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FOREWORD

The work reported herein was conducted at the U.S. Army Fuels and Lubricants ;
Research Laboratory (AFLRL), located at Southwest Research Institute, San
Antonio, Texas.

The initial phase covering the physical properties was conducted under NASA
Purchase Requisition No. 520047,

The high-pressure viscosity, friction and wear tests, and chemical char-
acterization work was conducted under Contract No. DAAK70-82-C-0001 during
the period August 1982 through February 1983, The contracting officer's
representative was Mr. F.W. Schaekel (DRDME-GL, MERADCOM).

ot i e e e S
T v

The authors acknowledge the helpful suggestions and assistance provided by
AFLRL staff members and Dr, E.V. Zaretsky, Mr. A, Mitchell, and Dr. J.J. Coy
(AVRADCOM) of the NASA-Lewis Research Center,

/ o 0
nocessien For }{f‘

NTIC (Rasl
piic T
Uit Y2ADE S




TABLE OF CONTENTS
Page

: In INTRODUCTION 2000000000000 e00 0000000000000 000000000000000080000 5

II. OBJECTIVE 9000080000008 800000060 0000000000600 006006000000000002000 7

III' APPROACH G0 0P P80 00800000 0CP00S 0008000200 0CR0C0C0COCCOICOROIOIIOISIOIOOIPNVPTOIIO 7

IV. EXPERIMENTAL ......OO‘..Q.l...'.0....;..0'..!.........l.l...l. 9

A. Physical 058 - B R I I IInIImnmmmomomnmmmmnmms 9
B. Friction and Wear TeStS eeceescsescscssncscscsscnccoscssnce 9
C. High-Pressure ViSCOSity eeesecsccsssssecssesscccevsccsses 10
D. Analytical Characterization seesecevsscesscccscsscosssces 11
1. SPectrOSCOPiC MethodS seecesevecccssvessessscsssossos 12
- Infrared Spectrophotometry eeececsrenssccsscesrrnee 12
b. X-ray Fluorescence Spectrophotometry eeseccescsce 14

2. Gas Chromatographic Method for Boiling Point
Distribution seeeececcesoscsccsssesascsssccsscscssssas 14
3. Chemical Characterization Methods «sesesecoscsccecses 15
a., Ester Transesterification Technique cceecevcssese 18
be. POlyOl Silylation Technique esessvseesecsontseee 18

V. DESCRIPTION OF METHODS 980900080000 000000 000000000000 0000000s0s 20

A, Wear Meta]l TeStS sececscacecscnssosrcssvsssscscssssscsone 20
l. X-ray FluOreSCence scsecessvossvesscscscossscssccsssosnne 20
2. Spectroscopic Analysis for Iron seeescsccccsscccscsce 20
B. Specific Heat by Differential Scanning Calorimetry eecess 21

1. ProCceduUre ecevecessesccscssvsscsssscsscscseosesssssocsosss 21

2. Results 9200 00 0000000800000 000 0000000008000 0000RPRINPSIOSIIIDLS 23
C. Gas Chromatography MethodS seesecseeccscssscsscssssscsces 24
l. Boiling Point Distribution of Lubricants ceceesssescss 25
2. Gas Chromatography of Lubricant Derivatives seceevece 25

VI. DISCUSSION 000 0000000000000 ¢0200000000000000000800000c0000000000 27

A. Physical Test Methods 0900000002060 000000000000080000000000 27
1. Specific Heat sssevescsessscnsencsssssccssccsscssscsssnse 27
2. Friction and Wear TeStS seevccescccsscsccssscescscses 27
B, SpeCttOSCOpiC MethodS ceevescovscececcscssesnsseccssossonse 28
1. Infrared Spectrophotometry (IR) ceeesssscscssscsccess 28
2. Metals Analysis $000000000000000000000000000000000000 29
C. Boiling Point Distribution by Gas Chromatography eeecsese 29
D. Chemical Characterization sseesssccceccccocssessssscsscsssnse 29

VII., CONCLUSIONS AND RECOMMENDATIONS «scesvevccscacscsosconssacasse ' 35

VIII. REFERENCES 0006000 0000000000 0000000000080 0600000000000000000000 37

FrECEDING PAGE BLANK-NOT FILMED




TABLE OF CONTENTS
(Cont'd)

APPENDICES

A. Physical Test DAta eeveccoscscssssaaveossnsssssrcsnsosssoss
B. Friction and Wear Test Data s.eeesevsccesccscccsscscrssnes
C. High-Pressure Viscosity Test Data@ eceesacescsccscsccessncsse
De. Boiling Point Distribution Data ceevesccessccsvsasccscoses
E. Basestock Characterization Standards secscecscscsscecccnses
F. Basestock Characterization Data with Daisy Graphs eeeecees
G. Infrared Spectra $00006000000000000000000000000000e000000000

LIST OF TABLES

Table
1 Synthetic Lubricant Analysis Sample Ident{fication evesesceecoss

2 Synthetic Lubricant Analysis Methods Used in Analysis ssescccese
3 Boillng Point Distribution Standard c.eeevecsccoscccscscesccscsne
4 Basestock Characterization SUmMMATY ceececvevosscsccosorceccncres

LIST OF ILLUSTRATIONS

Figure

1 Standard Lubricant-Type Infrared Spectra seeessecescecsssccssssas
2 Standard Lubricant—Type Chromatograms 000s0s000000 000000000 cnssen
3 TMP in Methanol eceevececessscccsassssesetesviscsencscannsoscnsssas
4 Analytical Characterization SchemMe ceevescevescvessssccsscccsnes

Page

39
53
57
81
97
105
121

Page

26
30

e e ——w




apn -

I. INTRODUCTION

Lubricants play a decisive role, having myriad critical operation "performance
index" parameters in helicopter power train components. However, the perfor-
mance of helicopter transmissions still requires advances in predictive anal-
ytical methods and tests so as to evaluate and compare lubrication effects on
operational life, reliability, friction, wear, service overhaul schedules,
build and operational cost effectiveness. The rapid scientific and technolo-
gical advances in power transmission technology (l1)* has markedly emphasized
the need to evolve new lubrication evaluation techniques (g) at the funda-
mental molecular and chemical property levels., Also, basic research investi-
gations are required on lubricant dynamical and chemical surface interactions

including investigations under simulated field service environments

Typically, a lubricant is now chosen based on the specification by which it is
qualified. Frequently, the’specification contains the performance require-
ments for the lubricant. In field applications or in performance studies, the
lubricant is thus selected based on the specification. 1In other cases, a
lubricant is selected because it is classified as a lubricant for a given
application. Seldom is the composition of the lubricant considered in its
overall application selection. Comparison of the composition of different
lubricants and correlation of lubricant performance as related to the chemical
composition is difficult because insufficient specific lubricant composition
information is available., As a result of the recent developments in lubricant
analytical chemistry at the U.S. Army Fuels and Lubricants Research Laboratory
(AFLRL) (3), lubricants can now be characterized as to their chemical composi-

tion.

Modern lubricants are complex chemical mixtures containing one or more base-

stock (major) components, and several additives that allow the finished lubri-

*Underscored numbers in parentheses refer to the list of references at the end

of this report.




ce-t to perform its function in an engine or other power flow system. The

lubricant basestock usually contains either:

(a) mineral oil (solvent neutrals, pale oils, bright stocks, etc.),

(b) synthetic hydrocarbon(s) (polyalphaolefins, polyalkylbenzenes,
etc,),

(c) synthetic organic compounds other than hydrocarbons (mono-, di-,
tri-, and tetra-esters, ethers, phosphate esters, polyol esters,
polyethers, silicones, etc.), or

(d) a combination of the above.

Similarly, the additive package in a finished lubricant may have several con~
stituents 1including detergent, dispersant, antioxidant, antiwear agent, ex-
treme pressure additive and possibly a viscosity index improver. While some
components may exhibit multifunctional properties (improve more than one func-
tion of the lubricant), the number of major constituents of a lubricant may be
large indeed. Turbine engine lubricants and transmission fluids are specially

formulated to meet these application needs.

Detailed compositional information is generally needed to define basestock
character and to correlate the basestock component type to the families of
refined lubricants, power train, and hydraulic fluids.,

The compositional 1information needed generally takes the following form:

1) Physical Data - comprising those data needed for specifications,

sometimes referred to as "Standard Tests", and necessary to develop
correlations to performance,

2) Friction and Wear - standard test (ASTM D 2714) to aid in determin-

ing lubricating properties.

3) High-Pressure Viscosity - correlates to a lubricant's performance

under actual operating conditions,

4) Chemical Characterization =~ supplies detailed information of the

lubricant's actual chemical composition,

The physical data tests, friction and wear test, and high-pressure viscosity

test methods are industry~accepted standard tests, and present no new areas
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for defining or characterizing a lubricant. However, recent advances in the

analytical chemistry of lubricants at AFLRL has allowed simpler and more
accurate quantitative chemical characterization of the basestocks and some

organic additives.

This study was undertaken to define the composition of basestock materials so
that, ultimately, better correlations with the critical operational perfor-
mance index parameters can be made. In the work described in this report, the

composition of eleven lubricant basestocks has been determined.

I1. OBJECTIVE

The objective of this program was to provide NASA-Lewis Research Center and
the U.S. Army Aviation Research and Development Command (USAAVRADCOM) Research
and Technology Laboratories with data concerning both the physical and chem-
ical properties of eleven lubricants selected by NASA-Lewis engineers for

performance evaluation as helicopter transmission lubricants (Table 1),

I1I. APPROACH

To accomplish that objective, a variety of fluid types were chosen, including
MIL-L-23699, and MIL-L-7808 qualified lubricants, synthetic hydrocarbon-based
oils, and two automotive-type automatic transmission fluids. Standard phys-
ical tests and wear metal analyses were conducted on both the new and used
lubricants., In addition, boiling point distribution by gas chromatography,
infrared spectrophotometric analysis, chemical characterization of each lubri-
cant basestock by a newly applied derivatization/gas chromatographic tech-
niques, high-pressure viscosity measurements as a function of temperature
using a falling body viscosimeter, and friction-wear tests using an LFW-1l test
machine were conducted, Tabulation of results and descriptions of the meth-

odology applied are contained in the following sections.
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IV. EXPERIMENTAL

A, Physical Data

The physical data for each oil were obtained by standard test methods shown in

Table 2. The data are tabulated and presented in Appendix A.

