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Abstract. .M~ discuss a finite element m2thod for solvidqg initial-
boundary value problems for vector systems of partial Adifferential
equations in one space dimension and time. The method autjomatically
adjusts the computational mesh as the solution evolves inf/time so as to
approximately minimize the local discretization error. e are thus
able to calculate accurate solutions with fewer elements than would be
necessary with a uniform mesh.

AiS =)
“Gur overall method contaiaé two distinct steps: a solution step
and a mesh selection step. e solve the partial differential equa-
tions using a finite element-Galerkin method on trapezoidal space-time-
elements with either piecewise linear or cubic Hermite polynomial
approximations. A variety of mesh selection strategies are discussed
and analyzed. Results are presented for several computational

examples. <.
\

1. Introduction. We consider adaptive finite element procedures
for finding numerical solutions of M-dimensional wvector systems of
partial differential equations that have the form
(1.1) Lu := ug + £(x,t,u,u,) - [D(x,t,u)uyl, =0, a<x<h, t >0,

subject to the ipitial and linear separated boundary conditions

(1.2a) u(x,0) =up(x), a < x < b,
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:..‘_'- (1.2b) Bjyu(a,t) := Ayq(t)ula,t) + Ayp(t)u,(a,t) = by(t),
» (1.2c) Byu(b,t) := Aji(tlu(b,t) + Axa(tuy(b,t) = bylt), t > 0.
l& There are kj initial boundary conditions (1.2a) and k; terminal bound-

ary conditions (1'.2b). We are primarily concerned with parabolic
problems where D is positive definite and ky = kp = M; however, we do
not restrict ourselves to this case, but instead we assume that
conditions are specified so that equations (1.1) and (1.2) have an
isolated solution.

Problems having the above form arise in many applications and our
ultimate goal is to create reliable and robust software that will
solve a wide class of them without requiring users to supply numerical
data such as temporal and spatial step sizes. Thus, we envision a
computer code that will automatically discretize and solve (1.1),
(1.2) on a nonuniform computational net and attempt to meet a pre-
scribed error tolerance.

The key decisions that must be made in developing such a code are
selecting (i) spatial and temporal numerical integration methods,
(ii) error indicator and estimator procedures, and (iii) adaptive
static and dynamic mesh allocation and distribution techniques.

We discretize and solve (1.1), (1.2) using a finite element-
Galerkin method on trapezoidal space-time elements. A detailed dis-
cussion and analysis of this approach was given in Davis (6] and
Davis and Flaherty (7], and herein we shall only repeat (cf. Section 2)
those features that are necessary to the continuity of this paper. Our
technique is similar to that of Jamet and Bonnerot {11}, and we chose
it because it is qgenerally easier to generate high order approximations
to partial differential eguations on a nonuniform mesh by using finite
element methods than by using finite difference methods.

We combine the error indication and static and dynamic mesh adapta-
tion steps by moving a fixed number of finite elements so that they
approximately minimize the discretization error per time step. This
task is known (cf. de Boor [8] or Pereyra and Sewell [15]) to be
asymptotically equivalent to selecting a mesh that equidistributes the

error,

Our approach is somewhat
{9,13,14), except that they
adaptation steps whereas we

In contrast to these two

finite element method of lines.

i.e., a mesh where the error is equal on every element.

similar to the work of Miller et al.
couple the finite element solution and mesh
consider them as distinct phases.

methods, Bieterman and Babuska {2,3] use a
In this approach the partial differen-

tial equations are first discretized in space using a Galerkin method.
This yields a system of ordinary Jdifferential equations in time which
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may be solved using one of the many available ordinacry differential
equations codes. They also add or delete elements in regions where the
spatial discretization error is estimated to be too large or too small,
Their method can potentially solve partial differential equations to a
prescribed level of accuracy, whereas this is generally not possible
with moving mesh methods that use a fixed number of elements. On the
other hand, moving mesh methods can follow evolving nonuniformities and
very effectively reduce dispersive errors (cf. Hedstrom and Rodrique
{10)). OQuite clearly, a code that had both mesh moving capabilities
and the ability to add and delete elements would be an ideal software
tool for solving partial differential equations. We have been experi-
menting with adding elements as the temporal integration proceeds in
example 3 of Section 4. :

In Section 3 of this paper we discuss several mesh equidistribution
algorithms and explore their properties. We, unfortunately, show that
many algorithms that are based on integrating ordinary differential
equations for the mesh velocities are unstable for dissipative partial
differential equations. In Section 4, we apply our methods to several
examples and in Section 5 we discuss our results and suggest some
extensions and improvements. .

