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PRINCIPAL NOMENCLATURE

{Note: Equation numbers arec given below where it may help to identify the
point of first introduction of a symbol.]

Alx,y)
Ag

b(x)
C(y)

F

£(2)
G(X,Y;¢&,n)
g

H(x)
H(x;¢e)
ﬁ(x;e)
Hj(X3€)
K(x)

L

ﬂj(X;”)

Factor in f£(Z) (36)

Constant factor in él (46)

1A(x,0) /b, (x,eH)  (40)

Body curvature (48d)

Froude number, U/(gL)l/:

Complex potential in outer solution (31)

Green function used in inner region (63)
Gravitation constant

(1/¢) x(free-surface elevation)

(1/¢)x(free-surface elevation in 'naive expansion') (9)
(1/e) x(free-surface elevation of wave motion) (9)
j-th term in expansion of H in inner region (55)
do(x)/dx (14)

Typical body dimension

Unit normal to body surface, directed into the body
Forward speed

Constant = - C(0)¢, . (%4,0) (48c)

Complex function defined in outer solution (33)
/K (27)

Horizontal Cartesian coordinate

x-coorcdinate of downstream intersection of body and undisturbed
free surface or, approximately, of downstream stagnation point

y/e 1in outer solution (13); [y - eH(x)])/c® in inner solu-
tion (52)

Y-H in outer solution (27)
Vertical Cartesian coordinate

Z+1iY 1in outer solution (30)

Exponent of € in outer solution (10),(11)
Small parameter of the problem = F2 = U2/gL

Term in expansion of H(x;e) (11)
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A
L4

a(x)

8(x)

u(yY)

v

P(x,y)
$(x,y3€)
$(x,y;¢€)
$;5(X,Y;¢)
¢3(x,y;0,Y)
P (x,y)

- vi -

Rapidly varying phase function in outer solution (12}
e0(x) (12)

Source density on body surface (65)

Nondimensional wave number = l/ug

Velocity potential of complete problem

Velocity potential in '"naive expansion" (8}

Velocity potential for wave motion (8)

Term in expansion of ¢ in inner region (54)

Term in expansion of 5(x,y;e) in outer region (10)

Velocity potential in double-body problem (48e)
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Lﬂ I. INTRODUCTION .

There have been two kinds of methods published for <reating the

ship/wave problem for a ship moving at very low speed:

(1) First Ogilvie (1968) used an order-of-magnitude argument to
obtain a linear free-surface condition that would lead to the prediction
of a plausible wave motion at very low speeds. There were two essenticl
points: (a) the waves should have very short wavelength, and (b) the
waves should propagate on the nonlinear streaming flow around the correspond-
‘ ing double body. In the linear wave problem, the apparent cause of wave
,.; generation is an eifective pressure distribution on the free surface, which
;_ arises mathematically because the double-body flow does not really satisfy
the precise free-surface conditions. Ogilvie treated only the case of a
fully submerged two-dimensional body. Later, Baba and Takekuma (1975) cxtendcd
this concept to solve the problem of a three-dimensional surface-piercing body,
e.g., a ship. They went so far as to derive a wave-resistance formula based
on this approach. Maruo and Fukazawa (1979) extended this approach further,

using a coordinate transformation to simplify the analysis.

(2) Keller (1974) developed the first ray theory for the low-speed

problem. Inui and Kajitani (1977) used a procedure based on a method of

Ursell's (1960), which is essentially a ray method. Later, Keller (1979)
further developed his ray method with systematic asymptotic expansions, and B
he applied his theory to a thin ship and a special class of "“strzamlined"
ships. In Keller's ray theory, the waves are apparently generated only at
the stagnation points on the body; the amplitude and phase of the waves 7
are then modified gradually by the nonuniform flow around the double body.

There are difficulties in both methods. In the first, the linear

" free-surface condition can be written in such a way that the terms on, say,

Bod

the left-hand side are rapidly varying wavelike quantities, while those on
the right-hand side are slowly varying in space. The latter are completely
known; they represent the fictitious pressure field imposed on the free

b surface. The situation can be compared to the much simpler problem cited

N -

by Keller (1979) (see his Appendix A):
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u"(x) + ku(x) = g(x) ,
where g(x) 1is analogous to the fictitious pressure distribution. If Kk

is very laryge, wave solutions of this differential ecuation repres. ttovery
short waves. The general solution of the above equation can, of course, be
written out explicitly, and it can then be expanded asymptotically fo -

k >« ., If the domain of x is =-= < x < 4= , the only part of the asymriotic
expansion that represents waves comes from the homogeneous probler, =nd its
amplitude and phase can be determined ¢.ruerally only if somr-how they are

known at some point, possikly at infinity. 1In addition, there is a particular
solution, which canbe represented asymptotically as a series in inveorse

powers of k% ; it represents a slowly varying solution if g(x) is

slowly varying (as assumed). If the domain is restricted to, say, 0 SX <o,
the wave part of the solution depends c¢ntirely on the values of g(x) and

its derivatives at x = 0 and on the two boundary conditions imposed on

u{x) . So we can say that the generation of waves in such a case is unaffected
by the function g(x) except in a neighborhood of x = 0. This raises

a doubt about the fundamental supposition of the first method, namely, that

the waves are generated (mathematically speaking) by the fictitious pressure
distribution on the free surface. All that matters is the behavior of g{x)

near x = 0.

Dagan (1972) pointed out that the base flow on which the waves propagate
should not be just the double-body flow, as assumed by Ogilvie and others, but
at least two terms in the "naive expansion," which is the expansion that is
obtained if the problem is expanded formally and strictly in terms of power
series in the Froude number. Keller (1979) arrived at the same conclusion
and noted further that then the fictitious pressure distribution vanishes from
the wave problem. That is, the free-surface condition becomes homogeneous.

In fact, in Keller's (1979) ray theory, the wave part of the velocity
potential function satisfies the Laplace equation, which is homogeneous, as
well as homogeneous free-surface and body boundary conditions. Thus any
solution that is found can be multiplied by an arbitrary constant. Keller
introduced a so-called "excitation coefficient" for certain simple special
cases. Still, his method fails near the stagnation point of the double-body

flow: From the dispersion relation, the wave number becomes inifinte there,
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and the amplitude of the wav- s becomes infinit - tou.  S1nce, as Keller himself

ointed out, the generation of waves in the short-wave problem deponds essentiall
! I Y

on conditions at the boundary polint (consider again the simple dirTferential-
equation problem cited above), the failure of the ray-theorv assumprions near

a stagnation point seems to be crucial.