TABLE 2, SYNTHETIC LUBRICANT ANALYSIS
METHODS USED IN ANALYSIS

Me thod Reference J

Kinematic Viscosity ASTM D 445
Gravity ASTM D 1481

Specific 4

API 4
Total Acid Number ASTM D 664
Particulate Contamination Count ARP 598 (Revised 8-1-69) 1
Wear Metals Tests

X-ray Fluorescence-Filter Method AFLRL Report No., 102*

Spectroscopic Analysis-WPAFB AFWAL TR-80-4022% !

Acid Extraction Method (Mod) {
Specific Heat, Differential Section Six, DSC and Pressure*

Scanning DSC Cells and Accessories/

Calorimetric Method Instruction Manual 990 Thermal

Analyzer and Modules

Boiling Point Distribution Modified ASTM 2887%*
Simulated Distillation

*These methods are described in detail in the text,

B. Friction and Wear Tests

In this program, it was mutually agreed that the eleven NASA-Lewis supplied
lubricating oils were to be tested in duplicate on a LFW-1 friction and wear
testing machine per ASTM D 2714 (1978) and modified as follows:

. | N p




(a) Surface speeds to be 180 ft/min (54.9 m/min),

(b) Hertz line contact stress to be 100,000 psi,

(c) Block and ring material to be AISI 9310 (AMS 6260) steel with black
oxide finish and with Rockwell C 60 hardness and 8 microinch surface
finish,

(d) Test oil temperature to be 100°C (212°F) during testing.

(e) Test duration to be 10,000 cycles (ring revolutions) with friction
force measured and recorded at 400, 800, 1200, 9000, and 10,000

cveles,

C. Hijh-Pressure Viscosity

The viscos{ty as a function of pressure and temperature was measured in a
falling bodv viscometer., The variable range for this instrument was | atmos-
phere (101.,3 kPa) to 604 MPa in pressure, 20° to 150°C in temperature, and
about 0,4 mPa.s to 1000 Pass in viscosity, The viscometer consists of a mag-~
netic sinker in a nonmagnetic pressure vessel which is surrounded by a linear
variable differential transformer. The viscosity measurement 1s made by
tiring the sinker fall over a predetermined and variable fall distance. The
fall distance is varied depending upon the viscosity level., The sample is
isolated from a pressurizing medium by a floating piston. The pressurizing
medium, which is a low-viscosity diester, is pressurized by a hand-operated
hvdraulic pump operating through an intensifier. The intensifier has an area

ratio of approximately 15 to 1.

The viscometer is housed in an air oven to control the temperature. The temp-
erature is measured by a thermocouple inserted in a well in the pressure ves-
sel., The pressure is measured by a Bourdon gage on the low-pressure side of
the intensifier. The system pressure has been calibrated for seal friction in
the intensifier and {solating piston. The viscometer fall constant as a func-
tion of pressure and temperature has been calibrated using 2-ethyl-~hexyl-
sebacate and the data obtained by P.W, Bridgman as reported in the ASME Pres-
sure Viscosity Report. (4) A minimum sample size of 2 cubic centimeters is
required., Further description of similar instruments, and data acquired with

them can be found in References 5 through 7,
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The data obtained by this method are shown in Appendix C.

The following definitions and conversions may be helpful:

== u(T,p=1atm) - L
o= X KP” o ap
(] uip,T)

u* is a more reliable measure of the viscosity-pressure response of the

material. It is determined by integration, employing all the data measure-

ments, while is obtained by graphical differentiation and is very depen-

%ot
dent on a few of the low-pressure data points; hence, it 1s subject to more

overall error.

_ 108 10°
p/psi = p/MPa x 6.894 x 10° =p/MPa x 6.894
u/cp = u/mPas

| 10-3
u/lbs = u/mPas x 68%ax 1 = #/mPas x 6.6894

in.2

D. Analytical Characterization

Several analytical techniques and separation methods are referred to for the
characterization of 1lubricants.(2) The utility, applications, and resulting
data produced by the application of these techniques are discussed best when

11




| segregated into specific analytical chemistry groups: (1) Spectroscopic

methods, (2) Gas chromatography, and (3) Chemical derivatization.

1. Spectroscopic Methods

a. Infrared Spectrophotometry

When a lubricant is submitted for analysis, first an infrared (IR) spectrum is .

obtained. Application of IR spectroscopy is useful because it allows one: i

] to retain a permanent record of a given oil formulation that will
serve as a basis for the detection of possible deviation from the
originally approved formulation; ;

() to determine the nature of basestock (e.g., mineral oil, polyalpha-
olefin, ester, polyalkylated benzene or blends); }

e to detect the presence of certain additives; and

° to detect the presence of oxidation products (if acrylate-type vis-
cosity index improvers are not present and/or corrected for) in used

oils,

some characteristic (diagnostic) IR wavelengths used 1in oil . analysis are:

Frequency, em - Structure or Vibrational Mode Producing IR Absorption
3570~3200 OH stretching (e.g., glycols, phenols)

3500-3300 NH stretching (e.g., amines)

2960-2840 CH stretching (e.g., mineral oils)

1770-1650 C=0 stretching (e.g., esters, some oxidation products)
1190-1160 C-0 stretching (e.g., esters, ethers, alcohol)
1020-960 P-0-C (e.g., dialkyldithiophosphates)

1625-1575 Aromatic Ring Structure

A cursory 1R spectrum of an oil, therefore, provides a wealth of information

that is also used as a guide in the selection of the proper subsequent analy-

tical methods.

Figure 1 shows the spectra of a known petroleum hydrocarbon oil, a known ester
type oil, and a known synthetic hydrocarbon (PAO) oil. Appendix G shows the

spectra for the individual lubricant samples,
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b. X-Ray Fluorescence Spectrophotometry

After an initial classifying IR spectrum is obtained on an unknown lubricant,
usually a restricted elemental analysis is obtained. X-ray fluorescence
spectrometry (XRF) is a convenient, fast, and nondestructive method capable of
simultaneously detecting and quantitating elements from sodium (atomic number
11) up in the periodic system, Both metals and nonmetals, such as P and S, in
lubricant additives, and wear metals in the case of used oils, are easily
detected and measured without regard to the chemical form in which the ele-
ments are present. The minimum amount of element that XRF can measure depends
upon the element in question, but is usurlly in the parts~per-million (ppm)
range. A complete qualitative analysis o. a lubricant may take as little as
two minutes, Since XRF analysis may take a sample in the form of a solid,
liquid, or powder, sediments 1in used oils may be analyzed on a homogenized

sample or as a simple filtrate.

Results of the X-ray analysis may be used to direct further investigation
toward restricted areas, i.e,, toward the analysis of specific additives or
may be used as a completed answer when only wear or contaminant metals identi-

fication is desired.

As is the case for most spectroscopic analytical methods, XRF is also capable
of '"fingerprinting" products, If the "fingerprint" of two products are not
identical, the products are not identical. Atomic absorption techniques also
continue to be used to supplement X-ray to provide quantitative data for

certain metals,

The XRF data obtained for the lubricants in question are tabulated in Table
A-5, and notes on the XRF analysis of the subject lubricants are listed in
Table A-6, contained in Appendix A. Figures A~1 to A-11 show the XRF spectra

for each lubricant sample.

2. Gas Chromatographic Method for Boiling Point Distribution

In the overall purpose of this program, it was desired to characterize lub-

ricants both qualitatively and quantitatively, for which gas chromatography

14




(GC) offers the greatest single instrumental-analytical capability. The
general gas chromatographic approach taken was to use a method which eluted
the sample as completely as possible (whether neat or pretreated lubricant)
and to use as high an analytical elution temperature as feasible, For this
reason, a method essentially equivalent to AST™ D 2887 (Test for Boiling Range
Distribution of Petroleum Fractions by Gas Chromatography) with a resolution

of approximately 5,0 was used for the lubricants.

Boiling point distribution of mineral oils can be done both by molecular
distillation and gas chromatography. GC not only has higher resolution, but
is more accurate and less time-consuming than the molecular distillation
approach, The GC approach assumes that the hydrogen flame ionization detector
has essentially equal response for all hydrocarbons in the lubricant samples.
Figure 2 shows the chromatograms for a known petroleum hydrocarbon oil, a known

ester-type oil, and a known synthetic hydrocarbon (PAO).

Initially, each o1l was analyzed by infrared spectroscopy and compared to
reference spectra (Figure 1) to determine its type., To confirm the type
classification, the oils were analyzed by gas chromatography to determine
their boiling point distribution (BPD) (Table D-~1, Appendix D). Because the
standard ASTM technique (8) for BPD has an upper temperature limit below that
expected for the lubricanfs, an AFLRL modification allowing an extension of
the upper temperature limit was used for this work.(9) The figures in Appen-
dix D show typical chromatograms obtained for each lubricant type.

The petroleum hydrocarbon~based lubricants are adequately characterized by
their boiling point distribution alone (AFLRL modification of ASTM D 2887),

and no further characterization analysis was performed.

The composition of the PAO lubricants was characterized by comparing the peaks
obtained from the BPD to hydrocarbon standards and known PAO lubricants an-

alyzed under the same chromatographic conditions.

3. Chemical Characterization Methods

Further characterization of the ester-type lubricants necessitated identifying

15
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the acids and the alcohols used to create the esters and quantitating these
components. Techniques for characterizing the ester-type oils and those oils
containing ester components were investigated to determine the most efficient
method to use. (10-13) Transesterification techniques offered the most effi-
cient method for analysis of the esters, Since no specific published transes-
terification techniques could be identified for lubricant-type esters, it was
decided to approach this analysis with regard to the fact that the lubricants

were esters and should be amenable to transesterification.