2. Finite Element Solution Procedure. We discretize problem (1.1)-.
(1.2) on the strip

(2.1) s := {{x,t) | a < x <b, t, €t < t 1},

using a finite element-Galerkin procedure. Hence, we approximate
u{x,t) on S, by U(x,t) € Ugx and select "test" functions V(x,t) € Vg,
where Uyx and Vg are K-dimensional spaces of CO(Sn) functions. We then
multiply (1.1) by V, replace u by U, integrate over S,, and integrate
the time derivative and diffusive terms by parts to obtain the follow-
ing marching problem for determining U(x,t) in successive strips

Spe N =0,1,...:

(2.2a) U(x,0) = Pug(x), a < x <b, n=0,

the1 D
F(V,U) := | J {~vTu + vTf(x,t,0,U,) + VID(x,t,U)U }dxdt
tn a t x x
(2-2b)
b tn+1 th+1 b
+ [ vTuax | -/ vIp(x,t,0)u dt | = o,
a tn tn x a

Vv e Vg, (x,t) € S;, n >0

Here, P is an interpolation operator on the space UK and U must also
satisfy any essential (Dirichlet) boundary condition in (1.2b,c).

St - o aTe e e gt e s e e -




Adaptive Finite Element Methods

In order to select finite element bhases for UK and Vg UE'partition

n n
S, into N trapezoids T;, i = 1,...,N, where T; is the trapezoid with

. n n n+1 n+1 o
vertices (xi_,,tn], (xi'tn)' (xi_1,tn*1), (x; , thet) {(cf. Figure 1).

x(t)

nel [ 32 [ 32 E T2 B

t x. xl l xl-ll xl ‘ xl .
[ 33
t T
t.
X, X, X X, x,
a x b

Figure 1. Space-time discretization for time step t, € t € t.q.

We write U € S, as

K
(2.3)  U(x,8) = T ci(t)eslx,t)
i=0

n n
where each ¢;(x,t) is selected to bhe nonzero only on Ti_y (U Tj .

PR SHPR I 20
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J [
K

n
i Specifically, we map each T; in the {x,t)-plane into the rectangle

"
‘"
Py

(2.4) R= {(E,)]-1 € E <1, 0¢< 1<)

in the (&, t)-plane and, at present, we choose ¢i(x,t), j = 0,1,...,K
to be either piecewise c® linear or a plecewise c! Hermite cubic

n

polynomials in £ on Tj. We also select ¢;(x,t), i = 0,1,...,K as a
basis for Vk:; thus, the dimension of Ug and g is either N or 2N for
linear or cubic approximations, respectively.

integrals over R and are evaluated numerically. We use the Trapezoid-

al rule to evaluate the T integrals and a three-point Gauss-Legendre

rule to evaluate the £ integrals. The resulting system of nonlinear ;

algebraic equations is solved by Newton's method, with users supplying 1

formulas for the Jacobhians f,, f; , and D,. Additional details on our
x

The integrals in Eq. (2.2b) are transformed element-by-element into ?

finite element discretization may be found in Davis and Flaherty ([7]. - i

3. Adaptive Mesh Selection Strategies. 1In this section we discuss
several algorithms for moving the mesh so that the spatial discretiza-
tion error in Ly is approximately minimized at t = tp;q9. It is known
{cf., e.g., [17}) that the spatial error in finite element-Galerkin
methods for problems like (1.1.2) satisfies an estimate of the form

(3.1) lu-Ul < Clu-Pul ,

where Pu € Uk interpolates the solution. If we assume that u(x,t) €

ckta,b], then Pereyra and Sewell [16] show that the interpolation !
error in (3.1) can be asymptotically minimized in Ly for piecewise

polynomial interpolants of degree k - 1 by selecting the interpolation

points x;(t), 1 = 0,1,...,N, at time t such that

s cmmm i mS

k
(3.2) hi(t) q(ci’t) = E(t), i-= 1,2....,N .

