nodes and a

higher-level detector for a cluster of detectors.

o Detection initiation: is detection made periodically using a

predefined time parameter, is it initiated every time a

transaction has to wait, or when any suspended transaction has

waited for t ore than a predefined time period.

o Failure resiliency: establish backup for a centralized detector

and activate when centralized detector fails.

The importance of an efficient detection algorithm for performance

and which is the best approach are issues which have not been

adequately resolved. It clearly depends on the average frequency of

deadlock in the database application envirornent. A study by Gray

[GRAY81] showed that the frequency of deadlock goes up with the

square of multiprogramming level and the fourth power of the

transaction size.

3.4 Recovery (Failure Handling)

It is the responsibility of the DDBMS to insure that transactions

are atomic in spite of user errors, application errors, or partial

system failures. This means that if a failure occurs to prevent the

-. ". ." ". " . " ':' ,- '

rage Y

successful completion of a transaction, all database entities that the

transaction modified must be restored to their state prior to the

transaction. The same mechanism is used by the concurrency control

scheme to roll back one or more transactions to resolve deadlock. This

rollback is normally achieved by using a "shadow paging" mechanism or a

"write ahead log" [TRAI82b]. Operating system support is needed to make

these mechanisms more efficient.

Protocols for preserving transaction atomicity are called commit

protocols [SKEE81]. They are used to insure the completion (commit) or

rollback (abort) of the actions of a transaction at all sites. When

multiple sites are involved, the question of site autonomy arises

[LIND8Ob]. It is well known that when the common two-phase commit

protocol is used, a site loses its autonomy to independently roll back

once it enters the the second phase of the two-phase protocol. Skeen

calls this a blocking protocol because a site failure under certain

circumstances may leave operational sites blocked waiting for the failed

site to recover. He has proposed an extension, called a three-phase

commit protocol, which has the property that it is nonblocking if

certain assumptions about the system behavior are true. The nonblocking

property is achieved by using additional messages. More research is

needed to evaluate if the assumptions on system behavior are realistic

and if the performance penalty of the additional messages required by

the third phase are worth it.

While there has been some recent research on recovery protocols and

rollback mechanisms, an adequate theory and formal model for recovery in

a distributed system has not yet been formulated. More research is

required to address this and related problems of failure detection,

network partitioning, and node restart and integration [VERH78, GARC82,

MIN082].

3.5 Data Models

By restricting the choice of data model, there is more potential to

optimize performance. The relational model has been the choice of

researchers in DDBMS's. One reason is the opportunity for optimizing

query processing by decomposing the query into subqueries which can be

performed at remote sites [BERN81b]. The choice of a decomposition

depends on the processing costs, the comunication costs, and the data

distribution. There continues to be some interest in developing optimal

decompositions which minimize the processing and communication costs

(CHU82]. However, even with a very simplified model of the distributed

database and of the cost of processing a query, the costs of computing

an optimal solution are large. Experimental work is needed to test the

suitability of the model and the real savings before the utility of this

research can be evaluated.

Due to the large number of existing DBMS's, a very practical

problem is how to map between them or how to provide a single

intermediate model which will enable an application to access

heterogeneous systems. The research trend seems to be towards higher

level non-procedural semantic data models [HAMM81]. There is also.

interest in integrating database support into the operating system.

.:i" * ~ ' * ~ '. 2 ~ '

h~. Page 144

3.6 ataReplication And Location Transparency

In order to enhance data availability and reliability, it is

desireable to support the replication of critical data at multiple

sites. Data replication can be implemented by defining two levels of

abstraction [TRAI82a): database entity -- > database objects, and

request -> actions. Requests and entities are the elements in the

higher level abstraction. Eac h database entity is physically

represented by one or more replicated objects. Requests are implemented

by actions on these objects. This separation should be supported by the

systems to avoid problems of inconsistency which the user might

introduce if updates were improperly done.

The high cost of replication in terms of increased delay and

storage requirements makes the fully redundant case impractical in most

situationts ti3ARC79b, BARB81). Many applications would prefer to have

those parts of the database which have a high read to update ratio

replicated at the sites fran which access is frequent. For the majority

of data, replication is not expected to be Cost effective. Where it is

justified, the number of redundant copies will protably be small (two or

three copies). A simple partitioned database where the sites and

network are reliable should be adequate for many applications.

Knowledge of the physical location of the data should not be

required by the end user. This cart also be supported by the two level

abstraction mechanism [TRA182a]. However, there is some disagreement

over whether the application programmer or the operating system should

control the placement of data at a particular site. Also, if the

location of data is known, then it should be possible to use this

information to improve performance.

3.7 Nested Transactions

The original transaction concept did not provide the ability to

nest subtransactions within a transaction in a hierarchical manner.

However, the nested transaction model provides a more flexibile

abstraction for many applications [GRAY79]. Since subtransactions may

fail independently of the parent, the parent may survive by retrying

another subtransaction. Moss [MOSS82], Reed [REED78] and others have

proposed ways to extend concurrency control schemes to nested

transactions systems, but these have not yet been implemented and

evaluated in a general purpose system.

3.8 Distributed Directory/Dictionary Management

General purpose distributed database management systems require a

directory/dictionary (catalog) to help manage the database [LIND8Oa].

The directry/dictionary contains the definitions of the physical and

logical structure for the data as well as the rules for mapping between

the two. The directory also contains the local names of all resources -

relations, files, programs, nodes, etc. - and the addressing rules for

locating them. It can be thought of as a specialized distributed

database system and as such can be implemented ina wiue variety of

ways: redundant vs. non redundant copies, centralized vs.

partitioned, etc.