We present here the second part of a study to resolve these questioas.
The first part is reported by Ogilvie and Chen (1982); it will be referred to

subsequently simj*ly as "I". They d-rived o nonhomogeneous body boundarv condicion

4 R

for the wave part of the potential function. Their free-surface conditicn is
homogeneous, as required trom tihe work ¢f Keller. The nonhomogenei*y of the
body boundary condition is, as we shall show, adeguate for detevininina the

solution without any arbitrary additive or multiplicative gquantities. .’

We use the method of matched asymptotic expansions to solve the low-speed
problem in two dimensions. Our outer region is a thin layer near the free

surface, far behind the body (in terms of wavelength). We usc the gencralized >

-

WKB method to determine the nature of the wave motion in this region; this
method is very similar to a ray method. Then we formulate a near-field

problem, applicable to a very small region near the stagnation point. Con-

siderations of the flow properties near a stagnation point are found to be 1
sufficient for determining the near-field solution completely. Then matching

to the outer solution permits the latter to be determined as well.

The final formuia for the wave resistance, Equation (89), is surprising:

o
9

Wave resistance is proportional to u*8 , where U 1is the forward speed. We o
believe that this is the correct asymptotic relationship, although it is not

likely to be useful to a naval architect. It clearly has no range of validity

¢
.
-
P- . N
f in U in which its predictions overlap those from conventional wave-resistance
?' analyses. What is still needed is a small-U solution that gives this formula L
. as U > 0 and gives the results of conventional linear thoery as U » «
5 There is an even stronger contrast between the low-speed theory and
a conventional linear theory in the case of a submerged body. (The low-speed [
. . . . -1/0
theory predicts that wave resistance is proportional to e / as U~> 0 .)
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Tulin (1982) has produced an exact thecry that btridges ‘*tio two. T: Wil o
much more difficult to find a comparably general theory for the case 56 a
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II. OUTER SOLUTION BY THE wiK3 METHOD

We want to find a velocity potential LU»ix,y) for the streaming flow past
a two-dimensional body that intersects the free surface. The strenm has speed
U in the positive-x direction. The undisturbed frece surface lies on the x
axis, with the y axis directed upwards. We take the origin of coordinates
inside the body in such a way that the intercections of the hody and the
undisturbed free surface are locatud at ‘-x,,0) anrd (xO,O) . The latter is
the one of primary interest in this paper, since it lies on the downstrean i
of the body. All length dimercions have Leen normalized with respect to L ,
any convenient characteristic length of the body. The small parameter of tic

problem is taken as
e = F? = U%/gL, (1)

where g 1is the gravitational constant and F is a Froude number. The shape
of the free surface is given by a relationship y = el(x) , where H(x) 1is to

be determined as part of the solution of the problem.

The statement of the problem is as follows:

(L] Qxx + ny = 0 in the fluid domain; 2)
1

[H) Hx) = = {1 - of - o]} ; (3)

y=¢€H (x)
(K] ¢y = eH, o, on y = eH(x) ; (4)
2 2

(F] Oy + e BOyy + 2040 0, +000u ) = 0 on y = eH(x) ; (5)
09

[B] —_— = 0 on the body; (6)
an

[R] |¢ - x] > 0 as X > -» and/or y > -» ., (7)

These are the same as in (I), although the [K] condition was not explicitly

used there. Either the [F] condition or the [K] condition is redundant.

We assume that the solution can be divided into two parts:

Sttt do o P ]

Py W W

J“L.LJ ala sy ‘u

dodasd o o
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Pr,v) = MX,yi) 4 M ,ve) (8)

ki) 4 Hixze) . ()

ooy
g
1

The first part, represented hy E(X,y;?) and H{x;.) , 13 the so-called ol
exparsion (see (I)); it ic the formal solution that is obtained by simply =ub-
stituting a power series in ¢ into the conditiors (2) - (7). It does n.t
represent a wavelike mction, although there is a corresponding free-surface
deformation near the body, which vanishe- downstream as well as upstream. The
other terms in (8) and (9) represent truc wave motions (suggested by the nota-
tion ~ )., e further assume that fthe wave rart of the sclution can be

expanded as follows:

S(x,y;e) ~ W18 (x,y50,Y) + %20, (x,y;0,¥) + ... (10)

Hix;e) o e“al(X;O) + e°+152(x;0) + oeen . (1)
Three new gquantities have been introduced:

(i) o is a real number greater than unity. 1In (I), it was taken as
1l . Actually, that is simply the smallest possible value of «
that leads to a linear problem for the wave motion. Now we must
use the nonhomogeneous boundary condition developed in (I) to
determine the correct value of o . Note that the difference in
the powers of € between (10) and (11) results from the [H] con-
dition, (3) .

(ii) 0(x) 1is a rapidly varying phase function, which we shall also
write in the form

O(x) = 86(x)/e . (12)

We shall assume that 8(x) 1is slowly varying in the sense that
its derivative is of the same order of magnitude as 6 itself.

(iii}) Y 1is a stretched coordinate:

Y = vy/e . (13)

Effectively, we treat this as a multiple-scale problem, x and y being used
to describe changes that occur on a scale comparable to the dimensions of the
body, O and Y being used to describe the details on the scale of the wave-
length, We imply here that the generated waves have wavelength that is O(g)
This is valid in the outer region, which means a region many wavelengths away
from the downstream stagnation point. The implication is not valid very near

to the stagnation point., The latter case is discussed in thc¢ next section,
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The expansions (10) and (1l1) are called ger rucisvd WKB expensions. The
functions 5i and nj all represent wav' motions that are superposed on a

nonuniform, nonwavelike base flow given by ¢ and E .

Let us define

_ do(x)
K(x) = el (14)
We note the following formulas for differentiations:

8¢ _ 3% . a+lj: - att 3 3
g = a—; + € {¢1x+ [K/C]‘DIO} + € {¢2x+ [K/€]¢2@} oo (15)
30 _ 233 atlf; p +203 pt :
i (IR SV L T B PR eV L PW SRR (16)
dH _ dH af> - atlfz =
= - &t {“lx'+[K/E]nlo} + € {nzx-+[K/€]n20} + el 17

Now we substitute (8)-(9) and (10)-(1l1) into the conditions of the problem,
starting with the Laplace equation (2). Then we rearrange terms according to
powers of € and set the coefficient of each power separately equal to zero.
a=-1

From the coefficient of ¢ , we obtain:

23 Y - 1
(L] K100 * Plyy o . (18)
Similarly, from the coefficient of & , we obtain:
w2y e - - X e e
[L] K28200 * $ayy {x§) ), + Kby, + 28,01 - (19)

The letter subscripts indicate partial or total derivatives, as appropriate.