Here, :
172
(3.3a,b) hj(t) = x;(t) ~ x5_4(t), gix,t) = {{ulk)(x, )1Tulk)(x, )1} ", |

ulk) {s the kth derivative of u with respect to x, gy € (x4_1, %1}, E(t)

n
s an undetermined function of t, and xj(t) is the line joining x; and
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Adaptive Finite Element Methods

n+1
31 {cf. Figure 1).

The result (3.2) states that the interpolation error is asymptoti-
cally minimized when the mesh is moved so as to equidistribute the
local spatial discretization error. Many computer codes for two-point
boundary value problems use equidistribution algorithms to adapt their
computational mesh (cf. Childs et al; (4]). Additional success has
been reported in using equidistribution alqorithms for variable knot
spline interpolation (cf., e.g., de Boor (8]).

In [7), Davis and Flaherty solved (3.2) by an iterative technique.
Herein we discuss an alternate procedure which is more restrictive,
but has a simpler structure. To begin, we follow de Boor [8] and
take the kth root of (3.2) and write it in the asymptotically equiva-

lent form -
3
1/
(3.4) [ glx,t) " dx =c(t),
Xi-1

where c(t)k = E(t). We let

X
(3.5) T(x,t) = [ g(s,t)V/k as .
a

Then
(3.6) c(t) = (1/N)T(b, t)

and the equidistributing mesh x%;, 1 = 0,1,..,.,,N, is determined as the
solution of the nonlinear system

(3.7) T(xi,t) = ic(t) I} 1 = 0,1,.0-,“ .

Of course, ulk) is unknown and it must be approximated by U. To
this end, suppose that we have computed a finite element solution

U(x,t,) at time t,; and on the mesh xz, i=0,1,...,,N. We differen-
tiate U(x, ty) once for piecewise linear approximations or thrice for
Hermite cubic approximations and find piecewise constant approxima-
tions for U'(x,t,) or U'''(x,t;), respectively. We then use finite
difference approximations of these derivatives to compute values of
Ulk)(x;,t,) and gtxit,) (cf. (3.3b)), for i = 0,1,...,N and k = 2 or
4. We experimented with three, four, and five point difference formu-
las and found that the five point formulas gave marginally better
results, so we are using them in the current version of our code.
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. v - We further assume that g(x.t)‘/k, k = 2 or 4, is a piecewise linear

n
function of x with respect to the mesh x;, i = 0,1,...,N, and
integrate it to find a piecewise parabolic approximation to T(x,t,)
from (3.5).

.
PR

Finally, we find c(t,) using (3.6) and determine an approximate equi-

s

"
.
N3,
N

-
.
)

AN
distributed mesh x;, i = 0, 1,...,N, at time t, by solving (3.7) using
the quadratic formula.

The entire process can potentia11§ be iterated to find a better
mesh; however, given all of the approximations made in evalnating

n
U(k)(xi,tn), we have only tried this at t = 0, where the initial
function ugl(x) is known to arbitrary precision.

The equidistribution algorithm has a nonunique solution whenever
g({x,t) = 0; therefore, we may expect numerical difficulties whenever
g{x,t) is small on any subinterval. We combat this problem by
imposing a lower bound on g, i.e., we replace g(x,t) by

(3.8) glx,t) := glx,t) +n,

in Egs. (3.4) and (3.5). Here, n is a small empirically determined

quantity that is discussed further in Davis and Flaherty [7}. Among
other things, n insures that the solution of (3.7) is a uniform mesh
whenever g(x,t) is small everywhere on {a,bl.

Our discussion, thus far, has concerned the computation of an equi-
distributing mesh at time level t, where a solution U{(x,t,) has
already been computed. To obtain an estimate for an optimal mesh at
time tnh41 prior to computing the solution there, we extrapolate the
optimal grids from previous time levels. At the present time, we are

n+1 N
using zero order extrapolation, i.e., xj =%xf » L =0,V,...,N;
however, we are experimenting with several different extrapolation
strategies, some of which are discussed in Section 3.1.