r~~~~~~~~~~~~~
~~~~~~ +

. , + l ", +
, )_ 

°
+°• l _, " " , . • . . i . . . . . . + ., . .. . .



rdba -9v

The directory/dictionary problem is not unique to DDBMS's. The

problems of defining, naming, and locating objects is central to the

distributed programing environment [OPPE81J and has been discussed in

Section 2.

3.9 Typical Applications

Real-time, interactive transaction processing is the "typical"

application for a general purpose DDBMS. But the characteristics and

requirements of these systems are vague. How much data is required in

the entire database? How much data is required by a single transaction?

What percent of the data is located locally vs. remotely? How many

sites will a transaction need to access? What percent of transactions

are read only vs. update? What is the probability of conflict with

other concurrent transactions? The lack of adequate answers to these

and many other questions makes it impossible to define a "typical"

workload and application.

3.10 Prototypes And Testbeds

The best known DDBMS prototypes are SDD-1 (ROTH80], distributed

INGRES [STNE77], and R* [LIND8Ob]. However, none of these systems meet

all of the goals of a DDBMS (TRAI82a] and little has been published

regarding the operational performance of these systems.

In order to compare and understand the tradeoffs involved in the

design of DDBNS's, a more flexible experimental approach is needed.

These systems, called testbeds, emphasize modularity and flexibility so

different algorithms and strategies can be easily "plugged in" and



w7

compared. They must also be architecturally similar to real systems in

order for the experimental results to be meaningful. The DDTS project

at Honeywell [ELMA81] is an example of a planned testbed system for

DDBMS experimentation on a wide variety of issues: data models,

multi-schema architectures, user interfaces, semantic integrity, data

translation, data allocation, transaction optimization, concurrency

control, and reliability and recovery. The CARAT project at DEC/UMASS

[GARC83] is an operational testbed system where the focus is on the

issues of distributed concurrency control, deadlock detection, and crash

recovery.

Distributed data management represents an important paradigm for

distributed software systems research and development. All the major

distributed system research issues, as discussed in the next section,

are important to the successful design and implementation of DDBMS's.

41.0 CRITICAL RESEARCH ISSUES

The current state of the art is such that different proposals exist

for solving, albeit partially, some of the problems discussed above, but

not much is known about their appropriateness, efficiency and

applicability in a distributed environment and the tradeoffs that they

entail. Hence, there is a need for the following:

1. Theory: A theory of distributed systems needs to be developed in

order to deal with issues such as complexity, theoretical

limitations, and semantics. Formaliss for distributed computation

(both for specifications and for analysis) are required. These

. .. . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .



formalisms should be able to handle failure-prone systems also,

since error-recovery is one of the crucial aspects of distributed

Systems.

2. Specification: There is a need to design languages that provide for

the specification of a numnber of features which were, so far,

entirely the responsibility of the underlying operating system.

These features include data and control distribution, choice of

coimunication primitives, protection requirements and error-recovery

schemes.

3.DeSign,,Experimentation and Evaluation: Design methodologies are

needed for distributed systems. There is also a need to emphasize

the integration of the various solutions to distributed system

problems. The experiments should be geared towards building a core

of knowledge pertaining to the issues that are relevant to such

systems. One of the motivations behind these experiments should be

to obtain performance measurements that can be Used to evaluate the

different proposals. Thus, modelling, simulation, and proof

techniques should be developed to analyze and evaluate the

experimental systems. Obviously, not every solution will be

appropriate for all situations. Hence the evaluation of the various

proposals should also be directed towards uncovering the assumptions

under which a particular scheme performs well. This is especially

important in practice, since in the future, distributed systems are

bound to be Used both for special-purpose as well as general purpose

a ppl ic at ions.

* '-*,...Z4.*e-.~. W ~~**\*****



page '4V

We now l.ist some of the important open questions that should be

addressed in terms Of theory, specification, design, experimentation and

evaluation.

1 . Distribution of Control: Decentralized control algoritmus for

various functions of operating systems, such as task scheduling and

resource allocation, are needed especially those concerned with a

high degree of cooperation between decentralized controllers.

Investigation Of scheduling concepts such as bidding, clustering,

co-scheduling, pause time, wave scheduling is required. The use of

various mathematical models such as adaptive control, stochastic

control, statistical decision theory, and stochastic learning

automata for dealing with uncertainty, inaccuracies and delay in

distributed systems is also necessary. Scheduling tasks with real

time constraints on a loosely coupled distributed System has

received little attention to date due to the difficulties involved.

2. Distribution of processes and resources: It is an open question on

how to distribute processes that cooperate to execute a given task.

This would affect the topology of the resulting network of processes

and the manner in which individual nodes are designed. A crucial

question is whether movement of processes in execution is worth it

and what the best means to implement such movement is. Tradeoffs

between static and dynamic allocation of resources should, be

investigated. Directory assignment, replication and partitioning

should also be addressed. For client - server models of distributed

file systems where do we divide the responsibility between file

servers and clients? When should distributed file systems be



embedded in the operating system and when should a file server model

be used? How should the operating system itself be distributed?

3. Protection and security: Specification techniques for the

protection requirements within a node and between nodes are needed.

Models for protection are required. The problems with revocation of

access rights in a distributed environment must be solved. Schemes

for implementing protection requirements in a comunicating

failure-prone environment are needed. Encryption of messages for

secure communication and integration of security and protection must

be further addressed.

4. Inter process communication: Specification of various aspects of

communication paths, such as, directionality, structure of messages,

ownership and access rights should be possible. Given the

usefulness of different types of message primitives, users should be

able to choose and specify the one appropiate for a given situation.

Since there are a number of schemes for addressing processes and

resources, each requiring differing operating system support and

each providing differing levels of transparency and flexibility, the

efficacy of the addressing schemes needs further investigation.

5. Error recovery: A more comprehensive theory as well as realistic

and practical schemes for error recovery are required. Overheads

introduced by fail-safe systems and the trade-offs that such schemes

entail must be investigated. How effective is decentralized control

as an aid in providing error recovery? Is the nested atomic action

the appropriate programming abstraction for the high level



Page 51

programmer? Can it be efficiently supported? Issues related to

network partitioning and slow degradation of the working of nodes in

a network is a fairly recent but important research topic.

6. Heterogeneity: Techniques for dealing with information transfer

between nodes with varying capabilities, storage schemes, and data

models are needed. Efficient network interfaces for heterogenous

hosts must be developed. How does heterogeneity affect the

distribution of programs and data in a distributed system and vice

versa?

7. Synchronization and Concurrency:

In order to implement the atomic action abstraction, some

system level mechanism for synchronizing concurrent access requests

to shared data must be provided. Concurrency control theory is well

developed, and there are many algorithms and approaches for solving

the associated distributed deadlock problem assuming locking is

used, but there is no sound basis for choosing one approach over

another. Experimental studies will be required to compare the

performance of alternate approaches for a variety of applications.

References

[ADA80] Reference Manual for the Ada Programming Language", U.S.
Department of Defense, July 1980.

"AGRA82] Agrawala, A. K., S. K. Tripathi, and G. Ricart, "Adaptive
Routing Using a Virtual Waiting Time Technique," IEEE
Transactions on Software Engineering, Vol. SE-8, No. 1,
January 1982.

[ANDE71] Anderson, B., et al., "Data Reconfiguration Service,"
Technical Report, Bolt Beranek and Newman, May 1971.

,J

.. .- . . * ... * . * . *--j* .. . ~***. .
- .-



Page t

[ANDR81] Andrews, G.R. "Synchronizing Resources", ACM Transactions on
Programming Languages and Systems 3, 4, October 1981, 405-430.

[AOKT78] Aoki, asanao, "Control of Large-Scale Dynamic Systems by
Aggregation," IEEE Transactions on Automatic Control, June
1978.

(APPO81] "Apollo Domain Architecture," Apollo Computer, Inc., February
1981. 1

[APT80] Apt, K.R., N. Francez, and W. P. De Roever, "A Proof System
for Communicating Sequential Processes", ACM Transactions on
Programming Languages and Systems 2, 3, July 1980, 359-385.

[BACH79] Bach, Maurice, Nancy Coguen, and Michael Kaplan, "The ADAPT
System: A Generalized Approach Towards Data Conversion,"
Proceedings of the Fifth International Conference on Very
Large Data Base__s, Rio de Janeiro, Brazil, October 1979.

[BALL76] Ball, J. E., J. Feldman, J. Low, R. Rashid, and P.
Rovner, "RIG, Rochester's Intelligent Gateway: System
Overview", IEEE Transactions on Software Engineering, Vol
SE-2, No. 4, December 1976.

[BALT82] Balter, R., P. Berard, and P. Decitre, "Why Control of
Concurrency Level in a Distributed Systems is more fundamental
than deadlock Management," ACM SIGACT-SIGOPS Symposium on
Principles of Distributed Computing, Ottowa, Canada, August
1982

[BALZ71] Balzer, R. M., "Ports -- A Method for Dynamic Interprogram
Communication and Job Control", Report for an ARPA contract at
RAND, August 1971.

[BARB81] Barbara, D. and H. Garcia-Molina, "How Expensive is Data
Replication: An Example", Technical Report 286, Dept. of
Electrical Engineering and Computer Science, Princeton
University, June 1981.

[BASK77] Baskett, F., J. Howard, and J. Montague, "Task Communication
in DEMOS", Proceedings of the 6th ACM Symposium on Operating
System Principles, November 1977, 23-31.

"BERN79] Bernstein, P.A., D.W. Shipman, and W.S. Wong, "Formal
Aspects of Serializability in Database Concurrency Control,"
IEEE Transactions on Software Engineering, Vol. SE-5, NO. 3,
May 1979, 203-216.

[BERN8Oa] Bernstein, P.A., and N. Goodman, "Concurrency Control in
Distributed Database Systems," Computing Surveys, Vol. 13,
No. 2, June 1981, 185-221.

(BERN8Ob] Bernstein, P.A., D.W. Shipman, and J.B. Rothnie, Jr.,
"Concurrency Control in a System for Distributed Databases
(SDD-1)," ACM Transactions on Database Systems, Vol. 5, NO.

-:.' ." . . -,:' . -'.".- *"," - * .. . , " " """""' "" " " " " " " " -' " " " ' " ; . . "



Page 53

1, March 1980, 18-25.

[BERN81a] Bernstein, P., and N. Goodman, "Concurrency Control in
Distributed Database Systems,", ACM Computing Surveys, Vol.
13, No. 2, June 1981.

[BERN81b] Bernstein, P., et. al., "Query Processing in a Distributed
Databases (SDD-1)," ACH Tran. on Database Systems, Vol. 6,
No. 4, December 1981.

(BERN82a] Bernstein, P., and N. Goodman, "A Sophisticate's Introduction
To Distributed Database Concurrency Control," Research Report,
TR-19-82, Harvard University, also 8th Intl. Conference on
Very Large Data Bases, September 1982.

[BERN82b] Bernstein, P. A. and N. Goodman, "Concurrency Control
Algorithms for Multiversion Database Systems," ACM Symposium
on Principles of Distributed Computing, Ottowa, Canada, August
1982.

[BERS80] Berstis, V., "Security and Protection of Data in the IBM
System/38," Proceedings of the 7th Annual Symposium on
Computer Architecture, May 1980.

CBHAR82] Bhargava, B., "Performance Evaluation of the Optimistic
Approach to Distributed Database Systems and Its Comparison to
Locking," IEEE 3rd Intl. Conf. on Distributed Computed
System, October 1982.

(BIRR81] Birrell, Andrew, Roy Levin, Roger Needham and Michael
Schroeder, "Grapevine: An Exercise in Distributed Computing,"
Proceedings of the Eighth Symposium on Operating System
Principles, December 1981.

(BOCH78] Bochman, G., "Finite State Description of Communication
Protocols", Computer Networks, 2, 1978, 361-372.

(BOKH79] Bokhari, S. H., "Dual Processor Scheduling with Dynamic
Reassignment," IEEE Transactions on Software Engineering, Vol.
SE-5, No. 4, July 1979.

[BRIN75] Brinch Hansen, P. "The Programming Language Concurrent
Pascal", IEEE Transactions on Software Engineering, Vol SE-1
2, June 1975, 199-207.

(BRIN78] Brinch Hansen, P. "Distributed Processes: A Concurrent
Programing Concept", Comm. of the ACM, 21, 11, November