Much work has been done by others in the characterization of triglycerides,
the triple esters of glycerol and long chain fatty acids, by transesterifica-
tion techniques.(11-13) This transesterification involves the splitting of
the ester bond which separates the fatty acid from the alcohol with the subse-
quent formation of the methyl ester of the fatty acids. The methyl esters of
the acids are considerably more volatile than the acid themselves, allowing
for ease of analysis by gas chromatography. The reactions take place in situ,
usually at room temperature, with no additional chemistry necessary. The GC
analysis is performed on the intact reaction mixture, with no extractions or
additional treatment required., This technique works on the esters only, with
no effect on any free acids that may be present, and 1is reported to yield
quantitative conversions. If this technique could be applied to the analysis
of ester-type lubricants, 1t would greatly improve the reliability of the
attempts to characterize these lubricants, both new and used, and could aid in
determining the oil breakdown mechanism., Certainly, this technique would be a
significant improvement over the methods previously used which involved
hydrolysis by reflux with alcoholic potassium hydroxide for several hours,
then extractive separation of the alcohol from the carboxylic acid salt,
followed by acidification and extraction of the carboxylic acid. The acids,
thus recovered, were then derivatized for analysis. This older method re-~
quired the use of a relatively large sample size to start with, and suffered
from probable high sample losses during workup. Transesterification tech-
niques, if successful in this application, could prove to be fast, efficient,

and yield more accurate quantitative results than the above described method.
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a. Ester Transesterification Technique

To accomplish the ester transesterification, the following techniques were

employed:

To a capped l-mL reactivial (Pierce Chemicals) vessel containing approximately
10 to 30 mg of ester-type lubricant was added 300 microliters (0.3 mL) of 0,2
normal methanolic (m-trifluoromethylphenyl)trimethylammonium hydroxide (METH-
PREP 11, Applied Science Laboratories). The reaction mixture was allowed to
stand in a warm water bath, approximately 50°C, for 15 to 20 minutes with
occasional shaking. Completeness of reaction was determined by observing a
clear methanol layer. The polyols, pentaerythritol (PE), and dipentaerythri-
tol (DPE) are insoluble in alcohol and form a precipitant lower layer. The
trimethylolpropane (TMP) is soluble in methanol (Figure 3) sc that in the case
of a 100-percent TMP ester, no layering as precipitate is observed. Care must
be exercised to keep any moisture or water from entering the reaction mixture
since water will effectively kill the reaction., Completeness of reaction may
be monitored by injecting 1 microliter of the top layer into the gas chromato-
gcraph at l5-minute intervals of reaction time until no further changes in peak

sizes are measured.

After the reaction has been completed, usually 15-30 minutes, the sample is
diluted to 1 wL with methanol and the top layer analyzed by gas chromatog-
raphy. This analysis will show the fatty acids present and TMP, if any. 1In
addition, two antioxidant additives may also be determined with this step,
n-phenyl-alpha-naphthylamine (PANA) and p,p'-dioctyldiphenylamine (Figures E-4

and E~> in Appendix E),

b, Polyol Silylation Technique

To determine the PE and DPE polyols, the top (methanol) layer is carefully
removed and enough N,0-bis(trimethylsilyl) acetamide 1in silylation grade
pyridine (TRI-SIL/BSA, Formula "P'", Pierce Chemicals) is added to the re-
activial to make 1 mL of sample. The sealed vial is placed in a water bath at
60°-70°C for approximately 15-30 minutes. When a single clear solution is
observed, the reaction 1s complete, forming the silyl derivative of the

polyol. An aliquot is injected into the gas chromatograph and analyzed for PE

18
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and/or DPE. A small amount (0.05~0.1 mL) of the removed top layer may be

added back to the lower layer prior to the addition of the silylating reagent

to serve as markers for the chromatography.
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V. DESCRIPTION OF METHODS

A. Wear Metals Tests

1. X-ray Fluorescence (Filter Method) (l4)

In this method, samples are mixed well, and a portion is poured into a 50-mL
beaker. The beaker is weighed, and most of the sample is poured into a 200-mL
heaker containing about 50 to 60 mL filtered reagent grade heptane and
stirred. The sample beaker is weighed again, and the sample weight is ob-
tained by difference. The heptane-sample mixture is poured into a filtration
apparatus designed to produce a 25-mm diameter deposit on a 0.45 um Millipore
filter, The filter is air dried and subjected to energy-dispersive X-ray

f luorescence analysis,

With the particulate analyte on the filter separated from its fluid matrix,
sensitivity is greatly enhanced. With this technique, 0,003 mg of each ele-
ment may be detected, With sample weight of 30 grams, sensitivities of 0.1
ppm are possible. Wear metals, such as Fe, Ni, Al, and additive particulates

which filter out of the oil, such as Ca and Ba, may be detected.

2. Spectroscopic Analysis for Iron

This method, evaluated in AFWAL-TR-80-4022, February 20, 1980, was modified to
employ a visible light spectrophotometer to measure a colorimetric Fe re-

action,

One mL of the oil sample is mixed with dilute H2504 and isoamyl alcohol. The
acid serves to dissolve iron wear particles and aids in extracting the com-
plexed iron from the oil. A buffer solution and a reducing solution are added
to reduce all iron to the ferrous state. Addition of an indicator, bathophe-
nanthroline disulfonic acid, forms a red-colored complex with the iron and is

measured colorimetrically.

The modif ication made to the method described in the report involves the final
dilution step. As described, 21 mL of iron-free distilled water is added to

20
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the French square bottle used for the reaction, and the bottle is used as a
cuvette in a Hach DR/2 spectrophotometer, Our reaction was conducted in 30-mL
ground glass stoppered centrifuge tubes. The final dilution 1s performed with
15 ml of iron-free deionized water. An aliquot of the water phase is removed
and measured in a l-cm glass cuvette at 530 nm on a Beckman ACTA C III spec-
trophotometer. Standard solutions of 5-, 10-, 50-, and 100~-ppm iron were used
for calibration purposes. Iron concentrations of 1 ppm or more were easily

detected.

B.  Specific Heat by Differential Scanning Calorimetry

The oils were analyzed for heat capacity (Cp) values by differential scanning
calorimetry (DSC). The instrument used was a du Pont Model 990, Both new and
used oils were tested. The technique and calculations used were obtained from
the du Pont Model 990 operating instructions, Instrument calibration was
obtained using the heat of fusion of indium, Accuracy was determined using a

sapphire standard.

1. Procedure

a. Background

Empty sample pans (and lids) were placed on the sample pedestal and repetitive
traces made. Values for the periodic background data were plotted as a func-
tion of the time obtained, For final calculation, average or interpolated
values for background were used. Absolute values for this measurement are
arbitrary since a reference zero value is picked arbitrarily. This does not
affect the final results, since it is the difference between measurements that

is important.

b. Calibration
A sample of indium supplied with the DSC was weighed into an aluminum sample
pan. The edges of the pan were then crimped and sealed. This sample was then

run on a daily basis for most of the work. Using the known value for its heat

of fusion and by determining the area of the endotherm using a polar plani-
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meter, an average value for the cell calibration coefficient (E) was deter-

mined, using the following equation:

E = 60 AB qs
Hm
where

H = Heat of fusion (mcal/mg)

A = Peak area (sq in.)

q, = Y-axis range [(mcal/sec)/in.]
m = Sample mass (mg)

B8 = Time bhase setting (min./in.)
C. Accuracy

(1) Temperature--Extrapolation of the leading edge of the
above endotherm to the baseline yields the melting point of the indium sample.

This mav then be compared to the x~axis markers.

(2) Heat capacity--A specimen of sapphire was weighed and

placed in a sample pan. Calculated values were compared with values deter-

mined for this material by the National Bureau of Standards.

d. Sample Introduction

Aliquots of the oil specimens were taken from the container as received.
Aluminum sample pans were tarred prior to sample weight being recorded. The

pan was then covered with an aluminum cover, and the assembly placed into the
DSC.

e. Heat Capacity Measurement

The equation for calculation of heat capacity [using the calibration coeffi-

cient as determined in Sec. (2) above) was:
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where

™
"

Cell calibration coefficient at the temperature of interest
(dimensionless).

Aq = Y-axis range, [(mcal/sec)/in.]

s
Hr = Heating rate, (deg/min.)
LY = Difference in Y-axis deflection between sample and blank curves at

temperature of interest (inches).

m = Sample mass, (mg).

f. Instrument Conditions

The followiny parameters were used to obtain the required data:

a, Starting temperature: 40°C (isothermal)

b. Ending temperature: 150°C (200°C for indium scan)
c. Program rate (after start): 10°C/min.

d. Recorder setting: 20°C/in.

e. Time rate (when used): 2 min./in.

£, Y-axis: 1 (mcal/sec)/in.

S Average sample wt: 3 mg

h. Analvsis temperatures: 84°C, 100°C, 140°C

2. Results

a. Instrument reproducibility

(1Y Baseline--The standard deviation of 14 measurements was:

84°C 0.070 in.
100°C 0.079 in,
140°C 0.077 in.
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The average deviation from the starting point was:

84°C 2,00 in.
100°C 2.00 in.
140°C 2,01 in.

(2) Indium--The standard deviations of 13 values taken at the
above temperatures were 0,038, 0,034, and 0.037 in,, respectively, Relative
to the starting point, this is a variation of 1,8 percent, 1.6 percent, and

1.8 percent, respectively,

b, Calibration

The averdge peak area for 3.2 mg of indium over seven separate measurements

was 0,145 sq in, with a relative standard deviation of 4,6 percent,

Ce Accuracy

The ta*le below shows the calculated and literature values for sapphire at the
pp

three temperatures of interest,

°C Cp (calc.) Cp (1it)
52 0.225 0.219 (380K)
1090 0,227 0.225 (400K)
140 0.232 0.236 (440K)

d. Sample Data

The average values for heat capacity (Cp) and the standard deviation (J) for

each sample at each study temperature are presented in Table A-8 (Appendix A).