3.1. Adaptive Strategies for Mesh Velocities, The zero order
extrapolation strategy that was just discussed was applied to several
examples (cf. Section 4) and, despite its simplicity, it has worked
quite well, even on problems with rapidly moving wave fronts. WNever-
theless, we can expect that there will be some problems where it will
fail to produce an acceptable mesh. Most of our attempts to use higher
order extrapolation produced grids that oscillated wildly from time
step-to-time step, even when the solution changed quite little. 1In an
attempt to understand and remedy this phenomenon while simultaneously
developing a more dynamic adaptive mesh strategqgy, we differentiated Eq.
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(3.4) with respect to time and obtained the following system for the
mesh velocities:

x.
. . 1 .
(3.9) X glxg.t) -~ x3_7 gx5_q,t) + f gelx, t)dx = ¢ ,
Xi-1

whers (.) := 3( )/3t. This system offers several advantages when it
is used in conjunction with our finite element scheme. For example,
we can estimate U¢(x,t,) while assembling the finite element equa-

n
tions. Then, assuming that x;, i = 0,1,...,N, is an equidistributing
mesh, we can approximate gg¢(xj,ty), i = 0,1,...,N, using the same
finite difference scheme that was used to find g(xj.ty). 1 = 0,1,...,N.

Having done this, é is determined as

. b
(3.10) ¢ = (1/N) [ qgglx,ty)dx ,
a

.n
and the mesh velocities x; , L = 0,1,...,N, follow readily from (3.9)

n
by a procedure similar to the one that we used to find x; , i =
0,1,...,N. We can then integrate the mesh velocities using an explicit
method for ordinary differential equations and obtain an approximation

n+1
for an equidistributing mesh %3 , 1+ = 0,%,...,N.

However, since our experiments with higher order (multi-level) mesh
extrapolation produced unstable results and since this type of extra-
polation can be viewed as a consistent numerical approximation to the
differential system (3.9), we examine the stability of (3.9) before
proceeding further. Our analysis is quite general and is not limited
to either the specific form of g(x,t) that is given in (3.3b) or to
piecewise linear mesh trajectories.

We assume that x;(t), L = 0,1,...,N, is an equidistributing mesh
that exactly satisfies (3.4) and (3.9) and introduce a small pertur-
bation 6x;(0), 1 = 0,1,...,N, at t = O that satisfies

x4 +6x1

(3.11) f g(x,0)dx = c(0) + 8ci(0), L = 0,1,...,N .
Xj-1+6x4 _q

Since xp and xy are fixed, the perturbations must also satisfy

GXi(t) = 0,
0 i

(3.12) 8xplt) = dxy(t) =0, 6ci(0) =0 .

N 2z
[ 1

i 0

' L_;L- l' & - Y L. . L1 2 - - .
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We assume that no additional errors are introduced, i.e., Géi(t) =
0, L = 0,1,2,+.+,N, for t > 0. Thus, the perturbed system satisfies

(xy + 6xi)g(xi + Gxi,t) - (xj-q + 6xi_1)g(xi_1 + le_I,t) +
(3.13)
Xi+5Xi .
gelx,t)dx =¢c, L = 1,2,...,8-7, L > 0.
xi_\+6xi_1

We further assume that IGin << 1, £+ =1,2,...,N-1 and linearize
(3.11) and (3.13) to obtain

(3.14a) g(x;(0),0)8x;(0) - glxy_1(0),0)8xy_4(0) = &c3(0),
(3.14b) & - = = veo,N=1,
S lglx ,)8x, (t) - glx,  (t),t)x; ,(t)] =0, 1 =1,2,...,N-1

dt

This system is easily integrated to yield

(3.15a) 6x(t) L (t)L(O)&x(0) ,

It

where

[6)(1(t), 6x2(t),---,5xN..1(t)]T:

p—

(3.15b) &x(t)
Q(X‘](t)lt)
~g(xq1(t),t) g{xa(t),t)

(3015(:) L(t, = . . 0

~g(xn-2(t),t) glxy_q(t),t) .

> o

Of course, since L(t) is lower triangular, the solution of (3.14)
can be written in a more explicit form as

Gx (t) = glxg. 1(t), t) 6 (t) + q(xi(O),O) §x. (0)
g(x{(t), t) glxg(e), ey 1

(3.16)

+ 9(x4-1(0),0) Sx,_(0) , L= 1,200 ,N-1 .
gxg(t),t)
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The system (3.9) is stable to linear perturbations when &x(t)
decays and this occurs when IL"(t)L(O)I < 1, for some matrix norm.
Unfortunately, the choice of g(x,t) given by Eq. (3.3b), and other
reasonable choices, are likely to be decreasing functions of time for
dissipative parabolic partial differential equations and this will
almost certainly yield a value for 1IL-'(t)L(0)# that is larger than
unity.