(For example, K, = dK/dx , whereas ¢y = 9¢/9x . )

Next we substitute into the [H] condition, (3). 1Initially, all functions
of y and of Y must be evaluated on ¢€H(x) and on H(x) , respectively.
Then we expand these functions in Taylor series as follows: ¢ (and its deri-
vatives) is expanded with respect to y = ¢H , whereas $i is expanded with
respect to y =0 and Y = H . (The last is permissible if, as assumed,

a > 1 .) We note that, from the definition of the naive expansion,

b, (x,el) = eHyb, (x,eH) . (20)

PR S

aa ol 0.




S T T — . D Jtah n SR S i A Pt A A i S R i i P At RN
.

. -8 -

'(‘ From the coefficient of €% in (3), we obtain:

- (H] A e,0) = = KOx) By (x, e §) (x,0;0,H) . (21)
i Similarly, from the coefficient of g%l ,

~ - o~

(H) R, =- EX{K$ZO+5IX+Kﬁ6loy+Hx¢Iy} on y=0, Y=1H. (22;

Here and throughout this section, the notation " y = 0 ", as in (22), refers
only to ¢; . As already mentioned, anc¢ as indicated explicitly in (21), we

evaluate ¢ on y = eH .

Following the same procedure with the [K] condition, (4), we obtain:

:
.
iE.
L
[II
\
b
!
:

-~

[K] ¢1Y = Kaxal@ on y=0, Y= H i (23)
. . S - - - . ~ - y=20,
(K] ¢1y + ¢2Y + dyyny = @xnlx + KHX¢1O + K¢xn2@ - ¢1YYH on v =0 (24)

~

We can eliminate al between (21) and (23) (or, alternatively, start with

the [F] conditiocn, (5)). Then the 61 problem is given by the following:

H ; (18)

1A
o

-
<
In

{L] K2$lee + $1YY = 0 in y

0 on y=0, Y=H. (25)

]

~ -2~
(F) 1y + K20dy 00

-~

Then we eliminate n, between (22) and (24), which, together with (19), gives

the @2 problem:

24 P = P P & i H
E. (L] k26,00 + bppy = - {(Kd)lo)x + Ky + 2¢1YY} in y<0, Y<H; (19
: [F] &p, + K282¢p.. == &y + 8.0, + Ki 3, - Hé) _ - Ko
A 2y x7200 ly x 1y x71p lyy x71x0
’ 232z 2= = s - y =0, (26)
’ K ¢XH¢IOOy K<1>xHx¢1Ye ¢yyn1 on { ¢ =0 .
3
re ,
- Now let us solve the problem stated in (18) and (25). The independent
variables are @ and Y ; we can consider x and y as if they were para-
: meters. By a minor change of variables, we transform the first equation into
t . the Laplace equation. Let
F.
X=0/K, Y=Y-H. (27
|
Y
| @

4
E
Py R

|
X
4
i
L]

> Az L

aE .
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L?E Then (18) and (25) become:
¢1XX + ¢1§§ = 0 in y <0, Y<O0; (28)
~ _2~ ~
b15 * Pbiyy = O on y=0, ¥=0. (29)

The slight change from Y to Y in (25) has enabled us to formulate a problem

i ~

with a free-~surface condition given on the X axis.

. We introduce complex variables Z -3 E(Z) :
Z = X + iY , (30)
4, = Relf(2)} . (31)

(Of course, E also depends on x and y , but we continue to treat the
latter as parameters.) The Laplace equation, (28), is automatically satisfied
when 51 is defined as in (31). The free-surface condition, (29), can now be

rewritten:
Re{3Z(x,eM)E" + if'} = 0 on y=0, ¥=o0. (32)

Since we consider x (and thus H(x) ) as being fixed in (32), this condition

is valid for all X . Thus we can define a new function
W(z) = ®a(x,eM)£"(z) + if'(2) , (33)

which can be continued analytically into the upper half plane as follows:

Wwiz) = - w(@ , (34)

where the bars here denote complex conjugates. Since W(Z) is analytic in
the entire lower half of the 2 plane, we now conclude that it is analytic in
the entirxe plane. Thus it must be a constant. From (29), its real part

vanishes, and, without loss of generality, we set its imaginary part equal

]
|

to zero also. Then

[N PR

. 328"(z) + if'(Z) = O in the 2 plane. (35)
>
This is an ordinary differential equation for E(Z) , which is easily solved: -
1O . |
1
b o o N o ey |
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1
9
- S , o
£(2) = Aa(x,y) exp{-lz/?x} ' () 1

where A(x,y) 1is an arbitrary constant with respect to X and Y. In
general, an additive constant, say C(x,y) , can be added to (36), iut it con- )
-
tributes nothing to the wave solution, and so we set it equal to zero. ‘@,
We require that f Dbe a periodic function of © . We have not y~t speci- -
X
fied i = e0(x) , and so, without loss cof generality, we can require that the %
period be 2m . Substituting 2 = J/X 1% irto (36) and taking into account —%
‘ X . bt
that K = 8'(x) = £0'(x) , this requirement is equivalent to the following: i
- —..2—— + 21 = - —-—.-.—,:)—+2—"-—— -]
edgl’ edx (O+2m)" o
- 3
It then follows that ‘.’

% .
1 =2 - .
O(x) = - z dg/o, (€,€H(E)) , (37) y
X0

where once again, without loss of generality, we have set a constant of integra-
tion equal to zero. Substituting into (36) and then using (31), we have the

solution:
$l(x,y;O,Y) = Re{f(2)} = Re{A(x,y) exp [(Y-—ﬁ)/ai) exp (i@(x)]} . (38)

From (21) we obtain the wave-elevation function:

n,(x;0) Re{b(x) exp (i0(x))} , (39)
where

b(x)

iA(x,0) /0, (x,ef) . (40)

From now on, for convenience, we drop the notation Re , but we imply that it

should be included in expressions like (38) and (39).

The situation represented by the solution 51 and ﬁl above is familiar
in applications of the WKB method: We now know the basic form of the wave
solution, but we do not know its amplitude anywhere. We know the phase func-

tion, O(x) , but the [complex] amplitude A(x,0) is completely unknown. 04

In order to obtain more information about A(x,0) , we must consider the

second-order problem, given by (19) and (26). The form of the left-hand sides




I O S P S TP L W T i T TN T TR e W T w e e TR LTS T Y T e T
 an o - gaan p— I et e sl ettt At SN SRR -~ A A S A
JPE— P SR = - iy o - .