1978, 934-941.

[BRIT80] Britton, D. E., and M. E. Stickel, "An Interprocess
Comunication Facility for Distributed Applications",
Proceedings of the 1980 COMPCON Conference on Distributed
Computing, February, 1980.

[BRYA81) Bryant, R. M., and R. A. Finkel, "A Stable Distributed

bZ!



Scheduling Algorithm," Proc of the 2nd International
Conference in Distributed Computing Systems, April 1981.

[CASE77] Casey, L. and N. Shelness, "A Domain Structure for Distributed
Computer System," Proceedings of the 6th ACM Symposium on
Operating Systems Principles, November 1977, 101-108.

[CHAN69] Chandrashekaran and Shen, "Stochastic Automata Games," IEEE
Transactions on Systems, Science and Cybernatics, April 1997

[CHAN79] Chandy, K.M. and J. Misra, "Deadlock Absence Proofs For
Networks of Communicating Processes", Information Processing
Letters, November 1979, 185-189.

[CHAN81] Chandy, K.M. and J. Misra, "Proofs of Networks of
processes", IEEE Transactions on Software Engineering, SE-7,
4, July 1981, 417-426.

[CHAN82] Chandy, K. M. and J. Misra, "A Distributed Algorithm for
Detecting Resource Deadlocks in Distributed Systems," ACM
Symposium on Principles of Distributed Computing, Ottowa,
Canada, August 1982.

[CHNG82] Chang, E. "Echo Algorithms: Depth Parallel Operations on
General Graphs", IEEE Transactions on Software Engineering,
SE-8, 4, August 1982, 391-400.

[CHER79] Cheriton, D. R., M. A. Malcolm, L. S. Melen, and G. R.
Sager, "Thoth, a Portable Real-Time Operating System",
Communications of the ACM, Vol. 22, No. 2, February, 1979.

[CHON75] Chong, Chee-Yee, and Michael Athans, "On the Periodic
Coordination of Linear Stochastic Systems," Proceedings of the
1975 IFAC, August 1975.

[CHOW79] Chow, Yuan-Chien, and Walter Kohler, "Models for Dynamic Load
Balancing in a Heterogeneous Multiple Processor System," IEEE
Transactions on Computers, Vol. C-28, No. 5, May 1979.

[CHOW82] Chow, T. C. K. and J. A. Abraham, "Load Balancing in
Distributed Systems," IEEE Transactions in Software
Engineering, Vol. SE-8, No. 4, July 1982.

[CHU69] Chu, W. W., "Optimal File Allocation in a Multiple Computing
System," IEEE Transactions on Computers, Vol. C-18, October
1969, 885-889.

[CHU80] Chu, W. W., L. J. Holloway, M. Lan, and K. Efe, "Task
Allocation in Distributed Pata Processing," Computer, Vol. 13,
November 1980, 57-69.

[CHU82] Chu, W.W., and P. Hurley, "Optimal Query Processing for
Distributed Database Systems," IEEE Trans. on Computers, Vol.
C-31, No. 9, September 1982, 835-850.



K' rage

[COMP82] Special Issue on Data Flow Systems, IEEE Computer, February
1982.

[COOK79] Cook, R.P., "*Mod--A Language for Distributed Programming",
Proceedings of the First International Conference on
Distributed Computing Systems, October 1979, 233-241.

[COSS72] Cosserat, D. C., "A Capability Oriented Multi-Processor
System for Real-Time Applications," Proceedings of the
International Conference on Computer Communications, October,
1972.

(COX81] Cox, G., W. Corwin, K. Lai, and F. Pollack, "A Unified
Model and Implementation for Interprocess Communication in a
Multiprocessor Environment", Intel Corporation, 1981.

[DAVI81] Davies, D. W., E. Holler, E. D. Jensen, S. R. Kimbleton,
B. W. Lampson, G. LeLann, K. J. Thurber and R. W. Watson,
Distributed Systems--Architecture and Implementation, Lecture
Notes in Computer Science, Vol. 105, Springer-Verlag, NY,
1981.

[DENN66] Dennis, J. and E. Van E., "Programming Semantics for
Multiprogrammed Computations", Communications of the ACM, Vol.

9, No. 3, March 1966.

[DENN76] Denning, P.J., "Fault-Tolerant Operating Systems," Computing

Surveys, Vol. 8, No. 4, December 1976, 359-390.

(D1080] Dio, Jeremy, "The Cambridge File Server," ACM Operating System

Review, October 1980.

[DOD80] "Reference Manual for the Ada Programming Language", U.S.

Department of Defense, July 1980.

(ECKH78] Eckhouse, R.H., Jr., and J.A. Stankovic, "Issues in
Distributed Processing - An Overview of Two Workshops,"
Computer, Vol. 11, No. 1, January 1978, 22-26.

[EFE82] Efe, Kemal, "Heuristic Models of Task Assignment Scheduling in

Distributed Systems," IEEE Computer, Vol. 15, No. 6, June
1982.

[ELDE80] El-Dessouki, 0. I., and W. H. Huan, "Distributed Enumeration
on Network Computers," IEEE Transactions on Computers,

Vol. C-29, 818-825.

[ELLI77] Ellis, C., "A Robust Algorithm for Updating Duplicate
Databases," Proceedings of the Second Berkeley Workshop on
Distributed Management of Data and Computer Networks,"
Berkeley, California, May 1977, 146-158.

[ELMA81] Elmasri, R., C. Devor, and S. Rahimi, "Notes on DDTS: An
Apparatus for Experimental Research in Distributed Database
Management Systems," ACM SIGMOD Record, Vol. 11, No. 4, July

." ,'-. ,'.'. . ."* .- ".-.. ' .'-,.,','..".',:',"., , ", "- , ,. ,"* ", *,w , . *"' _.,.,'*' -... ,':' .,., '',.,-, ' '



1981, 32-49.

[ENSL78] Enslow, P., "What is a Distributed Data Processing System,"
IEEE Computer, Vol. 11, No. 1, January 1978.

[ENSL80] Enslow, Philip and Timothy Saponas, "Distributed and
Decentralized Control in Fully Distributed Processing
Systems," Final Technical Report, GIT-ICS-81/82, September
1980.

[ESWA76] Eswaran, K.P., J.N. Gray, R.A. Lore, and I.L. Traiger,
"The Notions of Consistency and Predicate Locks in a Database
System," Communications of the ACM, Vol. 19, NO. 11,
November 1976, 624-633.

[FARB73] Farber, D J., et al., "The Distributed Computer System,"
Proceedings of the 7th Annual IEEE Computer Society
International Conference, February 1973.

[FELD79] Feldman, J.A., "High Level Programming for Distributed
Computing", Communications of the ACM 22,6, June 1979,
353-368.

[FORS78] Forsdick, H. C., R. E. Schantz,and R. H. Thomas, "Operating
Systems for Computer Networks," IEEE Computer, Vol. 11, No. 1,
January 1978.

[FRID81] Fridrich, M., and W. Older, "The FELIX File Server," ACM
SIGOPS, Proceedings of the Eighth Symposium on Operating
System Principles, December 1981, 37-44.

[FU7O] Fu, King-Sun, "Learning Control Systems," IEEE Transactions on
Automatic Control, April 1970

(GALL77] Gallager, R., "A Minimum Delay Routing Algorithm Using
Distributed Computation," IEEE Transactions on Communications,
Vol. COM-25, No. 1, January 1977.

[GARC78] Garcia-Molina, H., "Performance Comparison of Two Update
Algorithms for Distributed Databases," Proceedinrgs of the
Third Berkeley Workshop on Distributed Data Management and
Computer Networks, Berkeley, 1978, 108-119.

(GARC79a] Garcia-Molina, H., "A Concurrency Control Mechanism for
Distributed Databases which Uses Centralized Locking
Controllers," Proceedings of the 4th. Berkeley Conference on
Distributed Data Management and Computer Networks, August
1979, 113-124.

"GARC79b] Garcia-Molina, H., "Performance of Update Algorithms for
Replicated Data in a Distributed Database," Ph.D.
Dissertation, Stanford University, 1979

[GARC82] Garcia-Molina, H., "Reliability Issues for Fully Replicated
Distributed Databases," Computer, Vol. 16, No. 9, September



Page 57

1982, 34-42.

[GARC83] Garcia-Molina, H., F. Germano, Jr., and W.H. Kohler,
"Architectural Overview of a Distributed Software Teatbed,"
Proceedings of the Sixteenth Hawaii Intl. Conf. on System
Science, January 1983.

[GELE82] Gelernter, D. and A. J. Bernstein, "Distributed
Communication via Global Buffer", Proceedings of the Symposium
on Principles of Distributed Computing, August 1982.

(GENT82] Gentleman, W. M., "Message Passing Between Sequential
Processes: the Reply Primitive and the Administrator
Concept," Software - Practice and Experience, Vol. 11, 1981,
435-466.

[GIFF79a] Gifford, D., "Weighted Voting for Replicated Data," 7th.
Symposium on Operating System Principles, December 1979,
150-1 59.

[GIFF79b] Gifford, D. K., "Violet: An Experimental Decentralized
System, Operating Systems Review 13, 5, December 1979.

[GLIG8O] Gligor, V.D., and S.H. Shattuck, "On Deadlock Detection in
Distributed Systems," IEEE Transactions on Software
Engineering, Vol. SE-6, No. 5, September 1980, 435-440.

[GLOR80] Glorioso, Robert M., and Fernando Colon Osorio, Engineering
Intelligent Systems, Digital Press, Bedford, MA, 1980.

[GOLD81] Goldberg, Adele et al., Articles on the Smalltalk System, Byte
Vol 6, No. 8, August 1981.

(GONZ77] Gonzalez, M. J., "Deterministic Processor Scheduling," ACM
Computing Surveys, Vol. 9, No. 3, September 1977, 173-204.

[GOOD79] Good, D.I., R. M. Cohen, and J. Keeton-Williams,
"Principles of Proving Concurrent Programs in Gypsy",
Proceedings of the Sixth ACM Symposium on Principles of
Programmins Languages, January 1979, 42-52.

[GRAH68] Graham, R.M., "Protection in an Information Processing
Utility", Communications of the ACM, Vol. 11, No. 5, May
1968, 365-369.

[GRAY75] Gray, J.N., R. A. Lorie, and G. R. Putzolu, "Granularity
of Locks in a Shared Database," Proceedings of the Intl.
Conference Very Large Database, Sepember 1975, 428-451.

(GRAY76] Gray, J.N., R. A. Lorne, and G. R. Putzolu, ""Granularity
of Locks and Degrees of Consistency in a Shared Database,"
Proceedings of the Modeling in Database Systems, Nijasen,
editor, North-Holland, 1976.

[GRAY79] Gray, J.N., "Notes on Data Base Operating Systems," in



Page 58

Operating Systems: An Advanced Course, R. Bayer, R.M.
Graham, and G. Seegnuller, editors, Springer-Verlag, 1979.
393-481.

(GRAY81] Gray J. N., "The Transaction Concept: Virtues and
Limitations," VLDB September 1981, 144-154.

[GUIL82] Guillemont, Marc, "The Chorus Distributed Operating System:
Design and Implementation," International Symposium on Local
Computer Networks, Florence, Italy, April 1982.

[HALT71] Halter, A. N., and G. W. Dean, Decisions Under Uncertainty,
South-Western Pub. Co., Chicago, IL, 1971.

[HAMI78] Hamilton, J., "Functional Specification for the WEB Kernel,"
Digital Equipment Corporation, R & D Group, Maynard, MA,
November 1978.

[HAMM78] Hammer, M., and D. Shipman, "An Overview of Reliability
Mechanisms for a Distributed Data Base System," Proceedings of
COMPCON Spring '78, February 1978, 63-65.

[HAMM80] Hammer M. and D. Shipman, "Reliability Mechanisms for
SDD-1 : A system for Distributed Databases." ACM Tran. on
Database Systems, December 1980.

[HAMM81] Hammer, M., and D. McLeod, "Database Description with SDM: A
Semantic Database Model," AC4 Trans. on Database Systems,
Vol. 6, No. 3, September 1981, 351-386.

[HERL82] Herlihy, M. and B. Liskov, "A Value Transmission Method for
Abstract Data Types", ACM Transactions on Programming
Languages and Systems, Vol. 4, 4, October 1982, 527-551.

[HO80] Ho, Y., "Team Decision Theory and Information Structures,"
Proceedings of the IEEE, Vol. 68, No. 6, June 1980.

[HOAR74] Hoare, C.A.R., "Monitors: an Operating System Structuring
Concept", Communications of the ACM, 17, 10, October 1974,
549-557.

[HOAR78] Hoare, C.A.R., "CSP: Communicating Sequential Processes",
Communications of the ACM, Vol. 21, No. 8, August 1978.

[IRAN79] Irani, K. B. and H. Lin, "Queueing Network Models for
Concurrent Transaction Processing in a Database System,"
SIGMOD 1979.

-ISLO8O] Isloor, Sreekaanth, and T. Anthony Marsland, "The Deadlock
Problem: An Overview," IEEE Computer, Vol. 13, No. 9, 1980.

[JARV75] Jarvis, R. A., "Optimization Strategies in Adaptive Control:
A Selective Survey," IEEE Transactions on Systems, Man, and
Cybernetics, Vol. SHE-5, No. 1, January 1975.

mN"



Page 59

[JENS78] Jensen, E. D., "The Honeywell Experimental Distributed
Processor-An Overview of its Objective, Philosophy and
Architectural Facilities," IEEE Computer, Vol. 11, No. 1,
January 1978.

(JONE78a] Jones, A.K., "The object model: a conceptual tool for
structuring software" Lecture Notes in Computer Science 60,
Springer-Verlag, 1978, 3-19.

[JONE78b] Jones, A.K. and B. Liskov, "A Language Extension for
Expressing Constraints on Data Access", Communications of the
ACM, Vol. 21, 5, May 1978, 358-367.

[JONE79] Jones, A. K., R. J. Chansler, I. Durham, K. Schwans, and
S. R. Vegdahl, "StarOS, a Multiprocessor Operating System
for the Support of Task Forces", Proceedings of the 7th
Symposium on Operating System Principles, December 1979.

[KAHN81] KAHN, K. C., et al., "iMax: A Multiprocessor Operating System
for an Object-Based Computer," Proceedings of the Eighth
Symposium on Operating System Principles, December 14-16,
1981.

[KAMO82] Kamoua, F., M. B. Djerad, and G. Le Lann, "Queueing
Analysis of the Ordering Issue in a Distributed Database
Concurrency Control Mechanism: a General Case," IEEE 3rd
Intl. Conf. on Distributed Computed System, October 1982.

[KIMB78] Kimbleton, S. R., H. M. Wood, and M. L. Fitzgerald, "Network
Operating Systems--An Implementation Approach," Proceedings of
the AFIPS Conference, 47, 1978.

[KLEI81] Kleinrock, L., and A. Nilsson, "On Optimal Scheduling
Algorithms for Time-Shared Systems," JACM, Vol. 28, No. 3,
July 1981, 477-486.

[KNOT75] Knott, "A Proposal for Certain Process Management and
Intercommunication Primitives", Operating Systems Review,
October and January, 1974-75.

[KOHL81] Kohler, W. H., "A Survey of Techniques for Synchronization
and Recovery in Decentralized Computer Systems," ACM Computing
Surveys, Vol. 13, No. 2, June 1981, 149-183.

[KORT82] Korth, H. T., "Edge Locks and Deadlock Avoidance in
Distributed Systems," ACM SIGACT- SIGOPS A on Principle
of Distributed Computing, Ottowa, Canada, August, 1982,
173-182.

[KUNG81] Kung, H. T. and J. T. Robinson, "On Optimistic Methods for
Concurrency Control," ACM Tran. on Database Systems, Vol. 6,
No. 2, June 1981.

"LAMP76] Lampson, B. W., and H. E. Sturgis, "Reflections on an
Operating System Design", Communications of the ACM, Vol. 19,

.b. . . .



Page 60

No. 5, May 1976.

[LAMP79] Lampson, B.W., and H.E. Sturgis, "Crash Recovery in a
Distributed Storage System," revised and expanded unpublished
paper, Computer Science Laboratory, Xerox Palo Alto Research