C. Gas Chromatography Methods

Two gas chromatographic methods are used for the analytical characterization

of lubricants. They are discussed below,

(3]
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Method 1 was developed at the AFLRL and has been in use 1in our laboratory for
several years. It has been proposed for inclusion as an ASTM standard test

method, Method 2 was developed in our laboratory specifically for this work.

l. Boiling Point Distribution of Lubricants (9)

The injection port for this system is an air-cooled 15,2 cm movable injector
with a pyrex glass wool-packed metal port with a water-jacketed cooled septum.
The sample 1is syringe injected into the glass wool, 6,4 cm from the septum
face while the port is in the outer air-cooled position. The port is then
pushed into a 7.b-cm heated jacket at 340°C, and after 3 minutes the port is
pulled back to the air-cooled position., The water-jacketed inlet septum
holder acts as a retainer when the port 1is pushed into the heated jacket.
Approximately 8 cm of the injection port is in the heated jacket when the port
is in the air-cooled position., This inlet hardware was designed to obtain the
benefits of on~column plug injection but prevent contamination of the analyti-
cal column with the nonvolatile residual fraction of the sample, The water
cooler prevents septum bleed at the elevated temperatures. Air cooling of the
injection port reduces sustained vaporization (bleed) of heavy residual ma-
terial in the sample, The movable injection port 1is connected to a 6 feet x
1/8-inch stainless steel coiled column in the column oven., A second column in
the oven 1is used to provide dual column~dual detector (hydrogen flame ioniza-
tion) operation to compensate for column bleed. The columns are packed with
10% Dexsil 300 on Chromosorb P, AW 45/60 mesh., The column oven 1Is held at 0°C
for 2 minutes and then programmed to 450°C at 15°C/min and held at 450°C for 5
minutes. An Altamont crude oil (obtained from the Bureau of Mines, Bartles-
ville, Oklahoma) diluted in carbon disulfide provides n-saturate peak identi-

fication to n-C (Figure D-1), Additionally, a special C normal satu-

60 2"C40
rate standard (Table 3) may be used for calibrating the Hewlett-Packard labor-

atory data system (Model 3354-B/C) boiling point distribution method.

2. Gas Chromatography of Lubricant Derivatives

A Hewlett-Packard Model 5880A capillary gas chromatograph equipped with a
flame ionization detector (FID) and a 50 meter x 0.2 mm ID SE-54 fused silica

capillary column was used for this work. The carrier gas was helium at a




TABLE 3. BOILING POINT DISTRIBUTION STANDARD
(Note: The following solution is diluted with carbon disulfide
in the ratio 1:3.)

Carbon Amount
Number Per 100 ml
3 add to desired level
4 add to desired level
5 10,8ml
6 2.7ml
7 S5e.4ml
8 5.4ml
9 10.8ml
10 S.4ml
11 5e.4ml
12 21.6ml
14 10.8ml
15 5.4ml
16 10.8ml
17 Se4ml
18 1.8g*
20 1.8g
24 lolg
28 0.7g
32 0.7g
36 0.7g
40 O.4g

Injection volume is 2 microliters.

*x( Ie .
L18 to 40 are solids

nominal flow rate of 1.0 mlL/min. The FID was maintained at 400°C and the
injector at 375°C. A split injection technique was used at a split ratio of
100:1 with a 1.0 microliter injection. The oven temperature was programmed
from 30° to 320°C at 10°C per minute with a final hold of 16 minutes. A
calibration standard of the mono-carboxylic acid methyl esters. from n-Ca to
n-ClO (Figure E-1), and mixed dicarboxylic acid methyl ester standard from
n-C5 to n—CIO
of TMP, PE, and DPE were prepared for calibration use (Figure E-3)., Deriva-

(Figure E-2) were prepared, In addition, the silyl derivatives

tives of the two antioxidants PANA (Figure E-4) and p,p'-dioctyldiphenylamine
(Figure E-5) were prepared by the transesterification technique applied to the
ester-type lubricants., Response factors for all compounds analyzed using the
FID was set at 1.00., Compounds were identified by comparison of their re-
tention times to that of the standards. Figure E-6 shows the results of the
transesterification and silylation technique applied to sample AL-11250-L
(NASA C).
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VI. DISCUSSION

This report presents physical and analytical chemical characterization data
for the eleven lubricants which were used in transmission performance studies
by NASA-Lewis engineers. No field hardware performance tests were conducted
by this labtoratory and, at the request of NASA-Lewis, there was no attempt to
correlate these data with the lubricants' field performance. The correlation
of the chemical and physical data to the performance of the lubricants is
outside the scope of this report but will be discussed by NASA-Lewis engineers

in a separate NASA-lLewis report,

Al Phvsical Test Methods

l. §Eecijic Heat

From the data shown in Table A-8, it can be noted that the differential scan-
ning calorimetry (DSC) instrument, when run with either a blank or the stand-
ard material over again, has good precision and accuracy. However, when the
sample oils were introduced, precision became quite poor, particularly for the
"used" oils. Therefore, it is felt that the samples are probably not homo-
geneous. Thus, without prior filtering or some appropriate homogenizing
treatment being performed, multiple values must be obtained and averaged to

produce an acceptable value.

2. Friction and Wear Tests

Using the test conditions detailed in Section IV.B,, the initial determination
was attempted employing lubricant AL-11250-L (NASA Code C). In less than 100
cycles of the rotating test ring, contact seizure resulted, and the test block
sustained gross asymetrical wear. The test was immediately repeated using the
same test conditions and lubricant, Contact seizure between the block and
ring again resulted at approximately 2250 cycles. It was then decided to
employ lubricant AL-11266-L (NASA Code K), which is known to have a high
load-carrying capability, and to attempt another LFW-1 test using the same
test conditions as above. This lubricant successfully completed the test of

10,000 cycles, although there was a transfer of material from the block to the




rotating ring specimen as evidenced by the weight change at test termination,
Based on these results, it was decided to try another lubricant under these
same test conditions, Therefore, a test using AL-11252-L (NASA Code A) was
initiated, and contact seizure resulted at approximately 1625 cycles, In view
of these happenings and also due to the fact that AL-11250-L 1s a qualified
MIL-L-23699 lubricant with demonstrated satisfactory performance in gas tur~
bine engines, it was concluded that a 100,000-psi stress would be too severe
in LFW-1 testing. Continued evaluation at that load would essentially provide
little more than pass/fail results, This information was conveyed to the
NASA-Lewis project engineer who approved of the recommendation to utilize a
reduced machine load. Therefore, the test series was performed at a selected
load to give an initial mean Hertz compressive stress of 80,000 psi. It is
interesting that one more contact seizure was experienced employing lubricant
AL-11250~L even at the reduced contact stress, It is also of interest that
all tests having contact seizures both at the original load and at the reduced
load resulted in a weight gain for the test ring, indicating a transfer of
material from the stationary block to the rotating ring during testing.
Normally, as expected, there was a weight loss for both block and ring during
tests not experiencing seizure. After the problems discussed above were dealt
with, the test series proceeded without difficulties, Appendix B presents
test summary data for the 11 lubricants iested in accordance with the modified

procedure,

B. Spectroscopic Methods

1. Infrared Spectrophotometry (IR)

IR offers a quick, easily interpreted method for identification of lubricant
basestocks, The spectrum (Figure 1) for ester-type basestocks shows a promi-
nent specific peak at 1730-1750 cm-'1 which is absent from the spectrum of
hydrocarbon oils. When compared to the synthetic hydrocarbon and petroleum
hydrocarbon basestocks, the basestock type is quite evident., While the syn-
thetic hydrocarbon and petroleum hydrocarbon spectra appear the same, which is

expected since they are both essentially pure hydrocarbons, there is a signi-




ficant difference, The small peak at 1600 cm“l in the spectra for petroleum
hydrocarbons is due to aromatic hydrocarbon ring structure. This is typical
for petroleum hydrocarbon basestocks and is not found in the synthetic hydro-
carbon basestocks., The spectrum for the synthetic hydrocarbon basestock has
no absorption peak at this frequency. Appendix G shows the spectra for the

individual lubricant samples.

2. Metals Analysis

The X-ray fluorescence method for metals analysis offers a rapid, non-
destructive, sensitive, and accurate identification and measurement technique
for most metals found in lubricants., The use of the spectroscopic analysis
for iron afforded an even greater degree of sensitivity when it was required.
These data are presented in Tables A-5 through A-6. The interpretation of the
XRF data is detailed in Table A-6.

Cc. Boiling Point Distribution by Gas Chromatography

The BPD method used for lubricants at the AFLRL is a modification to the ASTM
D 2887 method. The modification enables the extension of the upper tempera-
ture limit as defined by the ASTM D 2887 procedure. This modification is
presently being evaluated by the ASTM as a new method for inclusion in their
list of standard methods. The chromatograms in Appendix D which this method
produces show very distinctly different "patterns" for each type of lubricant
basestock. Indeed, the patterns, especially for the ester-type lubricants,

are virtual "fingerprints" for each sample and confirm the IR results.

D. Chemical Characterization

As an integral part of the Army's overall power train lubrication research
effort, the AFLRL has been involved in developing the technology to charac-
terize lubricants. The first generation approach to the analysis of lubri-
cants was detailed in an AFLRL interim report published in March 1976.(2)
Further developments and refinements led to a second generation analytical

approach to the characterization of lubricants.(3,10,15)




This report details the third generation analytical approach to the analysis
of lubricants, This approach has simplified the analysis of the lubricants by
a rapld and easily accomplished in-situ derivatization of the esters by a
transesterification technique. The GC analysis is conducted on the reaction
mixture and yields detailed information regarding the chemical composition of
the lubricants. In addition, the chromatography makes it possible to deter-
mine the presence of some organic antioxidant additives, Also, it may be
possible to determine the causes of corrosion within the engine, and the
reason for the corrosion variability between oils, 1f any. The technique
utilizes very small sample amounts with a minimum of chemical treatment and
handling. The results achieved using this new, third generation

approach to the characterization of lubricants are summarized in Table 4,

The initial infrared spectroscopic examination of the lubricants provided a
preliminary chemical class identification of each lubricant, i.e. petroleum,
synthetic hvdrocarbon, ester (Figure 1 and Appendix G). Coupled with the
hoiling peint distribution chromatograms (Appendix D), the class or type
identification proved to be positive in every case, Each type of lubricant
vielded 4 distinctive chromatographic pattern (Appendix D), The type classi-
fication was further confirmed by the detailed derivative characterization
work (Appendix F). Table 4 summarizes the basestock characterizations. The
data in Table 4 are repeated in Table F-1 for convenience when referring to