.
-
-

| SR

-?‘ of (19) and (26) is identical to that of (18) and (25}, wrich gave the first-order

- problem. So we can expect the second-order solution to represent waves like tiiose

N described in (38) and (39). That is, 4. will contain a part tnhet satisfies the
- homogeneous counterpart of (25), and this part will depend on the same phase func-

| WSROI

== tion as that in &1 . In addition, we note that the right-hand sicdz:s of (1Y) and

.i
] - . 1
. (26) are linear in ¢; and n; , and so the solution of the nonhonwycreous pron- )
~ L4
- lem will also involve the same phase function., 50 we now write: j
] P 5. T ! 1 J
l-. b, = Az(x,y) exp{(Y-H), o) exp \1‘.:(x)} , (41) ;4

, where 0O(x) 1is still given Ly (37) and Az(x,y) 15 an unknown function.

.
l
i
‘
:

When (41) is substituted into (19) and (26), it is evident that the eruiations
can be satisfied only if the right-hand sides of those equations are separately
equal to zero. This provides the further conditions needed for determining the
first-order solution. Substituting (38) and (39) into the right-hand sides of
(19) and (26), setting them equal to zero, and letting y = H , we find that:

; )
. . LA Tl =2 !
1AK, + 21KAx - 21kAHx/¢x + 2Ay/<I>X = 0, (42) 1
Tgby - Tyyb - 2if,a/8% - ifea/ = 0, (43 b
where we have used the fact that Hy = -axaxx-+0(c) , which follows readily d
from (3) and (4). We use this relationship again in (42), noting also that .
K = -1/32 , to obtain the following:
Ay(x,o) = 1A, (x,0) . (44)
< Then we use this result and the definition (40) in (43) to obtain: K
q Ay + Ad /0, = 0. (45) B
- This differential equation is easily solved: A(x,0) = A0/5x , where A, is
*- strictly a constant. Thus we have found the form of A(x,0) , and so we have )
:’ for &1 H
~ ~ = - = 10 (x
. ¢,(x,0;0,H) = {Ao/¢x(x,eH)} et (x) . (46)
b The conste - A, can only be found from matching this solution with a near- Y
qQ
F field (ir=e ) solution. This situation arises because our fundamental equation
b
3 is an ellip ic equation (the Laplace equation), and the t:pical WKP wave approxi-
3
t mation is not valid in a region near the body, where elliptic behavior domi-
1 nates the wave behavior. Y
€ -
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III. INNER SOLUTION BY THE SOURCE-DISTRIBUTION METHOD

The solution obtained in the preceding section represents a vzve motinn
with very short waves. To be precise, from (37) and (38), it is cvident that

the local wave number is

' (x) = - 1/edgix,el(x)) . (37)
Since, in general, 5x = ¢(l) as € > 0 , we have
9'{x) = o(l/e) . (474

The assumption in (12) was really an anticipation of this condition.

If, however, ¢y vanisihes at scme point, the wave number in (47) is
undefined at that point. Our conclusions must be reconsidered in a neighbor-

hood of that point.

We expect that there will be a stagnation point on the downstream side of
the body, presumably at the intersection of the body and the free surfacc.
Such a stagnation point will be located at y = ¢/2 , as shown by (3). We set
X = x5 at this point.*

At the stagnation point, we have by = ¢y =0 . 1If, separately, we require

that 5x = 5y = 0 at the stagnation point, we create precisely the condition

mentioned above: The wave number is undefined. So we consider more carefully

the behavior of & near (x0,€/2) . In Appendix A we show that

Sy(xq,e/2) = €?uy + o(e?) , (48a)
by (xy,e/2) = 0(e?) , (48b)
where
\-10 = - C(O)q)oxX(xorO) v (48c¢)
C(0) = body curvature at y = 0 , (484)
¢0(x,y) = first term in an ¢ expansion of 5(x,y).T (48¢)

*As in (I), we shall also take x = Xy at the downstream intersection of the
body and the x axis. Since the body is assumed to be smooth and to have a
vertical tangent at y = 0 , this practice should not cause significant error.

1"q;o(x,y) is the solution of the "rigid-wall" or "double-body" problem, in which
the free surface is replaced by a rigid wall at y = 0 . See (I) for details.
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From these relationships, we now show that the wave numbor is 0(1/55) in a

small region near (xo,e/Z) .

We substitute (8) into the free-surface condition (5), eliminate the terms
that involve only the naive expansion, and then determine the leading-order
wavelixe terms. 1In view of the estimates (48a) and (48b), we can, in lcading

order, drop all terms except the following:

- —5~
¢y +ed b, v O

This is directly comparable to the problem statement in (I), and it is also
equivalent to (29) above. However, it is now being used in a small region
near the stagnation point, where, from (48a), 5x = 0(e?) . (In other wOrds,
we now use this condition everywhere for obtaining the lowest-order term in

the wavelike solution.) Thus we have

~

by + byx*0(e®) v o0 .

These two terms must be of the same order of magnitude, for otherwise ¢
would not represent a wave motion. Furthermore, since the potential satisfies
the Laplace equation, 3/9x and d/9dy should have similar order-of-magnitude

effects on $ . These requirements can be satisfied only if
= 0(e™) (49)

when acting on b , which 1s equivalent to the statement that wave number is

0(e™%) . This is val:d only in a region near the stagnation point.

-~

From (48a) we can also determine the order of magnitude of ¢ in the
neighborhood of the stagnation point. The complete potential, 5*-& , must
give no normal velocity component on the body. However, from (48a), 5x =
0(e?) at tre stagnation point, and so 85/8n = 0(e?) there. In order to
cancel this, we must have 35/an = 0(62) too at the stagnation point. But,

in view of (49), this is possible only if

® = o) (50)

near the stagnation point. (Note that this still does not give us a 1n (10)

and (ll). Those expressions are not valid near the stagnation point.)

i

—d=

Y -

P Y
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The next problem is to formulate and solve a precise near-field problem

for matching with the outer solution from Section II.