Center, Palo Alto, California 94304, 1979.

[LANT8O] Lantz, K. A., "RIG, An Architecture for Distributed Systems"
Proceedings of the ACM Pacific 80, November 1980.

[LARS79] Larsen, R. E., "Tutorial: Distributed Control," IEEE Catalog

No. EHO 153-7, IEEE Press, New York, 1979.

[LAZO81] Lazowska, E., H. Levy, G. Almes, M. Fischer, R. Fowler,

and S. Vestal, "The Architecture of the Eden System", 8th
Annual Symposium on OS Principles, December 1981.

[LELA78] Le Lann, G., "Algorithms for Distributed Data-Sharing Systems
Which Use Tickets," Proceedings of the 3rd Berkeley Workshop
on Dist. Databases and Ccmp. Network, 1978.

[LELA80] LeLann, G., "Distributed Systems-Towards a Formal Approach,"
Proceedings of IFIP Congress, Toronto, North Holland Pub.,
August 1980, 155-160.

[LELA81] LeLann, G., "A Distributed System for Real-Time Transaction
Processing," IEEE Computer, Vol. 14, No. 2, February 1981.

[LESS8O] Lesser, Victor, Daniel Serrain, and Jeff Bonar, "PCL: A
Process-Oriented Job Control Language," IEEE Transactions on
Computers, Vol. C-29, No. 12, December 1980.

[LEVI77] Levine, Paul H., "Facilitating Interprocess Communication in a
Heterogeneous Network Environment," Masters Thesis, MIT, June
1977.

[LEVY81] Levy, H., "A Comparative Study of Capability-Based Computer
Architectures", University of Washington Master's Thesis,

October 1981.

[LIN79] Lin, W. K., "Concurrency Control in a Multiple-Copy
Distributed Database System," 4th Berkeley Conference on
Distributed Data management and Computer Network, August 1979.

[LIN81] Lin, W. K., "Performance Evaluation of Two Concurrency
Mechnisms in a Distributed Database System," SIGMOD 1981.

[LIND79] Lindsay B., et. al., "Notes on Distributed Databases," IBM
Research Report, Report RJ2571, 1979.

[LIND8Oa] Lindsay, B., "Object Naming and Catalog Management for a
Distributed Database Manager," IBM Research Report, RJ2914
(36689), August 29, 1980.

[LIND8Ob] Lindsay, B., and P.G. Selinger, "Site Autonomy Issues in RH:

- . . . .. . • . - '_. • , -ji ', . .



L Page b1

A Distributed Database Management System," IBM Research
Report. RJ2927 (36822), September 15, 1980.

[LIND81] Lindgren, B. W., Elements of Decision Theory, The MacMillan
Co., NY. 1981.

[LISK75] Liskov, B. and S. Zilles, "Specification Techniques for Data
Abstractions", IEEE Trans. on Software Engineering, Vol. 1,
No. 1, Mrrch 1975, 7-18.

[LISK79] Liskov, Barbara, "Primitives for Distributed Computing",
Proceedings of the 7th Symposium of Operating System
Principles, December 1979.

[LISK82] Liskov, B. and R. Scheifler, "Guardians and Actions:
Linguistic Support for Robust, Distributed Progrems",
Proceedings of the Ninth Symposium on Principles of
Programming Languages, January 1982, 7-19.

[LOME77] Lomet, D.B., "Process Structuring, Synchronization, and
Recovery Using Atomic Actions," Proceedings of the ACM
Conference on Language Design for Reliable Software, SIGPLAN
Notices, Vol. 12, No. 3, March 1977, 128-137.

[LUDE81] Luderer, G. W. R., et al., "A Distributed UNIX System Based on
a Virtual Circuit Switch," Proceedings of the Eighth SymposiuM
on operating System Principles, December 14-16, 1981.

(MA82] Ma, P. Y. R., E. Y. S. Lee, and J. Tsuchiya, "A Task
Allocation Model for Distributed Computing Systems,"IEEE
Transactions on Computers, Vol. C-31, No. 1, January 1982,
41-47.

[MCQU74] McQuillan, J. M., "Adaptive Routing Algorithms for Distributed
Computer Networks," BBN Report 2831, May 1974.

[MELL81] Melliar-Smith, P.M. and R. L. Schwartz, "Temporal Logic
Specifications of Distributed Systems", Proceedings of the of
the Second International Conference on Distributed Systems,
April 1981.

(MENA79] Menasce, D. A. and R. R. Muntz, R., "Locking and Deadlock
Detection in Distributed Data Bases," IEEE Tran. on Software
Engineering, Vol. SE-5, No. 3, May 1979

[MENA80] Menasce, D. A., G. J. Popek, and R. R. Muntz, "A Locking
Protocol for Resource Coordination in Distributed Database,"
ACM Tran. on Database Systems, Vol. 5, No. 2, June 1980.

(MIN082] Minoura, T. and G. Wiederhold, "Resilient Extended True-Copy
Token Scheme for a Distributed Database System," IEEE Tran.
on Software Engineering, Vol. SE-8, No. 3, May 1982.

[MITC79] Mitchel, J.G., W. Maybury, and R. Sweet, "Mesa Language
Manual", Xerox PARC Report CSL-79-3, April 1979.

;.W



eage oe

[MOSS82] Moss, J. E. B., "Nested Transactions and Reliable
Distributed Computing," Second S on Reliability in
Distributed Software and Database Systems, July, 1982.

[NARE74] Narendra, K., "Learning Automata - A Survey," IEEE
Transactions on Systems, Man, and Cybernetics, Vol. SMC-4,
No. 4, July 1974.

[NEED77] Needham, R. M., and R. D. Walker, "The Cambridge CAP
Computer and its Protection System", Proceedings of the 6th
ACM Symposium on Operating System Principles, November 1977.

[NELS81] Nelson, B. J., "Remote Procedure Call", Xerox Corperation
Technical Report CSL-81-9, May, 1981.

[OBER82] Obermarck, R., "Distributed Deadlock Detection Algorithm," ACM
Tran. on Database Systems, Vol. 7, No. 2, June 1982.

"OPPE81] Oppen, D.C., and Y.K. Dalal, "The Clearinghouse: A
Decentralized Agent for Locating Named Objects in a
Distributed Environment," Xerox Corporation, Office Products
Division Report OPD-T8103, October 1981.

[OUST80] Ousterhout, J., D. Scelza, and P. Sindhu, "Medusa: An
Experiment in Distributed Operating System Structure",
Communications of the ACM, Vol. 23, No. 2, February 1980.

.PASH82] Pashtan, A., "Object oreinted operating systems: An emerging
design methodology", Proceedings of the of the ACM National
Conference, October 1982, 126-131.

[POPE81] Popek, G., et al., "LOCUS, A Network Trans. Parent, High
Reliability Distributed System" Proceedings of the Eighth
Symposium on Operating System Principles, December 14-16,
1981.

[POWE77] Powell, M., "The DEMOS File System", Proceedings of the 6th
ACM Symposium on Operating System Principles, November 1977,
33-42.

[RAIF61] Raiffa, H., and R. Schlaifer, Applied Statistical Decision
Theory, Division of Research, Graduate School of Business
Adm., Harvard University, Cambridge, MA, 1961.

"RAMA82] Ramamritham, K., "Proof Techniques for Resource Controllers",
COINS Technical Report 82-18, University of Massachusetts,
January 1982.

[RASH80] Rashid, R., "An Inter-Process Communication Facility for
UNIX", Carnegie-Mellon University Technical Report, June 1980.

(RASH81) Rashid, R. F., and G. G. Robertson, "Accent: A Communication
Oriented Network Operating System Kernel," Proceedings of the
Eighth Symposium on Operating System Principles, December
14-16, 1981.

b e



Page 63

[RAO8O] Rao, Ram, "Design and Evaluation of Distributed Communication
*. Primitives", ACM Pacific 1980, November, 1980.

[REED78] Reed, D. P., "Naming and Synchronization in a Decentralized
Computer System," Ph.D. Dissertation, MIT, 1978.

[REED79] Reed, D.P., "Implementing Atomic Actions on Decentralized
Data," Proceedings of the 7th. ACM Symposium on Operating
System Principles, December 1979.

[RIES79a] Ries D., "The Effects of Concurrency Control on the
Performance of a Distributed Data Management System,"
Proceedings of the 4th Berkeley Workshop on Distributed Data
Management and Comp. Networks, 1979.

[RIES79b] Ries, D. R., and M. R. Stonebraker, "Locking Granularity
Revisited," ACM Tran. on Database System, June 1979, 210-227.

[RITC74] Ritchie, D. and K. Thompson, "The UNIX Time-Sharing System",
Communications of the ACM, Vol. 17, No. 7, July 1974.

[ROSE78] Rosenkrantz, D.J., R.E. Stearns, and P.M. LeWis, "System
Level Concurrency Control for Distributed Database Systems,"
ACM Transactions on Database Systems, Vol. 3, No. 2, June
1978, 178-198.

[ROTH77] Rothnie, J.B,, and N. Goodman, "A Survey of Research and
Development in Distributed Database Management," Proceedings
of the Third Intl. Conference on Very Large Data Bases, 1977,
48-62.

[ROTH80] Rothnie, J.B., Jr., P.A. Bernstein, S. Fox, N. Goodman, M.
Hammer, T.A. Landers, C. Reeve, D.W. Shipman, and E. Wong,
"Introduction to a System for Distributed Databases CSDD-1),"
ACM Transactions on Database Systems, Vol. 5, No. 1, March
1980, 1-17.

[ROWE79] Rowe, L. A. and K. P. Birman, "Network Support for a
Distributed Database System," Proceedings of the 4th Berkeley
Conference on Distributed Data Management and Computer
Networks, 1979.

[ROWE82] Rowe, L. A., and K. P. Birman, "A Local Network Based on the
UNIX Operating System," IEEE Transactions on Software
Engineeia, Vol. SE-8, No. 2, March 1982.

[RUSS8O] Rus. D.L. "State Restoration in Systems of Communicating
Processes", IEEE Transactions on Software Engineering, March
1980, 183-194.

.RYPK79] Rypka, D.J., and A.P. Lucido, "Deadock Detection and
Avoidance for Shared Logical Resources," IEEE Transactions on
Software Engineering, Vol. SE-5, No. 5, September 1979,
465-471.

.0

.. . . . . .
. .. . . . . . . .



Page b4

[SALT751 Saltzer, J.H. and M. D. Schroeder, "The Protection of
Information in Computer Systems", Proceedings of the IEEE,
Vol. 63, No. 9, September 1975, 1278-1308.

[SALT78] Saltzer, J. H., "Naming and Binding of Objects," Operating
Systems: An Advanced Course, Springer-Verlag, 1978.

[SAND78] Sandell, N., R. Varaiya, M. Athans, and M. Safonov, "Survey of
Decentralized Control Methods for Large Scale Systems, IEEE
Transactions on Automatic Control, Vol. AC-23, No. 2, April
1978.

[SCH078] Schoch, J. F., "Inter-Network Naming, Addressing and Routing,"
Compcon 78, Spring 1978.

[SCHL81] Schlageter, G., "Optimistic methods For Concurrency Control in
Distributed Databse System," VLDB 1981.

[SEGA77] Segall, A., "The Modelling of Adaptive Routing in
Data-Communication Networks," IEEE Trans. on Communications,
Vol. COt-25, No. 1, January 1977, 85-95.

[SKEE81] Skeen, D. and M. Stonebraker, "A Formal Model of Crash
Recovery in a Distributed System," Proceedings of the Fifth
Berkeley Workshop on Distributed Data Management and Computer
Networks, February 1981, 129-142.

[SMIT80] Smith, G. R., "The Contract Net Protocol: High Level
Communication and Control in a Distributed Problem Solver,"
IEEE Transactions on Computers, Vol. C-29, No. 12, December
1980.

[SOLO79] Solomon, M. H., and R. A. Finkel, "The Roscoe Distributed
Operating System", Proceedings of the 7th Symposium on
Operating System Principles, March 1979.

[STAN79] Stankovic, J. A., and A. van Dam, "Research Directions in
(Cooperative) Distributed Processing," Research Directions in
Software Technology, MIT Press, Cambridge, MA, 1979.

[STAN81] Stankovic, John A., "ADCOS - An Adaptive, System Wide,
Decentralized Controlled Operating System," Univ. of
Massachusetts, Technical Report, November 1981.

[STAN82a] Stankovic, John A., "Software Communication Mechanisms:
Procedure Calls Versus Messages," IEEE Computer, Vol. 15,
No. 4, April 1982.

[STAN82b] Stankovic, J. A., N. Chowdhury, R. Mirchandaney, I. Sidhu, "An
Evaluation of the Applicability of Different Mathematical
Approaches to the Analysis of Decentralized Control
Algorithms, Proceedings of COMPSAC 82, November 1982.

[STAN82c] Stankovic, John A., "A Stochastic Model For Replicated
Decentralized Control," submitted to IEEE Transactions on



...

Computers, December 1982.

[STAN83a] Stankovic, J. A., "A Heuristic for Cooperation Among
Decentralized Controllers," Proceedings of INFOCOM §1, April
1983.

[STAN83b] Stankovic, J. A., "Simulations of Three Adaptive,
Decentralized Controlled, Job Scheduling Algorithms,"
submitted to Computer Networks, January 1983.

[STEM82] Stemple, D., K. Ramamritham, and S. Vinter, "Preliminary
Design of a Port-based Operating System", COINS Technical
Report 82-24, Dept. of Computer and Information Sciences,
University of Mass., October 1982.

[STON77] Stone, H. S., "Multiprocessor Scheduling with the Aid of
Network Flow Algorithms," IEEE Trans. on Software Engineering,
Vol. SE-3, January 1977.

[STON78a] Stone, H. S., "Critical Load Factors in Distributed Computer
Systems," IEEE Trans. on Software Engineering, Vol. SE-4, May
1978.

[STON78b] Stone, H. S. and S. H. Bokhari, "Control of Distributed
Processes," IEEE Computer, Vol. 11, No. 7, July 1978, 97-106.

[STNE77] Stonebraker, M., and E. Neuhold, "A Distributed Database
Version of INGRES," Proceedings of the 1977 Berkeley Workshop
on Distributed Data Management and Computer Networks, May
1977, 19-36.

[STNE79] Stonebraker, M., "Concurrency Control and Consistency of
Multiple Copies of Data in Distributed INGRES," IEEE
Transactions on Software Engineering, Vol. SE-5, No. 3, May
1979, 180-194.

[STNE81] Stonebraker, M., "Operating System Support for Database
Management," Communications of the ACM, Vol. 24, No. 7, July
1981, 412-418.

[STUR80] Sturgles, H., J. Mitchell, and J. Israel, "Issues in the
Design and Use of a Distributed File System," ACM Operating
System Review, July 1980, 55-69.

[SUNS77] Sunshine, C., "Interprocess Communication Extensions for the
* UNIX Operating System: Design Considerations", Rand

Corperation Publication R-2064/1-AF, June 1977.

(SWAN77] Swan, R. J., S. H. Fuller, and D. P. Siewiorek, "On: A
Modular, Multi-Microprocessor," AFIPS Conference, Vol. 46,
NCC, 1977.

[TEN81a] Tenney, R. R., and N. R. Sandell, Jr., "Structures for
Distributed Decision-making," IEEE Transactions on Systems,
Man, and Cybernetics, Vol. SMC-11, No. 8, August 1981,

- .



517-527.

[TEN81b] Tenney, R. R., and N. R. Sandell, Jr., "Strategies for
Distributed Decisionmaking," IEEE Transactions on Systems,
Manand Cybernetics, Vol. SMC-11, No. 8, August 1981,
527-538.

(THOM79] Thomas, R.H., "A Majority Consensus Approach to Concurrency
Control for Multiple Copy Databases," ACM Transactions on
Database Systems, Vol. 4, No. 2, June 1979, 180-209.

[TRAI82a] Traiger, I., et. al., "Transactions and Consistency in
Distributed Database System," ACM Tran. on Database System.
Vol 7, No. 3, September 1982.