Appe.div F,

TABLY 4. BASESTOCK CHARACTERIZATION SUMMARY

NASA (ode A B C D E F C H 1 J K

AFLRI Code 11252 11268 11250 11254 11256 11258 11260 11262 11264 11270 11266

Carioxylte

Actds - T
[ T 9 T T
[ - o 4 18 41-63 13 22 22
oy H H 10 13 d1-37 T 2 14 16
c-7 2 3 17 16 73 50 19 21 2
8 é 35

c-R E H 10 24 27 1 10 8 8
c-9 5 S 13 16 7 4 23 29
C-10 5 o 4 4 S 32 12 1
c-12 & & 2 T
Alcohols
™F 100 100 S0
PE 100 100 50 100 99
DPE 1
MONO- (c13)
- 100
Basestock
_Type
Fster x 3 dibasic (20%) =x 3 x 3
Petroleum x x
Synthetic x (802)
Hydrocarbon

ci0, 2 43 8

c40, 1 &5 50

csn, 1 12 12
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The chemical composition data for the test lubricant basestocks have also been
presented graphically as a '"Daisy Graph". A "Daisy Graph" 1s a method for
representing a large number of parameters or variables in a simple fashion for
easy comparison. The turbine engine oil "Daisy Graph" key 1is provided in
Figure F-1. The angular position of the radial line is characteristic for
each individual component. While not necessary, different colors have been
used to illustrate the different chemical families of compounds for ease in
comparing the composition of the lubricants. Red represents the mono-
carboxylic acids present in polyol esters and blue represents the polyol base
for the polyol ester. Green represents the mono-alcohols of dibasic acid
esters, and black represents the base dicarboxylic acid of the dibasic acid
ester. The length of the Daisy lines is proportional to the concentration of

each component. In summary, the daisy key is outlined as follows:

Parameter/Color Indicates

Red Mono Carboxylic Acids
Blue Polyols

Green Mono Alcohols

Black Dicarboxylic Acids
Length Concentration

Following the analvtical characterization scheme shown in Figure 4, two lubri-
cant samples were identified as petroleum basestock types, AL-11252-L (NASA A)
and AL-11268-L (NASA B) (Tables F-2 and F-3). They were characterized by
comparison of their infrared spectra and boiling point distribution (BPD)
chromatograms to those of known basestock types, Figure la shows the IR
spectrum of a known petroleum hydrocarbon basestock lubricant., The major
bands at 2800-3000 cm '
and CH, and are what would be expected for this type of material. When this

3
spectrum 1s compared to the spectrum for a synthetic hydrocarbon (PAO) (Figure

,» 1520 cm_l, and 1370 cm_1 wavenumbers are due to C-H

lc), they appear almost identical with one important distinction. The smaltl
band at 1600 cm—l wavenumbers is only seen for the petroleum basestock and 1s
due to aromatics. The synthetic hydrocarbons (PAO) are composed of oligomers
made by polymerizing an olefin, e.g., decene (Clo)’ to form compounds consist-
ing of multiples of this C10

aromatics. Therefore, the band at 1600 cm = is not seen in the spectrum for a

L L |}
olefin, e.g., C20 s C30 S, C"0 s, and contain no

PAO lubricant.
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When the spectra for NASA samples A and B (Figures G-l and G-2) are examined
and compared to the known lubricant spectra (Figure 1), it becomes apparent
that these samples are petroleum basestocks because of the typical C-H and CH3
bands and the small band at 1600 cm“1 typical for aromatics. The small bands
at 1700 cm.l and 1735 cm-l seen on both sample spectra are probably due to

additives such as viscosity improvers, antioxidants, etc.

When the hydrocarbon spectra are compared to the spectrum of the ester-type
lubricant (Figure 1lb), the dissimilarities become apparent. The major band at
1750 cm-1 in the ester lubricant is due to the ester or C=0 bands and is quite

strony and specific. It is not seen in the petroleum spectra.

Firnre 2 shows the chromatograms obtained for known petroleum, PAO, and ester-
type oils,. Each type yields a distinctively different chromatogram. The
broad almost Gaussian-shaped hump of the petroleum oil (Figure 2a) is due to
the large number of similar compounds emerging very close together and, when

compared to the boiling point standard, its BPD may be easily determined.

The PAO chromatogram (Figure 2b) is characterized by the distinct separation
of the cligomer groups. The carbon number range of each oligomer group may be
determined by comparison to a boiling point standard (Figure D-2, Appendix D),

which consists of known compounds eluting in boiling point order.

The chromatogram of the ester-type oil 1is a "fingerprint" pattern (Figure 2c).
It is quite distinctive when the polyol esters cover a relatively broad range
of esterified acids, e.g., CA to CIO monocarboxylic acids. 1If the esters
should be of the dicarboxylic acid type, AFLRL experience has shown that they
usually are very narrow in molecular weight range, e.g., C7 and C8 dicar-
boxylic acids and yield a chromatogram showing a relatively narrow well-
resolved single peak (Figure D-6), By comparing the chromatogram and IR spec-
trum of an unknown sample to the chromatograms and IR spectra of the above

described known oils, the basestock type and whether or not it is a blend of

oil types can be determined.

NASA samples A and B were identified as petroleum basestocks by this techni-
que, and no further chemical characterization was done (Appendix D, Figures

D-4 and D-12).
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From its IR spectrum and boiling point distribution chromatogram, one lubri-
cant sample was identified as a 100 percent synthetic hydrocarbon type (PAO),
AL-11258-L (NASA F) (Figure D-7). The very typical PAO chromatogram indicated
that this lubricant was not a blend. The molecular weight range of the oli-
gomers was identified by comparison to the calibration standard (Figure D-2)
used for the boiling point distribution and to '"standard" PAO lubricants of

known composition (Table F-7),.

One lubricant sample AL~11260-L (NASA G) (Figure D-8) was identified both by
its infrared spectrur and BPD chromatogram as being a mixture of PAO and
ester-type basestocks., Following the analytical characterization scheme, the
entire sample aliquot was transesterified., This yielded two distinct layers,
The larger, upper methanol layver containing the fatty acid methyl esters
(FAME) was carefully separated from the lower layer and analyzed by capillary
GC to determine the FAME composition. By comparison of the FAME analysis to
the methyl ester standards (Figures E~1 and E-2), {t was determined that the
ester portion of this lubricant was composed of C7 and C8 monocarboxylic acids
and TMP. The "Daisy Graph'" (Figure F-5) shows the distribution graphically,
and Table F-8 lists the values, The lower layer was chromatographed accordiny
to the BPD procedure., This yielded a chromatogram typical for a PAC. The PAD
oligomers and their ratios were determined by comparison to the BP standard
and the known PAU materials. In addition, the lower layer was silylated and

analvzed by capillary GC for the presence of any PE and/or DPE.

Analysis of lubricant AL-11262-L (NASA H) (Figure D-9) showed a 100 percent
TP ester-type basestock with the carboxylic acids ranging from C6 to Clq.
The "Daisy CGraph'" (Figure F-6) shows the ratio of the components, and Table

F-9 lists the actual values.

The IR spectra and BPD chromatograms of lubricants AL-11250-L (NASA C) (Figure
D-3), AL-11254-L (NASA D) (Figure D-4), and AL-11270-L (NASA J) (Figure D-13)
indicated a 100 percent ester-~type basestock. The transesterification of
these lubricants produced a precipitate, The capillary GC analysis of the
supernatant laver showed a composition of FAME ranging from Ca to CIO' Fol-
lowing this analysis, the entire transesterified sample was reacted with the

silylating reagents to derivatize the precipitate. Analysis by capillary GC
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of this mixture showed that these lubricants were 100 percent PE ester-type
basestocks., The "Daisy Graphs" (Figures F-2, F-3, and F-8) show the ratio of
the components, and Tables F-4, F-5, and F-11 list the actual values for each

lubricant, which differ for each lubricant,

Analysis of lubricant AL-11264-L (NASA 1) (Figure D-10) showed it to be com-
posed of TMP and PE ester type basestocks, at a 50/50 mixture with the car-
boxylic acids ranging from C_ to C

5 12°
the ratio of the components, and Table F~10 lists the actual values,

The "Daisy Graph" (Figures F-7) shows

Analysis of lubricant AL-11266-L (NASA K) (Figure D-11) showed a mixture of
predominantly (99 percent) PE ester basestock with a small amount (1 percent)
of DPE ester basestock and carboxylic acids ranging from C4 to CIO' The
"Daisy Graphs" (Figure F-9) show the ratio of the components, and Table F-12

lists the actual values.

VI1, CONCLUSIONS AND RECOMMENDATIONS

The results of this new third generation analytical approach to the character-
ization of lubricants clearly indicate that it can be utilized as an estabh-~
lished technique. It provides a quick and efficient route to the qualitative
and quantitative determination of lubricant composition, not only for the
basestock, but also for some organic additives, previously not easily amenable

to analysis in fully formulated lubricants,

The application of newly developed chemical techniques plus the use of capil-
lary column gas chromatography has greatly enhanced AFLRL capability to pro-
vide reliable and accurate information on lubricant composition, It is recom-
mended that additional work continue towards reducing this technique to prac-

tical application.

With regard to the specific heat determination, 1t is recommended that addi-
tional testing continue on filtered lubricants, both new and used, to optimize
the results of this technique., Because of the presence of particulate matter
in a nonhomogeneous mixture, precision was poor, and multiple values had to be

obtained to produce an acceptable average value,
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During the LFW-1 friction and wear testing, sowe areas for improvement in

testing surfaced.

Based on this work, the following additional activities are recommended to

better characterize the above discussed lubricants:

° Perform additional LFW-1 friction and wear testing to determine 1if
optimum test conditions such as temperature, load, wear specimen
material, etc., can be established to better characterize the fric-

tion and wear properties of the lubricants and their basestocks.