Local instabilities can also occur when the mesh is moved so that
one of the three ratios involving g in Eq. (3.16) exceeds unity. How-
ever, since these instabilitles are local, they may either grow or
decay as time progresses.

The following two examples illustrate some of the instabilities that
can occur in Eq. (3.9).

Example 3.1. Consider the constant coefficient heat conduction
problem

(3.17b,c) u(x,0) = sinmx , u(0,t) =u(t,t) =0,
which has the exact solution

2
{3.173) ul{x,t) =e~" t sinmx .,

Since the solution of this problem is separable, the optimal strategy
is to generate an equidistributed mesh at time t = 0 and use it for all

2
time. When g(x,t) is given by (3.3b) we find that IL-1(t)L(O)N ~~T t;
thus, we expect the solution of (3.9} to be unstable. In Figure 2, we
display the meshes produced by both (3.4) and (3.9) for g(x,t) =
qux(x,t)l, and the instability produced by using (3.9) is clearly
visible. We note that exact values of uy, were used in obtaining
Fiqure 2 and the only errors that were introduced in the computation
were due to trapezoidal rule integration and a perturbation of 0.01
in the initial mesh for Eq. (3.9).

Example 3.2. We consider a constant coefficient heat conduction
problem that was studied in Davis and Flaherty [7]), i.e.,

(3.18) ug =uy, + f(x,t) , 0 <x <1, t>0,

The initial conditions, Dirichlet boundary conditions, and source f
are chosen so that the exact solution is

(3.19) wu(x,t) = tanh{(ry(x~1) + rpt) .

10
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Figqure 2. Meshes that were produced by solving Eq. {3.4) (solid line)
and integrating Eq. (3.,9) (dashed line) for Example 3.1.

The solution (3.19) is a wave that travels in the negative x direction
when rq and ry are positive. The values of ry and r; determine the
steepness of the wave and its propagation speed. The meshes produced
by both (3.4) and (3.9) for ry = r3 = 5 and g(x,t) = |uy(x,t)] are
shown in Figure 3. The solution of Eq. (3.9) is initially stable, but
as time progresses and g{x,t) decays it becomes unstable.
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1.00

0.40

g. 00

Figure 3. Meshes that were produced by solving Eq. (3.4) (solid line)
and integrating Eq. (3.9) (dashed line) for Example 3.2.

Petzold [16] suggested that the following linear combination of
Eqs. (3.4) and (3.9) might yield stable meshes with some improved
dynamic behavior:

. o x{ X{
x1g{x5,t) - xj_19(x4_1,t) + f ge(x,t)dx + A f g(x,t)dx

Xi-1 X{-1
(3.20) .
=¢c + Ac .

12
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Here A > 0 is a pé?&meter to be determined so that (3.20) is stable,
We have not done enough analysis or experimentation to form any firm
conclusions ; however, in Figure 4 we compare the solution of Eq. (3.4)
with Eq. (3.20) for Example 3.2, Equation (3.20) was solved by the
explicit Euler method using XA = 1/At, uniform time steps of At = 1/20,
exact values of g and g¢, and trapezoidal rule integration. It appears
that the mesh produced by Eq. (3.20) has some local instabilities, but
is globally stable for this example. Hence, this method has promise,
but much more testing is needed to determine its behavior, esvecially
when the approximate solution U(x,t) is used to calculate g and g¢.

1.60

1.20

W o

Figure 4. Meshes that were produced by solving Eq. (3.4) (solid line)
and integrating Eq. (3.20) (dashed line) for Example 3.2.

4. Examples. In this section we examine the performance of our
adaptive finite element method on four examples. In all of these we
used the equidistribution algorithm as discussed in Section 3 with
zero order extrapolation.
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~ Example 4.1. We consider Example 3.2 (cf. Egs. (3.18) and (3.19))
| with r] = r3 = 100. We compare the pointwise errors vs. x at t = 1 for
computations performed with uniform and adaptive meshes of 20 finite
elements using piecewise linear (cf. Figure 5a) and cubic approxima~
tions (cf. Figure Sb). The results were obtained using uniform time
steps of At = 0.01 and 0.0025, respectively, for the linear and cubic
approximations. We see that the computations using the fixed uniform
grids have large errors at the wave front, which is near x = 0 at t =
1. The adaptive mesh algorithm, on the other hand, concentrates
elements in the wave front (cf. Figure 3) and distributes the local
error more evenly over the domain.