[TRAI82b] Traiger, I., "Virtual Memory Management for Database Systems,"
ACM Operating System Review, Vol. 16, No. 4, October 1982,
26-48.

[VERH78] Verhofstad, J.S.M., "Recovery Techniques for Database
Systems," Computing Surveys, Vol. 10, No. 2, June 1978,
167-195.

[VINT83] Vinter, S., K. Ramamritham, and D. Stemple, "Protecting
Objects through the use of Ports", Proceedings of the Phoenix
Conference on Computers and Communication, March 1983.

.WALD72] Walden, David C., "A System for Interprocess Communication in
a Resource Shar ing Computer Network", Communications of the
ACM, Vol. 15, No. 4, April 1972.

[WARD8O) Ward, S., "TRIX; A Network Oriented Operating System,"
Proceedings COMPCON, 1980.

[WILK79] Wilkes, M. V., and R. M. Needham, "The Cambridge CAP Computer
and its Operating System," Elsevier North Holland, 1979.

[WINK72] Winkler, R. L., Introduction to Bayesian Inference and
Decision, Holt, Rindhard & Winston, Inc., NY, 1972.

[WIT77] Wirth, N., "Modula: a Language for Modular Multiprogramming",
Software - Practice and Experience, 7,1, January 1977, 3-35.

[WITT80] Wittie, L., and Andre M. Van Tilborg, "MICROS, A Distributed
Operating System for Micronet, A Reconfigur able Network
Computer, IEEE Transactions on Computers, Vol. C-29, No. 12,
December 1980.

[WULF74J Wulf, W., E. Cohen, W. Corwin, A. Jones, R. Levin, C.
Pierson, and Pollack, "HYDRA: The Kernel of a
Multiprocessor Operating System", Communications of the ACM,
Vol. 17, No. 6, June 1974.

b..............'* .



(~7-177

Simulations of Three Adaptive,
Decentralized Controlled, Job

Scheduling Algorithms

by

John A. Stankovic
113-54I5-0720

January, 1983

Department of Electrical and Computer Engineering
University of Massachusetts

Amherst, Mass. 01003

This work was supported, in part, by the National Science Foundation
under grant MCS-810'4203, and by the US Army CECOI, CENCOMS under grant

* number DAAB7-82-K-J015.

.' .*~ .. .1 .P



Abstract

Simulation results of three adaptive, decentralized
controlled job scheduling algrithms are presented. Tbe
results provide insight into the workings and relative
effectiveness of the three algorithms, as well as insight into
the performance of a special type of decentralized control.
The simulation approach includes tuning the parameters of each
algorithm, and then comparing the three algorithms based on
response time, load balancing and the percentage of job
movement. Each of the algorithms is compared under light,
moderate, and heavy loads in the system, as well as a function
of the traffic in the communication subnet and the scheduling
interval. Three simple analytical models are also presented
and compared to the simulation results. A general observation
is that, if tuned correctly, the decentralized algorithms
exhibit stable behavior ana considerably improve performance
(response time and load balancing) at modest cost (percentage
of job movement). Overall, the results contribute to the
understanding of a special type of decentralized control
algorithm that has not been extensively studied but is
becoming more and more important.

KEWOD: Adaptive algorithms, decentralized control
algorithms, decentralized control, distributed processing, job
scheduling, networking and simulation.

. . . . .. . .. , . . . . = .. - .. o . . . . •. . . .. - . .-



1.0 INTRODUCTION

A distributed processing system is defined as a
collection of processor-memory pairs (hosts) that are
physically and logically interconnected, with decentralized
sye-ide control of all resources, for the cooperative
execution of application programs [10], [14i]. Such systems
may be dedicated to a single application or may implement a
general purpose computing facility. By decentralizec
system-wide control is meant that there exists distributed
resources in the system, that there is decentralized control
of these resources (i.e., there is no single, central host "in
charge," nor is there a central state table), and that there
is system-wide cooperation between independent hosts which
results in a 2inglef unified system. By system-wide
cooperation is meant that the algorithms of the -system operate
for the "good of the whole" and not for a particular host.
For systems meeting this restrictive definition of distributed
processing, it Is hypothesized that their reliability,
extensibility, and performance will be better than what is
generally available today. In this paper the term distributed
processing refers to this very specific type of highly
integrated distributed system.

For distributed processing systems to achieve their
potential, questions relating to the effectivaness and
stability of decentralized control algorithms must be
answered. Solutions to the decentralized control problem in
distributed databases are known. In this type of
decentralized control problem, decentralized controllers must
cooperate to achieve a system-wide objective of good
performance subject to the data integrity constraint. The
cooperation is achieved in various ways, e.g., either by the
combined principles of atomic actions ania unique timestamps or
by the combined priciples of atomic actions and two-phase
locking. It can then be proven that multiple decentralized
controllers can operate concurrently ania still meet the data
integrity constraint.

Most other research on decentralized control is better
described as research on decomposition techniques rather than
decentralized control. In such work, large scale problems are
partitioned Into smaller problems, each smaller problem being
solved, for example, by mathematical programming techniques,
and the separate solutions being combined via a few
interaction variables. See [16] for an excellent summary of
these types of decentralized control (decomposition).

Our interests lie in a type of decentralized control we
refer to as stochastic replicated decentralized control [25J.
By replicated we mean that the decentralized entities
(controllers) implementing the function are involved in the
entire problem, not just a subset of it. This type of
decentralized control is appropriate for certain functions
like job scheduling where data integrity is not crucial.

* .. *. . . . . . .. . . . . . .. ~.**. .*..h * *~



-' w- .I r - .- Wrr

Mathematical treatment [2], 113), [20], [24], (30], [31] of
decentralized control has not provided answers for stochastic
replicated functions of distributed processing systems. This
is due to the mathematically intractable nature of the problem
when all simultaneously complicating factors are taken into
account [22), [24], [25]. These factors include multiple,
concurrent, decentralized controllers, each with equal
authority, each working with noisy and out of date
information; further, there are unpredictable future events
that can occur including significant delays, and decisions
must be made quickly. Lacking analytical results, simulation
can provide insight into the operation and effectiveness of
this special type of decentralized control algorithm (a
stochastic replicated function) as part of distributed
processing systems.

In this paper simulation results of three adaptive,
decentralized controlled job scheduling algorithms are
presented. We try to answer the questions of whether
multiple, decentralized, replicated, concurrently executing
controllers can act together in such a manner so as to produce
greater benefits than costs, and whether concurrent actions
taken by the multiple controllers produce stable behavior?
The simulation approach includes tuning each algorithm, and
then comparing the three based on response time, load
balancing, and the percentage of job movement. By tuning is

* .* meant that values for certain parameters of the algorithm are
chosen to improve the performance of the algorithm. Each of
the algorithms is compared under light, moderate, and heavy
loads in the system, as well as a function of the traffic in
the commmunication subnet and the scheduling interval. Three
simple analytical models are also presented and compared to
the simulation results. A general observation is that, if
tuned correctly, the algorithms exhibit stable behavior ana
considerably improve performance (response time and load
balancing) at modest cost (percentage of job movement).
Equally important is that the algorithms are very simple and
incur negligible run time costs. Conversely, if the
algorithms are not tuned correctly they do not exhibit stable
behavior and do incur high cost.

Section 2 describes exactly what is meant by a
stochastic, replicated, decentralized controlled job
scheduling algorithm, itemizes some special concerns of a
practical algorithm for a distributed processing system, and
relates this scheduling research to other current work. In
the remainder of this paper we drop the terms stochastic and
replicated for convenience but these characteristics are
always implied. Section 3 presents the basic simulation model
used in this study. Section 4 describes the three algorithms
to be compared as well as the motivations behind the choice of
these algorithms. Section 5 presents and discusses the
results of the simulations, including comparisons to
analytical results. Section 6 contains a summary of the
results of the paper.



2.0 DECENTRALIZED CONTRCLLED JCS SCHEDULING

A decentralized controlled job scheduling algorithm is
not the typical scheduling algorithm one finds in the
literature. Its operation and environment are somewhat
unique. This section describes those aspects of a
decentralized controlled job scheduling algorithm and its
environment that make it unique, along with its relationship
to other scheduling research.

A decentralized controlled job scheduling algorithm is
gm algorithm composed of "n" physically distributed entities,
(e,, e., ... , e,). Each of the entities is considered a local
controller. Each of these local controllers runs
asynchronously and concurrently with the others, continually
making decisions over time. Each entity e;. makes decisions
based on a system-wide objective function, rather than on a
local one. Each e makes decisions on an equal basis with the
other entities (there is no master entity, even for a short
period of time!). It is intended that the job scheduling
algorithm adapts to the changing busyness of the various hosts
in the system.

The environment in which the job scheduling entities are
running is stochastic in two ways. First, the observations
entities make about the state of the system are uncertain

* -**(they are estimates). Second, once a decision is made (e.g.,
move a job to host i), future random forces (e.g., a burst of
jobs arrive at host i) that are independent of the control
decision can occur.

In general, the observations themselves can be made in
any number of ways. In this paper it is assumed that each
entity periodically transmits its view of the busyness of the
system to its neighbors, and upon receiving updates from its
neighbors combines those updates in some manner so as to
obtain its new view of the system. The update scheme used in
our simulation is described in the next section.

* . Since job scheduling is an operating system function, any
algorithm implementing job scheduling must run quickly. This
is an extremely important aspect of the algorithms and makes
many potential solutions unsuitable. For example, modeling
the system by a mathematical program and solving it on-line is
out of the question.

The execution costs involved in running a decentralized
controlled Job scheduling algorithm include the cost of
running the algorithm itself, the cost of transmitting update
information, and the cost of moving jobs. The primary goal of
the algorithm is to minimize response time with minimum job
movement. The secondary goal is to balance the load. All of
these costs and goals are addressed with our simulations.



rag 4

It is important to note the differences between job
scheduling as studied in this paper ana task allocation
research. The task allocation problem for distributed systems
normally assumes that AUJ. the tasks to be allocated are known
beforehand. The cost of running each task on each processor
is also assumed known. Further, all intertask communication
patterns, as well as the cost of communicating over the
network are assumed known. Given these assumptions, there are
graph-theoretic [3], [28], [29], integer programming [6], [7],
[9] queueing theoretic [1], [5], [15] and heuristic methods
[I4], [8], [18] for dealing with the task allocation problem.
For a more detailed survey of some of these techniques see
[12].

In other scheduling research based on the bidding scheme
[11], [21] specific tasks are matched to processors based on
the current ability of the processors to perform this work.
These schemes are suboptimal, but are more extensible ana
adaptable than many of the other approaches. However, the
cost of making and acquiring bids may become excessive, and
the factors used in making the bids have not been extensively
studied.

Wave scheduling [32] and co-scheduling [19] are concepts
that apply to clustering related jobs onto tne same host and
is not considered in our research because it deals with
process scheduling and assumes prior knowledge.

The job scheduling problem for a general purpose
distributed processing system is different from the above
referenced works. Jobs arrive at each geographically
distributed host in some unpredictable manner. There is no
central queue. At no point in time does the decentralized job
scheduler know all the jobs to be assigned. Characteristics
of the incoming jobs are also unknown. That is, the
processing costs of the jobs, whether the job is actually
multiple tasks that communicate with each other, etc., are all
unknown. The job scheduler's task is to provide a gross level
of load balancing, hoping to improve response time at low
cost. In other words, a practical job scheduling algorithm