™ Perform ball-on-cylinder machine (BOCM) tests for comparison with
the LFw=1 test machine results., The BOCM in its present configura-
tion is primarily employed for fuel lubricity evaluations and would
need to be modified with a higher temperature capability for lubri-
cating o0il evaluations. This machine 1is being widely used by CRC,
compercial organizations, and testing laboratories for lubricity

wors both in this country and abroad.

o Since considerable engineering interest is being expressed in trac-
tion drives for new helicopter power systems, the methodology
developed 1in this program should be applied to traction fluids,
These fluids are chemically different from the petroleum oils,
svnthetic PAQ's, and synthetic esters analyzed in this program.
Traction fluids have special physical properties resulting from the
unique chemical structures of the composite compounds employed. A
major tvpe of structure reported to be used in traction fluids is
hydrogenated copolymers of o« -me'hyl styrene and butadiene. These
compounds exhibit reversible semi-solidification under extreme
pressure and shear. The current methodology should be applied to
compounds of this and other types to determine where it is useful
and should be expanded to provide the necessary compositioned infor-

mation in those areas where the need exists.
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APPENDIX A

PHYSICAL TEST DATA




TABLE A-1. ANALYTICAL REPORT
SYNTHETIC LUBRICANT ANALYSIS

Viscosity @ Listed

NASA-Lewis SwR1 Temperature, cSt
Description 0il Code 40°C 82°C 100°C
A-New AL-11252-L 37.48 10,48 7.01
A-Used AL-11253-L 34.84 9.73 6.51
B-New AL-11268-L 33.15 9.64 6.52
B-Used AL-11269-L 31,79 9.21 6.24
C-New AL-11250-L 26,40 7.69 5.13
C-Used AL-11251-L 26.28 7.69 7.01
D-New AL-11254-L 26.17 7.50 5.00
D-Used AL-11255-L 26.12 7.49 4.99
E-New AL-11256-L 33.91 8.91 5.87
E-Used Al-11257-L 33.70 8.89 5.85
F-New AL-11258-L 28.01 8.15 5.36
F-Used AL-11259-L 27.98 8.04 5.35
G-tew AL-11260~L 56.65 15,05 9.83
G-Used AL-11261-L 51.13 13.75 8.96
H-New AL-11262-L 13.16 4,73 3.38
H-Used AL-11263-L 13.05 4,65 3.32
1-New AL-11264~L 24,19 7.18 4,85
I-Used AL-11265-L 23.88 7.11 4.82
J-New AL-11270-L 24.76 7.23 4,89
J-Used AL-11271-L 24.60 7.20 4,88
K-New AL-11266-L 26,39 7.61 5.09
K~Used AL-11267-L 25,17 7.50 5.04
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TABLE A-2. ANALYTICAL REPORT
SYNTHETIC LUBRICANT ANALYSIS

NASA-~Lewis SwRI Specific Gravity @ Listed Temperature,
Description 0il Code 40°C 82°C 100°C API Gravitv
A-New AL-11252-L 0.8620 0.8558 0.8514 29.8
A-Used AL-11253-L 0.8622 0.8544 0.8533 29.8
B-New AL-11268-L 0.8626 0.8548 0.8546 26,9
B-Used AL-11269-L 0.8625 0.8545 0.8552 29.9
C-New AL-11250-L 0.9973 0.9862 0.9843 8.2
C-Used AL-11251-L 0.9966 0.9880 0.9844 8.2
D-New AL-11254~-1L (0.9868 0.9768 0.9746 9.7
D-Used AL-11255~L 0.9867 0.9773 0.9745 9.7
E-New Al-11256-L 0.9322 0.9211 0.9201 17.7
E-Used AL-11257-L 0.9305 0.9215 0.9205 17.9
F-New Al-11258-L 0.8262 0.8108 0.8088 36.0
F-Used AL-11259-L 0.8244 0.8150 0.8139 36.3
G-New AL-11260-1 0.8629 0.8536 0.8527 29.6
G-Used AL-11261-L 0.8626 0.8517 0.8532 29.7
H-New Al-112A2-L 0.9442 0.9320 0.9313 15.7
H-Used AL-11263-L 0.9438 0.9348 0.9307 15.8
I-New Al-11264-1L 0.9659 0.9568 0.9546 12.8
I-Used AL-11265-1 0.9659 0.9566 0.9544 12.8
J-New AL-11270-L 0.9856 0.9759 0.9747 10.1
J-Used AL-11271-L 0.9856 0.9765 0.9747 10.1
K-New AL~11266-L 0.9829 0.9721 0.9725 10.3
K-lU'sed AL-11267-L 0.9824 0.9755 0.9718 10.3
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TABLE A-3. ANALYTICAL REPORT
SYNTHETIC LUBRICANT ANALYSIS

NASA-Lewls SwRI Total Acid Number
Description 0il Code (mg KOH/g)
A-New Al-11252-L 0.54
A-Used AL~11253-L 0.54
B-New AL~11268-L 0.62
B-Used AL~11269-L 0.62
C-New AL~11250-L 0.01
C-Used AL-11251-L 0.02
D-New AL-11254-L 0.07
D-Used AL~11255-L 0.07
E-New AL-11256-L *15,8
E-Used AL-11257-L *15.7
F-New AL-11258-L 0.42
F-Used AL-11259-L 0.51
G-New AL-11260-L 3.2
G-Used AL-11261-L 3.5
H-New AL-11262-L 0.34
H-Used AL-11263-L 0.34
I-New AL-11264-L 0.34
I-Used AL-11265-L 0.38
J-New AL-11270-L 0.51
J-Used AL-11271-L 0.38
K-New AL-11266-L 0.48
K-Used AL-11267-L 0.43

*Strong Acid Value = 7,1 on sample AL-11256~L and AL-11257-L
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TABLE A-4., ANALYTICAL REPORT
SYNTHETIC LUBRICANT ANALYSIS

No. of Particles/100 mlL
Particle Sizes in Micrometers

NASA-Lewis SwR1I
Description 0il Code 5-15 15-25 25-50 50-100 100 Fihers

A-New AL-11252-L 17 2 2 4 10 12
A-Used AL-11253-L 4 1 6 7 11 10
B~New AL-11268-L 6800 2980 200 40 44 [12
B-Used AL-11269-L 49 51 27 23 16 18
C=New AL-11250-L 72 36 18 12 10 7
C-Used AlL-11251-L 4 1 2 1 5 9
D-New AL-11254-L 685 275 35 22 15 20
D-Used AL-11255-L 200 €5 38 24 21 39
E-New AL-11256-1. 120 60 23 25 22 33
E-Used AL-11257-~L 44 7 10 13 12 19
F-New AL-11258~L 60 16 30 13 7 22
F-Used AL-11259~L 475 8 2 5 6 52
C=New AL-11260-~L 49 39 45 38 34 78
=Used AL-11261~L 4740 10 11 9 6 34
H-tew AL-11262~L 1780 72 45 4Q 25 32
H-Used AL-11263~L 1850 118 108 60 52 62
[-New AL-11264~L 54 23 17 16 4 19
I-Used AL-11265~L 840 660 450 210 80 120
J-New AL-11270-L 47 22 10 7 12 18
J-Used AL-11271~L 36 18 14 8 11 29
K-New Al-11266-L 185 175 100 70 35 45
K-Used AL-11267-L 105 48 35 21 20 22
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TABLE A-6., SYNTHETIC LUBRICANT ANALYSIS ;
NASA-Lewis SwR1
Description 0il Code Notes on XRF Particulate Metal Analysis
A-New AL-11252 P, Ba and S present from additive package.
A-Used AL-11253 Al, Fe, Ni, Cu+Zn present as wear metal
particles, !
B-New AL-11268 High S probably from additives. .
B-Used AL-11269 Al, Fe, Zn present as wear metal particles. !
C-New AL-11250 P present as additive. A
C-Used AL-11251 Al, Fe, Ni, Cu, and Zn present as wear metal
particles, 4
D-New AL-11254% 4
D=-Used AL-11255 Al, Fe, Ni, Cu, Pb, Zn present as wear metal
particles,
FeNew AL-~11256 High Zn content and Cl content as well as P, !
S, Ca, Ba, all from additive package. This )
additive package more typical of reciproca- g
ting piston engine oil. Strong acid proba-
bly due to free sulfonic acid from the addi- ]
tives,
E-Used AL~11257 Al, Fe, Cu present as wear metal particles. ]
F-New AL~11258 0il as received had tarry deposit at bottom
of jar which could not be redissolved or
suspended in oil,
F-Used AL-11259 A precipitate of rather large particles at
the bottom of the jar could be resuspended,
but made filtration difficult and caused a
reduction in sample size used for XRF analy-
sis,
G=Nuew AlL-11260 Some plugging of the filter caused a reduc-
tion in sample size used in XRF analysis.
High S, Ca, Zn probably from additives.
G-Used AL-11261 Al, Fe present as wear metal particles,
H-New AL-11262
H-Used AL-11263 Al, Fe, Cu, Zn present as wear metal parti-
cles.
I-New AL-11264
I-Used AlL-11265 Al, Fe, Zn present as wear metal particles,
J=New AL-11270
J~Used AlL-11271 Fe, Cu present as wear metal particles.
K~New AL-11266
K~Used AlL-11267 Al, Fe, Pb present as wear meatl particles.
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TABLE A-7. ANALYTICAL REPORT
SYNTHETIC LUBRICANT ANALYSIS

TOTAL IRON ANALYSIS BY COLORIMETRIC METHOD*

NASA-Lewis SwRI Iron Content
Description 0il Code (PPM)
A-New AL-11252-L 1

‘ A-lUsed AL-11253-L 4

: B~-New AL-11268~L <1

‘ B-Used AL-11269-L <1

| C-New AL-11250-L 1

; C-Used AL-11251-L

i D-New AlL-11254-L <1

{ D-Used AL-11255-L 1

{

! E-New AL-11256-L <1

11 E-Used AL-11257-L i

!1 F-New AL-11258-L <1

; F-Used AL-11259-L 2

J

! G~-New AL-11260-L 2

; G-Used AL-11261-L 3

]

i H~New AlL-11262-L <]

! H-Used AL-11263-L

|
I-New AL-11264-1L <1

! I-Used AL-11265-L <1

i

; J-New AL-11270-L <1

! J-Used AL-11271~L <1

5 K-New AL-11266-L <1

' K-Used AL-11267-L <1

*Technical Report AFWAL-TR-80-4022




TABLE A-8.