We define the near field as a region in which

X = x5 = 0(e>) R 55
y - eH(x) = 0(e?) .
It is sometimes convenient to define new near-field variables:
X = ‘x - xo)/g:5 ,
- . (52)
Y = [y - eH(x)]}/c” J
We note the following rules for differentiation:
3 _ -5 o -LoTt i
3 - ¢ ax - & W (K5
(53)
D o -5
ay Y

Since we shall solve the near-field problem just to one order of magnitude, we
shall have to use only the first term on the right-hand side of the first

formula of (53).
In the near field, we expand the potential:
o(x,y) = &(x,y;e) + e7$l(x,y;s) e . (54)
From this expansion and (3), we find that we can also write:
H(x) = ﬁ(x;e) + e“ﬁl(x;e) + eee (55)
The free-surface condition, (5), can now be expanded as follows:

- - - - - -
0 = 3y + e7d>1y ..+ €{[¢x+e7¢1x+...]2[®xx+e TS I coo}

Ty + cOgbyx + ... + €28

+ ... 4 e{3§-6'35 T (56)

ly 1xx

to be satisfied on y = eH = e§-+e5ﬁ1-+... , which is equivalent to Y = ﬁl
In the near field, $ and its derivatives can be evaluated at x = Xg» Y= /2

with negligible (higher-order) error. Thus, for example,

e

. SV <

L 2
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- - - l -
@x(x,eH) = @x(xo,e/Z) + (x—x0)¢xx(x0,€/2) + u(H-Eﬂkyy(xo,e/Z) + ..
= 5x(x0,s/2) + esxéxx + [55§1+ €6Xﬁ'(x0) +...]5yy +
vy (xg.€/2) v €y (57)

(See (48a})). The free-surface condition becomes, to lc¢ading order,

-~ 2.. _ ~~ .
Qly + uo¢1xx 0 on Y = Hj+ ... . (58)

The body boundary condition is as follows:

F ad-
CLANL e’—+ ... = 0
an an an

90

== 0 on body, y <0,

35 _ 2 0 =2 < <

% - eyC(0)¢oxx(x0, ) = 2eyyg on body, O y e/2

Thus we require that

677;%- = 0 on body, y < 0, (59a)
,39)
€ P = - 2€yu0 on body, 0 <y < g/2 . (59b)

In terms of near-field variables, the last condition can be written:
30 4 4
T = - u0(14-2€ Y) for X =0, -1/2¢* <Y <0 . (60)

It would be consistent at this point to simplify this condition to B@I/BX =
- U and to apply it in - < Y < 0 . However, this would lead us to some
undefined integrals, and so we use (60) as stated above. Consistency can be
achieved later. We supplement (60) with the further condition:

a_xl = 0 for X =0, Y < -1/2e% . (60")
This is consistent with (5%a) in a small region in which y = 0O(g) .

Finally, it should be noted that, to leading order, @1 satisfies the

Laplace equation:

Sudl) VPR

Ay .-,

P Pty WD
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The problem just formulated for &1 would be straigntforward to solve

BDdabad .2 ada

except for one difficulty: The free-surface condition, (58), 1s to be satis-

iy

fied on Y = ﬁ1+-... . Usually in :such problems it ic easy to show thet tiw
boundary condition can be transferred t. tho undisturbed surface with .eali-
gible error, but such an operation is not trivial in the present (roblem.

In terms of near-field variables, we mu=t note that 4/3Y = 0(l) and ﬁl =
O(l) , and so a simple Taylor expansio.. cannot be used. In terms of the
original physical variables, we have Ail/ﬁy = 0(51/55) and thec boundary

has to be moved a distance €H- cH = CSHI + ... = O(es) . This shows again

that the transfer is not trivial.

Nevertheless, it can be carried out. Our demonstration is not rigorous,
but it is convincing. We suppose first that (58) can be applied on Y = 0

Then we show that the solution so obtained satisfies the same condition

3
]
b
"

applied on Y = ﬁ (to an acceptable accuracy). We then presume that the

1
reverse is true, that is, that a solution satisfying (58) (as stated) also )
satisfies (58) approximately when it is imposed on Y =0 . i
]
N
If (58) is satisfied on Y = 0 , we expect the solution to take the N
form .
Rl
- {
¢, (X,Y) = Fylx,y) + Fy(x,y) exp {iS(x,y)/e’} (62)
‘9

¥ 4

where the functions So(x,y) , Fl(x,y) , and S(x,y) all vary "slowly" with

x and vy , that is, 9/3x and J/3y = 0O(l) when operating on these func-

tions. (Such a result is well-known for the corresponding "wavemaker prob-

lem." See Appendix B.) In fact, in the near field, F, (x,y) 1is a constant,

i ..

and
i exp {iS(x,y)/eS} = exp {iv(X+1iY)} ,
E;l where ‘
E,. Vo= 1/u(2) , !-'
E. and so we see explicitly that S(x,y) = v{(x—xo)-+i[y—eﬁ(x)]} , which indeecd
: |
. .
|




)
X
-
.
X
X
3
p

R4
®

varies slowly with x and vy . The function Fo(x,y) represents a nonwave-

like motion, a local effect, that decays with distance from the body.

There is negligible difference whether we evaluatc Fo(x,y) » F(x,y) ,
and S(x,y) on Y =0 oron Y = Hl+... , and so we need consider only the
exponential factor in (62), which does change rapidly with x and y . We

observe that

exp {iS(x,eH) /e°} = exp {i[3(x,el} + v (iI-H)Sy, (x,eH) + ...]/c°}
Y
= exp {iS(x,eH)/e%}- exp {ialsy(x,eﬂ)}°{l+-o(l)} .

Thus, if we evaluate the exponential function on Y = Hi+... (which 1s equi-
valent to y = €H ) instead of on Y = 0 (equivalent to vy = cH ), we effec-

tively multiply by a factor exp {iﬁlsy(x,eﬁ)}

Now we assume explicitly that (62) satisfies (58) on Y = 0 , that is,

~ 2% 2
(¢ + up¢ )l = [F + unF )I
1 071 0 0~ 0
Y XX ¥=0 Y XX v=0
(ji. ?9%% I 53 -
+ \3Y4-u03X2 (Fexp lis/e ]IY_O = 0 .

The first term on the right-hand side varies slowly in x , whereas the second
term varies very rapidly. Then the sum can equal zero only if each term sepa-

rately equals zero. So we have

2

FOY + uOFOXX 0 _

3 5 32 . on Y=0 (y=¢€€H) .
(5? + “0§;§J[Flex1’{ls/€ o= 0
On the other hand, let us evaluate the left-hand side of (58) on Y = ﬁl+.
(élY + u%@lxx)l . = (FOY + U%FOXX)‘ + ...
Y=Hl+... Y=0
+ exp {iH,S, (x eﬁ)}(jl-+ uzjiiJ[E‘ exp (iS/€%)] +
P 1185y 1% oY 03x2/ tF1 &XP

Y=0
Each term on the right-hand side is separately equal to zero (to the order of
magnitude considered here), and so we see that (58) is approximately valid if
applied on Y = ﬁl+... . Thus we have shown the stated result: If (58) is
satisfied on Y = 0 it is also satisfied approximately on Y = ﬁ1+... . Now
we assume that the converse is true, which means that we can simplify our

boundary-value problem by imposing (58) on Y = 0 .

| VRPN
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The solution will be constructed with the followina Gioen function:

G(X,Y;E,n) = Z—I;log (-5 2+ (v=m) 510 2+ By ey e oy S

+ ijr—dk MUk xery - ow BT L ey L e
Tl k-w

M 1is a constant to be detevmined. The integral i« to e interpreted tn oa
principal-value saonse (denoted by the bar throuch the inteqgral sign).  Thiv
Green functicn gives the potential ar (x Yy Ccorrespondlng to a unit source
located at (£,n) . However, an audit:i... al wave disturbdhnoe has oo tatro-
duced with the M term. The above Gre::n function catisfies the Lanlace
equation and the free-surface conditlion, (%8;. It rejrescnts the followlng

wave motion very far away:

. LAY+ . . N
Gy (X,Y;5,n) ~ - v{Mil) e ¢ l)cos v(X=¢£) as X~ ot (04
Using this fundamental solution, we express the solution of our problem in

the following form:
0
~ vY .
¢I(X,Y) = p(n) G(X,Y;0,n)dn + De cos vX , (e5)

.
-0

where u(n) is an unknown function to be determined so that the body boundary
condition, (60) and (60'), is satisfied. The extra term on the right-hand side
of (65) is easily recognized as a solution of the homogeneous problem, since it

yields no contribution to 51X at X =0 .

We substitute («5) into the body boundary condition, obtaining:

23, L oy 0 on - ug(l+2cty) , -l/2eY v o0,
% - ELMY) - v Me J p(n)e dn = ' (66)
‘T o, Y - =1/7¢7
This is a very simple integral equation for (Y) . Thce =olation can obwviou ly
be expressed in the form:
vY .
W) = () e’ (07)
where
-2ug L+ 22y, Sl ; ,
Ho(Y) = (08)
o, Yoo ’
Substituting (67) and (68) i,ack into (66), we obtain tie vl : I

-~y

)]
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The constants M and D are not yet known, but otherwise we know everything

E = - (&

-~/

in (65), and so we have obtained a solution that satisfies (i) the Laplaze

equation, (ii) the free-surface condition, and (iii) the body condition.

Earlier, we assumed that there was a stagnation point at (xg,€72)

(lor X =0, Y =0). We now find that this condition is sufficient for
determining the constants M and D . titrem (54) and (L3), we have
3 $1 L 3¢
9 _ 30 + ef— Ly ... (70)
Iy 2y Y

From the formulation of the =2 problem, we know that

3% L _.3%3 5020y 3 5
E = —LDX¢XX = - gC (O)xpOXX(XQ,O) + o(c?) , 171)
the last estimate being valid at the stagnation point (Sec¢ Appendix A). So we
must have
351 _ 32 3 3.2
rrali + £7C (O)¢oxx(x0,0) = ¢ u0¢0xx(xo,0) (72)

at X =0, Y =0 in order that 03¢/3y , as expressed in (70), may vanish at

the stagnation point. However, from the solution as given in (65), we find

that 851/3Y is undefined (infinite) at this point unless u{0) = 0 . To see
this explicitly, we differentiate (65):
~ 0
ad 3 .
__1 = u(n) _Gw.'”) dan + \)De\)Y . (73)
oY Y
X=0 Lo

From the definition «f the Green function, (63), we have

o

3G _ L{ 1, 1 ) +£][dkkek(Y+n)
Y X=£=0 2n|lY-n Y+ n ki k=~v
1 [ dkke®"
- - as Y > O
n k=-v
0

The last expression behaves as -1/wn as n - 0 , which shows that the integral
in (73) diverges as Y - 0 , unless it happens that up(0) = 0 . So we now

impose such a condition on yu , and this then determines M

(@)
U

p(0) = uO(O) + E

4unM =
2-0" 1 gi_{l_

= —2uo - -

-v/2e"
e }
1-M

where we have used (67), (68), and (69). Solving for M , we obtain:
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L 1
Moo= - T — oo (74,
1 = (4ct/uy {1 - exp(=-v/20 ) L -4y

It is useful also to note the following conseduencods:

E = "HO(\") = —:u'\ ' {7 )
vwY ~ i A '

2u0{u -1-2u'v P A Y g,

uly) = ey
5 VY . y b

L -..UUC ’ Y < '1/.’..;. .
The above choice of M guarantces weat ‘71‘{ remalus finite at the ctag-
nation point, but it does not et lead to (72).  1In order to choure that (7.)

1s satisfied, we must evaluate the irteqgral in (73) as Y » O and then choosc
the value of D appropriately. The evaluation of the integrals will be sound

in Appendix . From these results, we obtain:
D = 3,.2 0 _ RN . — Seabgoy . & N -
= ¢ u0¢0xx(xo, Y/ o= uoyoxx(xo,u) = £7°C (u)qcxx(xo,u) . A77)

In summary, we note that the solution in the inner region is expanded as
in (54), b being the naive solution that was worked out in (I). The next
term, 6751 , 1s obtained in the form given in (65), with (Y} qgiven in (76)

and D in (77). This completes the inner solution for our jurposcs.

Bcfore matching this inner solution with the outcr solution, it is worth-

while to comment on some unusual aspects of the Fo.oegolng analysis:

(1) Normally in using matched asymjptotic expansions, onc cotalns inner
and outer expansions each of which is nonunique in some way. Matching of the
two expansions then removes the nonuniqueness in each. However, in our jrob-
lem, we have obtained a complete (unique) near-field solution, at lcast to
leading order of magnitude. This appears at first sight to climinatc the
possibility of satisfying a radiation condition in the far field. In fact,
this is precisely what happens, and fortunately too, for there is no radiation
condition possible in the far field. In steady-motion problems, we usually
specify that there should be no waves upstream; this is an adequate radiation
condition in two dimensions. In our problem, however, the downstrcam waves
appear only in a surface layer of vanishing thickness, and these waves are
effectively isolated from the upstream fluid region. One might say that there

is no upstream region at all, at lecast insofar as it might affect the waves
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downstream of the body. Then one must seek an alternative condition to make
the solution unique. As described above, we have used thc¢ »oluticon behavior

at the stagnation point to prcvide such a condition.