must be simple, run fast, minimize job movement and improve
system-wide response time and load balancing. Given that this
high level load balancing of jobs is performed, a
decentralized process scheduler can also be implemented that
deals with processes (jobs in execution), interprocess
communication, clustering and co-scheduling of processes.
Process scheduling is not treated in this paper.

Work similar to the work described here, except that
statistical decision theory is used as an integral part of the
algorithms, can be found in [23], [26J, and [27]. In such
work more sophisticated scheduling algorithms are employed but
the additional benefit of that sophistication is yet to be
proven conclusively.



Page 5

The motivations for splitting the scheduling function
into two parts (job and process scheduling) are:

1. the job scheduler can be simple and therefore it is
possible to study the use of decentralized control
algorithms in a simpler situation (in this work we are
attempting to determine how multiple, interacting,
decentralized components of a single function interact),
and,

2. to eventually study how two (or more) decentralized
control algorithms interact with each other, e.g.,
interaction between the job scheduler and the process
scheduler may provide insight into how an entire system
composed of multiple decentralized control algorithms of
various types might function.

3.0 THE SIMULATION MODEL

The simulation model, programmed in GPSS, consists of a
network of five hosts connected as shown in Figure 1. The
unit of time in the simulation is milliseconds. Each host is
considered identical except for processor speed. The service
time of a job scheduled for execution is chosen from an
exponential distribution with different averages for each
host. The averages are 5000, 7000, 6000, 5000, and 7000
milliseconds for hosts 1-5 respectively. There are five
independent sources for arrivals of jobs. Each source is
modeled by a Poisson distribution with averages

The ),Is vary depending on the particular
loads (light, moderate, heavy) being modeled. Specific values
of the X.'s are presented with the simulation results in
Section 5. When a job arrives at a host from the external
world, it is assigned a size based on the distribution shown
in Figure 2. Delay in the communications subnet is modeled as
a simple function, i.e., the size of the information to be
sent divided by the packet size (1K bits) times the average
delay per packet. Hence, the delay in the suonet is
independent of the topology in our simulations. Both jobs and
state information are passed into the subnet, thereby modeling
two of the major costs involved. The third major cost, the
cost of running the algorithm is modeled as a fixed cost of 50
milliseconds each time it runs on each host.

In the simulation, each host periodically calculates an
estimate of the number of jobs at each host in the network,
and sends this information to its nearest neighbors. This
state information is updated at each host in the following
way. Consider three classes of hosts, myself, my neighbors,
and all others. In general, host i can determine precisely
the number of jobs in its own queue (accurate local data), and
therefore, will believe its own value rather than his

- -7:



71~ -~ "'C 17- 77 77 "-

Page b

neighbors perception of his wiorkload. Since the nearest
neighbors are only one hop away, their estimates of their
workload, as passed to host i, will be only slightly out of
date and, in general, will be a better estimate than estimates
other nodes have of themi. Therefore, host i uses the nearest
neighbors estimate of themselves. Finally, all other views of
any remaining hosts in the network are determined by taking an
average of the estimates from all the incoming update
messages. Between updates no attempt is made at estimating
either the current state since the last update nor any future
state. Old information is simply used. We believe that the
additional cost of such estimates is prohibitive in comparison
to the potential benefits when the update interval is frequent
(as in our case). Estimates between updates would be
beneficial if (a) a reasonable estimation rule were known, and
(b) the state information update interval were relatively
infrequent.

The model also includes a simple FCFS process scheduler
that does not allow multiprogramming. A statistics gathering
capability sufficient to determine the average response time
per job, average queue length per host, and the number of jobs
moved per host is included in the model. The model was
designed so that it is also easy to plug-in different job
scheduling algorithms. Three such algorithms, and the aspects
of the simulation model relating to these algorithms, are
described in the next section. All simulations are run for 10
min, tes of simulated time, statistics are cleared, and then
run for 30 more minutes. This is done to minimize the
transient start up effects of an empty system. Longer runs
did not substantially alter the results so to save computer
time a total of 410 minutes per run was chosen as the test
standard.

43

Figure 1: Network Topology



Page 7

.1 1000 .85 22000

.2 12000 .90 30000.4 141000 .95 34000

.6 16000 .98 38000

.7 18000 .99 44000

.8 20000 .995 50000

Figure 2: Job Size Distribution

4.0 THE JOB SCHEDULING ALGORITHMS

This section describes the three job scheduling
algorithms that are implemented and compared via simulation.
Before the algorithms themselves are described, those aspects
of the simulation that are common to the three algorithms are
described.

In each of the algorithms, the job scheduling entities
are activated periodically (initially every 2 seconds ann then
varied for several tests) and also whenever the process
scheduler of a host needs to activate a new job for execution.
Furthermore, state information (in this case, the number of
jobs) about the busyness of the network is passed between
neighbors on a periodic basis (initially every 2 seconds and
then varies with the scheduling interval in later tests).
Each scheduling entity then has an out of date observation of
how many jobs exist at each site in the network. In future
simulations we intend to study the effect of using more
sophisticated state information (not just the number of jobs)
to estimate the busyness of a host, and to use asynchronous
updates of state information rather than periodic.

A practical consideration for job* scheduling algorithms
comes into play for very lightly loaded and very heavily
loaded systems. In both instances it is not beneficial to
move jobs; therefore, in algorithms 1 and 3, described below,
jobs are not moved by a host if it observes a very lightly or
very heavily loaded system. Very lightly loaded is defined as
"each host has less than 1 jobs." A very heavily loaded system
is defined as "each host has more than 20 jobs." All other
situations are considered moderate loads. We did not include
these cutoffs in algorithm 2 in order to test the effect of
omitting such cutoffs.

Another situation that is common to these algorithms is
related to the delay in the communication subnet. If the
delay in moving jobs is large compared to the periodic update
rate of scheduling entities, then the scheduling entities may
continue to send jobs to a host not realizing there are many
jobs "on the way" (in the subnet) to that host. There are a

k,4



number of ways to deal with this problem. Our approach in
algorithms 1 and 2 is to choose a fairly slow periodic update
rate (acceptable for job scheduling) and move at most 2 jobs
to a host at one time, so that even if there is a Substantial
delay in the subnet it is not expected that many jobs will be
"on the way." However, in algorithm 3 we keep track of which
host has been sent jobs recently and use this information in
an effort to mitigate the problem and to minimize job
movement.

AlgoQrj.ihm 1 For moderate loads in the system, each entity
compares its own busyness to its observation (estimate) of the
busyness of the least busy host. Note that the host thought
to be least busy is itself an estimate. The difference
between the busyness of these two hosts is then compared to a
bias. If the difference is less than the bias, then no job is
moved, else, one job is moved to the least busy host. Jobs
are not moved to oneself.

Algr±ihm a_: Each entity compares its own busyness to its
observation (estimate) of the busyness of evr other host.
All differences less than or equal to biasl imply no jobs are
moved to those hosts. If thc difference is greater than biasl
but less than bias2 then one 4,')b is moved there. If the
difference is greater than or equal to bias2 then two jobs are
moved there. In no case are more than (y)(z) jobs moved at
one time from a host, where y = fraction of jobs permitted to
be moved, and z = number of jobs currently at this host. if
there is more demand for jobs than an entity is permitted to
move, it satisfies the demand in a pre-determined fixed order.

Algo~rithm _j: This algorithm performs in the same way as
algorithm 1 except when an entity, ej, sends a job to host k

*at time t, it records this fact. Then for time delta t,
called a window, this entity will not send any more work to
host k. If at any time during the window period, entity e;,
calculates that host k is least busy then no job is moved
during such an activation. Of course, during the window, jobs
may be sent to other hosts if they are observed as least busy
by greater than the bias (same bias as in algorithm 1).

One prime motivation behind these three algorithms is
that they are all very simple and inexpensive to run,
necessary conditions for job scheduling algorithms. In
algorithm 1 the relative busyness between host i ana the least
busy host (plus a bias) is used to determine if a job should
move. This is about the simplest algorithm we can devise.
Since algorithm 1 only moves jobs to the least busy host we
felt that a better algorithm might be to spread the work
around, i.e., move some work to all the lightly loaded hosts
from the heavily loaded ones. Hence algorithm 2 was devised.
Finally, we were worried that jobs in transit to a lightly



loaded host were not taken into account possibly producing
instabilities. For example, if (1) host 1 was very busy, (2)
host 5 was least busy, (3) host 1 were activated every 2
-seconds, and (4I) it took 16 seconds for jobs to reach host 5,
then host 1 could conceivably send at least 8 jobs to host 5
before the first one was received. Other hosts could be doing
the same thing. This could result in an unstable situation.
Algorithm 3 was designed to avoid such problems.

5.0 SIMULATION AND ANALYTICAL RESULTS

This section presents the simulation results, compares
the simulation results to analytical results, and discusses
the implications of the results.

In these simulations four main characteristics were
studied:

1. Parmetrg 2L I Al.grithms~ - each algorithm has one or
more parameters called biases in this paper (see section
4i).

2. Arriv~al. Rates - Four different sets of arrival rates are
used in the simulations (Table 1). The sets of arrival
rates are labeled tuning, light, mqderate, and heavy. In
tuning the three algorithms, it was decided to use a
different set of arrival rates than those used for the
subsequent algorithm comparisons. This is because, in
practice, such algorithms would not be tuned precisely for
the current arrival rates, but would be only an
approximation. The light and moderate loads are
considered the normal network situation. It was also
decided to simulate a heavy system load to determine how
the algorithms perform when, for relatively short times
(40O minutes), a system experiences arrival rates greater
than its ability to service them.

3. Dlay in UM~ mknet - The change in the amount of traffic
in the subnet affects response times ana load balancing.
The affect on these algorithms is studied here.

4. Schedulng ntrz.l - The affect of a change in the
scheduling interval from 2 -> ~4 -> 8 -> 16 seconds is
tested.

While many other characteristics could be studied
including size of the network, topology, speeds of the hosts,
etc. we felt that the characteristics studied here are some
of the most important.



r'age I U

Table 1 -Arrival Rates (Jobs/Secona)

HOST TUNING LIGHT MODERATE HEAVY

1 .18 .1176 .153 .2
2 .1 .1 .125 .2
3 .111 .111 .1413 .2
41 .133 .0588 .1113 .2
5 .125 .125 .125 .2

5.1 Analytical Results - No Network

Before the network simulation model was run, it was
decided to obtain an upper bound on response time for the
system. Therefore, the five hosts of our model were treated
as independent H/K/i queues for each set of arrival rates with
no job scheduling algorithm and no network. If a system-wide
job scheduling algorithm cannot do better than leaving all
incoming jobs at their site of arrival, then as far as
performance is concerned the algorithm is useless. The
response times (wait time plus execution time) are 37.41
seconds for the tunning arrival rates, 29.22 seconds for tne
light load arrival rates, and 44,1.67 seconds for the moderate
load arrival rates. One cannot apply the HM/i results to the
heavy load arrival rates because the arrival rates are faster
than the service rates implying infinite queues. Heavy
arrival rates are used only to test the operation of the
algorithm assuming very heavy loads would exist for a short
period. Fortunately, as will be shown, all system-wide
algorithms presented in this paper perform considerably better
than the no network situation.

5.2 Simulation Results - Network With Imperfect Knowledge

Algorithms 1, 2 and 3 were'tuned and then compared for
light, moderate, and heavy system loads. Also tested was tne
effect of various delays in the subnet and scheduling
intervals. The parameters of the tuning runs are identical to