ANALYTICAL REPORT
SYNTHETIC LUBRICANT ANALYSIS

Specific Heat Measurement

@ Listed Temperature

NASA-Lewis SwRI 82°C 100°C 140°C
Description 0il Code CpT g CpT o Cp~ a
A-New AL-11252-~L 0.42 0.091 0.42 0.12 0,44 0.14
A-Used AL-11253-L 0.41 0.094 0.42 0.088 0.41 0.071%
B-New AL-11268-L 0.50 0.048 0.50 0.051 0.49 0.070
B-Used AL-11269~L 0.49 0.040 0.48 0.038 0.49 0.059
C-New AL-11250~-L 0.33 0.097 0.32 0.097 0.32 0.091
C=tsed AL-11251-L 0.42 0.026 0.40 0,024 0.40 0,044
—New AL-11254-L 0.33 0.071 0.34% 0.072 0.34 0.084%
D=lged AL-11255-L 0.51 0.048 0,52 0.092 0.46 0.1la*
E-New Al=-11256-L 0.68 0.11 0.73 0.13 0.76 0.20
E-lsed Al~-11257-L 0.60 0.063 0.59 0.069 0.58 0.06h
F-New Al=-11253-L 0.5 0.12 0.54 0.13 0.54 0.14
F-Used AL-11259-L 0.62 0.014 0.62 0.014 0.61 0.013%*
C=New Al~-11260-L 0.5 0.091 0.47 0.058 0.42 0.059
G-Used AL-11261-L 0.53 0.13 0.49 0.12 0.4 0.15
H~New AL-11262-1L 0.37 0.036 0.30 0.037 0.31 0.094
H-"sed AlL-11263-L 0.45 0.026 0.35 0.037 0.32 0.040%
[-New AL-11264-1L 0.53 0.060 0.47 0.039 0.44 0.075%
[=Used Al-11265-L 0,48 0.087 0.40 0.085 0.40 0.10
J-New Al-11270-L 0.47 0.031 0.48 0.030 0.49 0.030
J-Used AL-11271-L 0.34 0.02 0.34 0.028 0.34 0.029
K-New Al.-11266-L 0.44% 0.073 0.38 0.076 0.34 0.075
K-Used AlL-11267-L 0.36 0.098 0.27 0.11 0.27 O.11%
*For calculation of Cp and ¢ (standard deviation) one value,
inordinately different from the others, was discarded., Thus, four

values rather than five were used to determine these data.

+Cp= (mcal/mg deg C)
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APPENDIX B

FRICTION AND WEAR TEST DATA
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APPENDIX C

HIGH~PRESSURE VISCOSITY TEST DATA
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APPENDIX D

BOILING POINT DISTRIBUTION DATA
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BOILING POINT, °C
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BOILING POINT, °C
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APPENDIX E

BASESTOCK CHARACTERIZATION STANDARDS
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APPENDIX F

BASESTOCK CHARACTERIZATION DATA
WITH DAISY GRAPHS
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TABLE F-2. BASESTOCK CHARACTERIZATION

SAMPLE DESIGNATION: A
AFLRL No.: AL-11252-L |
Chemical Data
° Polyol Ester Components . Basestock Type wt7
Monocarboxylic Acids wtZ Dibasic Acid Ester
Butanoic, C4 Polyol Ester
iso Petanoic, C5 TMP Ester
Pentanoic, C5 PE Ester
Hexanoic, C6 DPE Ester
iso Heptanoic, C7 Petroleum 100
Heptanoic, C7 Synthetic Hydrocarbon
iso Octanoic, C8
Octano?c, C8 Polyols wt7
Nonanoic, C9
Decanoic, Clo Trimethylolpropane,
(TMP)
[ Dibasic Acid Ester Components
Dicarboxylic Acids Pentaerythritol,
Succinic, C4 (PE)
Glutaric, C5
Adipic, C6 Dipentaerythritol,
Pimelic, C7 (DPE)
Subaric, C8
Azelaic, C9 Mono Alcohols
Sebacic, C10 n-Heptanol (C7)
-, Cl1 2-Ethylhexanol (C8)
-, €12 Octanol (Cg)
Nonanol (Cg)
o Synthetic Hydrocarbon Components Decanol (CIO)
Hydrocarbon Type Undecanol (Cll)
Triacontane, 030 Dodecanol (Clz)
Tetracontane, CL0 Tridecanol (C13)

Pentacontane, C

T = Trace
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TABLE F-3. BASESTOCK CHARACTERIZATION

SAMPLE DESIGNATION: B
AFLRL No.: AL-11268-L

Chemical Data
‘ . Polyol Ester Components ° Basestock Type wt’
Monocarboxylic Acids wtZ Dibasic Acid Ester ~—
Butanoic, CA Polyol Ester
1 iso Petanoic, 05 TMP Ester
- Pentanoic, CS PE Ester
Hexanoic, C6 DPE Ester
iso Heptanoic, C7 Petroleum 100
Heptanoic, C7 Synthetic Hyd -arbon
iso Octanoic, CS
gctanoic, C8 Polyols __E
onanoic, C9
Decanoic, C10 Trimethylolpropane,
(T™™P)
[ ] Dibasic Acid Ester Components
Dicarboxylic Acids Pentaerythritol,
Succinic, C, (PE)
Glutaric, CS
Adipic, C6 Dipentaerythritol,
Pimelic, o (DPE)
~ Subaric, C8
Azelaic, C9 Mono Alcohols
Sebacic, C10 n-Heptanol (C7)
-, C11 2~-Ethylhexanol (C8)
- C12 Octanol (Cs)
Nonanol (C9)
: ° Synthetic Hydrocarbon Components Decanol (Clo)
; Hydrocarbon Type Undecanol (Cll)
Triacontane, C30 Dodecanol (C12)
! Tetracontane, C40 . Tridecanol (013)
Pentacontane, C50
T = Trace




TABLE F-4. BASESTOCK CHARACTERIZATION
SAMPLE DESIGNATION: C
AFLRL No,: AL-11250-L
Chemical Data
. Polyol Ester Components ° Basestock Type wt%
Monocarboxylic Acids wtX Dibasic Acid Ester
Butanoic, CA T Polyol Ester 100
iso Petanoic, C5 T™MP Ester
Pentanoic, C5 46 PE Ester
Hexanoic, C6 10 DPE Ester
iso Heptanoic, C7 Petroleum
Heptanoic, C7 17 Synthetic Hydrocarbon
iso Octanoic, C8
Octanoic, C8 10 Polyols wt7
Nonanoic, C9 13
Decanoic, C10 4 Tt imethylolpropane,
(T™MP)
° Dibasic Acid Ester Components
Dicarboxylic Acids Pentaerythritol, 100
Succinic, C4 (PE)
Glutaric, CS
Adipic, C6 Dipantaerythritol,
Pimelic, C (DPE)
; 7
Subaric, C8
Azelaic, C9 Mono Alcohols
Sebacic, C10 n-Heptanol (C7)
- i 2-Ethylhexanol (C8)
- C12 Octanol (C8)
Nonanol (Cg)
° Synthetic Hydrocarbon Components Decanol (ClO)
Hydrocarbon Type Undecanol (Cll)
Triacontane, C30 Dodecanol (CIZ)
Tetracontane, C40 Tridecanol (C13)
. Pentacontane, C
50
T = Trace
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TABLE F-5. BASESTOCK CHARACTERIZATION

SAMPLE DESIGNATION: D
AFLRL No.: AL-11254-L

Chemical Data

° Polyol Ester Components ] Basestock Type wt?
Monocarboxylic Acids wt? Dibasic Acid Ester
Butanoic, CA 9 Polyol Ester 100
iso Petanoic, C5 TMP Ester
Pentanoic, C5 18 PE Ester
Hexanoic, C6 13 DPE Ester
iso Heptanoic, C7 Petroleum
Heptanoic, C7 16 Synthetic Hydrocarbon
iso Octanoic, C8
Octano%c, Cq 24 Polyols wt%
Nonanoic, 09 16
Decanoic, C10 4 Trimethylolpropane,
(TMP)
] Dibasic Acid Ester Components
Dicarboxylic Acids Pentaerythritol, 100
Succinic, CA (PE)
Glutaric, C5
Adipic, C6 Dipentaerythritol,
Pimelic, C7 (DPE)
Subaric, C8
Azelaic, C9 Mono Alcohols
Sebacic, C10 n-Heptanol (C7)
- Cl1 2-Ethylhexanol (C8)
-, iz Octanol (CB)
Nonanol (C9)
0 Synthetic Hydrocarbon Components Decanol (Clo)
Hydrocarbon Type Undecanol (Cll)
Triacontane, C Dodecanol (CIZ)
Tetracontane, C Tridecanol (Cl3)
Pentacontane, C
50
T = Trace
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TABLE F-6. BASESTOCK CHARACTERIZATION

SAMPLE DESIGN°TION: E
AFLRL No.: AL-11256-L

Chemical Data

P

e Polyol Ester Components (] Basestock Type wt?
Monocarboxylic Acids wti Dibasic Acid Ester 100
Butanoic, C4 Polyol Ester
iso Petanoic, C5 T™MP Ester
Pentanoic, CS PE Ester
Hexanoic, C6 DPE Ester
iso Heptanoic, C7 Petroleum
Heptanoic, C7 Synthetic Hydrocarbon
iso Octanoic, C8
Octanoic, C8 Polyols wtZ
Nonanoic, C9
Decanoic, C10 Trimethylolpropane,
(T™™P)
B ® Dibasic Acid Ester Components
Dicarboxylic Acids Pentaerythritol,
Succinic, C, (PE)
Glutaric, C5 63
Adipic, C6 37 Dipentaerythritol,
A Pimelic, C7 (DPE)
Subaric, C8
Azelaic, C9 Mono Alcohols
Sebacic, C10 n-Heptanol (C7)
-, i1 2-Ethylhexanol (CB)
- C12 Octanol (C8)
Nonanol (C9)
° Synthetic Hydrocarbon Components Decanol (Clo)
Hydrocarbon Type Undecanol (Cll)
Triacontane, C Dodecanol (C12)
Tetracontane, C40 Tridecanol (C13) 100
Pentacontane, C50
{
T = Trace ’