20
I.G-r
124
(el 210
os}
044
I : -,
HUR Wi S
A\ N 4 S gy
oA =3 — +
] 20 40 .60 .80 1.0

Figure 5. Local error at t = 1.0 for Example 4.1 with 20 elements.
The solid curve was computed on a fixed uniform mesh and the dashed
curve on an adaptive mesh. The solution in Fiqure 5a (left) used
piecewise linear approximations with uniform time steps of At = 0.01
and that in Figure Sb (right) used piecewise cubic approximations with
uniform time steps of At = 0.0025.

Example 4.2. We consider the following problem for Burgers' equa-
tion:

U +Uuy = Euy,e , 0 <Cx <V, t>0
{(4.1)
u(x,0) = sinnx , u(o,t) =u(l,t) =0,

and € = 5x10~3. The solution of this problem is a pulse that steepens

as it travels to the right until it forms a shock layer at x = 1,
After a time of 0O(1/e) the pulse dissipates and the solution decays to

14
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zero. We compare solutions using piecewise Hermite cubic approxima-
tions on a uniform and an adaptive mesh of 10 finite elements in
Figures 6a and Gh, respectively. Both calculations were performed with
uniform time steps of At = 0.1. It is well known that finite differ-
ence and pilecewise linear finite element solutions of this problem
exhibit spurious mesh oscillations unless the mesh width is O(¢)
within the shock layer. However, the solution using piecewise cubic
approximations on a uniform mesh, that is shown in Figure 6a at t =
0.6, is pointwise very accurate and the large errors appear in the
slope of the computed solution. These errors largely disappear when
the mesh adapts with the solution and is appropriately concentrated in
the shock layer (cf. Figure 6b).

s

o
%
.

o8t

|

02¢

Figure 6. Solution of Example 4.2 using cubic approximations with 10

elements and uniform time steps of At. = 0.01. The solution in Fiqure

6a (left) was obtained using a fixed uniform mesh while that in Figure
6b (right) used an adaptive mesh.,

Example 4.3. We are currently investigating the following focusing
problem for the nonlinear Schrodinger equation in cylindrical coordi-
nates:

2
(4.2) ue = (i/r)(ru;), + 1|u|2u , >0, t> 0, ulr,0) = Ae™ar

where 1 = /=1 and u(r,t) is a complex valued function.
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It is known (cf. {12]) that the solution of (4.2) "self-focuses”,
i.e., it develops infinite values of u in a finite time, when the
initial conditions are "strong enough”". Problems of this type occur
in laser optics, and we are trying to determine the conditions which
cause the solution to "blow up" and also the local character of the
solution just prior to blow up. This problem is still under investi-
gation, in collaboration with A. Newell [5), and herein we only
present some preliminary results which, we feel, illustrate the need
for adaptive mesh strategies on difficult nonlinear partial differen-
tial equations.

In Fiqures 7a and 7b we illustrate lu(r,t)l for two sets of initial
conditions having a = 25 and & = 14 and A = 15, respectively. The
solution in Figure 7a does not focus while (we speculate that) the
solution in Figure 7b focuses. The dramatic growth in the magnitude
of the solution that is shown in Figure 7b is also accompanied by
rapid changes in phase as focusing nears.

Example 4.4, We are studying elastic-plastic impact problems for
cylindrical rods using the long rod model of T. W. Wright [18]):

(4-3) V=Wt'e=wx'P=uth=ux1

(4.4) €r = Vx » 9t = Py

(4.5) ve =Sy, Pt

2( Qx"P) .