all other runs except for arrival rates and the specific
parameters (described below) being tuned. In all the tables
below response times are given in seconds with 90% confidence
intervals, and load balancing statistics are given in average
number of jobs per host over three runs. Movement cost is
given in percentage of job movement with 90% confidence
intervals. By percentage of movement is meant the total
number of jobs moved divided by the total number that entered
the system. Note that jobs may move more that once and each
move is counted separately because each move adds overhead to
the system. The tuning arrival rates were chosen as an
approximate mixture of light and moderate arrival rates but



biased more towards the moderate arrival rates.

5.2.1 Tuning -

Tuning algorithm 1 means choosing the proper bias between
the number of jobs at the current host and the number at the
least busy host. A bias equal to 2 was chosen for all
subsequent runs because it provides a combination of good
response time (an average of 14.7 see) and load balancing with
reasonably low job movement (an average of 27.6%). See the
column under bias=2 in Table 2. For a bias=0 the variation in
the % of job movement was somewhat unstable as shown by the
90% confidence interval (75i_28.5%). Percentage of movement
greater than 100% is possible because jobs can move more than
once. This implies that with the wrong bias algorithm 1 may
not be very stable.

Table 2 - Algorithm 1 Tuning

BIASES

BIAS=0 BIAS-1 BIAS=2 BIAS=3

Response Time 14.131.15 14.54t.42 14.7:.37 16.54-T.7

% of Movement 75128.5 47.3t10.7 27.6!-1.45 24.3t2.5

Load Balancing
(av over 3 runs)

Host 1 1.06 1.37 1.67 1.8u
Host 2 1.28 1.06 1.05 1.50
Host 3 0.86 1.05 0.96 1.34
Host 4 0.85 0.77 0.82 1.31
Host 5 (.82 1.30 1.12 1.29

Tuning algorithm 2 means choosing biasl, bias2, and the
fraction y of jobs permitted to be moved (refer back to
section 4). Too many simulations would be required to tune
all the possible combinations of these three biases. Educated
guesses were made in the following way. It was argued that
since there are only four hosts, excluding oneself, we would
not move more than 3 at any one time (y bias). This allows
movement to a large percentage of other hosts but in a
controlled way. A number of preliminary simulation runs
showed that only infrequently was the difference between two
host's busyness greater than 6 (about 4% of the time). We
chose bias2 = 6 so that 2 jobs moved to a host at one time
would occur infrequently, but would occur. At this point

. ... . . . . . . . . . .
.-. .



Page i ie

biasl was tested and the results appear in Table 3. The
result is that biasl = 3 seems to work best and was used in

subsequent testing.

Table 3 - Algorithm 2 Tuning

BIASI

BIAS1=2 BIAS1=3 BIAS1=4

Response Time 24.1t.45 16.3!.61 19.9t-.55

% of Movement 110t-33 25:-4.3 23 73.6

Load Balancing
(av over 3 runs)

Host 1 1.50 1.21 1.63
Host 2 1.49 1.27 1.80
Host 3 1.29 1.15 1.93
Host 4 1.09 0.87 1.53
Host 5 1,05 0.98 1.61

Tuning algorithm 3 required picking the right bias and
window. Since algorithm 3 is so similar to algorithm 1, and
since bias=2 worked so well for algorithm 1, it was decided to
use the same bias for algorithm 3. A window size of 2 seconds
produced the best results (Table 4). For the window size of 2
seconds there I ood response time (an average of 14.69 sec),
good load balancing, and a reasonably small percentage of Jobs
moved (an average of 16.6%). Notice that choosing a window
size of 6 seconds degrades response time (an average of 19.83
sec), does not balance the load, and only a small percentage
of Jobs moved (an average of 13.1%). This indicates that the
window size was too large to enable effective performance
improvement. A window size of 8 seconds performed
proportionally worse (Table 4).



Table 41 - Algorithm 3 Tuning

- - WINDOW SIZE

1isec 2 see 6see 8 see

Response Time 22.21t.53 14I.691..4T 19.831.23 21.57*-.61

% of Movement M111.9 16.6t1.7 13.1!1.15 22-331.4I

Load Balancing
Cay over 3 runs)

Host 1 6.01 1.95 41.88 3.59
Host 2 1.71 0.88 0.96 1.84
Host 3 1.22 1.19 0.89 1.30
Host 41 1.06 0.83 0.91 1.26
Host 5 0.85 0.85 1.02 2.241

5.2.2 Vary Arrival Rates-

Tables 5, 6 and 7 show the results of the simulation runs
by comparing algorithms 1, 2 and 3 for light, moderate, and
heavy loads when the average delay in the SUbnet is
approximately 8 seconds per job. In general, algorithms 1 and
3 perform similarly in terms of response time and load
balancing, but algorithm 3 moves less jobs in achieving the
result. For example, in the moderate load case (Table 6)
algorithm 3's percentage of jobs moved is only an average of
410.75% as compared to algorithm 1's average of 57.5%, but its
response time i.,. slightly worse (an average of 24.02 see as
compared to an average of 22.81 sec).

On the other hand, algorithm 2 does not perform quite as
well as algorithm 1 and 3 on light loads, significantly becter
on moderate loads, and worse on heavy loads. For light loads,
having each host compare itself to all other hosts causes too
much Job movement and therefore produces slightly worse
performance than algorithms 1 and 3. For moderate loads
algorithm 2's spreading work to more than 1 lightly loaded
host does pay dividends in the sense of improved response
times. The poor performance of algorithm 2 under heavy loads
is due to the lack of a cutoff. Notice (in Table 7) that
algorithm 2 continues to do load balancing regardless of the
system load causing a tremendous amount of useless job
movement (an average of 118%).



7 D-R132 93 DDCENTRALIZE'D CONTROL OF 
SCHEDULING IN DISTRIBUTED 

2/2
I SYSTENS(U) MASSACHUSETTS UNIV AMHERST DEPT OF
I ELECTRICAL RND COMPUTER ENGINEERING J A STANKOVICp UNCLAlSSIFIED 18 MAR 83 DAABI7-82-K-J815 F/O 9/2 N

IEEE



U. We-

:J

4

'5u

%I

.4 1111 in I~ ~ .8

11111.25 12
.4 120

JJJJJ 1.25 RESOILION TESTCHAR
'A 

NAION~AL BUREAU OF STAPADARDS - '96 - A

'5

'5

.,9

.9i

ii.,9

i.

N A T IO N A L B U E AU.. . . . . . . . . . . . . . . . . .- -
S. 

, 5 .*'5 * * '~



Page 14

Tab' . 5 - Light Load Comparison

ALGORITHM
1 2 3

Response Time 14.2t.41 15.2t2.2 14.9'!.78

of Movement 1 19.9±7.5 14.8t.4

Load balancing
(av over 3 runs)

Host 1 0.85 0.77 0.77
Host 2 1.03 0.92 1.17
Host 3 0.83 0.77 0.84
Host 4 0.15 0.29 0.27
Host 5 0.94 1.23 1.35

Table 6 - Moderate Load Comparison

ALGORITHM

1 2 3

Response Time 22.81 -.1 17.5t2.5 21.02-1.5

% of Movement 57.5t3.1 36t_3.1 40.75t_4.7

Load Balancing
(av over 3 runs)

Host 1 1.66 1.41 1.58
Host 2 1.66 1.53 2.07
Host 3 1.73 1.35 2.82
Host 4 1.43 1.01 1.83
Host 5 1.52 1.33 2.16

LAoI



Page 15

Table 7 - Heavy Load Comparison

ALGORITHM

1 2 3

Response Time 330.1-±40.6 345.2-17 350170

% Of Movement 28.5,t2.2 118-5 715.1

Load Balancing
(av over 3 runs)

Host 1 54.0 50.7 44.4
Host 2 85.5 51.2 66.5
Host 3 69.0 50.9 54.5
Host 4 57.5 50.6 39.8
Host 5 104.0 50.9 55.1

5.2.3 Vary Subnet Delay -

Next, consider the effect of different average delays (4,
8, 16 and 24 seconds) for jobs moving through the subnet.
Tables 8, 9 and 10 present the response time and movement
statistics for the three algorithms under iight and moderate
loads. Load balancing statistics are not shown because they
do not provide any additional information over that given in
Tables 5, 6 and 7.

Table 8 - Algorithm 1 Varying Subnet Delays

SUBNET DELAYS (see)

4 8 16 24

LIGHT LOAD

Response Time 12.7T.3 14.2t.41 15.017.7 16.14!.63

% of Movement 1012 11M.5 15.3-.9 8.2t1.7

MODERATE LOAD

Response Time 17.-1.3 22.8t.1 27.7t1 42.04 44.6

% of Movement 3512.6 57.5.-*3.1 62.6t4.1 91!:11.o

.*%



Page 16

Table 9 - Algorithm 2 Varying Subnet Delay

SUBNET DELAYS (sec)

4 8 16 24

LIGHT LOAD

Response Time 14.1!.8 15.2-2.2 17.0-1.9 18.8t.7

% of Movement 14.AL1.1 19.927.5 21.7t4.3 22.2t2.1

MODERATE LOAD

Response Time 18.6!1.7 1T.T,2.5 23.7t1.6 25.7±:2.1

Of Movement 31.5t_4.8 36t3.1 45t41 43T6.7

Table 10 - Algorithm 3 Varying Subnet Delay

SUBNET DELAYS (see)

4 8 16 24

LIGHT LOAD

Response Time 14-.01.3 14-.91-78 14.82.3 17.5 L61

% of Movement 9.61-. 14.8t.4 15+21.1 15.01A1.6

MODERATE LOAD

Response Time 22.4!.7 24.02±1.5 33.423.2 42.8+-3.9

% of Movement 27t1.7 40.75t_4.7 57.9t2.0 7C0..3.0

The results presented in Tables 8, 9 and 10 show
increased response time with increased delay in the subnet as
is to be expected. However, there are two interacting factors
that are involved. As the average delay for moving jobs
through the subnet grows, there is greater cost in moving a
job. Initially one might conclude that this adds to the
average delay for a job in the system. Although this occurs
sometimes, it is not necessarily true. A job moving through
the subnet is doing so, presumably, to arrive at a shorter
queue (in time) than the one it just left. Hence, only if the
delay in the final queue (where it actually receives service)
plus the time needed to move is greater than the delay it
would have experienced without moving or by moving faster, is
there a net degradation in system response time. It seems
likely that there is a tradeoff point that is some function of

- .-* . - . ... .... .



rage j

the delay in the subnet and the waiting times in the hosts.
This is the first factor affecting the results presented in
Tables 8, 9 and 10.

The second factor involves a host's view of the network.

When host i sends a job to host k, it's queue length is
decreased by one. Host k queue length is not increased until
some later time. Jobs in the subnet are no longer in any
queue, therefore, temporarily out of the system in the host's
eyes. In some situations (when there are alot of jobs in the
subnet), there are fewer candidates for job movement and,
therefore on the average less jobs move. Having less
candidates for movement may give rise to increased response
times.

The results seem to indicate that as delay in the subnet
grows, job movement increases and response time decreases
(gets worse). The magnitude of the changes being smaller than
expected are believed to be caused by a combination of the
above described factors.

5.2.4 Vary Scheduling Interval -

Since algorithm 2 performed the best we decided to first
study the effect of varying the scheduling interval on
algorithm 2. The results are shown in Table 11. Notice that
there is little difference in response time for scheduling
intervals of 2, 4, and 8 seconds. Hence, there is no need to
run the algorithm faster than every 8 seconds. When the
scheduling interval is 16 seconds one starts to see a
degradation in response time because the reaotion time is not
fast enough and there is not enough job movement to produce a
good response time. Several similar runs were also made with

. algorithms 1 and 3 and they produced similar results. Rather
than making alot more runs to generate confidence intervals
for algorithms 1 and 3 we decided to combine varying the
scheduling interval with a large subnet delay.

Table 12 shows the results of varying the scheduling
interval when the delay in the subnet is large (16 see).
These results are interesting in that the smallest scheduling
interval results in poorest performance. For example, when
the scheduling interval is 2 seconds, the response time is on
the average 33.4 seconds and there is an average of 57.9% job
movement. In this case too many jobs are moved into the
subnet where the delay is now very substantial. Therefore,
when the cost of moving a job gets too great, it pays to move
fewer jobs as is the case when the scheduling interv-1 is 8
seconds. This is seen in Table 12 where only an av . ge of
16.8% of the jobs move resulting in better response time
because the delay in the subnet is dominating the response
time of the system. To mitigate this problem a possible
variation to algorithm 3 would be to adapt the window size

-...... . . . . . . . . . . . . . .....



(currently 2 seconds) based on the current estimated delay in
the subnet.

Table 11: Algorithm 2 Scheduling Interval

(delay in subnet - 8 see)

Scheduling Interval (see)

2 4 8 16

MODERATE LOAD

Response Time 17.5,_2.5 17.6!2.2 18.913.1 20.8t2.7

% of Movement 36.t3.1 31.617.2 23.4%2.5 191.8

Table 12: a1gorithm 3 Scheduling Interval

(delay in subnet - 16 see)

Scheduling Interval (see)

2 4 8

MODERATE LOAD

Response Time 33.-3.2 27.5-3.4 22.023.9

% of Movement 57.9±-2 36.925.1 16.9=.8

5.3 Analytical Results- Fractional Assignment

Assume for a moment that each host knows the fraction of
jobs arriving at its site from the external world that it
should keep and the fraction that it should send to each of
the other hosts to minimize response time. In other words
assume that the statistical properties of the network were
known. Such an algorithm would have lower cost than the three
algorithms just evaluated because no state information is

rpassed around the network. But how would this "fractional
assignment" algorithm compare to the above algorithms as far
as response time is concerned. By making some simplifying
assumptions, a queueing model can be formed and solved for
this fractional assignment algorithm.

Assume a central queue with overall arrival rate
? a , and 5 hosts with service ratesA,,W'4,
When jobs enter the central queue they are ikmdiately

4

-" Ii ." ' ""'. - -. '1 ': . -
,

" - '. -- . ' - .- ' ' - -' - " .. ." , . . . . ". "•"- " . ' ,



I : .:. *,. - - *_ - * . . . . * -. .' , . - -. . . o . . . . o

K Page 19

transferred to one of the hoats based on the optimal
fractional assignment, f;, to each host (Figure 3) to minimize
response time. 

toechhs

Figure 3: Fractional Assignment Queueing Model

The System response ime, T, is given by

and the fraction f, can be calculated from

For a derivation of the formud"for f; see the Appendix.
The results of these calculations for the values used in the