TABLE F-7. BASESTOCK CHARACTERIZATION

SAMPLE DESIGNATION: F
AFLRL No,: AL-11258-L

Chemical Data

[ Polyol Ester Components o
Monocarboxylic Acids wt¥
Butanoic,
iso Petanoic,
Pentanoic,
Hexanoic,
iso Heptanoic,
Heptanoic,
iso Octanoic,
Octanoic,
Nonanoic,
Decanoic,

eNeNeNsEzEe2EsEs X2 Ke!
= OISRV NS

0

[ Dibasic Acid Ester Components
Dicarboxylic Acids

Succinic,
Glutaric,
Adipic,
Pimelic,
Subaric,
Azelaic,
Sebacic,

[Eode - NEN Bo NNV, I o8

’

OO0OO00O0CO 00

et
N - O

° Synthetic Hydrocarbon Components
Hydrocarbon Type

Triacontane, C 43
Tetracontane, C40 45
Pentacontane, C50 12

T = Trace
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Basestock Type
Dibasic Acid Ester
Polyol Ester

TMP Ester
PE Ester
DPE Ester
Petroleum
Syn, Hydrocarbon
Polzols
Trimethylolpropane,
(T™MP)

Pentaerythritol,

(PE)

Dipentaerythritol,

(DPE)

Mono Alcohols
n-Heptanol (C7)
2-Ethylhexanol (C8)
Octanol (C8)
Nonanol (Cg)
Decanol (CIO)
Undecanol (Cll)
Dodecanol (C}5)
Tridecanol (C13)

100

8
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AL-11260-L

Chemical Data

i TABLE F-8.
SAMPLE DESIGNATION:
AFLRL No,:
. Polyol Ester Components
Monocarboxylic Acids wt%
Butanoic, C4
iso Petanoic, C5
{ Pentanoic, C
. 5
Hexanoic, C6
iso Heptanoic, C7
Heptanoic, C7 73
iso Octanoic, C8
Octanoic, c 27
8
Nonanoic, C9
Decanoic C
‘ ’ 10
° Dibasic Acid Ester Components
Dicarboxylic Acids
Succinic, Cq
Glutaric, C5
Adipic, C6
Pimelic, C7
Subaric, C8
» Azelaic, C9
Sebacic, C
10
-, C
. Cll
’ 12
. Synthetic Hydrocarbon Components

Hydrocarbon Type
Triacontane, C30 38
Tetracontane, C 50

Pentacontane, C50 12

T = Trace
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BASESTOCK CHARACTERIZATION

Basestock Type wt?l
Dibasic Acid Ester

Polyol Ester 20
TMP Ester
PE Ester
DPE Ester
Petroleum
Syn. Hydrocarbon 80
Polyols wt?
Trimethylolpropane, 100
(TMP)
Pentaerythritol,
(PE)
Dipentaerythritol,
(DPE)
Mono Alcohols
n-Heptanol (C7)
2-Ethylhexanol (C8)
Octanol (C8)
Nonanol (C9)
Decanol (Clo)
Undecanol (cll)
Dodecanol (CIZ)
Tridecanol (C13)




i TABLE F~9., BASESTOCK CHARACTERIZATION

SAMPLE DESIGNATION: H
AFLRL No.: AL-11262-L

Chemical Data

] Polyol Ester Components e Basesgtock %zge wt?
Monocarboxylic Acids wtl Dibasic Acid Ester ~—
Butanoic, C4 Polyol Ester 100
iso Petanoic, CS TMP Ester
Pentanoic, C5 PE Ester
Hexanoic, C6 T DPE Ester
iso Heptanoic, C7 35 Petroleum
Heptanoic, C7 50 Synthetic Hydrocarbon
iso Octanolc, CB
Octanoic, 08 1 Polyols wt?
Nonanoic, C9 7
. Decanoic, C10 5 Trimethylolpropane, 100
; Dodeconoil C12 2 (T™P) :
] Dibasic Acid Ester Components
Dicarboxylic Acids Pentaerythritol,
Succinic, C4 (PE)
Glutaric, C5
Adipic, C6 Dipentaerythritol,
Pimelic, C (DPE)
] 7
Subaric, C8
Azelaic, C9 Mono Alcohols
Sebacic, C10 n-Heptanol (C7)
- €1y 2-Ethylhexanol (CB)
-, C12 Octanol (Cs)
Nonanol (C9)
. Synthetic Hydrocarbon Components Decanol (Clo)
Hydrocarbon Type Undecanol (Cll)
Triacontane, C Dodecanol (Clz)
Tetracontane, C Tridecanol (c 1 3)
Pentacontane, C50
L 4
T = Trace

T

|
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TABLE F-10. BASESTOCK CHARACTERIZATION

SAMPLE DESIGNATION: I
AFLRL No.: AL-11264-L

Chemical Data

° Polyol Ester Components ) Basestock Type wtZ
Monocarboxylic Acids wt? Dibasic Acid Ester
Butanoic, CA Polyol Ester 100
iso Petanoic, CS TMP Ester 50
Pentanoic, C5 13 PE Ester 50
Hexanoic, C6 2 DPE Ester
iso Heptanoic, C7 Petroleum
Heptanoic, C7 19 Synthetic Hydrocarbon
iso Octanoic, 08
Octanoic, C8 30 Polyols wtl
Nonanoic, C9 4
Decanoic, C10 32 Trimethylolpropane, 55
Dodeconoil C12 T (TMP)
° Dibasic Acid Ester Components
Dicarboxylic Acids Pentaerythritol, 45
Succinic, C, (PE)
Glutaric, C5
. Adipic, C6 Dipentaerythritol, i
Pimelic, C7 (DPE)
Subaric, CS
Azelaic, C9 Mono Alcohols
Sebacic, C10 n-Heptanol (C7)
-, iy 2-Ethylhexanol (C8)
- C12 Octanol (C8)
Nonanol (C9)
) Synthetic Hydrocarbon Components Decanol (CIO)
Hydrocarbon Type Undecanol (Cll)
Triacontane, C3 Dodecanol (C12)
. Tetracontane, C40 Tridecanol (013)
) Pentacontane, C
50
T = Trace
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TABLE F-11. BASESTOCK CHARACTERIZATION

SAMPLE DESIGNATION: J
AFLRL No.: AL-11270~L

Chemical Data

. Polyol Ester Components ] Basestock Type w2
Monocarboxylic Acids wtX Dibasic Acid Ester
Butanoic, Ca T Polyol Ester 100
iso Petanoic, C5 TMP Ester
Pentanoic, C5 22 PE Ester
Hexanoic, C6 14 DPE Ester
iso Heptanoic, C7 Petroleum
Heptanoic, C7 21 Synthetic Hydrocarbon
iso Octanoic, C8
Octanoic, C8 8 Polyols wt?
Nonanoic, C9 23
Decanoic, C10 12 Trimethylolpropane,
(T™™P)
. Dibasic Acid Ester Components
Dicarboxylic Acids Pentaerythritol, 100
Suceinic, C, (PE)
Glutaric, CS
Adipic, C6 Dipentaerythritol,
Pimelic, c, (DPE)
Subaric, 08
Azelaic, C9 Mono Alcohols
Sebacic, C10 n-Heptanol (C7)
- Cy 2-Ethylhexanol (CB)
- C12 Octanol (C8)
Nonanol (097
[ ] Synthetic Hydrocarbon Components Decanol (Clo)
Hydrocarbon Type Undecanol (Cll)
Triacontane, C30 Dodecanol (Clz)
Tetracontane, C,, Tridecanol (Cl3)

Pentacontane, C50

T = Trace




TABLE F-12,

BASESTOCK CHARACTERIZATION

SAMPLE DESIGNATION:

AFLRL No,:

AL-11266-L

Chemical Data

Polyol Ester Components

Monocarboxylic Acids
Butanoic,
iso Petanoic,
Pentanoic,
Hexanoic,
iso Heptanoic,
Heptanoic,
iso Octanoic,
Octanoic,
Nonanoic,
Decanoic,

OO0OOO0O0O0O0O0ON000
=0 0000 NN S

wt?

T

22
16

24

Dibasic Acid Ester Components

Dicarboxylic Acids
Succinic, C
Glutaric, c
Adipic, C
Pimelic, c
Subaric, o
Azelaic, C
Sebacic, C

C
c

]

(=N~ B A JC ¥ -

10
- 11
' 12

Synthetic Hydrocarbon Components

Hydrocarbon Type
Triacontane, C
Tetracontane, C
Pentacontane, C50

T = Trace

120

Basestock e wt_z
Dibasic Acid Ester
Polyol Ester 100

TMP Ester

PE Ester 99

DPE Ester 1
Petroleum

Synthetic Hydrocarbon

Polyols %
Trimethylolpropane,
(T™™P)
Pentaerythritol, 98
(PE)
Dipentaerythritol, 2
(DPE)
Mono Alcohols
n-Heptanol (c,)
2-Ethylhexanol (CS)
Octanol (Ca)
Nonanol (C9)
Decanol (Clo)
Undecanol (cll)
Dodecanol (c12)
Tridecanol (C13)




APPENDIX G

INFRARED SPECTRA
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Interim Report AFLRL No. 166
entitled
"Advanced Chemical Characterization and Physical Properties
of Eleven Lubricants” AD No. A131945 (CR-168187)

The NASA Code nomenclature for Figures A-1 through A-11 were designated in-
correctly in the report. The correct codes are indicated in the right
column opposite the erroneous designation.

APPENDIX A - PHYSICAL TEST DATA
(TO BE INSERTED BETWEEN PAGES 48 AND 49)

As Shown Should be
FIGURE A~1. NASA-A Correct as is
FIGURE A~2, NASA-B NASA-F
FIGURE A-3. NASA-C NASA-B
FIGURE A~4, NASA-D NASA-C
FIGURE A~5. NASA-E NASA-D
FIGURE A~6, NASA-F NASA-H
FIGURE A-7. NASA-G NASA-E
FIGURE A~8. NASA-H NASA-G
FIGURE A-9.,  NASA-1 Correct as is
FIGURE A-10. NASA-J NASA-K
FIGURE A-11. NASA-K NASA-J
(WD12,P)
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