(1i) The Green function introduced in (63) is rather unusual because of
the presence of the last term. The contribution of this term to 51 1s
interesting. Effectively, it produces a second solution of the homogzueous
problem. The one obvious solution of the homogeneous problem is the last

term in (65). But one can construct cthers if some degree of singulirity is

tolerated at the origin. The M term in the Green function produces a solu-

tion of the homogeneous problem with precisely the singular character at the

origin that is needed to cancel the singular velocity that would otherwise

arise from the source distribution. This is what was accomplished in deriving

the value of M in (74).
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IV. MATCHING OF INNER ANi: OUTER SOLUTIONS

We now use the inner solution, which is completely known, to dot:rmin.
the unknown amplitude and phase of the waves in the outer reglon. From (8),

(10}, and (38), the outer solution can be written:
®(x,y) = d(x,y;e) + €“+lexp [ (Y- ﬁ)/5§lﬁe {A(x,y)exg’[iﬁ(x)]} . (77

The rapidly varying phase function, <{x} , was given in (37); the complox

amplitude function, A(x,y) , was partially dctermined:
A(x,0) = Ay/by(x,cHx)) (7°)

where AO is a complex constant. All that remains to be determined is A

and o . We accomplish this by matching Qx(x,aﬁ) in the two regicns.

For the moment, let us omit the Fe notation in (78), just as we did

earlier. We write out ¢, (x,y)

- H' 2(Y-H)xx ., )
P (X,y) = Sylx,yie) + eo"'l{Ax(x,y)+A(x,y){—;5-~5—3—ﬁ+ i0 (x)})
X X
- exp [ (¥-H)/32)+ exp [i0(x)] . (80)
on y =eH (or Y =H?™), this simplifies:
P (x,eH) = O (x,eH;e) + e°‘+1[Ax(x,0)+A(x,0){-%5+ iO'(x)}]°exp (10 (x) ]
X

+ e . (80")

Now we change over to near-field variables, as defined in (52). We note that

CRRC R p— - S
edg (x,EH) €°uy
1 X d X-Xx X
‘-7(")=‘—Ju2 e et A S
€ xE u0[14-O(€ )] £°uf ug

0

*Note the difference in the definition of Y in the innex and outer regions:
Y=y/c 1in the outer region (see (13)), whereas Y= [y- sH(x)]/s5 in the inner
region (see (52)).
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The estimate (48a) has been used here. Now we keep just the leading term in ;
(80'), with X fixed:
- - - 3. a-6 -iX/u’
O (x,eH) v &, (x,eH;€) - i(AO/uo)ea e o . (81)
-
This is the result that we will match to the inner solution. )
The inner solution was given in (54), (65), (76), and (77). Let us find
4
the derivative that matches (81):
-
5 - . '
b (x,y) = o (x,vi€) + € [¢1xxx + ¢1ny] + ... 1
2
= By(x,yi€) + €%b 4 ... . ]
X 3
We must evaluate this as X + « in order to perform the matching. Introducing 3

(64) into (65), differentiating with respect to X , and evaluating the result-

ing integral, we find that

VY
¢

_ ~5n2 3 : ?
" £°>C (O)¢0xx(x0,0)51xxx/us
S (82)

x " -v{4e“u0cos vX + Dsin VX} e

PO -4 TRV

In (82), the term containing cos vX comes from the integral in (65), and the

1

term containing sin vX comes from the homogeneous solution in (65). As is i
R . . . 1

apparent here, the latter is of lower order of magnitude and thus dominates 1in [T
(82). 1

Now we match these near-field results with the real part of (8l), the ]

result being that

[ Ag = - C3(0)9f  (x4,0) . (83)

We also find that

y
b
e @ = 11 . (84) 3
t We can substitute back into the formulas for ¢ or for ¢, in the far field.
( The latter, in particular, gives us:
[ 5 [ X

- - - C2(0)¢ (x45,0) i ac )
;". by (x,eH(x)) = &,(x,eH;e) + igll %);x 07" exp [- %J “B'g‘J oo !‘!
b X L
[ Xo ¥ (85) 1
[ This is our final form of the solution in terms of ¢ . ;
p. 4
- 1
o y

p
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V. WAVE RESISTANCE

Exact nonlinear formulas are readily available for computing wave resis-
tance if the fluid velocity and free-surface disturbance are known. From
Wehausen and Laitone (1460), Equation (8.6), for example, we have:

L ’ {EH(X) . 1 .
R = EDU“)LJ[ dy {#y(x,y) = Lo 0x,y) - 112} + S 0 gLée?H (x) (£6)
-
where R 1s the wave resistance, and all other quantities are as previously

defined. The right-hand side can be computed at any x downstream of the

body, but we simplify the task by letting x = « .

The general far-field expression for ¢,(x,y} has been given in (80). As

x > +o , the following approximations can all be used:

(87)

(x) = - 1/¢ .

Noting that AO is a real constant and taking the appropriate real parts in

(80) (see (78)), we obtain the asymptotic estimate,

y/€

O lx,y) = 1+ etlage’ “sin(0(x)1 , (88a)

valid as x * 4+« . Similarly we find that

Qy(x,y) > ellAOeY/ecos ox)1 . (88b)

Moreover, from (9), (11), (39), and (40), we also have:
H(x) = - ellagsin [0(x)] . (88c)

Carrying out the integration in (86), with the upper limit of the integral

replaced (consistently) by zero, we obtain finally that

R 1 23,2 1 23,10 12
C = —_———— ~ =~ ¢ A = = £ (o O) Xn,0 (89)
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where, as before, C(0) 1is the body curvature at the ‘ntersectiosn of the body

and the undisturbed free surface and ¢O(x,y) is the first term in thne nai-e

expansion (the potential for the double-body flow). Cp 1is the wave-resistance

coefficient for the 2-D body.

It can hardly be surprising that the wave resistance depends on tho shape
of the body only near the free surface, since the wave motion occurs enrireiy
in a very thin layer, in fact, in a vanishingly thin layer, near thc levol of
the free surface, and the wave motinn i inducad by the peculiar nature of tie
streaming flow on the body near this level (see (I}). Furthermore, we assumcd
that the body has a vertical tangent here, and so it is also reasonable to

expect that the curvature should have a dominant effect in creating waves.

If the curvature were ou:v¥o at y = 0 , we would expect the generation of
waves to depend primarily on higher-order derivatives of the body shape in
this same region. Presumably wave amplitude and wave resistance would then be

of even higher order than in the case presented.

We can only speculate now what would be the result if the body contour
were analytically straight in some finite neighborhood of y = 0 . Our specu-
lation is that waves and wave resistance would be small of exponential order

as in the case of a submerged body.
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APPENDIX A. STAGNATION~POINT CONDITIONS ON ¢

Here we obtain the estimatce given in (48c) and (71),
From (I), from the dofinition of the naive expansion,
¢ ¢0x + h¢1x o
On the body very close to the free surface,
®x T 7 in

If the body shape has continuous curvature and a vertical tangent at y = © ,

we have, from Equation (42) of (I),
- 3
¢0x O(e”)
From Equation (62) of (I),

¢1x x - 2§IC(O)¢OXX(XO,O) for 0 <y <e¢g/2,
body

where C(0) and ¢0(x,y) are given by (48d) and (48e). Putting these results

together gives us:

3 &y o _ g2

¢x(x0,2) = € C(0)¢0xx(xo.0) P (A.1)
the relationship given in (48a).