simulations are given below in Table 13.

Table 13 - Fractional Assignment Response Times

System Load

OPTIMUM
FRACTION LIGHT MODERATE

*: .24
.16
.20 14.59 30.55
.24
.16



rage -.i

Then, using the conservation of flow principle anI,

we obtain

P- C '/( Ja

The expected queue length is given by

..k..ks oaU
Using Little's formula, the expected delay is

1"--T Lb....
The response times, T, calculated as lower bounds, are given
in Table 14.

Table 141 - Lower Bound Response Times

System Load

Light Moderate

6.16 see 9.3 see

This lower bound calculation assumes no communication
subnet delay, and that a job can be preempted and moved to a
faster processor as soon as that processor becomes avaiiable,
again at no cost. Although this analytical model cannot be
achieved in practice, it does serve to put a lower bound on
our results.

5.5 Comparison And Discussion

For easy comparison Tables 15 and 16 summarize some of
the statistics presented in some of the previous tables.

For light loads (Table 15), algorithms 1 and 3 are about
equal, improving the no network response time by about 50% at
a cost of moving an average of between 11 and 14.8 percent of
their jobs, respectively. Both of these algorithms also
peform slightly better than the fractional assignment
algorithm when you consider tnat the response time calculated
for it did not include delay due to job movement.

At moderate loads (Table 16), algorithms 1 and 3 improve
the no network response times by approximately 49$ and the
fractional assignment response times by about 255.
Furthermore, for moderate loads algorithm 3 is superior to
algorithm 1 because it achieves approximately the same
performance (response time and load balancing) with less cost
(Job movement). Although such costs are already figured into

7"".



L Page 20

Note that the response times calculated here do not
contain any delay for actual movement of jobs so this is a
very optimistic figure. Further, it was assumed that the
arrival rates were known so that the f ls are the best
possible fractions. Nevertheless, at a moderate load the
three algorithms above making use of state information,
perform considerably better than the fractional assignment.
At light loads, they seem to be about equal.

5.4 Analytical Results - Lower Bouna

The previous results indicate that very simple
decentralized system-wide job scheduling algorithms can
ibprove response time considerably. However, in theory, how
much better can we expect to do, i.e., what is the lower
bound. Analytical solutions to the complex network situation
we simulated are not known. However, by making simplifying
assumptions it is possible to analytically obtain some idea of
the lower bound.

Assume that the arrival process is Poisson and that
service times are described by an exponential distribution.
Assume that the service rate WZ is ordered so that At; Z 4j if f
i <= J. For our network of 5 hosts, this situation is
described by the state transition diagram given in Figure 4.

X A~

413

+ 3

* °1

Figure 4 - State Transition Diagram

In general, let the number.of processors be N. Define

... .. ...

..- o : .

_ . .. ,: . .. :. . . . . . . . . . . . . . . _ . 7 . . . . . . . . . .. . . . . . . . , . .



response times we consider algorithm 3 better than algorithm 1
because we wish to avoid unnecessary job movement.

Note that for both light and moderate loads a.Lgorithms 1
and 3 perform better than the fractional assignment algorithm
because they are able to adapt to the information about the
state of the network in an effective way rather than relying
on statistical properties. In conclusion, algorithms 1 and 3
seem to be stable and significantly improve performance, i.e.,
multiple decentralized controllers of a stochastic replicated
function are cooperating effectively at very low Cost.
However, without good tuning such algorithms are also
susceptible to instabilies. This implies that one might need
to dynamically adapt the parameters of the algorithms to
maintain stability over widely divergent conditions. On the
other hand our simulations indicate that the tuned parameters
are robust over reasonably different arrival rates.

Overall, algorithm 2 performs even better than algorithms
* 1 and 3 but has a tendency to move too many jobs if not tuned

well (see the tuning runs). The tuning is also more
complicated because of the three biases, but as for algorithms
1 and 3 the chosen biases seem to be fairly robust over the
various arrival rates. This implies that the algorithm can
retain its simplicity and operate over a wide range of arrival
rates. A modification would be to dynamically adapt the
parameters (biases) of the algorithm paying the associated
cost. Such a modification could be the basis for a future
study. For moderate loads the response time of algorithm 2
was 61% better than the no network cas4, 4I3% better than the
fractional assignment case, and approximately 24$ better than
algorithms 1 and 3. We, therefore, recommend algorithm 2 but
Cutoffs, such as those found in algorithms 1 and 3 should be
added to algorithm 2.



Table 15: Summary Statistics - Light Load

(Averages only - 905 CI shown in previous tables)

, No Network Network Simulation Fractional Lower

(Upper Bnd) Al A2 A3 Assign. Bouno

Response 29.22 14.2 15.2 14.9 14.6 6.16
Time

Movement 0 11 19.9 14.8 - -

Load
Balancing

Host I - 0.85 0.77 0.77 - -
Host 2 - 1.03 0.92 1.17 - -
Host 3 - 0.83 0.77 0.84 - -
Host 4 - 0.15 0.29 0.27 - -
Host 5 - 0.94 1.23 1.35 - -

Table 16: Summary Statistics - Moderate Load

(Averages only - 90% CI shown in previous tables)

No Network Network Simulation Fractional Lower
(Upper Bnd) Al A2 A3 Assign. Bound

Response 44.67 22.81 17.5 24.02 30.55 9.3
Time

Movement 0 57.5 36 40.7 - -

Load
Balancing

Host 1 - 1.66 1.41 1.58 - -
Host 2 - 1.66 1.53 2.07 - -
Host 3 - 1.73 1.35 2.82 - -
Host 4 - 1.43 1.01 1.83 - -
Host 5 - 1.52 1.33 2.16 - -

6.0 SUMMARY

This paper presents the simulation results of three
stochastic, replicated, decentralized controlled job
scheduling algorithm operating in a network with imperfect
knowledge. It was shown that the multiple controllers of such

S. algorithms can effectively cooperate with each other to
achieve a system-wide objective of good response time and load

.5?

* **..*.*"."."5"."*"-"*"- -S.'-
•
" ."" ", , ": -"*,' ."- - ,"."".:'" 

"
"",'" "•"-



* q

balancing with limited job movement. When tuned properly the
algorithms operated in a stable manner. The tuning was shown
to be necessary but once tuned the algorithms were fairly
robust for different arrival rates. A suggested modification
is to dynamically adapt the parameters of the algorithms but
the added cost of such a scheme must also be addressed.

By comparing performance of the three algorithms to each
other and to analytical results, it was concluded that wnile
algorithms 1 and 3 worked well, algorithm 2 was the best. An
important result is that very simple (execute fast)
decentralized controlled job scheduling algorithms can
effectively improve performance. Another result is that by
utilizing a minimal amount of state information (number of
jobs) it was shown that one gets better performance thpn the
optimal fractional assignment which we obtained analyti ly.
Another modification that we suggest is to avoid movii very
large (in size) jobs because this congests the subnt and
degrades overall response time. This additional 'ate
information is easy to obtain ana the added executioi ime
checks required are trivial. In summary, we feel t e
results presented here provide some insight intc Che
performance and stability of decentralized control job
scheduling algorithms as part of distributed processing
systams.

7.0 ACKNOdLEDGMENTS

I would like to thank Don Towsley for his suggestion to
compare the simulation results to the best "fractional
assignment" and for his help with the analytical models.

8.0 APPENDIX

This appendix describes the derivation of the formula for
fi tgiven in section 5.3. 3 tating with

we need to minimize delay, T, subject to * =1. he
Lagrangian function can be defined as

where g is the Lagrangian multiplier. Taking the derivative
and setting it equal to zero results in

At- Of % )n / X I )



Since f-=1 we have

A,~

Substitutiag-jF into formula (1) gives

Az.

9.0 REFERENCES

[1] Agrawala, A. K., S. K. Tripathi, and G. Ricart,
"Adaptive Routing Using a Virtual Waiting Time Technique,"
IEE Transaci on QA & ware ELMnee im, Vol. SE-8, No.
1, January 1982.

[2) Aoki, Masanao, "Control of Large-Scale Dynamic Systems by
Aggregation," IE Transactions ga A Control, June
1978.

[3) Bokhari, S. H., "Dual Processor Scheduling with Dynamic
Reassignment," Transactions 2 of tware Egneing,
Vol. SE-5, No. 4, July 1979.

4[1 Bryant, R. M. and R. A. Finkel, "A Stable Distributed
Scheduling Algorithm," P ings 20_ International
Confernce j Disributd Compt ing Systems, April 1981.

[5) Chow, Yuan-Chieh, and Walter Kohler, "Models for Dynamic
Load Balancing in a Heterogeneous Multiple Processor
System," = Transactions sm 99QmEjt on Vol C-26, No. 5,
May 1979.

[6) Chu, W. W., "Optimal File Allocation in a Multiple
Computing System," = ra ios 2A C e, Vol.
C-18, pp 885-889, October 1969.

[7) Chu, W. W., L. J. Holloway, M. Lan, and K. Efe, "Task
Allocation in Distributed Data Processing," I=E Compuer,
Vol. 13, pp 57-69, November 1980.

[8] Efe, Kemal, "Heuristic Models of Task Assignment
Scheduling in Distributed Systems, Computer, Vol.
15, No. 6, June 1982.



[9] El-Dessouki, 0. I., and W. H. Huan, "Distributed
Enumeration on Network Computers," ZE ransacions
omputer., Vol. c-29, pp 818-825, September 1980.

[10) Enslow, Philip, "What is a Distributed Data Processing
System," IEEE Computer, Vol. 11 No. 1, January 1978.

[11] Farber, D. J. , et al, "The Distributed Computer
System," fronediag. =th Annual UM Computer Society
International , February 1973.

[12] Gonzalez, K. J., "Deterministic Processor Scheduling,"
ACM Cmiputing Sujrvy., Vol. 9, No. 3, pp 173-204,
September 1977.

(13) Jarvis, R. A., "Optimization Strategies in Adaptive
Control: A Selective Survey," I= Trasactions n
SLIt-ua4  Man. and Cyekrn c.s.,, Vol. SHC-5, No. 1,
January 1975.

[I4] Jensen, Douglas, "The Honeywell Experimental Distributed
Processor -- An Overview of Its Objectives, Philosophy and
Architectural Facilities," IEE omptr, Vol. 11, No.
1, January 1978.

[15) Kleinrock, L., and A. Nilsson, "On Optimal Scheduling
Algorithms for Time-Shared Systems," JL, Vol. 28, No.
3, pp 477-486, July 1981.

[16] Larsen, R. E., "Tutorial: Distributed Control," IEEE
Catalog No. EHO 153-7, IEEE Press, New York, 1979.

[17) LeLann, G., "Distributed Systems - Towards a Formal
Approach," Pro ings II C s, Toronto, North
Holland Publ., pp 155-160, August 1980.

[18] Ha, P. Y. R., E. Y. S. Lee, and M. Tsuchiya, "A Task
Allocation Model for Distributed Computing Systems," IEE

on C, Vol. C-31, No. 1, pp 41-47,
January 1982.

[19) Ousterhout, John K., D. Scelza, and P. Sindu, "Medusa:
An Experiment in Distributed Operating System Structure,"
QAM, Vol. 23, No. 2, February 1980.

[20) Sandell, Nils R., Pravin Varaiya, Michael Athans, and
Michael Safonov, "Survey of Decentralized Control Methods
for Large Scale Systems, IE Transactions = Autoatic
ontrol, Vol. AC-23, No. 2, April 1978.

[21] Smith, R. G., "The Contract Net Protocol: High Level
Communication and Control in a Distributed Problem
Solver," I= Tran.actign2omt ," Vol. C-29, No.
12, Dec. 1980.

o.' .' ; : .'/.'.., ,. , ,;,-- . . , ' ' .- - ,y ,•" :, , . , .,, , . " ", /..'.--. - .-.-*-.'-*,



[22) Stankovic, John A., "A Comprehensive Framework for
Evaluating Decentralized Control," Proceedings .1M
International 2.. P aralle Processng, August
1980.

[23) Stankovic, John A., "Analysis of a Decentralized Control

Algorithm For Job Scheduling Utilizing Bayesian Decision
Theory," P _ International C en

iArAjj Prgcesin., August 1981.

[24] Stankovic, John A., N. Chowdhury, R. Mirchandaney, I.
Sidhu, "An Evaluation of the Applicability of Different
Mathematical Approaches to the Analysis of Decentralized
Control Problems," Proins COMPAU82 November 1982.

[25] Stankovic, John A., "A Stochastic Model For Replicated
Decentralized Control," submitted to I= TrinaAtJons
C-. uters, Dec. 1982.

(261 Stankovic, John A., "A Heuristic for Cooperation Among
Decentralized Controllers," P INFOCOM B1, April
1983.

[27] Stankovic, John A., "Bayesian Decision Theory and Its
Application to Decentralized Control Algorithms," in
preparation.

[28] Stone, H. S., "Multiprocessor Scheduling with the Aid of
Network Flow Algorithms," I Transactions Softwar
" gineriag, Vol. SE-3, No. 1, pp 85-93, January 1i77.

(29] Stone, H. S., and S. H. Bokhari, "Control of
Distributed Processes," IZ Computer, pp 97-106, July
1978.

[30] Tenney, Robert R., and Nils R. Sandell, Jr., "Structures
for Distributed Decisiomaking," I TrIanui.o=.I on
Sysem, an jW yb, Vol. SMC-11, No. 8, pp
517-527, August 1981.

(31] Tenney, Robert R., and Nils R. Sandell, Jr., "Strategies
for Distributed Decisionmaking," =IEEE Tk±s.ii n
System aa. n Cybrnetic, Vol. SMC-11, No. 8, pp
527-538, August 1981.

[32] Wittie, L., and Andre M. van Tilborg, "MICROS, A
Distributed Operating System for Micronet, A
Reconfigurable Network Computer, = TCanaa.ion 2n

Coinuters," Vol. C-29, No. 12, December 1980.

-.



DISTRIBUTION LIST

Defense Technical Information Center 2 copies
Cameron Station
Alexandria, VA 22314

Commander 2 copies
USAERADCOM
ATTN: DELSD-L-S
Fort Monmouth, N.J. 07703

Commander 1 copy
USACECOM
ATTN: DRSEL-COM-RF (Dr. Klein)
Fort Monmouth, N.J. 07703

Comander 1 copy
USACECOM
ATTN: DRSEL-COM-D (E. Famolari)
Fort Monmouth, N.J. 07703

Comander 10 copies
USACECOM
ATTN: DRSEL-COM-RF-2 (C. Graff)
Fort Monmouth, N.J. 07703

"J

-.



m , ." i - . " " ') ' . t 1 1-. -.. . . -

FILMED

12-85

.m, - . j?