Here, u and w are dimensionless radial and axial displacement compon-
ents, p and v are radial and axial wvelocity components, e is the axial
strain, q is the shear strain, and S, P, and Q are axial, radial, and
shear forces, respectively. Equations (4.3) define the strain and
velocity variables in terms of the displacements, Eqs. (4.4) are com-
patibility relations, and Eqs. (4.5) are the equations of motion. We
also need appropriate constitutive laws that relate $, P, and Q to e,
u, and q, and herein we simply use the linear Hooke's laws

(4.6) S=e +2¥Y u,P=_2 (ve+tu) , Q=_1-2v g
1-v 1-v 4(1-v)

16

~ . . B . PRI Lt . Lot -
. ® P N L P SRS RN Y tat . ce e e IR - - . N SR URINIEASS VU T SRR
I A W Bt e A A e A S I PR I HPP I I I CIMNC IR I WU SRt R O P WU N : Aol el nt




LIRS

LIt SRS
- L
e’ &2 e

ARSI A G A R SN

- et T e - N

L - i i e T R e 2 T S

Adaptive Finite Element Methods

40.080 06.08

16,08
)

Figure 7. Magnitude lul of the solution of the Schradinger equation
(4.2) with a = 25 and A = 14 (Figure 7a, left) and A = 15 (Figqure 7b,
right).

vhere v is Poisson's ratio. If v = 0 we have a one-dimensional theory
and Eqs. (4.3)~(4.6) reduce to a simple wave equation. However, if

v # 0 BEgs. (4.3)-(4.6) give a two-dimensional theory that is valid
when the length L of the cylindrical rod is large compared to unity.

Like the previous example, this is work in progress in collabora-
tion with J. J. Wu and T, W. Wright, so we will only report some pre-
lininary results that illustrate the differences between the one- and
two-dimensional theories. We use homogeneous initial conditions and
the boundary conditions

(4.7) v(O,t) = 0.1 , Q(O,t) =0, S(5,¢t) =0, Q(Svt) =0,
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These conditions correspond to a cylinder of length L = 5 that is hit
at t = 0 by a rigid wall that is moving with a velocity of ten percent
of the longitudinal wave speed of the bar. Since the initial condi-
tions are homogeneous, our adaptive algorithms have no choice but

to select a uniform inttial mesh. However, the velocities and strains
jump at x = 0, t = 0 and the mesh should be concentrated in the vicin-
ity of this point. There are several possibilities for overcoming
this difficulty. For example, we could either input a graded initial
mesh or we could use nonhomogeneous initial conditions and start the
problem at a small value of t > 0. We tried both alternatives, and
they gave very similar results for t > O. We also added artificial
viscosity terms €eyys, €dyxs EVyyx, and €pPy,, respectively, to the right
sides of Eqs. (4.4) and (4.5).

We present results for the axial stress § vs. x for t = 0,1,2,...,10
in Figures 8 and 9 for v = 0 and v = 0.3, respectively. 1In each case
S0 piecewise linear elements were used with an artificlal viscosity
coefficient € = 0.005.

It is known, that one-dimensional elastic waves are non-dispersive
whereas two-dimensional waves are dispersive. The dispersive nature of
the two-dimensional solution is clearly visible in Figure 9. Unfortu-
nately, the one-dimensional solution is much more dispersive than it
should be. We conjecture that the excessive dispersion is due to our
form of the artificial viscosity, and we are experimenting with
different models.

S. Discussion. The computations of Section 4 show that it is
possible to construct an accurate and stable adaptive grid finite
element procedure for nonlinear systems of partial differential equa-
tions that offers several advantages over fixed grid methods. However,
we have much more to do in order to achieve our goal of developing
reliable and robust general purpose software for partial differential
equations.

In this paper we concentrated on improving the mesh moving capabil-
ities of our code. We have always found equidistribution with zero
order extrapolation to be unsatisfying; however, our attempts to use
higher order extrapolation always ended in failure. The theoretical
results of Section 3 explain why this is so, and indicate a possible
remedy that we hope to explore further.

We feel that we have reached the limit in terms of what can be
achieved with a fixed number of elements per time step. There are
basically two possible ways of extending our methods to include the
ability of adding and deleting elements as the integration progresses
in time. We can envision a method of lines approach, in the spirit of
Bieterman and Babuska [2,3]); however, with "lines" that adaptively
equidistribute the local spatial component of the error. Elements can
be added or deleted as the integration progresses and the power of the
ordinary differentlial equations codes can still be used.
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Figure 8. Axial stress S vs. x for t = 0,1,...,10 for Example 4.4 with
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A second possibility is to locally refine, using space-time—trape-’~'
zoidal elements in regions having large local error. This is in the
spirit of the adaptive finite difference methods of Berger {1}; how-
ever, the computational cells would be trapezoidal rather than
rectangular,

We are exploring both approaches, but feel that the latter offers
the most promise.
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