To obtain (71) (and also (48b)), we start from the free-surface condition

(5), which is still valid (by definition) if ¢ is replaced by ¢ . Thus

T _ __2[32% s 73 T2 P
o, = -e?{o 8+ 20,00,  + ¢y¢yy} on y = eH(x)

On the right-hand side, the first term is the lowest-order term, and so, sub-

stituting from (A.1l), we obtain:

- € 3
q)y(Xor'z') = - €5C2(0)¢Oxx(x0'0) ’

the desired result, (71).
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APPENDIX B. COMPONENTS OF THE INNER SQOLUTION

In (62), the inner solution was written as the sum of two parts:
0. (X,Y) = Fg(x,y) + Fy(x,y) exp {iS(x,y)/c"} (62)

where it was stated that Polx,y) o Filx,y) , and S(x,y) all vary "slowiy"
with x and y , although this expression represents waves of very small

wavelength.

Such statements can be verified directly in the analogous "wavemaker

problem:"
dxx * byy = O in { : : 8 : (i.1)
by = £(y) on x=0, y <0, (B.2)
v - ¢y = 0 on y =0, x>0 (B.3)

This is the mathematical statement of the problem if the vertical wall, x = 0
moves with normal velocity component £(y) exp (iwt) , where w 1is the radian
frequency of the motion and v = wz/g is the corresponding wave number. Thc
potential for the problem is ¢(x,y) exp (iwt) . Of course, a radiation condi-
tion must also be imposed. This problem is very similar to the near-field

problem considered in Section III.

The wavemaker prcblem has been studied by many people, and we can write

down the solution directly:

¢(X'Y) = @(X,Y) + @(le) ’ (r.4)
where
a(x,y) = ¥ {Ajsin vx + Bcos vx] , (3.5)
b(x,y) = Jdk Ak)e ®¥(k cos ky + v sin ky) . (B.6)
0

The term in (B.5) containing B 1is the solution of the homogeneous problem,

and so B 1is arbitrary. The constant A in (B.5) and the function A(k)
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in (B.6) are given hy the following:
0

A, = 2 | ayf e’ (5.7)

vl
<o

——
<

2
A(k = - ——————— dv f + Vv si . .8
(k) nk(k2+v2) | v £(y) (k cos ky sin ky) (=.8)

In the above problem, .f we allow v (or w ) to become very large, it
is immediately obvious that ¢x and $y are O(v@) . We can express this

symbolically by writing

kS

< E‘ = 0O(v) . (+..9)

G

Since ¢ represents waves of wavenumber Vv , this is all rather obvious.
What is not so obvious is that

3
5’;, :}—’ = 0(1) (E.10)

when they operate on $(x,y) , even if v - «® _ To show this, substitute (R.8)
into (4.6), interchange order of integration, and write the potential in terms

of a function of a complex variable z = x+1iy :

. 2 0 “ak e 7X?
‘ = - = d —_— + i
¢ (x,Y) . Re [ J nf(n)J K (k=19) (k cos kn vs1nkn)]
-0 O
1 0 i iv(z+in)
_ 1 z-iny _ _ -iv(z+in s A
= 5 Fke [ J dn £(n) (log {z+in} 2e E, ( 1v(z+1n);)} ,
where
wdt e-t
El(u) = J t , the exponential integral .
u
As v > = , note that
e—vu
" < .
E, (vu) e for Iarg u, 3n/2

Using this asymptotic estimate, we now find that, as Vv » « ,

0
1 1
J an £ (n) [z_in - S toam|

©
®
[}
-
©
=
i
ENl

=

Ty




Y

-

>
>
=

O .
Sxx - Loy [dnf(n)[ o]

- (z-in)? (z+1n)~

etc. This is the result indicated by (R.10). It means that é(x,v) varies

"slowly" even if the wavenumber becomes asymptotically large.
In the problem in Section III, we had the free-surface condition
oy + dxx = 0O on y =0, (B.11)

instead of (B.3). The solution can be written as in (B.4), with ¢(x,v) giver

by (E.5) and

et .
$(x,y) = J ak A(Kk) e “*(veosky - ksinky) . (i+.12)
0
In this problem, one can show that
0
A, = 2 | aye) {1-e"} (15.13)
-
2

A(k)

0
J dy £(y) {v(1-cosky) + ksinky} . (1.14)

1k (k2+v<)

Then it is straightforward to show results identical to those obtained above

for the wavemaker problem, as summarized in (k.9) and (R.10).
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t APPENDIX C. EVALUATION OF SEVERAL INTEGRALS J

= We chose the arbitrary constant M in the Green function (see (63)) to

ensure that 8$1/3Y would be bounded at X = 0 even as Y - 0 . The result R

was given in (74). This left the constant D , which first appeared in ({(65), o
as a still undetermined quantity. Its value was to bhe found by substituting
from (73) into (72). To carry this out, we have to evaluate the integral in
(73) for X =Y = 0 . Its value turns out to be negligible, but this result

is not obvious, and so we derive it here,.

Siademtmmadhilinedo i b b

Frem (73) and (72), wit: Y = 0 in the former, we have
2 0 3G ]
3 _ (
evu,¢ (x.,0) - vD = dnu(f) — . (r.1) 1
070 0 = i
xx im 3Y|x=y=o .
£=0 *

(Recall that v = 1/uj .) Following (73), it was shown that

36 _ L[ akke" y

Y X=¥=0 i . k-v 4

£=0 1

The value of u(n) was given in (76). We substitute these results into (v.1): i

0 * kn
2u
nQ J an evn dkke

n

2
€3u0¢0xx(X0,0) - vD

k-v
— 0
L =3
2u rO kn
-0 dn (L+ 2e"m) f.gﬁlifl__
T k-v
-l/2€h
duget [ 4
Up€ -
0 1 1 k/2¢ 1 -
- - 241 - )
— {'dk{k__v k}{l e } .2
0
4uge” v 2¢" .
YT Ty {Y +log-2€—h——\)—+...} as v > @, (C.3)

where <y 1is Euler's constant. The expression in (C.2) is found after some

O
B

f. manipulation of the preceding line, and the estimate in (C.3) follows from
k. standard asymptotic estimates of exponential integrals.
A
; The right-hand side of (C.3) is O(e“loq %) , whereas the first term on
.L. the left-hand side is 0(e®) . So we conclude that

: D = 3.2 ( 0)/ (C.4)
| = €7ugdg  (%0,0)/V Ce

- as stated in (77).

®
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